桥梁结构论文汇总十篇

时间:2022-09-12 19:40:59

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇桥梁结构论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

桥梁结构论文

篇(1)

一、系统论

1945年贝塔郎菲提出了一般系统论的新思维,随后维纳、申农分别提出了控制论和信息论,从而使得人们对事物整体和部分的关系看法由机械整体性发展到系统整体性。60~70年代间,系统科学出现了耗散结构论(普里高津)、协同论(哈肯)、超循环论(艾根)和突变论(托姆),主要讨论系统的存在、发展和消亡,强调任何一个净化系统都能够自行组织,并且不同要素之间具有协调作用。70年代以来,对系统最核心的问题即系统机制的研究得到广泛关注,出现了对系统机制解释的混饨理论、分形理论、孤波理论等,构成了系统动力学理论,主要考察系统的非线性机制。

凡物皆系统,考察任何系统都要对其要素、结构、功能、环境等方面进行分析。系统具有以下主要特性:①加和性和非加和性;②整体不等于部分之和;③整体功能取决于要素、结构和环境;④结构决定了系统的功能。系统处于非平衡态,需要外加的能量(或信息)来维持,因此,能够产生新的结构的系统一定是开放的。系统远离平衡态失稳以至形成新的结构要依赖于非线性的反常涨落。涨落在远离平衡时起驱动作用,不可逆性会导致新的结构,产生新的质。

系统论已被应用于很多领域,本文旨在应用系统研究的思想来系统地理解桥梁结构的一些新领域,进而将系统机制理论引入桥梁系统的研究。

二、桥架结构系统

桥梁是由多种材料、不同结构组合而成的复杂系统。桥梁结构系统的要素、结构、功能及环境的简要示意图。桥梁结构系统是桥梁工程大系统的一个子系统,不同的桥梁结构体系又构成各个更低层次的子系统。要素中的各种基本构件也构成一个层面上的系统,有其自身的要素、结构、功能和环境。

桥梁结构系统整体不等于部分之和。单个基本构件,比如单个梁构件,是无法实现跨越峡谷甚至海峡的目的的,而多个构件按照一定的构造规则组成悬索桥或斜拉桥就可以实现。结构系统的整体功能取决于构件单元、结构体系和环境状况,其中起决定性的是系统的结构,通常只有大跨斜拉桥和悬索桥才能作为跨海大桥的候选桥型,对抗震性能要求较高的地区,应选用抗震性能较好的结构系统,如连续刚构、斜拉桥等,或对连续梁等桥型进行结构的改进,设计支座单元,达到减震目的。

耗散结构理论认为,在远离平衡状态的非平衡区内,在非线性的非平衡作用下系统演化方向是不确定的,系统的平衡可能失稳,发生突变或分又,系统呈现出新的结构稳定状态。这种结构是一种非平衡的结构,接受环境注入系统的负熵流才能稳定。桥梁的非线同样体现了这一思想,桥梁的失稳为系统突变所致,地震荷载作用下的桥梁系统的延性抗震性能也是结构非线性性能的体现。

三、桥架结构的系统研究思路

1.系统识别与健康监测

结构系统识别是通过试验和计算机来实现对结构的建模。桥梁结构可以看作一?quot;灰箱"系统,处于一定环境中的桥梁结构,一定的输入对应一定的输出,通过对系统输出和输入的分析,可以实现对结构系统的判断和识别。对这样一个灰箱的识别首先应确立一个由梁整体监测的许多困难,对桥梁在使用年限内工作特性的变化缺乏全面深入的研究,难以建立客观同一的桥梁状态评估标准。所以整个技术的成功开发乃至系统目标的最终实现有赖于更好地结合系统自身的要素、结构和系统工作环境。

具体实现桥梁结构系统的健康监测与状态评估,当前主要有以下几方面的工作【2】

(1)针对系统输出:开发和应用以无线通讯技术为手段的数据采集系统;开发能适用于交通荷载风荷载及定点测试荷载的传感器最优布设技术;

(2)针对系统输入和输出的反向分析:采用动态边界子结构原理,开发以结构模型修正法为基础的结构损伤识别技术;研究非线性结构模型的时域评估方法及系统识别技术;寻找更适合桥梁监测的新指纹;开发桥梁观察与监测收据管理系统及决策专家系统;综合良态建模技术,改善有限元模型修正方法;

(3)系统分析的终端应用:根据观察与监测的结果分析实桥的剩余承载能力;建立桥梁安全准则及能用于桥梁整个寿命过程经济评价的估价模型。

2.系统控制

古典控制理论起源于本世纪20年代,主要以单变量线性定常系统为研究对象,以频率法为主要方法研究控制系统的动态特性。50年代以来,逐渐出现了多变量系统、系统灵敏度分析、动态系统测试状态空间方法和Bellman动态规划等现代控制理论方法【5】。

在系统与控制理论中,主要研究动力学系统。桥梁结构在动力荷载作用下,表现为不确定性的随机系统,其非线受到越来越多的关注和研究。尤其在桥梁的抗震和抗风领域,近年来从传统的抗震抗风设计思路发展到结构控制思想。目前的结构控制方式主要有被动控制、主动控制和混合控制,被动控制是通过支座、阻尼器等装置来消耗输入系统的外部环境能量;主动控制的基本思想是通过主动施加外部能量来抵消和消耗环境输入能量,使偏高平衡状态的系统在新的注入能量流作用下找到平衡。

早在1890年,最早的隔震器就产生了,当前已应用的有叠层橡胶、旋转弹簧等多种支座和弹塑性、粘性、干摩擦等阻尼器用于对系统的被动控制。Constantinou在1991年提出了采用位移控制装置和滑动支座相结合的滑动隔震体系,最大限度地减少了输入能量向结构系统的传递[4].

有些主动控制技术(如AMD)已经进入实用阶段,在日本已经建成了一批主动控制的建筑。通过主动控制,一方面可以用最有效的方法抵抗外部激励,另一方面可以直接减小输入到结构上的激励水平。当前有主动连杆控制技术和主动调质阻尼器系统(AMD)技术实现对系统的主动控制。混合控制系统当前主要有对振动控制系统、混合基础隔震系统和可变阻尼系统。当前的这些技术还处于发展之中,不但在桥梁抗震抗风领域,而且在房屋等建筑领域甚至是整个土木工程都有广阔的应用前景。

3.系统非线性机理

传统自然科学趋向于强调稳定、有序、单一、均匀与平衡,带有线性的色彩,到本世纪70年代前后,自然科学的锋芒开始转向现实世界的失稳、无序、多重性、不均匀和非平衡等方面。非线性系统已成为自然科学的主要研究对象,因为非线性是一切复杂现象的本源[5]。

1973年,费根包姆提出的混饨理论大大推进了非线性理论在系统科学中的应用,混饨理论、分形论、孤波理论共同构成系统动力学理论,探讨系统的非线性机制。桥梁结构系统也是一个混饨系统,具有不可预测性、不可分解性和存在规律性,而且这一混饨系统具有分形性质,即自相似性。这里重点讨论桥梁系统动力学行为特别是桥梁抗震系统中的分形特征。

(1)分形与分维

1977年,Mandelbrot出版了专著《分形、机遇和维数》(Fractal:Form,ChanceandDimension,Freemen,SanFrancisco,1977),标志着分形理论的诞生。分形是其组成部分以某种方式与整体相似的形,即分形是指一类无规则、混乱而复杂但其局部与整体有相似性的体系。

数学家按一定的规则构造出具有严格自相似性的规则分形集合。如康托尔三分集、谢尔宾斯基垫片、柯曲折线等。柯曲折线的结构,具有严格的自相似性。自然界中被认为是分形系统的海岸线、云层边缘、地球表面、断口表面以及液体湍流等,没有一个严格意义上的分形,其自相似性是近似的或统计意义上的相似,分形自然体在局部和整体的某种相似性通常只是在某些特定的尺度范围内才成立,这些尺度范围被称为"无标度区",这种只在无标度区内具有自相似性的分形也称随机分形。形态(结构)、信息、功能或时间上具有自相似性的客体称为广义分形[6]。

在实际问题中,为了考察一个事物是否存在局部和整体的相似性,只要检验该事物是否存在"无标度区"即可。以尺度r把事物分成N个相似的部分,对变化的r画出igr-lgN曲线,然后检验曲线上是否存在明显的直线段,直线段对应的r的区域即是无标度区。此方法的理论依据是自相似集的相似维数(一lgN/lgr)是不依赖于尺度r的一个常数。分维是描述分形特征的定量参数,因为所描述的具体对象不同,分维计算的具体形式也有多种,如相似维数、容量维数、信息维数、关联维数、集团分维和质量分维等。

地震学界已开始对地震的时、空、强度分维及其多分维进行了大量研究。普遍认为地震是多重分形的。分维值在地震前后的变化为探讨地震前兆场的复杂性提供了有效的分析工具。在桥梁抗震中,结构破坏与地震输入和结构反应特征有关。从弹性反应谱的三联谱中,很容易发现无论是岩石场地弹性反应谱还是结构的弹性反应谱均具有明显的分形特征。P.S.Symonds对一个具有两个自由度的梁构件模型在瞬时冲击荷载作用下的弹塑性反应进行了分维研究,计算得自相似维数为0.78,表明位移反应图对冲击荷载标度具有独立性[7]。

