数学学年论文汇总十篇

时间:2022-06-14 21:21:44

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇数学学年论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

数学学年论文

篇(1)

    新课程改革就是要将课程从“文本课程”转变为“体验课程”,因此,“体验”自然也就成为新的学习方式的一个重要特征。但是当前小学数学课堂上教师把学生当作盛装知识的容器,而不是具有鲜活个性的人,教师只注重知识的“灌输”而忽视学生对知识的主动获取,学生被动学习、缺乏独立学习、思考、主动探究的能力。教师过多强调学生对所学知识的记忆,习惯于传授现成的结论而不是向学生暴露解题思路、解题方法,学生体验不到知识的形成、发展过程,从而对数学的学习感到枯燥无味缺乏兴趣。另外,学生自学能力不够,缺少主动提出问题、主动探究问题和综合运用知识能力。学生主动参与意识不强烈,往往造成教师唱独角戏,课堂气氛不够活跃,没有吸引力,较枯燥呆板。

    三、创设小学数学体验教学情境策略的体会与思考

    (一)创设活动体验情境。新的数学《课程标准》提出,应加强数学与学生生活经验的联系。从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,促进学生的主动参与,焕发出数学课堂的活力。

    (二)创设问题体验情境。在教学中教师用简单浅显的提问将学生的思维引入预先设置的圈内是一种较为普遍的现象。学生不知道为什么要提这个问题及问题的重要性,缺少探究的方向和动力,严重抑制了学生的探究热情。只有在适宜的情景中,才能体验到问题的必要性,主动地投入到探究之中。如教学“厘米的认识”一课时,老师可以给学生创设了一个感性的探索情境:让学生用牙签、火柴、硬纸条等量一量数学书的一条边。经过实践操作,学生在测量数学书同一条边长时,有的学生量出是5根半火柴的长(有的量出是3根牙签的长,有的量出是2张硬纸条的长。教师提问:“为什么同样的数学书的同一条边量得的结果所表示的数却不同呢?”学生根据测量的经验和通过讨论与观察发现:原来测量数学书边长的材料长短是不一样的。要注意引入时提出的问题应处于多数学生智力水平的“最近发展区”,才能激起学生主动参与的热情,取得好的教学效果。

    (三)创设反思体验情境。有反思意识的学生,一旦意识到问题,内心便产生认知冲突,于是会自觉进入反思环节。但,使学生明确意识到自己学习中的不足往往不是很容易的。因为,这是对他个人的能力、自信心的一种“威胁”。所以,作为学生反思活动的促进者———教师,在此时要创设轻松、信任、合作的气氛,帮助学生看到学习中的问题所在,使反思活动得以开展。教师可以从学生的实际出发,通过提供适当的问题或实例以促进学生的反思。教学中多问几个为什么,善于设疑,并善于从学生的思维角度出发,从学生容易忽视的一些重要环节中提炼问题,然后通过环环相扣逐层深入的问题序列来引导学生反思。

篇(2)

形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,训练学生的形象思维。

例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在学生头脑中得到全面的反映。

又如教学“除法的初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种分法。教师适时把他们的不同分法展示出来:

附图{图}

然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。

这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部智力活动,把感性材料和生活经验化为概念。

二、在概念的形成中训练学生的抽象思维

抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、掌握和运用数学概念与原理的能力。

在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用概念的干扰,使学生充分了解概念的内涵和外延。

例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和“正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了抽象思维。

三、在深化概念中训练学生思维的深刻性

学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维的深刻性。

一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。名称举例相互关系区别

比2:3前项:(比号)后项比值两个数的关系除法2÷3被除数÷(除号)除数商一种运算分数2/3分子──(分数线)分母分数值一个数

二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:

篇(3)

