法学学术论文汇总十篇

时间:2022-10-26 20:16:37

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇法学学术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

法学学术论文

篇(1)

心理学告诉我们满足人们对理解、尊重和追求的需要,就能激发人的动机,使人有一股内在的动力,朝向所期望的目标前进。教师对学生“暗含期待”,学生在感情上就会受到鼓舞,对教师产生“好感”和“信赖”,增强自尊、自信、有效地激发学生情绪和学习动机。因此,作为数学教师要调动学生的积极性,必须激励学生情感,一方面增加“感情投资”,理解、尊重、亲近、关心学生,寓教于情,用真诚和热情拨动学生心弦,使其对数学产生亲切感,乐听爱学,“亲其师而信其道”。另一方面针对学生心灵深处存在着使节自己成为发现者、研究者、探索者的愿望,不断为他们树立学习目标,提供发现问题、运用知识解决问题的机会,使他们从一个成功走向另一个成功的不断满足中增强学习信心,激励学习兴趣,享受获得的欢乐。

二、更新教法,实行导学。

苏联学者雅各得钦说:重要的是创造一种生动活泼的课堂教学气氛,使学生威到没有思想负担,大胆地、无拘无束地讨论问题。民主、平等、活泼、愉快是创造之芽萌发的温床,是充分发挥学生主体作用的摇篮。教学中教师不仅要用良好的师德、严谨的治学态度、广博的知识感染学生,而且要用民主、平等、多样而富有鼓励性的教法对学生“诱、启、导”,促使学生效法、悟道、解惑。

三、开展活动,评比促学。

学生对开展活动非常感兴趣,在课堂上进行多种形式的活动,如:抢答比赛、知识竞赛、脑筋急转弯、数学家的故事、优秀墙报等等活动的开展,让学生人人准备,个个参加,寓教于评,以比促学,造成你追我赶,比学赶超局势,促使学生“鼓足干劲,力争上游。”

篇(2)

第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法随时随地发生作用,使他们受益终生。”

第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。

二、中学数学教学内容的层次

中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的以及具有较强操作性的知识。学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识。深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识。教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性。那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛。因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。三、中学数学中的主要数学思想和方法

数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想。其理由是:

(1)这三个思想几乎包摄了全部中学数学内容;

(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;

(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;

(4)掌握这些思想可以为进一步学习高等数学打下较好的基础。

此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透。数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关。从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等。一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的。

四、数学思想方法的教学模式

数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性。基于上述认识,我们给出数学思想方法教学的一个教学模式:操作——掌握——领悟对此模式作如下说明:

(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;

(2)“操作”是指表层知识教学,即基本知识与技能的教学。“操作”是数学思想、方法教学的基础;

(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握。学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提;

(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;

(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些。

【摘要】教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性。

【关键词】数学思想教学方法探讨

参考文献:

篇(3)

其次,只有实现有关教法的优化组合,才能为提高教法的使用效率奠定良好的基础。经验告诉我们,教学任务的完成,教学质量的提高,依靠多种因素、多种方法的综合作用。巴班斯基曾指出:“不存在教学方法上的‘百宝箱’。”美国的富兰克尔也说:“不存在任何情况下,对任何学生都行之有效的,唯一的‘最佳方法’。”因此,简单否定某一种方法或把某种教学方法的作用加以夸大,都是片面的、不切实际的。

再次,应注意选择教法和使用效果的有机统一。选择教学方法,核心问题是最大限度地调动学生学习的主动性和积极性,使教与学在教学的动态发展中得以平衡,最终使预定的教学目标与教学的实际效果相一致。为此,就应充分考虑学生是怎样学习的,怎样才能学得更好。也就是说,应按照学生学习的一般程序来选择或设计教学方法,切忌简单套用某种教学模式的做法。

教学方法选择的程序,在一般的教学论中很少涉及。巴班斯基对这一问题的论述值得我们借鉴。按其基本精神,选择教学方法的程序,大致包括三个步骤:(1)明确选择标准;(2)尽可能广泛地提供有关的考虑方法,便于教师考虑和选择;(3)对各种供选择的教学方法进行各种比较。