(2)桥梁抗震及分形特征

如同分形广泛存在于自然科学和社会科学的诸多领域中一样,分形同样存在于桥梁抗震领域[10]

①作为输入荷载的地震动,其能量具有分形特征,而且能量分维Dfe有可能成为地震预报的新参数。

②地震动反应谱,作为地震动特性与结构动力反应相互联系的纽带,也是统计意义上的分形结构,它也决定了结构反应的分形特征,特别是以周期为标度,结构反应应该与反应谱具有一致的无标度区。

③对墩柱破坏准则的研究发现,变形一能量双重破坏准则的破坏指数是划分桥梁域往不同破坏程度的合理指标,以输入地震动的峰值或以墩柱体积配箍率为标度,破坏指数具有近似分维特征。建立连续梁桥等代分析模型,代替复杂的结构有限元模式来分析结构的地震反应。通过理论分析与桥例计算可见,以刚度比为标度,结构周期、墩底弯矩和墩顶位移反应存在无标度区;以周期为标度.墩底弯矩和墩顶位移反应同样具有明显的分形特征.与反应谱所体现的分形特征一致【8】。

结合南京长江二桥南汉桥和杨浦大桥两个桥例,建立有限元模型,考虑边跨主跨跨径比、梁墩刚度、局部构件、支座单元等对结构动力反应的影响。通过分析可以发现,对于不同的标度,无论是跨度比、梁墩刚度比还是支座的刚度等等。动力反应都表现出近似多重分形特征,分维值可以反映动力反应对于不同标度的敏感程度【9】。

研究桥梁结构动力特性是否具有分形特征,是分形和分维概念应用于桥梁结构动力分析领域中的关键点。通过对国内外大量已有实桥动力特性资料的统计和桥例分析可见[10]:

①斜拉桥的纵飘基频对于跨径尺度,主塔侧弯基频对于塔高,体系坚弯基频对于跨径,侧弯基频对于跨宽比以及扭转基频对于跨径都具有统计意义上的分形特征。

②悬索桥竖弯基频、侧弯基频及扭转基频对于跨径或主缆垂度,具有统计分形特征,利用分数维,可以得到比常用估算公式更为接近实桥值的基频简化计算公式。

③对于梁桥动力特性的大量实测结果表明,简支梁桥基频对于跨径标度是分维为0.923~0.933的统计分形结构。以桥长为标度,小跨径桥梁的基本侧向周期分维为1.20。桥梁结构系统涉及参数多,统一的规律多存在于定性阶段。分维的概念使得对于性质的认识可以定量描述,正如在许多领域,分维对非线性、无规则现象的描述那样。显然,这还需要大量的工作和艰辛的努力。以上分析表明,混饨系统存在规律性,分形就是描述这种规律的一种理论,事实上,分形规律不仅仅在桥梁抗震领域存在,在桥梁大系统中乃至整个土木工程领域中都广泛存在着。

四、结论

通过以上分析可见:

(1)桥梁结构是一个要素和结构复杂、具有生存环境和结构功能的动力学系统;

篇(2)

某桥梁工程6#墩基础采用钻孔灌注桩基础,基础之上为承台,每个承台上设一个墩柱,双墩柱之上为盖梁。6#墩桩基础、承台、墩柱和盖梁结构均处于铁路30m范围内,施工均列入临近营业线施工范围。所有施工都必须在铁路运行天窗进行,且必须严格按照临近运营线施工安全管理规定进行,施工环境非常复杂、施工条件差、施工难度大。

2主要施工方法

(1)基础施工

6#墩基础是由4根准1.2m长的钻孔灌注桩基础组成,,桩的长度为22m,可用C30混凝土灌注,灌注桩时注意让桩端嵌入岩层。桩基础持力层为中风化岩层,可用CZ-5型冲击钻机钻进成孔。在成孔前要先确定钻机的位置,注意使钻机钻锤的中心与桩孔的中心保持在同一垂线上,稳定好扒杆和揽风绳。在成孔钻进过程中,要先用小冲程慢慢的钻进,使钻头全部进入土层后,查看桩位复测是否合格,合格后再进行正常钻速钻进。同时要注意,地勘结果不同的地层,要采用不同的冲程和泥浆的比重,做好记录。在钻进中遇到数据突变等异常情况时要及时排查原因,排除隐患,再进行钻进。吊放钢筋笼时也要据计算确定吊装点,注意入孔时须对准孔位轻放、慢放,防止碰撞孔壁,混凝土浇筑要保证一次性连续浇筑完成,这样可保证整根桩混凝土均匀,密实。

(2)承台施工

根据本承台基坑支护的特点,可采用支护结构受力简单,明确的钢板桩支护方案,它不仅对基坑支护有很可靠的稳定性,其在插打工艺上机械设备也都狠成熟,工程造价低,可在钢板桩插打后拔除重复使用,施工速度也挺快。对于6#墩的承台,它的平面尺寸是4.8m×4.8m,厚度是2.4m的钢筋混凝土做的矩形承台。承台的开挖主要以机械为主,人工为铺的分层开挖,按基坑边坡1∶1的比例开挖。当基坑开挖超过基坑底标高的20cm时,改用人工开挖,破坏基底的原状土结构,便于之后的施工。在整平基底后,进行基底验槽,合格后才能开始用混凝土浇筑垫层,在桩基检测合格后,才能进行承台的施工。承台模板由于都是采用大块拼装的钢模板,在用吊机分块吊装时注意用法兰螺栓连接,并用混凝土一次连贯建筑成型,浇筑砂石泵采用6BS,并采用初凝时间大于6小时的C30标号混凝土,其塌落度在15-18cm间,注意浇筑中应充分振捣,使混凝土密实。

(3)墩柱施工

本工程6#墩墩柱为双柱墩,墩平面为1.7×1.85m(横桥向×纵桥向)的矩形,高6.641m,平面四角设半径15cm的倒圆,采用C40混凝土浇筑。为了能够保证墩柱的外观质量,墩柱模板可采用表面平整光滑,拼接严密的定型钢模板,连接时可采用连接螺栓来栓接,为保证接缝的平整,还可设定准确的定位孔并用销钉过渡配合使用。墩柱混凝土浇筑是分层浇筑的,但每层的浇筑都必须保证一次浇筑完成,每层的厚度也都要控制在30cm左右。可以用串筒下料,要注意串筒口与浇筑面间的距离尽量控制在2m内,边浇筑边用振动棒振捣,这样可保证浇筑的混凝土的密实性。

(4)盖梁施工

盖梁支架采用满堂式和碗扣式钢管脚手架,支架底落在承台顶高程处,承台间及两头需开挖并进行地基硬化处理,其中承台基坑范围用山皮石回填,基坑范围外用30cm厚山皮石回填,用10cm厚碎石垫层和20cm厚C20混凝土进行硬化,来达到满足支架地基的承载力。安装盖梁模板,先要沿着横桥方向在碗扣支架顶托上安放10槽钢,并在沿桥纵向槽钢上每隔20cm布置10×10方木,在方木上铺设15mm厚竹胶板,盖梁侧模板用15mm厚竹胶板,模板外侧在竖直方向每隔15cm安放5×10方木,方木外侧安放2道水平钢管围棱,另外还需沿水平方向和竖向每间距0.61m设置准20对拉螺杆,保证模板稳定。盖梁骨架钢筋采用闪光对焊或双面焊接成型,钢筋骨架在平地上制作焊接成型,吊装至盖梁上搭架子进行安装,局部需焊接时底部需垫木板,焊接时不能烧坏底模,双面焊缝长度不小于5d,焊缝要满足要求。本工程盖梁为变高盖梁,结构体积将近200m3,为大体积混凝土结构。盖梁混凝土浇筑拟分3次进行,第1次浇筑3.2m+0.55m高+挡块部分,第2次浇筑1.84m高+挡块部分,第3次浇筑支承垫石。盖梁混凝土用C40商品混凝土,混凝土分层浇筑,每层浇筑厚度控制在30cm左右,边浇筑边用插入式振捣器振捣充分使混凝土密实。为防止混凝土内部因水泥水化热反应导致温度过高产生不良温度裂纹,影响盖梁施工质量,在盖梁内每隔2m设置准=32mm的循环冷却水管,在高度和宽度方向各布置一道。在浇筑承台混凝土前应进行闭水试验,保证管道严密性,管道还应与钢筋绑扎牢固,确保管道在浇筑混凝土时不发生位移。

二桥梁下部结构施工中的质量控制关键点

1模板配置

桥墩的施工中,主要的就是模板的配置问题,它可以直接影响到整个桥墩工程施工的质量,所以,配置模板一般要注意以下几点:首先就是确保模板的材料,数量齐全,保证施工所需;其次,对模板本身来说,它的质量,尺寸要严格按照规范要求执行,质量偏差要控制在有效范围内;然后,用洗刷脱模剂的话,便于拆卸;最后,模板的刚度和强度上要保证,避免在施工中发生变形或者裂缝等现象,影响施工进度。