关键词:高中数学;高效课堂;策略

在新课改不断推行的过程中,各门课程的改革势在必行。为了适应时代的发展,符合新课改的要求,高中数学也做了一些相应的调整,采取了相应的措施。课堂是教学开展的主要平台,是学生学习的主要阵地,它就是教师完成教学任务,学生完成学习任务的主要途径,而高效课堂是促使教师教学效率以及学生学习效率稳定提升的主要途径,所以,高效课堂成为整个教育界共同探讨的话题。如何构建高效的高中数学教学课堂成为新课程改革大环境下一个相当棘手的话题。因此,本文就如何构建高效的高中数学课堂提出几种策略。

一、通过生活化问题情境的导入,调动学生学习的积极性

有经验的教师都知道,学生学习的积极性,在教学过程中是多么的重要。只有善于调动学生学习积极性,激发学生学习兴趣的教师,其课堂教学效率才会高,教学结果才会理想。因此,在教学中,教师的首要教学任务,就是通过精心设计生活化的问题情境,导入课题,激发学生与课堂产生共鸣,让他们能够触景生情,积极走进课堂,参与教学。比如,我在教学高一《集合与函数概念》这一章中“函数及其表示”这一知识点时,为了促使学生很快清晰地掌握完整的函数定义,我结合学生刚学过的《集合》这一章内容进行导入,首先,我借助有关集合的两个例题,让学生回顾与集合相关的知识,然后我根据学生实际生活进行提问,引发学生进行思考,如,“期中考试的成绩出来了,我们班50人中,每个阶段的学生人数都不尽相同,成绩分布如下,90——100分5人,80——90分12人,70——80人10人,60——70分8人,60——50分5人,40——50分5分,30——40分3人,20——30分0人,而20分以下2人,请同学们分别算出各个阶段学生的数学成绩的概率是多少?”学生在做题的过程中,复习了以前的知识,同时,也激发了学习兴趣,调动了学生学习的积极性。再如,我在教学《空间几何体》这一章时,为了促使学生意识到什么是空间集合图形,我首先结合学生的实际生活举了两个例子,如“粉笔盒”“电冰箱”“洗衣机”,而后再结合空间集合图形的结构特点对学生进行引导,再让学生联系的亲身经历,谈谈他们所认识的空间几何图形。学生在我的引导下,积极动脑,主动思考,很快地就走进课堂,融入教学,这对我下一步教学的开展是非常有利的。

二、重视“问题”在教学开展中的重要性

数学是一门思维性很强的应用学科,其教学过程也是发现问题、解决问题的过程。“问题”作为整个数学课堂的灵魂,在教学中非常重要。因此,作为高中数学教师,()在教学中一定要重视“问题”的重要性,要善于“提问”。

1。在关键处提问

“提问”是激发学生思维发展的直接途径,是促使学生开动脑筋思考的最有利手段。因此,在教学中教师要善于在关键处“精”问,问题要能够起到引导学生思维发展、促进学生学习能力提升的目的,切忌提“对不对”“是不是”“不是吗”等毫无启发价值的问题。例如,在教学《函数》这一知识点时,为了让学生明白函数在生活中的运用,我通过“同学们,你们还能举例说明函数在我们生活中的应用吗?”引导学生进行思考,收到了很好的教学效果。

2。注意提问的技巧

在高中数学教学中,提问也是一门艺术,有许多的提问技巧。教师要善于总结、归纳,并灵活运用。首先,在课堂上,教师的提问要具有启发性,能够引导学生思考,最好在关键处进行提问,激发学生的思维,积极动脑。其次,提问的语言尽量简单、明了、循序渐进,使学生容易理解,便于接受。最后,每次提问,教师都应该给学生留足够的思考时间,切忌盲目地提问,无效地提问。

三、提倡学生注重预习

学习是“文本”“教师”“学生”三者有机结合的过程,每一个因素在教学中都占有非常重要的分量。就高中数学这门教学课程的学科特点而言,对学生实践能力、动手能力的要求都很严。而高中数学教学大纲也曾清晰地指出,高中数学教学必须倡导学生自主动手,主动学习。因此,在教学中,教师应该注重引导学生预习,课文预习、习题预习。在文本预习中,学生要能够通过自主学习,掌握教学内容,明确课文中的基本概念,并且通过分析、整理,能够掌握概念、公式的特点、规律,同时,在预习中能够针对教材中出现的问题,进行思考,并作上相应的标记符号,方便在新授课中的学习。在习题预习中,要重点根据文中例题进行分析,总结做题思路以及格式,能够提前将文本相应的习题做一遍,并找出相应的重难点。