参考上面的说法,我们认为选择教学方法的程序可分两个步骤完成:

第一步:学纲、分析教材,确定目标。由于教学方法始终受教学目标和教学内容的制约,因此,要选择好教学方法,就必须首先了解大纲的精神,理解教材的特点和编写意图。

第二步:选择教法、综合比较,确定方案。选择教法既可直接考虑采用综合性的教学方法,也可采取将有关基本的教学方法加以有机组合的办法。特别是后者,在实际教学中往往被绝大多数教师所采用,应作重点考虑。一般来说,可以按照一节课中教材知识呈现的先后顺序,分阶段来考虑教学方法的选择。

下面,以“平行四边形”(第一课时)的教学为例,说明教法选择的做法和步骤。

篇(4)

对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机

制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。

篇(5)

中专数学教学观念的创新,既要求教师要创新教育教学观念,也要求教师要引导学生创新学习数学的观念,只有教与学同时创新,才能实现中专数学教学的目的。目前,教学观念的创新是中专教师的重要任务,除了教学思路的革新外,更应该帮助和引导学生树立正确的学习观念,找到学生不爱学数学的要根源,想方设法消除学生对数学的抵触情绪,激发学生对学习数学的兴趣,增强学生学好数学的信心。

1.2在教材上有所创新

现在中专学校广泛采用的中专教材已延用多年,有些内容已显陈旧,已与现实生活略显脱节,所以应根据中专教学的目的适当的改良和压缩中专数教材的内容,对应用性强的内容可以写得详细些,对于应用性不是很强的部分应适当删减,做到详略得当。这样教师在教学中也能根据教材内容划分详略,既能提高对重点内容的掌握效果,也减轻学生的学习压力。

1.3教学内容上有所创新

中专学校的学生因所学专业不同,所以对各学科的掌握程度也不尽相同。就数学课程而言,文科学生中需要掌握一些基本理论即可,而对于理工科的学生来说,则要根据其专学其他学科的设置来决定数学课程内容的深度和难度。这就要求中专教师要认真分析研究各专业的课程设置内容和特点,合理确定数学教学的内容,力求通过数学课程的学习帮助学生为其他专业课程的学习打好基础。

1.4在教学方法上有所创新

数学课程教学较其他基础学科而言枯燥得多,这就对数学教师的教学方法提出了较高的要求,一方面要让学生对课堂教学内容有所领会,另一方面要让学生对学习数学提起兴起,变被动主动。要求教师除了课堂讲授外,还要尽可能的利用多媒体教学方式,引证一些学习数学方面的真人实例。同时,可以在数学课堂上开辟“模拟课堂”环节,让学生提前预习本堂所学内容,模仿老师对其他同学进行讲解。然后教师对学生进行补充和讲评,并以此作为学期数学成绩的重要组成部分。

1.5在考试形式上有所创新

数学考试不同于其他学科考试,它多是以计算结果作为判定好错的唯一依据,即使每一步都准确,只计算结果不正确,也得不了多少分,或者根本就得不到分。这种传统的数学考试方式对中专学生来说是有不妥之处的,因为中专数学的教学目的不是要考查学生的计算准确性,而更侧重于对解题思路和方法的掌握上。计算结果不正确往往是因为考生的一念之差,并不能真正说明学生对数学知识的掌握程度,也不能真正起到教师通过考试掌握学生学习成果的作用。这就要求中专数学教师应在数学考试方法上有所创新,平时应尽可能的采用多种考核方法相结合的形式,可以充分利用平时课堂设定多种多样和考核项目,并以课堂考核成绩作为评定学生学期成果的重要组成部分。

1.6强化数学知识的应用性

理论与实践脱节是目前我国中专数学教学面临的严重问题,因此,应当重视中专数学教学知识的应用性。让数学从学生的专业出发,从社会生活实际的需求出发,更大的发挥数学教学对现实生活的指导意义。当然,这不是一朝一夕就能完成的,它需要中专数学教师投入更多的精力探究数学知识的实践性,将理论数学变为应用数学。

篇(6)