2钢筋质量控制钢筋

在桥梁施工中占据着重要的纽带作用,是很重要的施工材料,因此在钢筋入库时,都要进行严格的质量检测,检验等。钢筋材料一定要有齐全的相关证书,经技术主管审核后可进入开料的程序,把钢筋按编码分开堆放,做好防潮防雨等措施,避免在使用前生锈而影响后期使用,要严格控制钢筋的质量。

3混凝土质量控制

在混凝土质量控制上,主要就是控制各个实验室的配比单操作了,是把各类原料按照一定比例混合搅拌生成混凝土,这个过程要加强监督,管理,控制原料的用量,成分,以及质量上要合格,才能生成合格的混凝土材料。

4施工管理要加强施工中的管理

对施工队伍而言,要明确各个岗位的负责人,分工明确,落实到位,职责分明。指定完善的规章制度,和建立质量管理小组,健全质量管理体系。

篇(3)

中央数据库部署在北京数据中心,采用Ora-cle/SqlServer群集,具体随方案选择而定。入库方式:通过人工或网络传输的方式获取数据库备份,经过导入程序入库;中央数据库存储项目的历史数据,其存储数据量比现场数据库要高出1~2个数量级。中央数据库要支持快速的数据查询、文件导入导出和Web访问,主要功能如下:将经过处理的实时数据写入现场数据库;支持数据的历史回放和离线分析;支持历史海量数据库的实时备份、清除和异地恢复;提供与评估软件平台的文件导出和数据接口;支持数据的后期操作和查询、编辑、更改[3]。各模块功能见表1,整体结构设计见图2。

1.2现场数据库

现场数据库针对具体项目,部署在现场监控中心,存储的是处理后的实时数据,要求定期备份、删除、异地恢复、更新。实时数据的特点是数据量大,数据入库较快。在设计现场数据库的时候,主要考虑如下:各个监测类型原始数据互不干扰;数据写入要求实时,考虑拥堵策略和故障恢复策略;灵活配置监测项、监测点的数据存储库表结构[4];一定时期的历史数据在线回放和分析;单一监测类型数据存储(由于处理系统需要在较长时间内持续对采集数据进行处理,即使一种设备,持续累计多天的时候,数据量也会非常大,需要考虑以何种方式对多天数据进行组织)。现场数据库配置版本为SQLServer数据库。

1.3结构特征值数据库

本数据库主要存储桥梁结构采集数据的特征值,包括结构应变、加速度、索力等原始数据的最大值、最小值、平均值及方差等,特点是数据量相对较小,但数据计算频繁,使用频率较高。此数据库数据量小但关系较复杂,由于其入库频率相对于原始数据来说比较低,故采用较为简单的单库表结构。特征数据库配置版本为SQLServer数据库。

2海量数据库详细设计优化方案

2.1高速大容量数据存储与管理

通过对系统的总体评估,拟采用以下措施解决系统中大数据量的存储与管理问题。通过使用OracleRAC(集群)模式加强底层数据库的处理性能;使用存储过程的方式来进一步加强数据库的交互性能;定期进行数据备份与清理,避免存储过多的低使用率数据(比如,数据库一般可以保持6个月到1年的数据,其它数据通过磁带库等存储介质将数据备份转移,减轻数据库的处理压力);对海量数据进行分区操作(例如针对按年份存取的数据,我们按年进行分区,不同的数据库有不同的分区方式,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志、索引存放于不同的分区下);建立广泛的索引[5]。对大表建立索引,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引。当插入表时,首先删除索引,插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引。要注意索引使用的时机,索引的填充因子和聚集、非聚集索引都要考虑。在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的[6]。在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。

2.2数据库优化设计

桥梁结构桥梁索力数据量较大,由于实时数据处理系统平时的主要操作是桥梁索力的插入及数据查询,对数据的实时性及可恢复性要求不高,并不要求绝对的精度,允许一定的数据损失,对数据库的一致性、并发性及事物的隔离性要求不高,但对于大数据的吞吐量要求较高,故可将其定位为针对插入操作的OLTP系统及部分的OLAP系统[7]。所以考虑降低数据库的隔离级别和并发一致性控制以提高数据库性能,优先满足海量数据插入的吞吐量要求。Oracle版本的数据库优化设计如表2所示。

篇(4)

2水文地质情况

洪泥河全长25.8km,设计流量50m3/s,为区管二级河道,六级航道,性质为排水,规划上河口宽度为50m、下河口宽度为25m。现状洪泥河上河口宽度为45m、下河口宽度为25m、两侧放坡各10m;堤岸为土质边坡,边坡系数为1∶2.5。河底高程为-2.7m,堤顶标高为3.2~3.6m,洪泥河常水位为1.4m,洪水位为2.5m。根据区域地质资料和勘察,本工程所在场地为第四系全新统(Q4)海相、陆相及海陆交互沉积地层。从上而下地层呈层状分布,按成因分为8层,按力学性质可进一步分成15个亚层。该区域主要由杂填土、素填土、粘土、淤泥质土、粉质粘土、粉土组成,各层土水平方向上总体分布稳定,从上而下土质渐好。本工程特殊性岩土主要为人工填土及淤泥质土,填土土质松散,淤泥质土土质软对桥梁桩基施工有一定影响。

3地铁与海沽道线位相对位置关系及安全要求

3.1位置关系

海沽道道路红线宽50m,线位与洪泥河河道斜交,角度为17°。1号线地铁线位分为左右双线,在洪泥河处线位间距为14.8m,每条线位地铁盾构区间宽为6.2m,地铁盾构区间净距为8.6m,地铁盾构顶埋深标高为-9~-15m之间。洪泥河中桥处地铁与海沽道平面位置关系详见图1。

3.2地铁盾构安全距离要求

地铁1号线盾构隧道与跨河桥梁桩基相距较近,二者之间安全间距要求以及附近土层是否需要加固与施工工序有很大关系。为了尽量减小本工程拟建桥梁与地铁1号线之间的相互影响确保工程实施的可行性,经与地铁1号线设计单位多次沟通,由地铁1号线设计单位对地铁盾构施工与桥梁桩基施工之间的安全距离提出具体要求。

(1)桩基先于盾构隧道施工(方案Ⅰ):①在此工况下,桥梁桩基础外边缘距离盾构结构外边缘的距离不得小于1.5m,隧道穿越时,周边土体不需要加固;但桩基设计应考虑桩侧摩阻局部损失。②为了保证桥梁桩基达到其设计强度,桥梁承台及桩基施工完成至盾构侧穿桩基的时间间隔应至少保证1个月。

(2)盾构隧道先于桩基施工(方案Ⅱ)。当盾构区间先行推进,桩基后施工,此种工况对区间隧道影响较大,桥梁桩基外边缘至盾构结构外边缘的最小距离不得小于4m,且周边土体需要加固。方案Ⅰ对本工程桩基影响最小;方案Ⅱ对本工程桩基影响非常大,由于安全距离要求大,周边土体需要加固,直接导致桥梁工程桩基不能实施。由于地铁规划1号线线位与海沽道线位已定,不能调整。最终经各方面沟通协调确定桥梁工程按先于地铁盾构施工进行设计和施工,即满足方案Ⅰ中的要求即可。

4桥梁下部结构设计

4.1桥梁下部结构设计方案的确定

洪泥河中桥桥梁中心桩号为K2+946.274,位于直线上,斜交角度为17°,采用分离式双幅桥,左幅桥宽为25.5m,右幅桥宽为23.5m,跨径为3×25m,梁高1.40m,结构形式采用预应力混凝土简支变连续小箱梁结构。桥梁下部结构的设计为了尽量减少对河道的影响,减少阻水效果,通常采用排架墩。由于地铁盾构的影响,与桩位有冲突,此桥不能采用排架墩,需特殊设计。经设计计算,采用较大跨径盖梁,盖梁下设双柱墩,墩底设承台及桩基,桩基之间预留地铁盾构空间,可以确保与地铁盾构之间安全距离大于1.5m的要求,以此保证后期地铁施工的安全性。地铁盾构间距内桩基1.5m,地铁盾构外侧桩基1.2m,立柱采用1.8m的圆柱墩,以减少河流阻力。由于桥位与河道斜交角度较大为17°,立柱间距较大为19.425m/cos17°=20.313m,导致盖梁截面较大,盖梁梁高2.5m,顺桥向宽度为2.0m,普通的钢筋混凝土结构已经不能满足计算要求,需要采用预应力混凝土结构进行设计。

4.2桥梁下部结构设计的特殊性及处理方法

由于地铁盾构的影响,通过下部结构特殊设计,可满足桩基边缘距盾构边缘距离大于1.5m安全距离的要求;但地铁盾构施工过程中对周围土体产生扰动,引起土体水平位移和竖向位移以及桩基受力及变形发生变化,仍有可能对桥梁桩基造成影响,因此设计及施工中采取以下措施:

(1)设计中不考虑盾构施工影响区域内土的桩侧正摩阻力,对桩长进行加长设计。

(2)设计中在位于地铁上下行之间的桥梁桩基盾构施工影响区域以上采用钢护筒进行防护,该钢护筒不拔出,作为永久性结构使用。

(3)根据地质报告本场地埋深约10.00m以上主要为欠固结软土,软土在自重及其它外荷载作用下将产生固结沉降,对桩侧产生负摩阻力。设计中在验算桩基承载力时,要充分考虑桩侧负摩阻力的影响。

(4)场地分布人工填土及淤泥质软土,填土土质松散,淤泥质土土质软,钻孔灌注桩桩身穿越填土及淤泥质软土时,须注意孔壁坍塌及缩颈现象,可采取埋设护筒、合理调配泥浆比重等措施。

(5)钻孔灌注桩桩身穿越厚层粉土、粉砂时,因钻进速度慢,钻孔施工时间长,易产生塌孔、桩身夹泥等不良现象,施工时应采取调节泥浆比重、成孔后加强清孔等措施防止塌孔、桩身夹泥等不良现象发生,确保成桩质量。

(6)在施工过程中,尚应进行必要的施工监测。检查施工引起的地表沉降是否超过允许范围,决定是否需要采取保护措施,并为确定经济、合理的保护措施提供依据,对桥梁的沉降及倾斜变形应进行相应的实时的监测。一旦发现实测位移超过警戒值应立即对桩周土体进行注浆加固。

(7)盾构施工至少应在桩基施工完成一个月后进行,桩基施工结束后,应对桩身完整性进行检测,在盾构顶进结束后,应重新对地铁上下行之间的桩基完整性进行检测,在检测结果满足规范要求后,方可施工承台。

5盾构施工注意事项

(1)合理安排盾构推进顺序。盾构施工至少应在桩基施工完成一个月后进行,先掘进左线,后掘进右线,为了减少对土的扰动,左右线盾构始发时间间隔为一个月。

(2)桥区段穿越前做好准备工作。在盾构到达桥区段30m界限前,检查刀具磨损量,有磨损立即更换滚刀;确保管片防水和拼装质量;选用质量优良的盾尾油脂。

(3)合理安排施工工序,安排专人负责掘进出土与管片拼装等主要工序,尽量缩短测量、管片、渣土车等待时间,提高运输效率,维持作业面连续施工,加快管片拼装作业,减少对周边土体的影响。

(4)控制施工进度,严格控制盾构纠偏量,稳步前进。增加刀盘转速,降低盾构推进速度,控制油缸推进力,减小盾构推进过程中对周边土体的剪切挤压作用,及时有效的纠正推进偏差。

(5)同步注浆。严格控制同步注浆量和浆液质量,通过同步注浆及时填充建筑空隙,减少施工过程中的土体变形,同步注浆量增加到建筑空隙的200%~250%左右。

(6)二次注浆。为减少同步注浆液早期强度低、隧道受侧向分力影响大、效果不佳等问题,在管片出盾尾5环后,需要进行二次注浆。浆液为瞬凝性好、具有较高的早期强度的双液浆。注浆量根据变形监测情况确定。

(7)根据施工进程和监测结果,及时调整同步注浆和二次注浆的配合比。

篇(5)

中图分类号:K928文献标识码: A

引言

桥梁结构设计的基本要求是要保证安全性、适用性以及经济性,不仅要求设计者要具备丰富的理论知识,还要具一定的工程经验,如果有经验上的偏差就会严重影响设计的准确性。桥梁结构设计要坚持因地制宜的基本原则,要充分结合建设单位公布的桥梁设计方案,积极学习国外的先进技术,引进一些新设备、新材料,严格依照施工设计的总则、荷载以及每种材料技术条件要求等施工设计标准,采取适当的设计方法,能最大限度地规避主管因素对桥梁结构设计造成的影响。

一、桥梁工程结构设计的状况

自改革开放之后,我国的经济建设一直在紧锣密鼓地进行着,各项工程建设也是百花齐放、不断涌现,其中,桥梁工程建设也得到了飞速的发展,作为维系、连接与输送城乡交通的主要建筑设施,其工程的安全质量的重要性不言而喻,虽然无论哪个行业的工程建设都在严格把控质量、安全大关,然而依然不断出现严重的安全事故,为了保证其正常的使用年限,必须从桥梁结构设计开始就考虑其耐久性因素,而目前在桥梁结构的设计当中,很多设计人员形成了错误的设计观念,比较偏向于对桥梁强度极限的控制,只是保证其达到良好的强度要求,却忽略了更为重要的耐久性因素,没有对使用极限状态记忆控制把握,重建造轻维护,同时缺乏有效的结构耐久性规定和要求来作为设计依据,那么对桥梁使用年限、耐久性的考虑自然无法真正落实。

二、桥梁结构设计存在的问题

当前结构越来越复杂、跨越距离越来越远、功能越来越多的桥梁正在出现,在提高交通通行能力和确保行车便捷的基础上,正在发挥着改善生活质量、加速经济建设的作用,这就需要桥梁设计者不断提高各方面的能力,以此来满足社会、生活、交通、公路等各方面的需要。随着经济建设的不断变化与发展,人们生活质量在逐渐提高,桥梁设计的难度也在增大,这会产生桥梁设计问题,应该对桥梁设计工作进行全面分析,以达到对相关问题的防范。目前,桥梁设计存在的主要问题有以下几个。

(一)桥梁结构设计问题

结构体系是桥梁设计的关键,也是桥梁的核心部分,是整个桥梁建设中最为重要的部分。结构设计如果存在问题,则会直接影响桥梁相关参数,桥梁可靠性就会下降,结构材料的应用就会出现问题。特别是一些桥梁设计人员会盲目地进行结构体系设计,导致桥梁结构设计存在极大的不合理、不科学等问题,进而影响桥梁的安全与功能。

(二)桥梁设计的耐久性问题

当前一些桥梁设计片面重视结构强度计算,忽视桥梁构造、材料、施工等重要环节,这会导致桥梁耐久性降低、整体性变差、延展性不足,不能以充分的冗余来提高桥梁的耐久性能。常见的问题有桥梁受力线路不清晰、混凝土强度不足、钢筋结构坚度不足、保护层厚度偏小,这些都会影响桥梁的安全与寿命,进而导致桥梁病害的形成。

(三)桥梁设计的疲劳损伤问题

桥梁在运行中会受到车辆荷载、地震和风荷载等动荷载的影响,会在结构内产生循环变化的应力,不但会引起结构的振动,还会引起结构的累积疲劳损伤。疲劳和超载对于桥梁结构耐久性的影响非常大,因此设计师在桥梁设计方面要充分重视对疲劳损伤的研究。

(四)桥梁结构的抗震性

有些桥梁会应用在经常发生地震的区域,地震会对桥梁产生严重的破坏,因为在桥梁结构设计中已经考虑到了动荷载的作用,所以要在巩固动荷载的基础上,加强桥梁结构的抗震性能,将动荷载和抗震性能合二为一的进行综合考虑。

(五)桥梁的超载

桥梁的结构设计都要达到正常的使用标准,可是在实际的桥梁运行阶段,桥梁荷载并不能都达到在设计的允许范围之内,超载会导致动荷载的应力幅值增加,同时损伤出现的几率也会增加。因为超载所造成的损伤是巨大的,这些损伤是很难修复的,超载甚至会破坏桥梁的结构,导致事故的发生。设计人员要加强对桥梁超载问题的研究力度,保证桥梁结构的耐久性以及安全性。

三、桥梁结构设计的优化

(一)桥梁结构的可靠性

目前设计人员从很多角度对桥梁结构的可靠性进行了研究,也取得了一定成果,另外还研究了系统可靠性界定的方法,总之,桥梁结构的可靠性是一个比较复杂的研究内容,其中蕴含了很多种知识,研究具有一定的难度,需要设计人员深入的进行探索。

(二)人为差错

在桥梁结构中出现的问题,大多数都是因为施工人员或技术人员的专业知识或经验缺乏导致的,很多工程中的事故都是因此而发生,所以人为差错的优化已经成为桥梁结构设计中的工作重点。

(三)桥梁结构耐久性的设计要求

在桥梁的结构设计中,要想保证其结构耐久性的设计目标,就必须把握好设计过程中的细节,依据一定的设计要求来进行设计工作。首先,桥梁的设计方案要进行仔细地对比分析,在满足其耐久性设计原则的基础上,考虑其使用性能、美观程度、经济成本等因素,这样综合考量之后,筛选出最合适的设计方案,从而确保其质量过关,其次,一定要注意混凝土的结构耐久性的规定要求,在设计时注意控制其混凝土最小保护层厚度,使预应力管道与钢筋存在一定的距离,为混凝土的振捣做好基础准备,同时对于所采用的水灰比要仔细分析检查,保证其适用性,以达到增强混凝土自身密实度和抗损坏能力的要求,最后,在设计过程中一定要选用具有防腐作用的钢筋,因为在实际施工过程中,经常会发生钢筋腐蚀的现象,所以对钢筋的构造、材质的选用上,必须做到认真、细致,也可以在混凝土中掺入钢筋阻锈剂,通过此种方法来延缓钢筋腐蚀破坏,不仅在时间上有效控制腐蚀,而且及时有效地延缓了其遭受腐蚀的速度。