篇(4)

在学校的概念课教学研讨中,笔者教授了七年级下《9.1.1不等式及其解集》的概念课,探讨了概念课的教学模式。下面笔者就谈谈她对概念教学的粗浅认识。

一、创设情境,注意概念的引入

要成功地上好一堂新概念课,教师的注意力应集中到创设情景、设计问题上,让学生在教师创设的问题情景中,学会观察、分析、揭示和概括,教师要则为学生思考、探索、发现和创新提供尽可能大的自由空间,帮助学生去体会概念的形成、发展和概括的过程。此外,概念的引入也是非常重要的内容。从平常的教学实际来看,对概念课的教学产生干扰的一个不可忽视的因素是心理抑制。教师方面,会因为概念单调枯燥而教得死板乏味;而学生方面,又因为不了解概念产生的背景及作用,缺乏接受新概念的心理准备而产生对新概念的心理抑制。要解决师生对概念课的心理抑制问题,可加强概念的引入,帮助学生弄清概念产生的背景及解决的方法。由于形成准确概念的先决条件是使学生获得十分丰富和符合实际的感性材料,通过对感性材料的抽象、概括,来揭示概念所反映的本质属性。因此在教学中,教师要让学生密切联系数学概念在现实世界中的实际模型,通过对实物、模型的观察,对图形的大小关系、位置关系、数量关系的比较分析,在具有充分感性认识的基础上引入概念。

二、重点培养学生的概括能力

在学生的概念学习中,要重点培养学生的概括能力。概括是形成和掌握概念的直接前提。学生学习和应用知识的过程就是一个概括过程,迁移的实质就是概括。概括又是一切思维品质的基础,因为如果没有概括,学生就不可能掌握概念,从而由概念所引申的定义、定理、法则、公式等就无法被学生掌握;没有概括,就无法进行逻辑推理,思维的深刻性和批评性也就无从谈起;没有概括,就不可能产生灵活的迁移,思维的灵活性与创造性也就无从谈起;没有概括,就不能实现思维的“缩减”或“浓缩”,思维的敏捷性也就无从体现。学生掌握概念,只接受他们的概括水平的制约,要实现概括,学生必须能对相应的一类具体事例的各种属性进行分化,再经过分析、综合、比较而抽象出共同的、本质的属性或特征,然后再概括起来;在此基础上,再进行类化,即把概括而得到的本质属性推广到同类事物中去,这既是一个概念的运用过程,又是一个在更高层次上的抽象概括过程;然后,还要把新获得的概念纳入到概念系统中去,即要建立起新概念与已掌握的相关概念之间的联系,这是概括的高级阶段。从上所述可知,对概念的具体例证进行分化是概括的前提,而把概念类化,使新概念纳入到概念系统中去,又成为概念学习深化的重要步骤,因此,教师应该把教会学生对具体例证进行分化和类化当成概念教学的重要环节,使学生掌握分化和类化的技能技巧,从而逐渐学会自己分析材料、比较属性,并概括出本质属性,以逐步培养起概括能力。另外,数学概括能力中,很重要的是发现关系的能力,即发现概念的具体事例中各种属性之间的关系,发现新概念与已有认知结构中相关概念之间关系的能力。

三、运用变式,寻求概念的本质

变式是变更对象的非本质属性的表现形式,变更观察事物的角度或方法,以突出对象的本质属性,突出那些隐蔽的本质要素,一句话,变式是指事物的肯定例证在无关特征方面的变化,让学生在变式中思维,可以使学生更好地掌握事物的本质和规律。