1、举例法:举例通常分成两种情况即举正面例子和举反面例子。举正面例子可以变抽象为形象,变一般为具体使概念生动化、直观化,达到较易理解的目的。例如在讲解向量空间的时候就列举了大量的实例。在解析几何里,平面或空间中从一定点引出的一切向量对于向量的加法和实数与向量的乘法来说都作成实数域上的向量空间;复数域可以看成实数域上的向量空间;数域F上一切m*n矩阵所成的集合对于矩阵的加法和数与矩阵的乘法来说作成F上一个向量空间,等等。举反面例子则可以体会概念反映的范围,加深对概念本质的把握。例如在讲解反比例函数概念的时候就可以举这样的一个例子。试判断下列关系式中的y是x的反比例函数吗?,,。这就需要我们对反比例函数有本质的把握。什么是反比例函数呢?一切形如的函数,本质是两个量乘积是一定值时,这两个量成反比例关系。(1)中y和x-1成反比例关系,(2)中y+3和x成反比例关系。定义中要求k为常数当然可以是-1,所以(1),(2)不是,(3)是。

2、温故法:不论是皮亚杰还是奥苏伯尔在概念学习的理论方面都认为概念教学的起步是在已有的认知的结构的基础上进行的。因此在教授新概念之前,如果能先对学生认知结构中原有的概念作一些适当的结构上的变化,再引入新概念,则有利于促进新概念的形成。例如:在高中阶段讲解角的概念的时候最好重新温故一下在初中阶段角的定义,然后从角的范围进行推广到正角、负角和零;从角的表示方法进行推广到弧度制,这样有利于学生思维的自然过渡较易接受。又如在讲解线性映射的时候最好首先温故一下映射的概念,在讲解欧氏空间的时候同样最好温故一下向量空间的概念。

3、索因法:每一个概念的产生都具有丰富的背景和真实的原因,当你把这些原因找到的时候,那些鲜活的内容,使你不想记住这些概念都难。例如三角形的四个心:内心、外心、旁心和重心,很多同学总是记混这些概念。内心是三角形三个内角平分线的交点,因为是三角形内切圆的圆心而得名内心;外心是三角形三条边垂直平分线的交点,因为是三角形外接圆的圆心因而的名外心;旁心是三角形一个内角平分线和两个不相邻的外角平分线的交点,因为是三角形旁切圆的圆心而得名旁心;重心是三角形三条中线的交点,因为是三角形的重力平衡点而得名重心。当你了解了上述内容,你有怎么可能记混这些概念呢?又例如:点到直线的距离是这样定义的,过点做直线的垂线,则垂线段的长度,便是点到直线的距离。那么为什么不定义为点和直线上任意点连线的线段的长度呢?因为只有垂线段是最短的,具有确定性和唯一性。再如:我们之所以把n元有序数组也称为向量,一方面固然是由于它包括通常的向量,作为特殊的情形;另一方面也是由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的。像这样的例子还有很多,不再一一列举。

4、联系法:数学概念之间具有联系性,任意数学概念都是由若干个数学概念联系而成,只有建立数学概念之间的联系,才能彻底理解数学概念。例如在学习数列的时候,我们不妨作如下分析:数列是按一定次序排列的一列数,是有规律的。那规律是什么呢?项与项数之间的规律、项与项之间的规律、数列整体趋势的规律。项与项数之间的规律就是我们说的通项公式,项与项之间的规律就是我们所说的递推公式,数列整体趋势的规律就是我们所说的极限问题。当项与项之间满足差数相等的关系时,数列被称为等差数列;当项与项之间满足倍数相等的关系时,数列就被称为等比数列。这样我们对数列这一章的概念便都了然于胸了。

篇(7)

对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机

制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

篇(8)

一、数学学习方法指导的内容

根据学生学习的几个环节(预习、听课、复习巩固与作业、总结),从宏观上对学习方法分层次、分步骤指导。这种学习方法具有普遍性,可适用其它学科。

1.预习方法的指导。

初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。

2.听课方法的指导。

在听课方法的指导方面要处理好“听”、“思”、“记”的关系。

“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。

“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。

“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。

掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。

3.深后复习巩固及完成作业方法的指导。

初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。

以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。

4.小结或总结方法的指导。

在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复结的途径。要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。