(四)桥梁结构的抗震设计

由于桥梁的可以起到联络交通的作用,所以在许多山区等地都需要搭建桥梁,但像我国的云贵山区等地又是地震的多发处,所以在这里地区的桥梁结构设计就需设计者充分考虑地势问题,通常采用先简支后连续或墩梁固结的连续-刚构混合体系,这是为了保证行车舒适,结构耐久适用。除此之外即使在非地震区域的桥梁结构设计也应当将地震损坏因素列为考虑范围内,因为地震灾害具有的不确定性,这时为了应对突如其来的灾难,设计人员就需要对于桥梁结构的接缝处,地基墩台和桥面的整体强度,加固连接件等等关键部位进行仔细的核算与周全的考虑,而且需要提前预算到地震后可控状态下桥梁的完整程度,对于桥梁抗震结构的设计就需要不吝惜原料,全面考虑,精细核算,这样才能保证桥梁结构的优质性。

(五)强化桥梁结构设计的抗载荷能力

在桥梁抗高负荷承载的情况下,就需要设计者对于桥梁目前和未来所要面临的载荷能力能高瞻远瞩,应用合理的结构来应对这一情况,而且可以再桥梁设计中的关键部位添加相应的减震装置,如粘滞阻尼器,可以通过气弹性部件可以有效的减少桥梁震动时产生的能量,以减少对桥梁主体的损害;铅芯橡胶支座,可以有效减少支座的硬性撞击,通过有着良好力学性能的铅芯和橡胶的配合,就可以达到这样的效果。总之,在抗重载荷情况下,桥梁的结构设计需要提前预估和计算出将要面对的负载情况,并且利用缓冲部件来直接降低重载荷所引起的桥梁压力过大。

结束语

桥梁设计过程中如果对相关要点和因素不严格控制,极容易引发安全与结构问题的积累,进而影响桥梁施工和使用等后续工作,形成各种病害而影响桥梁。作为桥梁设计人员,应该对设计工作进行强化,借鉴国内外先进的经验与措施,将先进的设计理念、科学的桥梁结构体系更好地应用到桥梁设计之中,在不断创新的同时,达到推进桥梁设计质量与水平双提高的目标。

参考文献:

[1]马建,孙守增,杨琦,赵文义,王磊,马勇,刘辉,张伟伟,陈红燕,陈磊,康军.中国桥梁工程学术研究综述・2014[J].中国公路学报,2014,05:1-96.

[2]张铁军.山区桥梁结构设计关键问题研究[J].交通标准化,2009,13:117-121.

篇(6)

在道路桥梁设计中,往往考虑桥梁本身的强度,却忽略了耐久性;对耐受强度重视,却忽视适用极限情况;关注桥梁的结构布局合理性,却忽视桥梁的检测和维护,这样形成的结构就存在不同程度的安全隐患和缺点。在传统的桥梁设计中,具体的步骤是:第一要根据基本经验确定初步的设计方案,这里面涉及选取的材料、结构布局、制造工艺及布局大小等问题;第二要对结构进行分析研究;第三就是要采用力学分析方法,研究设计结构的可行性,并根据实际情况改正。对于这种设计流程,只能针对设计方案的可行性及安全系数进行确定,而不能最大化优化设计方案,无法实现桥梁设计对日益复杂的需求的满足,所以,结构化设计成为关键环节。

2道路桥梁结构化设计应该坚持的原则

2.1科学性原则

在道路桥梁结构化设计中,应该合理选择道路桥梁结构,注意横截面与道路桥梁结构配置,做到更为科学和有效,在合理调整道路桥梁结构位置,优化道路桥梁结构内力分布的基础上,使道路桥梁结构的重量降低,实现道路桥梁结构的科学化。

2.2简约化原则

在道路桥梁结构化设计中确保道路桥梁结构的简约化,尽量通过简化的路径做到道路桥梁结构力的直接、简单传递,达到道路桥梁结构能够平衡地分散外部负荷,对于确保道路桥梁结构自重,提高道路桥梁结构强度,节约道路桥梁结构施工材料,提升道路桥梁结构施工效率有着重要的价值。

2.3连续性原则

当前,道路桥梁结构出现了自身重量越来越高、负荷越来越大的趋势,这需要在道路桥梁结构化设计中实现结构的连续性和一体性,以此来确保道路桥梁结构在受力的情况下,扩大有效的受力面积,缩短道路桥梁受力传递的路径,在优化结构、降低材料使用的基础上,提高道路桥梁结构的稳定性、连续性。

2.4统合性原则

在道路桥梁结构化设计中要统和材料、结构两个重要的部分,在材料部分中应该考虑不同材料在道路桥梁结构中的不同部位与不同性质,要做到在优化结构的同时科学设计材料应用。同时,应该利用不同结构、不同形状受力和功能的特点,统和道路桥梁结构达到稳定、重量、受力等结构特性目标。

2.5整体性原则

道路桥梁结构设计中要利用结构化设计的优势,突出道路桥梁结构的整体性,特别要求做好过载和特殊情况确保道路桥梁结构整体性和安全性的设计,通过提高承重力,整体效果,使道路桥梁结构的总体用料得到节约,在确保道路桥梁施工质量的同时,降低道路桥梁结构的建设成本。

3道路桥梁结构化设计应用的要点

3.1道路桥梁防水结构设计的应用

一方面,在道路桥梁防水结构的设计中,应该确保道路桥梁路面的物理性质,通过材料和工艺的控制设计保障材料的黏结性,做到路面不起皮,混凝土不脱落。另一方面,在道路桥梁防水结构的设计中要注意路面的平整性,通过严格设计混凝土施工,将路面和混凝土铺成一个整体,以确保防水的平整。此外,在道路桥梁防水结构的设计中应该确保结构的整体性,要选用延展性好、抗拉力强的材料作为基础,通过合理的工艺实现防水结构的整体性。最后,规范排水管线、集水管道的设计,要通过严格的规范来确保排水设施安装过程,避免出现对道路桥梁结构和混凝土部位出现的渗透、腐蚀,以此来确保道路桥梁结构的强度与安全。

3.2道路桥梁混凝土项目设计的应用

一方面,道路桥梁结构设计中要重视混凝土中钢筋的保护层厚度,应该根据道路桥梁结构的需要和混凝土施工规范,明确确定道路桥梁混凝土钢筋的保护层厚度,通过保护层来确保钢筋的结构功能和作用,进而实现道路桥梁结构的安全。另一方面,道路桥梁结构设计中应该重视混凝土的耐久性,要在设计中规划好混凝土材料的配比,特别是:水灰比例、水泥使用量、强度级别等,以确保道路桥梁结构的稳定与安全。

最后,道路桥梁结构设计要加强增强构造配筋设计,要通过规范配筋的数量、形式和结构增强混凝土结构的抗裂缝能力,确保道路桥梁结构符合实际与使用的需要。

篇(7)

中图分类号:TU74 文献标识码:A

一.前言

随着我国经济水平的提高和交通运输的需要,高等级桥梁的建设越来越多,对桥梁的工程质量标准也相应提高,桥梁施工技术成为决定桥梁质量的标尺之一。目前,小跨径的高等级铁路桥梁施工技术多采用装配式钢筋混凝土板梁的形式;中等跨径的桥梁施工技术则采用装配式预应力混凝土桥梁的形式;对于大跨径预应力混凝土连续梁桥施工方法主要采用拼装法或者平衡悬臂浇筑法。但由于现浇连续梁桥的施工流程复杂繁琐、成本较高、费工费时,先简支后结构连续的施工技术应运而生。先简支后连续桥梁结构是通过现浇混凝土使多跨的的预应力混凝土梁形成连续的结构,具有其独特的优势,为我国的铁路事业发展和整个区域文化经济的交流提供了便利。加强对其施工技术的研究,分析具有十分重要的意义。

二.先简支后结构连续桥梁结构施工要点

1. 先简支后结构连续桥梁结构的优点

(一)建成桥梁变形小、刚度大、伸缩缝少和行车舒适等优点。

(二)减少使用施工设备,又能避免张拉预应力钢束造成地面上的障碍,简支梁的预应力钢束在工厂进行张拉,而负弯矩区的预应力钢束布置及张拉均在主梁上进行,仅需吊装设备起吊主梁。

(三)利于技术操作,省工省时,经济效益高,预制梁能采用标准构件,进行工厂化统一生产和管理。

2.先简支后结构连续桥梁的一般施工流程

(一)在进行先简后支连续桥梁施工过程中 ,首先要严格按照工程的实际情况进行主梁的预先定制,待预制主 梁的混凝土强度达到设计强度后,按照1 号束、4 号束、2 号束、3 号束顺序分别张拉预应力钢束。1 号束的两根钢束应同时张拉,防止主梁横向弯曲。在此过程中,当混凝土的强度达到设计施工的需要之后,将正弯矩区的预应力钢束进行张拉,最后,要在压浆施工的基础上,进行主梁底板通气孔的清洁整理。