变式是概念由具体向抽象过渡的过程中,为排除一些由具体对象本身的非本质属性带来的干扰而提出来的。一旦变更具体对象,那么与具体对象紧密相联的那些非本质属性就消失了,而本质属性就显露出来。数学概念就是通过对变式进行比较,舍弃非本质属性并抽象出本质属性而建立起来的。值得注意的是,变式不仅可以在概念形成过程中使用,也可以在概念的应用中使用。因此,我们既可以变更概念的非本质属性,也可以变换问题的条件和结论;既可以转换问题的形式或内容,也可以配置实际应用的各种环境。总之,就是要在变化中求不变,万变不离其宗。这里,变的是事物的物理性质、空间表现形式,不变的是事物在数或形方面的本质属性。变化的目的是为了使学生有机会亲自经历概念的概括过程,使学生所掌握的概念更加精确、稳定和易于迁移,避免把非本质属性当成本质属性。

变式的运用要注意为教学目的服务。数学知识之间的联系性是变式的依据,即利用知识的相互联系,可以有系统地获得概念的各种变式。另外,变式的运用要掌握好时机,只有在学生对概念有了初步理解,而这种理解又需要进一步深化的时候运用变式,才能收到好的效果;否则,如果在学生没有对概念建立初步理解时就运用变式,将会使学生不能理解变式的目的,变式的复杂性会干扰学生的概念理解思路,先入为主而导致理解上的混乱。

四、精心设置课堂练习,通过反复练习掌握概念

篇(5)

第一要注重同学生的交往。教学中应有互动、协调的师生关系。教学活动是师生交往、积极互动、共同发展的过程。没有交往,没有互动,就不存在教学,教师与学生都是教学的主体,都具有独立人格价值,两者在人格上完全平等,师生关系是一种平等、理解、双向的人与人的关系,这种关系的建立和表达的最基本的形式和途径是交往。如果师生人际关系中普遍存在着教师中心主义和管理主义,将严重剥夺学生的自,伤害学生的自尊心,摧残学生的自信心,由此将导致学生对教师的怨恨和抵触情绪,师生关系将经常处于冲突和对立之中。改变师生关系因此被广大教育工作者所重视。通过交往,重建人道的、和谐的、民主的、平等的师生关系是教学改革的重要任务。让学生体会到平等、自由、民主、尊重、信任、友善、理解、宽容、亲情与关爱。对教学而言交往意味着对话,意味着参与,意味着相互建构;对学生而言,交往意味着心态的开放,个性的张显;对教师而言,交往意味着上课不仅是传授知识,而且是一种分享理解。交往还意味着教师角色的转换。

第二在教学中要改进评价方法,使每个学生学习的积极性都有所提高,学习更有自信心。《数学课程标准》提出:“对教学的评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”评价的目的是全面了解学生的学习状况,激励学生的学习热情,促进学生的全面发展。也是教师反思和改进教学的有力手段。评价中既要关注学生知识与技能的理解与掌握,更要关注他们情感与态度的形成和发展;既重视学生解决问题的结论,又重视得出结论的过程;既重视学生在评定中的个性化,反应方式,保护学生的自尊心和自信心,又倡导学生在评定中学会合作与交流;评定的功能由侧重甄别转向侧重发展。使学生对数学的学习产生浓厚的兴趣。对《生活中的图形》一章的学习评价可分几个方面进行:上课回答问题的情况;在家折叠与展开图形的情况(可由学生评比);小组讨论时的发言;书面测试;作业情况;以及同老师的谈话等等。

第三尊重学生的个体差异,满足多样化的学习需要。学生的个体差异表现在认知方式与思维策略的不同,以及认知水平和学习能力上的差异,教师要及时了解并尊重学生的个体差异。特别是对学习困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。

篇(6)

小学生思维的特点是以具体形象思维为主的,而数学概念具有较强的逻辑性和抽象性,因此,在进行概念教学中,我们如能围绕教学目标,引导学生动手操作,让学生从感知到表象,再抽象概括,使学生既理解了概念,又学会了探索的方法。