学生总结与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。

二、数学学习方法指导的形式

1.讲授式。它包括课程式和讲座式。课程式是在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。讲座式可分专题进行,可每月搞一至二次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。

篇(9)

1.数学教学方法改革的需要

长期以来,数学教学改革偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津.现代教学理论认为,教学方法包括教的方法和学的方法,正如前苏联教学论专家巴班斯基指出的那样:“教学方法是由学习方式和教学方式运用的协调一致的效果决定的.”即教学方法是受教与学相互依存的教学规律所制约的.

当前,教学方法改革中的一个新的发展趋向,就是教法改革与学法改革相结合,以研究学生科学的学习方法作为创建现代化教学方法的前提,寓学法于教法之中,把学法研究的着眼点放在纵向的教法改革与横向的学法改革的交汇处.从这个意义上讲,学法指导应该是教学方法改革的一个重要方面.

2.培养学生学习能力的需要

埃德加·富尔在《学会生存》一书中指出:“未来的文盲不再是不识字的人,而是没有学会怎样学习的人.”“教会学生学习”已成为当今世界流行的口号.前苏联教育家赞可夫在他的教学经验新体系中,把“使学生理解学习过程”作为五大原则之一.就是说,学生不能只掌握学习内容,还要检查、分析自己的学习过程,要学生对如何学、如何巩固,进行自我检查、自我校正、自我评价.学法指导的目的,就是最大限度地调动学生学习的主动性和积极性,激发学生的思维,帮助学生掌握学习方法,培养学生学习能力,为学生发挥自己的聪明才智提供和创造必要的条件.

3.更好地体现学生为主体的需要

我国著名教育家陶行知先生早就指出:“我以为好的先生不是教书,不是教学生,乃是教学生学.”美国心理学家罗斯也说过:“每个教师应当忘记他是一个教师,而应具有一个学习促进者的态度和技巧.”专家学者精辟地阐述了学生在整个教学过程中始终是认识的主体和发展的主体思想,强调了学法指导中以学生为主体的重要性.教师在教学过程中的作用,只是为学生的认识的发展提供种种有利的条件,即帮助、指导学生学习,培养学生自学的能力和习惯.

二、数学学法指导的内容

1.形成良好的非智力因素的指导

主要包括学习需要、动机、兴趣、毅力、情绪等良好的非智力因素形成的指导.

2.学习方法体系的指导

(1)指导学生形成拟定自学计划的能力.

(2)指导学生学会预习的能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.

(3)指导学生读书的方法.

(4)指导学生做笔记、写心得、绘图表的方法,使他们能够把自己的思想表达出来.

(5)指导学生有效的记忆方法和温习教材的方法.

3.学习能力的指导

包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.

4.应考方法的指导

教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.

5.良好学习心理的指导

教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.

三、数学学法指导的原则

数学学法指导的原则是根据学生的学习任务、学习规律和学习经验,对学生数学学习提出的基本法则.它是用来指导和改进学生学习,提高学习效率、质量的准则.

就目前数学教学研究情况和学生学习经验来看,笔者以为有以下几条原则.

1.系统化原则

要求学生将所学的知识在头脑中形成一定的体系,成为他们知识总体中的有机组成部分.在教和学中,要把概念的形成与知识系统化有机联系起来,加强各部分学习基础知识内部和相互之间,以及数学与物理、化学、生物之间的逻辑联系;注意从宏观到微观揭示其变化的内在本质.并在平时就要十分重视和做好从已知到未知,新旧联系的系统化工作,使所学知识先成为小系统、大结构,达到系统化的要求.