(二)当主梁底板通气孔的清理完成之后,可以进行临时支座和永久支座的施工,并将主梁进行规范的安装。并做好桥面上的钢筋和横梁钢筋的链接,在此连接施工过程中,要设置好接头的钢束波纹管,并及时进行穿束,并选择在一天中的气温最低时候进行混凝土的浇筑。当混凝土的强度达到施工设计的标准时候,要进行顶板钢束的张拉并做好压浆施工。

(三)在进行接头的工作施工完成之后,要进行剩余混凝土的浇筑,一般而言,要由跨中朝着支点部分进行桥面整体化的混凝土的浇筑,一些临时的施工支座一定要等到混凝土的施工已经完成之后再严格遵守施工规范进行拆除,在此过程中,完成整个体系的合理转化。最后要进行工程的养护,要喷洒防水层,并将相关的伸缩装置和设备严格遵守施工质量控制标准进行安装,在此基础上,可以转向整个桥面的施工。

三.先简支后连续桥梁施工的质量控制

笔者结合以前所施工的预应力混凝土简支转连续T梁和预应力混凝土简支转连续箱梁的施工过程,提出施工中质量控制,以保证施工质量。

1.临时支座的设置的质量控制应该保证,临时支座应有足够的强度和刚度,拆装方便,落梁均匀。预应力张拉完成后,待压浆强度大于35MPa时方可拆除临时支座。拆除临时支座应做到逐孔对称、均匀、同步、平稳。临时支座拆除后,永久支座与墩顶和梁底严密贴合。

结合目前的施工技术,临时支座有多种设置方法,以可卸落砂箱支座的施工方法为例。当采用砂箱支座时,要充分考虑砂箱承受T梁自重和架桥机重量后的沉降量,梁底与盆式支座间应留有空隙。在施工中会出现每个砂箱沉落置不会完全一样的情况,而导致部分T梁吊空,产生质量隐患,解决办法有两点:aj通过预压试验取得砂箱在受力以后的平均沉降量,并以此指导现场安装临时支座,控制主梁的安装标高与设计标高一致:②适当降低支座垫石标高,预留约3cm的混凝土梁靴高度。在浇注湿接头的时候,在盆式支座上垫一块钢板,一次直接浇注到钢板上,形成混凝土梁靴。

2.张拉预制底座的设置要求张拉预制底座应坚固、无沉陷,利于排水,防止由于排水不畅造成地基下沉。底座的反拱度值应参照设计文件所提供的反拱度值、结合实际施工和生产性试制梁的张拉情况确定。反拱度应做成抛物线。另外要保证桥梁安装精度要严格控制,误差不超过2mm。

3.后连续现浇段施工质量控制施工发现,对于新老混凝土的连接结合是现浇连续段混凝土存在的主要问题,为此预制梁板的端头必须严格进行凿毛处理。为了防止现浇连续段混凝土在养生硬化过程中发生收缩性裂缝影响混凝土在二次张拉过程中的承载力和桥

梁的整体受力性能,现浇连续段接头混凝土添加微膨胀剂,掺加剂量一般控制在水泥用量的0.5%~1%之间。先简支后连续每联各现浇连续接头的浇筑气温应基本相同,温差控制在5℃以内,并尽量安排在一天气温最低时施工。

4.主梁现浇接头与湿接缝施工的质量控制接头混凝土浇筑顺序应严格按设计文件要求执行,从主梁预制到浇筑完横向湿接缝的时间不宜超过3个月。湿接缝混凝土浇筑可采用吊模施工,模板应采用钢模板,并应有足够的刚度和强度。模板安装牢固后,冲洗已经凿毛处理的混凝土表面,在浇筑次层混凝土前对施工缝应刷一层水泥净浆。混凝土浇筑和振捣与预制主梁顶板浇筑同样要求,宜采用平板振捣器与插入棒配合的方式,并保证设计厚度。湿接缝浇筑时宣在气温较低条件,并作好养护,防止裂缝。现浇接头段混凝土可采用微膨胀水泥。

四,结束语

伴随着我国经济的快速发展,对铁路客运专线的服务质量也将会越来越高,桥梁施工是整个铁路客运专线建设施工的重要环节,其施工质量将直接关系到整个铁路客运专线的服务质量的提升和整个交通运输网络的安全,因而,加强对先简后支结构连续桥梁施工技术的分析探究,具有十分重要的意义,在此过程中,要结合具体的工程实际情况,做出规范的施工设计,严格施工流程,严格遵守施工标准,并做好质量控制措施,加强对整个施工过程中的监督管理。如此,既可以降低整个施工的难度,也可以满足结构连续施工的施工工艺要求,也有助于提高整个桥梁的承载能力,降低整个桥梁施工过程中的安全隐患,控制桥梁的施工质量,促进我国整个铁路交通运输事业的发展,为我国经济的发展和人们生活水平的提高奠定坚实的基础。

参考文献:

[1]邝代强 先简支后连续结构梁桥施工技术探讨 [期刊论文] 《城市建设理论研究(电子版)》 -2012年16期

[2]穆挺 刘文斌 先简支后连续梁桥施工技术探讨 [期刊论文] 《中国科技博览》 -2012年13期

篇(8)

在设计中,运用了桥梁设计软件Midas建立桥梁模型,并对桥梁恒载、活载及徐变内力进行分析计算,得出预应力钢束的预估值。最后对主梁的应力、变形等进行验算。经分析比较及验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求

关键词 桥梁设计; 预应力混凝土; 箱梁; 变截面连续梁 ;Midas桥梁模型

Abstract: The design is based on the requirements of the design task and "Highway Bridge Regulation". The design of the bridge is carried out in the eight-character principle of "safety, pratically, economically and aeshetic" by comparing and choosing the best one. The first program is continous prestressed concrete grider bridge, the second one the beam combination of arch bridge,and the third one is the suspension bridge.Accdoding to the above principles and construction factors, the prestressed conous bridge is chosen to the ultimate.

The continous prestressed concrete girder bridge is divided into three inters, (30m+50m+30m), with the main span of 50m, and 30m-symmetry one. Prestressed concrete box grider is used as the main beam; the beam depth in the mid-span is 1.5m, while at the support bearing it is 2.8m.The sectional depth is changed in the form of parabolic.The net width of the deck is 7+2x1.5m,and the design load is for the highway-I.

In the design, the bridge design software MIDAS is used to get the calculation model. By analyzing and computing the dead load, live load and internal force, the estimated value of the prestressed strand is got. Finally, checking calculation is carried out to the stress and deformation of the main beam. The results of the analysis and checking calculation show that the design calculation method is correct , and the internal force distribution is reasonable to the design task.

Key words: bridge design; prestressed concrete; box-girder; non-uniform continuous beam; MIDAS bridge model

目 录设计原始资料…………………………………………………………………………….1

第一章 方案比选 ………………………………………………………………………2

第二章 上部结构形式及尺寸拟定 …………………………………………………5

一.主跨径的拟定 …………………………………………………………………… 5

二.顺桥向梁的尺寸拟定 …………………………………………………………… 5

三.横桥向的尺寸拟定 ……………………………………………………………… 5

四.桥面铺装 ………………………………………………………………………… 6

五.本桥主要材料 …………………………………………………………………… 6

第三章 桥面板的计算 …………………………………………………………………8

一.桥面板的设计弯矩 ……………………………………………………………… 8

二.悬臂板的内力计算……………………………………………………………… 11

三.桥面板的配筋…………………………………………………………………… 12

第四章 主梁内力计算…………………………………………………………………14

一.全桥节段的划分………………………………………………………………… 14

二.恒载活载内力计算……………………………………………………………… 17

第五章 主梁配筋计算…………………………………………………………………32

一.预应力筋的估算原理…………………………………………………………… 32

二.预应力筋的估算………………………………………………………………… 34

三.预应力筋布置…………………………………………………………………… 38

四.非预应力钢筋截面积估算及布置……………………………………………… 45

第六章 截面承载能力极限状态计算………………………………………………47

一.正截面承载力计算……………………………………………………………… 47

二.斜截面承载力计算……………………………………………………………… 47

第七章 钢束预应力损失计算……………………………………………………… 50

第八章 应力验算………………………………………………………………………… 56

一.短暂状况的正应力验算………………………………………………………… 56

二.持久状况的正应力验算………………………………………………………… 57

第九章 抗裂性验算……………………………………………………………………… 59

一.正截面抗裂性…………………………………………………………………… 59

二.斜截面抗裂性…………………………………………………………………… 61

第十章 主梁变形计算…………………………………………………………………… 62

参考文献 ………………………………………………………………………………… 63

英文翻译 ………………………………………………………………………………… 64

致谢 ……………………………………………………………………………………… 90

致 谢 首先感谢何建老师在此次毕业设计中认真辅导了我设计的每一个环节,何建老师对待学生认真负责、和蔼耐心的态度和对待工作一丝不苟的作风给我留下了深刻的印象,为我今后的学习工作树立了榜样。此外还有学多老师给予了耐心的指导和点拔,令我受益匪浅。在此对各位老师的敬业表示真挚的感谢。

通过这次毕业设计,我比较系统的串连了我大学本科四年所学的知识,深感我们这门专业系统的博大精深,觉得自己存在的差距还很大。但是,在这炎炎夏日工作的几十天,我的收获也是很大的。在毕业设计的反复修改,一遍一遍的看书,和同学一次又一次的讨论,一次又一次的请教老师的过程中,通过集中的毕业设计和专业系统的培养,我提高了自己综合运用所学的基础理论,基本知识和基本技能,分析解决问题的能力。在老师的指导下,通过独立系统的完成一个工程项目的设计,比较具体的了解了一个工程设计的全过程,巩固已学课程的基础上,培养了自己考虑问题,分析问题,解决问题的能力,同时接触到和掌握一些新的专业知识和技能。这次毕业设计为自己提供了一次很好的实践机会,为我将来的学习工作做了很好的铺垫,是我人生中很重要的一次经历。

最后,感谢学院的领导和老师在百忙之中为我们细心指导设计,我衷心的感谢各位老师!