如教学“三角形面积”,可以先引导学生动手把两个完全一样的三角形,拼成一个平行四边形,再组织学生讨论,三角形的底、高与拼成的平行四边形的底、高有什么关系?它们的面积又有什么关系?最后让学生推导出三角形的面积公式。这样,学生能深刻地理解到:三角形的面积是与它等底等高的平行四边形面积的一半,从而更好地掌握三角形的面积计算公式。

二、在游戏中学习概念

生动的游戏活动能营造愉快的学习气氛,鼓励学生主动参与,激发浓厚的学习兴趣。所以在概念教学中,如能根据教学内容、有机地设计丰富多彩的游戏活动,能使学生学习得更好。如教学“人民币的认识”时,可设计“售货员与顾客的游戏:一名学生当售货员,出示一本作业本为三角六分,其他学生当顾客,谁先准备好付钱的方法,作业本就奖给谁。”在有趣的买卖实践活动中,让学生对“人民币”这一概念有了深刻的认识,并能把认识和使用人民币有机地结合起来。

三、从视听媒体中学会概念

高品质、设计良好并且使用得当的现代教学媒体,会给学生的学习活动带来一系列的良好变化、可以提高和促进学习,尤其在数学概念中更为重要。如在“长方形的周长和面积”的教学中,学生往往是能背诵公式,但不懂应用,因此,教师指导学生根据周长和面积的意义,长方形的特征,选择相同的长方形,通过多媒体电脑屏幕进行直观演示,再进行小结,长方形的面积摆的是面积单位的总个数,它是一个“积”。而长方形的周长是表示四条边的长度总和,它是一个“和”。这样形象地展现了长的厘米数与党的厘米数的乘积等于长方形的面积:长的厘米数加上宽的厘米数的和乘以2等于长方形的周长。从而使学生对长方形的面积和周长公式有了真正的理解。

四、在对比辨析中掌握概念

对一些容易混淆的数学概念,学生往往难子理解,而运用对比辨析的方法是学习这些内容的好方法。如等分除法与包含除法;是几倍和增加几倍;增加了多少和增加到多少;最大公约数和最小公倍数;长度单位、面积单位和体积单位;整除和除尽;正比例、反比例与似是而非不成比例的量……都应利用比较辨析法找出它们之间的区别与联系,形成确切的科学概念。

如教学“正反比例”后,可以出示下面一组题目:

1.一辆汽车从甲地到乙地,每小时行45千米,8小时可以到达。如果每小时行40千米,要几小时才能到达?

2.一辆汽车从甲地开往乙地,4小时行了180千米。照这样的速度,从甲地到乙地要行8小时。求甲乙两地的路程。

让学生思考以下问题:

题中讲的是哪两种相关联的量?

什么量随着另一种什么量变化?

相对应的哪两种量的什么值一定?

然后运用比例的概念判断各成什么比例、再引导学生对正反比例的概念进行对比、辨析其异同点,并填写下表。

正比例反比例

相同点

不同点

这样做、学生对正反比例的联系与区别有了实质性的理解,从而运用其进行实际应用也就感到轻松了。

五、从类比中掌握概念

一些抽象的数学概念,教师用比较浅显的语言,学生还是不知其然,而用类比进行说明,学生就能很快地理解。如差的变化对于减数的依从性,学生很难理解。

教学时,用学生已知的生活中的例子进行类比说明,学生就很快地理解。例如:甲乙两个孩子原有的桃子相等(都是10个),但甲吃的挑子多,乙吃的桃子少,谁剩的桃子多?谁剩的桃子少?很明显,甲吃的多就剩得少,而已吃的少就剩得多,接着再利用式题说明变化规律,学生就容易理解了。又如,低中年级的学生对“松树比杨树少15棵”,中的“相比较的两个量谁多谁少?”这个问题的回答往往是“杨树少,松树多”,尽管教师多次提醒学生要认真看清题目,但学生还是“不听话”,其实学生对这句话没有理解。有一次,我用以下类比法进行引导,效果很好,我问:

篇(7)

1、教材的地位和作用:

函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:

教学目标:

(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:

函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:

教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:

映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:

将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

三、教学方法和学法

教学方法:讲授为主,学生自主预习为辅。

依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。学法:四、教学程序

一、课程导入

通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

二.新课讲授:

(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:AB,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

(2)巩固练习课本52页第八题。

此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:AB记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

再以让学生判断的方式给出以下关于函数近代定义的注意事项:

2.函数是非空数集到非空数集的映射。

3.f表示对应关系,在不同的函数中f的具体含义不一样。

4.f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

5.集合A中的数的任意性,集合B中数的唯一性。

6.“f:AB”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

三.讲解例题

例1.问y=1(x∈A)是不是函数?

解:y=1可以化为y=0*X+1

画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

[注]:引导学生从集合,映射的观点认识函数的定义。四.课时小结:

1.映射的定义。

2.函数的近代定义。

3.函数的三要素及符号的正确理解和应用。

4.函数近代定义的五大注意点。

篇(8)

我们知道雪雕的制作过程与其他艺术品的制作过程相比较比较复杂,它要求雪雕设计者以及雪雕雕刻者都必须有较为精湛的技术,因此,如果雪雕设计者设计的雪雕造型过于复杂,就会给雪雕雕刻者的雕刻过程带来较大的困难,这样不仅仅会消耗大量的人力以及物力,还会大大地减少雕刻作品的美观程度。另外,如果在雕刻过程中出现一些错误,由于受雕刻原料本身的影响,这种失误是很难消除的,即使可以消除也会影响雪雕作品的美观程度。因此,雪雕设计者在设计过程中必须要结合雪雕原料的特点、雪雕雕刻者的技术以及雪雕的美观程度,从而不断提高我国雪雕的制作水平。

(二)调动情感

一件成功的雪雕作品不仅仅可以吸引观众的眼球,让他们愿意花费更多的时间去观察和了解这个作品,还可以更好的调动观众的情感,让他们可以通过雪雕作品了解作者想要表达的思想感情。因此,雪雕设计者在设计雪雕的过程中,不仅应该使得雪雕作品的主体明确以及易于表现,还应该将自己真实的情感注入到雪雕作品。当观众看到雪雕作品时,首先他们愿意停下来观察这件作品,刚开始观众并不能直接看到作品所表达的感情,但是当他们花费更多的时间和精力去更深层次的观察时,他们就会透过作品体会到作者的感情,了解作者在设计作品时的心情。

(三)合理的比例

众所周知的是,一个合理的比例是直接决定一件作品成功与否的关键因素之一,它可以更好地吸引观众的眼球,增加观众对于雪雕作品的兴趣。我国大部分雪雕设计者在设计过程中不注重雪雕作品的比例安排,他们仅仅只是按照自己的观察来确定作品的比例。而在西方大部分国家,雪雕设计者对于雪雕作品的比例是极其注重的,他们在设计过程中必须要使用精确的仪器来确定比例,这就是我国雪雕制作水平一直落后于西方国家的主要原因之一。因此,我国雪雕设计者必须要积极向西方国家学习,引进他们的各种先进技术,加强对雪雕作品比例的重视程度,进而不断提高自己的雪雕艺术水平,最后提高我国雪雕艺术在国际上的地位。

二、雪雕艺术的实践应用

随着我国人们生活水平的不断提高,人们开始渐渐的注重精神上的享受,为了满足人们的需求,雪雕艺术渐渐地走进了人们的日常生活中,并且受到了人民群众的广泛关注,雪雕艺术已经成为了人们业余生活中不可缺少的一部分。雪雕的出现不仅仅可以丰富人们的业余生活、开阔他们的视眼,还可以大大地提高他们的审美能力。雪雕艺术还可以丰富我国的文化,使得我国的文化更加的博大精深,进而提高我国文化在国际上的地位,吸引更多的外国人来欣赏我国的文化。

篇(9)