2.针对性原则

就是针对数学学科的特征及学生的实际特点进行指导,这是学法指导的最根本原则.首先,要针对学生的年龄特征进行指导.一般来说,初中生知识面较窄,思维能力较差,注意力不持久,学习技能不很熟练,因此,对初中生的指导要具体、生动、形象,多举典型事例,侧重于具体学习技能的培养,使学生养成良好的学习习惯.高中生则不同,知识面较广,理解力较强,因此,可向学生介绍一些学习数学知识的方法,侧重于学习能力的培养,开设学法课.其次,要针对学生的类型差异进行指导.学生的类型大致有四种:第一种,优秀型.双基扎实,学习有法,智力较高,成绩稳定在优秀水平.第二种,松散型.学习能力强,但不能主动发挥,学习不够踏实,双基不够扎实,学习成绩不稳定.第三种,认真型.学习很刻苦认真,但方法较死,能力较差,基础不够扎实,成绩上不去.第四种,低劣型.学无兴趣,不下功夫,底子差,方法死,能力弱,学习成绩差,处于“学习脱轨”和“恶性循环”状态.对不同类型的学生,指导方法和重点要不同.对第一种侧重于帮助优生进行总结并自觉运用学习方法;对第二种主要解决学习态度问题;对第三种主要解决方法问题;对第四种主要解决兴趣、自信心和具体方法问题.

3.实践性原则

学习方法实际上是一种实践性很强的技能,要使学生真正掌握学习方法,就必须进行方法训练(即实践),使之达到自动化、技巧化的程度.指导中切忌单纯传授知识,满堂灌,学而不用.进行方法训练时,要与具体内容相结合,使学生在具体运用中掌握学习方法.

4.实用性原则

学法指导的最终目的是用较少的时间学有所得、学有所成,改正不良方法,养成良好的学习习惯.所以应以常规方法为重点,指导时多讲怎么做,少讲为什么,力求理论阐述深入浅出,通俗易懂,增强可读性,便于学生接受.注意穿插某些重要的单项学习法,如怎样记笔记,怎样积累资料,怎样使用工具书,怎样阅读,等等.

5.自主性原则

指导学生优化学习方法,其着眼点在于发挥学生在学习中的主观能动作用,确保学生的主体地位.为此,教师在组织教学的过程中,应力求贯彻学生自主原则,积极创造条件,让学生有尽可能多的时间和余地进行自学,独立地思考和解决问题.

6.及时巩固原则

及时巩固原是学习和发展的需要.例如,数学符号、概念、定理、公式等是数学特有的表现形式.教学实践表明,数学符号、概念、定理、公式没有学会和记住,是造成学生学习质量不高、学习发生困难的一个重要原因,只有及时巩固,才能迁移应用.

四、数学学法指导的实施

数学学法指导是一个由非智力因素、学习方法、学习习惯、学习能力和学习效果组成的动力系统、执行系统、控制系统、反馈系统的整体,对其中任何一个系统的忽视,都会直接影响学法指导整体功能的发挥.因此,应以系统整体的观点进行学法指导,以指导学生加强学习修养,激发学习动机,指导学生掌握和形成具有自己个性特点和科学的学习方法,指导学生养成良好的学习习惯和提高学习能力及效果为其内容及范围.

1.形成良好的非智力因素的指导

非智力因素是学法指导得以进行的动力.积极的非智力因素,可以使学生学习的积极性长盛不衰.我们应把培养学生良好的非智力因素放在首位.具体可从以下几个方面入手:

(1)激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性.首先,以数学的广泛应用,激发学生学好数学的热情.其次,以我国在数学领域的卓越成就,培养学生的爱国主义思想,激发学习动机.再次,挖掘数学中的美育因素,使学生受到美的熏陶.此外,教师还可以在教学过程中,根据教学的内容,选用生动活泼、贴近学生生活的教学方法引起学生的兴趣,使学生产生强烈的求知欲;教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生;教师还可以安排既严谨又活泼的教学结构,形成热烈和谐的氛围,使学生积极主动、心情愉快地学习,充分调动学生学习的积极性和主动性.

(2)锻炼学习意志.心理学家认为:“意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志力的‘磨刀石’.”因此,数学教学中要经常给学生安排适当难度的练习题,让他们付出一定的努力,在独立思考中独立解决问题(但注意难度必须适当,因为太难会挫伤学生的信心,太易又不能锻炼学生的意志).