南华大学船山学院本科生毕业设计(论文)开题报告 设计(论文)题目 宝石路5号桥 设计(论文)题目来源 设计(论文)题目类型  起止时间 2008.12.1~2008.12.12 一、设计(论文)依据及研究意义:

桥梁的形式可考虑连续梁桥、梁拱组合桥和斜拉桥。对此三种桥型作比较,从安全、适用、经济、美观等方面比选,最终确定桥梁形式。

二、设计(论文)主要研究的内容、预期目标:(技术方案、路线)

本桥的设计是根据设计任务书的要求和《公路桥规》的规定,本着“安全、实用、经济、美观”的八字原则,提出了三种不同的桥型方案进行比较和选择。方案一为预应力混凝土连续梁桥,方案二为梁拱组合体系桥,方案三为悬索桥。经由以上原则以及设计施工等诸多方面考虑后,确定预应力混凝土连续梁桥为最终设计方案。

三、设计(论文)的研究重点及难点

计算量大,工程量大,绘制上部结构的一般构造图、钢筋构造图及施工示意图很复杂

四、进行设计(论文)所需条件:

《结构设计原理》土木工程专业毕业设计指南—桥梁工程分册

《预应力混凝土连续梁桥设计》 《桥梁工程》 《基础工程》 《桥涵水文》 《桥梁计算示例集》《桥梁上部结构计算示例(二)》

篇(9)

 

随着我国公路事业的不断发展,大跨径桥梁、高架桥、立交桥的大量兴建,桥梁结构防水技术的使用越来越广泛,但桥梁漏水对桥梁结构腐蚀十分严重,影响桥梁的使用寿命。由于不少桥梁不做防水或防水不力造成桥面渗水、钢筋锈蚀、铺装层剥落、碱骨料反应、钢筋锈蚀而引起的混凝土胀裂等严重的损坏问题,极大地影响了桥梁结构的耐久性和正常使用寿命,以及行车的舒适性和安全性。

我国现行规定,桥梁钢筋混凝土桥桥面是否另设防水层,视桥梁结构的型式而定:“桥面系产生负弯矩(悬臂梁、连续梁、刚架,及连续板和大挑臂板等),桥面顶面产生拉应力,则全桥面(包括车行道和人行道部分)均须设置柔性水层;若上部构造为双向预应力混凝土结构,在设计荷载下,主梁上缘及桥面板上缘(纵、横向)不产生拉应力,则可只设铺装,不另设防水层。规定具有钢筋混凝土桥面的钢梁,全桥面应设置柔性防水层,柔性防水层可用饱浸沥青料的卷材,以3~4层沥青料逐层粘贴构成”。

一般来讲柔性铺装的桥梁防水主要采用柔性铺装卷材类和涂料类防水材料;刚性铺装采用涂料类和防水砂浆,以及钢筋防腐防水等工艺。在实际工程应用中尤以柔性铺装卷材类和防水涂料类居多。

1.柔性铺装(沥青砼)防水卷材类的选材和工程应用

1.1主要评价指标

对于桥面柔性铺装防水材料的使用性能,其主要评价指标是抗剪性能和低温抗裂性。

(1)抗剪性能。防水层一般铺设在铺装层与桥面板之间,要承受车辆行驶时所产生的垂直压力和水平方向的剪力,其间必须具有足够的剪切强度,特别是在夏季高温状态下。

(2)低温抗裂性能。桥面铺装层一般主要承受压应力,但在连续梁桥等具有负弯矩的桥梁结构中,对防水材料及桥面铺装层要求应有一定的抗裂性,特别是一般防水材料在低温状态下具有脆性,更容易开裂,为此对防水材料的低温抗裂性提出较高的要求。

1.2防水卷材的技术指标

不少桥梁选用聚合物改性沥青防水卷材,使用效果良好,其性能与适用环境如下:

(1)适用于温度为-45~80℃的环境(热熔法施工应满足130℃的环境要求)。

(2)符合厚3~4 mm卷材防水层的主要技术性能。

卷材防水层应采用热熔法施工,其施工速度快,适用于工期紧的桥梁工程。由于有的桥面铺装基面的平整度较差,粘结率不能满足要求,易形成空鼓及搭接部位粘结质量不易保证,应予以充分注意。

1.3卷材防水层的设计、施工要求

(1)卷材防水层应选用抗菌性的橡胶、塑料和沥青等类卷材。

(2)对使用冷涂作业的卷材,应规定选用的相应粘结剂,确保其粘结强度。

(3)卷材防水层铺贴在整体浇筑施工的桥梁混凝土结构基面时,应防止防水层产生空鼓。

(4)细部构造要求

①桥梁机动车桥面与检修(人行)步道应设置防水层。

②在预制安装主梁的纵向缝、横向缝顶处设置加强防水层时,其缝宽两侧各在5~10 cm范围内不粘贴,以确保结构变形时,防水层有足够的变形量。

③钢筋砼预制梁安装后,桥面板间或主梁间出现“错台儿”,应在“错台儿”处用水泥砂浆抹成缓坡处理。

④应避免桥面泄水管口处雨水溢至桥面板结构层内,卷材应按剪切受力处理。

2.刚性铺装(水泥砼)涂料防水材料的选材和应用

2.1桥梁涂料防水材料的技术指标及特点

(1)阳离子乳化沥青氯丁胶乳防水材料与潮湿基面结合较好,成膜较快,施工简便、无毒,对周围环境无污染,分别与砼基面、顶面的沥青混凝土面粘结好,层间粘结性强,可用于-30~80℃的环境。

(2)聚合物改性沥青桥梁防水涂料(刚性或柔性铺装)是以特殊加工的乳化沥青为基料,选用优质高分子胶乳及合成树脂为复合改性剂,经科学配方合成为耐高温达160℃的沥青砼桥面专用涂料。

(3)聚氨酯防水材料主要适用于桥面为砼铺装的桥梁,可用于-30~80℃环境中的地下建筑、屋面、管道接缝和桥梁防水。

(4)JS复合防水涂料。此复合防水涂料在我国南方的一些桥梁广泛应用。要求基面应平整、牢固、干净、无明水,但不能在0℃以下或雨中施工,否则影响成膜。

2.2涂料防水层设计、施工要求

(1)应选用易在潮湿基面作业的湿固型涂料,如乳化沥青、阳离子氯丁胶乳化沥青等亲水性涂料。论文格式。

(2)选用延伸性好的防水涂料。

(3)选用的涂料层与层间应分别与桥面板和顶层粘结可靠。为增强防水效果,涂料应与玻璃丝布、土工布等纤维材料复合使用。涂料防水层的基面必须平整、清洁、无浮浆,基面应保持干燥。

(4)桥梁防水的细部构造。论文格式。桥梁机动车道桥面防水层应设置在混凝土找平层顶,检修(人行)步道防水层应设置在混凝土找平层下(也可设在找平层顶),在防护栏杆(道牙)、地袱侧顶用107水泥砂浆聚氨脂胶泥封严。

(5)防水涂料间玻璃丝布的技术规定为:玻璃丝布宜用中碱平纹玻璃纤维布;断裂强度要求经向不小于450 N,纬向不小于250 N;密度,经12根/cm,纬10~11根/cm;厚度,0.12~0.13 mm。