陈老师教我们的第一节课很独特,首先她问我们的第一个问题是:“数学是什么?”,这个问题虽然简单,但是却充满着奥秘,我回答不出来,但是也有很多同学踊跃举手回答问题“数学是生活中经常运用的知识”“数学是我们思维的一种表达方式。”“数学是……”陈老师似乎比较满意,说:“同学们的回答很精彩,但是,还不完全正确,数学是研究数量、结构、变化以及空间模型等概念额一门学科。通过抽象画和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生……”

陈老师告诉我们的是数学,数学存在的意义,她说,数学不是烦躁的拼命做练习,而是锻炼我们的思维,使我们的思维越来越强,使我们对于某一件事时,可以迅速的判断。数学是一门学科,如果你对数学有兴趣,那么你的思维已经很强了。

没错,通过陈老师的教导,我们已经渐渐懂得数学的含义,数学题目中,也许有些很难,但是每解一道题,就能锻炼我们的思维。比如,陈老师让我们花半个小时去做一道题,这道题是一道初三的题目,即使你会做,也要做到半小时:

某同学在A、B两家超市发现他看中的随身听的价钱相同,书包单价也相同。随身听和书包单价之和为452元,且随身听的单价比书包的单价的4倍少8元。

(1)求该同学看中的随身听和书包的单价各为多少元?这道题虽然很难,但是只要根据自己的理解,写出来,也可以。我们要锻炼自己的思维,提高数学能力!

一年级数学简短小论文二伟大的数学王国由0-9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。

把一条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。

从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。

一、画图的应用

1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。

2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。

二、人体的应用

1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。

2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点……

三、建筑物的应用

古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔……

四、生活上的应用

1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。

2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。

大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!

一年级数学简短小论文三数学?数学是什么?数学是生活的眼睛;数学是智慧的结晶;数学是文字的艺术。

我从小就爱数学,爱做数学题,特别是数学广角。说起数学广角,我想起了这个学期的“鸡兔同笼”问题,起初我一听这名儿,便知道这个问题一定不简单。但我并没有被问题吓倒,难题反而能激发我的兴趣。我开始不断研究此类题,我一下子就发现了其中的奥秘。原来这题可以用假设法、解方程和列表格多种方法。不过我更倾向假设法,因为我发现这种方法有很大的挑战性,十分有趣。

先假设它们全是鸡,于是根据鸡、兔头的总数,就可以算出在假设条件下共有几只脚,再与原有的脚数相比较,看看差是多少,再从中求出兔的数量。从中我还发现了几个数量关系呢!①兔=(实际脚数-每只鸡脚数×鸡、兔头的总数量)÷(每只兔脚数-每只鸡脚数)②鸡=(每只兔脚数×鸡、兔头的总数量-实际脚数)÷(每只兔脚数-每只鸡脚数)而且这类题目在我们日常现实生活中也会随时遇到,前些日子妈妈带我去万寿宫买练习本,簿练习本0。8元/本,厚练习本1。5元/本,妈妈给我9。9元钱让我买8本练习本。我立刻就明白妈妈是在考验我呢!我可不能让她小看了我,运用课堂上所学到的知识,我买了5本厚练习本、3本簿练习本。

从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊,只要你乐于探索,你就会有更多奇妙的发现。

一年级数学简短小论文四每当双休日的时候,在我们校园里总会看到一位年龄大的老师在校园溜达。这个人既是我们学校的后勤主任,又是我的数学老师。

我的数学老师今年50多岁,再过3年就要退休了。他的眼睛炯炯有神,每当有同学在他的课上做小动作时,总会被他逮个正着,所以没人敢在他的数学课上乱动。

数学老师坏习惯很多,一天到晚抽烟喝酒最在行。不管在哪遇见他,总能看见他嘴上叼着根烟,若无其事地抽着。他每天中午都会喝酒,下午有他课的时候,教室里就会到处洋溢着酒味,害得同学们都想去投诉他。

有一次,他中午喝完酒后一不小心一个踉跄,摔个正着,把两个眼圈都摔肿了,成了国宝大熊猫。

篇(10)