3.桥梁防水对策

3.1桥梁防水一般规定

(1)钢筋混凝土桥面板与铺装层之间应设置有效的防水和防溶解盐的不透水层,以避免发生水侵害锈蚀钢筋。

桥面板防水层顶可采用水泥混凝土或沥青混凝土桥面铺装层。

桥梁为承受振动荷载结构时,桥面防水层应采用柔性的涂料与卷材防水材料,涂料与卷材相比,应选用涂料防水层为最佳。

(2)水泥混凝土作铺装层时,厚度为1.5mm,沥青混凝土作铺装层时,厚度为2 mm,当桥梁纵向坡大于1.8%时,防水层厚度应适当减薄。

(3)混凝土桥面铺装时,保护层应抹425号以上硅酸盐水泥砂浆,厚0.8 mm,为使保护层与防水层间粘结,须在防水层顶撤均匀小豆石。

桥面防水层施工中,应对防水材料及施工工艺进行必要的抽检工作。

3.2桥面排水

桥梁桥面排水系是由桥面边沟排水和桥面泄水孔设备组成。桥梁行车道桥面排水是按不同类型桥面铺装设置1%~2.5%横向坡,形成边侧排水,如有人行道时,应设置向行车道倾斜1%的横向坡。桥梁较长时,桥面排水应由设置的纵向坡完成。论文格式。

泄水孔设在桥梁跨河桥上,并直接向桥下排水,跨线桥泄水孔应借助在下部结构墩柱侧面设置的落水管排至地面雨水口。

4.桥梁防水技术的发展

(1)桥梁防水技术的标准化工作将提到重要的日程,并逐步与国际接轨,国外的一些成功经验将被借鉴和采用。

(2)防水材料的研制、开发和生产将有极大的发展。科研、材料、设计、施工和管理等部门将加大合作力度,开发一批桥梁专用防水涂料将指日可待。

(3)将广泛采用塑料盲沟材代替传统的碎石盲沟。路基的防水也将提到日程上来。

(4)高性能砼(大于C60级)将在桥梁结构中广泛应用,这将提高砼的强度、耐久性、体积稳定性和工艺性,提高桥梁结构自身防水能力。

篇(10)

 

1.引言

由于GPS技术具有定位精度高、作业速度快、费用节省、相邻点间毋需通视、不受天气条件影响等常规测量技术不可比拟的优点。因而它在测量领域得到了广泛的应用。同样地,在工程测量领域的大桥变形观测中,用这种高新技术来建立其监测系统,已成为一种重要的手段和方法。

2.桥梁变形监测系统的建立

2.1桥梁变形监测的概念及其意义

大型桥梁的建设和维护是一个国家基础设施建设的重要部分,桥梁变形监测就是运用现代传感与通信技术,实时监测桥梁运营阶段在各种环境条件下的结构响应与行为,获取反映结构状况和环境因素的各种信息,由此分析结构健康状态、评估结构的可靠性,为桥梁的管理与维护决策提供科学依据。

其意义在于可以实时掌握桥梁现场的交通状况,有利于桥梁管理部门进行合理的交通管制,及早发现桥梁病害,确定桥梁损伤部位并进行定性和定量分析,在突发事件之后还可以评估桥梁的剩余寿命,为维修养护和管理决策提供依据和指导,在桥梁运营状况严重异常时触发预警信号,有效预防安全事故,保障人民

生命财产的安全。

2.2 GPS变形网的优点

与传统的形变网相比,GPS形变网有如下优点:

(1)GPS形变网的观测精度与网的图形结构关系不明显;

(2)当整周模糊度确定之后,观测量的权与观测时间的增加不成正比;

(3)网中的每一条基线都含有长度和方位信息;

(4)当观测仪器和作业模式确定之后,基线解的精度与观测时刻紧密相连。即与观测时刻的RDO P(相对位置精度因子)有直接关系。

2.3GPS变形监测网的建立与实施

对大型桥梁来说,GPS变形监测网一般由一个或若干个独立观测环构成,以三角形和大地四边形组成的混合网的形式布设.一般来说,实地选点时要注意以下几点:(1)点位的基础应做到坚实稳固,并易于长期保存,不能选在夏季洪水易淹没的地方;(2)点位视场内障碍物的高度角不能超过15°,以减少卫星信号被遮挡;(3)点位应远离大功率无线电发射源,其距离不得小于200 m,并远离高压输电线和微波无线电信号传输通道,其距离不得小于50 m,以避免电磁场对卫星信号的干扰;(4)点位离江(河)应有一定的距离,附近不能有大面积水域,以减弱多路径效应的影响;(5)点位离大桥的距离至少在200 m以上,减少大桥行车时对点位本身和GPS观测时的影响;(6)点位的数量视桥型大小而定,一般来说,在江(河)两岸桥梁的两侧至少各有一个点,大型桥梁应适当增加,还应联测国家已知点或施工控制网的点.

2.4监测数据处理

桥梁结构变形监测系统中,要进行的数据处理与分析主要包括:WGS一84坐标到桥梁局部坐标系变换、风对大桥位移的影响、温度对大桥竖向位移的影响、辆对竖位的影响、频析、监测据压缩储。

2.4.1监测数据预处理

对于任何一个监测系统,其监测数据中或多或少会存在一些奇异值,尤其是GPS接收信号存在噪声,在用作演示前要进行监测数据的平滑处理,在变形分析的开始,有必要将该奇异值进行剔除。该系统是无人值守24小时连续实时监测系统,在传输过程中也难免会出现一些数据丢失的现象,这时应根据丢失点的前后数据通过插补得到该数据,以保证监测数据序列的连续性。

2.4.2坐标变换

由于GPS位移实时监测系统获得的监测点的坐标是WGS一84坐标系下的坐标,为了便于分析桥梁的变形,通常应将所得到的WGS一84坐标按高斯投影变成平面坐标,然后变换成桥梁局部坐标系下的坐标。在监测站,接收来自卫星的信号和来自基准站的信息,采用GPS软件进行实时差分处理,可得到监测站的三维坐标,并以一定的采样率发送到监控中心;监控中心接收各监测点的监测结果,并通过数据处理软件作进一步的处理与分析,可以得到结构在特定方向上的位移、旋转角等参数。

2.4.3.风载温度车辆荷载对桥梁位移的影响

实时记录桥梁所在位置的风速、风向,根据GPS所得测点的对桥身、塔顶、主缆的三轴向位移资料,可对大桥进行风力将就监测及结构的抗风振验算复核。GPS监测系统长时间监测大桥整体结构的位移变化,可引证因环境温度而引发的日夜和季节性的位移变化周期。对一般大跨度桥梁而言,交通挤塞是交通(车辆)荷载的主要设计考虑因素。测量和论证交通荷载设计假设和参数的有效性是大跨桥交通荷载监测的主要项目。论文参考。从GPS监测系统得出的桥身、塔顶、主缆的三轴向位移资料,可与交通荷载分布状况的监测资料互相验证,协助进一步制定桥梁结构的各级应力阶段,并用作大桥主要构件的疲劳估算。论文参考。绘出位移时程曲线图,对照相应时间内的风速、环境温度、车辆荷载等,便可很直观地显示出桥梁位移随风速、温度和车辆荷载变化而变化的趋势,定量地分析出在某一温度、某一风速、某种荷载时桥梁前产生的最大位移,最后由这些成果来分析风速、温度和车辆荷载对桥梁位移的影响程度。

2.4.4.频谱分析

通过分析监测点位移时程曲线,可以得到桥梁的震动频率和振幅。利用快速傅立叶变换的方法,通过频谱分析可以得到监测点功率谱曲线,与设计的理论值或不同时段的功率谱曲线进行比较,以诊断桥梁结构的稳定性。论文参考。

2.4.5.监测数据压缩存储

桥梁动态监测系统是一个长期的动态监测系统,因而从监测系统中采集的监测数据是海量的,以至很难采用传统的文件形式管理监测数据,必须采用一定的措施。此外,对来自监测系统数据处理与分析子系统的统计数据、处理和分析结果也应该进行有效的管理。数据库技术是管理海量数据的有利工具,而且采取一定的数据压缩技术,会对数据的存储更为有利。最为有效的办法是对监测数据建立动态数据库,并能进行监测数据的定期更新、备份和恢复。

3.结束语

GPS技术可以克服传统的桥梁结构监测方法的缺点,测定位移值的精度可以达到厘米级(R T K)甚至毫米级(相对静态)的精度.GPS可以实时地得到监测点的三维坐标,特别是可实现多点同步观测,受外界影响小,数据采集方便,可实现实时性、自动化管理. 因此可较好的应用于大桥运营的安全性管理上, 国内外的多项实例也表明,GPS技术在大型桥梁变形监测中具有广阔的应用前景.

.

[1] 余建杰.利用GPS技术建立桥梁变形监测网[J] 信息技术, 2008年第4期

[2] 王峰波.GPS在桥梁健康监测系统中位移及的监测[D] 工程硕士学位论文,长安大学2006年4月

[3] 杨培军.基于GPS的大跨度桥梁健康监测系统研究[D]硕士研究生学位论文,西南交通大学2006年5月

[4] 王小敏,熊军,马木欣.基于GPS的大跨度桥梁变形监测与数据处理[J] 武汉理工大学学报, 第33卷 第2期2009年4月

[5] 苏新洲,苏欣,杨晓明.GP S在大型桥梁形变监测中的应用[J] 铁道工程学报, 2004年3月第1期(总81)

上一篇: 医院团支部工作计划 下一篇: 火车实训总结
相关精选
相关期刊