1要把握函数的实质

17世纪初期,笛卡尔在引入变量概念之后,就有了函数的思想,把函数一词用作数学术语的是莱布尼兹,欧拉在1734年首次用f(x)作为函数符号。关于函数概念有“变量说”、“对应说”、“集合说”等。变量说的定义是:设x、y是两个变量,如果当变量x在实数的某一范围内变化时,变量y按一定规律随x的变化而变化。我们称x为自变量,变量y叫变量x的函数,记作y=f(x)。初中教材中的定义为:如果在某个变化过程中有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值与之对应,那么y就是x的函数,x叫自变量,x的取值范围叫函数的定义域,和x的值对应的y的值叫函数值,函数值的集合叫函数的值域。它的优点是自然、形像和直观、通俗地描述了变化,它致命的弊端就是对函数的实质——对应缺少充分地刻画,以致不能明确函数是x、y双方变化的总体,却把y定义成x的函数,这与函数是反映变量间的关系相悖,究竟函数是指f,还是f(x),还是y=f(x)?使学生不易区别三者的关系。

迪里赫莱(P.G.Dirichlet)注意到了“对应关系”,于1837年提出:对于在某一区间上的每一确定的x值,y都有一个或多个确定的值与之对应,那么y叫x的一个函数。19世纪70年代集合论问世后,明确把集合到集合的单值对应称为映射,并把:“一切非空集合到数集的映射称为函数”,函数是映射概念的推广。对应说的优点有:①它抓住了函数的实质——对应,是一种对应法则。②它以集合为基础,更具普遍性。③它将抽像的知识以模型并赋予生活化,比如:某班每一位同学与身高(实数)的对应;某班同学在某次测试的成绩的对应;全校学生与某天早上吃的馒头数的对应等都是函数。函数由定义域、值域、对应法则共同刻划,它们相互独立,缺一不可。这样很明确的指出了函数的实质。

对于集合说是考虑到集合是数学中一个最原始的概念,而函数的定义里的“对应”却是一个外加的形式,,似乎不是集合语言,1914年豪斯道夫(F.Hausdorff)采用了纯集合论形式的定义:如果集合fС{(x,y)|x∈A,y∈B}且满足条件,对于每一个x∈A,若(x,y1)∈f,(x,y2)∈f,则y1=y2,这时就称集合f为A到B的一个函数。这里f为直积A×B={(x,y)|x∈A,y∈B}的一个特殊子集,而序偶(x,y)又是用集合定义的:(x,y)={{x},{x,y}}.定义过于形式化,它舍弃了函数关系生动的直观,既看不出对应法则的形式,更没有解析式,不但不易为中学生理解,而且在推导中也不便使用,如此完全化的数学语言只能在计算机中应用。

2加强数形结合

数学是人们对客观世界定性把握和定量刻画、逐渐抽像概括、形成方法和理论,并进行广泛应用的过程。在7—12年级所研究的函数主要是幂函数、指数函数、对数函数和三角函数,对每一类函数都是利用其图像来研究其性质的,作图在教学中显得无比重要。我认为这一部分的教学要做到学生心中有形,函数图像就相当于佛教教徒心中各种各样的佛像,只要心中有形,函数性质就比较直观,处理问题时就会得心应手。函数观念和数形结合在数列及平面几何中也有广泛的应用。如函数y=log0.5|x2-x-12|单调区间,令t=|x2-x-12|=|(x-?)2-12.25|,t=0时,x=-3或x=4,知t函数的图像是变形后的抛物线,其对称轴为x=?与x轴的交点是x=-3或x=4并开口向上,其x∈(-3,4)的部分由x轴下方翻转到x轴上方,再考虑对数函数性质即可。又如:判定方程3x2+6x=1x的实数根的个数,该方程实根个数就是两个函数y=3x2+6x与y=1/x图像的交点个数,作出图像交点个数便一目了然。

3将映射概念下放

上一篇: 乡镇干部学法用法 下一篇: 工作致谢词
相关精选
相关期刊