(3)养成良好的学习习惯.第一,针对不同层次的学生提出不同的要求;第二,反复训练,持之以恒;第三,树立榜样,激发自觉性;第四,评价表扬,鼓励发展;第五,建立学习规章制度,严格管理;第六,创造良好学习环境,如搞好校风、学风、教风、班风建设.

2.数学学习方法内化的指导

(1)正确认识数学学习方法的重要性.启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中.如,结合教材内容,讲述一些运用科学学习方法获得成功的例子,召开数学学法研讨会,让学习成绩优秀的同学介绍经验,开辟专栏进行学习方法的讨论,等等.

(2)指导学生掌握科学的数学学习方法.

①合理渗透.在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中.

②相机点拨.教师要有强烈的学法指导意识,结合教学抓住最佳契机,画龙点睛地点拨学习方法.

③及时总结.在传授知识,训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结,使其逐步系统完善,并找出规律性的东西.

④迁移训练.总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法.

(3)开设数学学法指导课.学法最好安排在起始年级(高一、初一)开设,时间一般是每周或每两周一课时,开设一学期或一学年,并列入数学教学计划.要结合正反例子讲,结合数学学科的具体知识和学法特点讲,结合学生的思想实际讲,边讲边示范边训练.例如,讲授名人和优秀学生学习的事例,或对反面典型进行剖析;介绍如何读书、如何复习、如何记忆等一般的学习方法;精讲数学解题的策略和思维方式;等等.当然学法课有时也可以由学生自己来上,或请优秀学生介绍经验,或请有关教师作专题报告,还可以采用讨论式.

(4)数学学法的矫正指导.学生在数学学习过程中总要暴露出这样那样的问题,这就需要老师对学生在学习中存在的问题有较清晰的认识,善于发现问题的症结,在教学工作过程中密切注意学情,加强调查与观察,最好对每个学生的学习情况建立个人档案,随时记载并采取相应措施予以针对性矫正,从而使学生改进学法,逐步掌握科学的学习策略,提高学习效率.

篇(10)

特殊教育教学是我国教学体系中的一部分,它保障了生理特殊学生的受教育权,目的是增强特殊学生对社会的适应能力和竞争能力。

数学学科是特殊学校教育中难度较大的一门学科,数学学习要求学生有很强的逻辑思维能力和推理能力,能在抽象的时空中分析问题。同时,要求学生具有想象力和发散性思维。基于数学的这些学科特点,特殊教育学校主要培养学生对基本数学概念的领悟能力,以此帮助学生建立初步的形象思维能力和时空概念。

一、当前特殊教育学校数学教学中出现的问题

1.教学方法未贴合学生实际。当前我国许多特殊教育学校沿用的教学方法与普通学校完全一样,这种无差异的教学方式将认知能力、思维模式和实践能力都不同的两类学生置于相同的教学背景下,很容易使特殊学校的学生产生压力,从而产生消极心理暗示,削弱了其学习数学的积极性。

我国设立特殊教育学校的目的,是希望这类学生能够接受符合自身实际的教育。特殊教育学校的教师应该从学生实际出发,分析学生的接受能力,为其定制一套合理的教学方法。此教学方法学习强度不宜过大,课程进度应适当放慢,同时给予每位学生参与和表现的机会。

2.学生未养成良好的学习习惯。由于特殊教育学校对于学生成绩的要求较为宽松,课程压力和作业相对较少,导致学生在学习中形成许多不良习惯。例如:有的学生在完成数学计算题时,对偶尔遗漏的小数点或者运算错误毫不在意;作业字迹潦草,书写混乱;有的学生遇到稍有难度的题目,就求助教师。这些不良学习习惯会导致学生的学习能力下降。

3.社会关注力度不足,专业人才缺乏。特殊教育学校学生同特殊人群一样,是社会少数弱势群体,它们缺少话语权和执行力,很容易被社会各界所忽视。想要使特殊教育学校优质地开展教学活动,离不开社会各界的帮助和政府的支持。同时,由于特殊教育学校有其独特性,所以只有接受过专门培训的专业教师才能参与特殊教育学校数学教学工作。然而,目前我国对这一类人才的培养重视不够,导致市场供不应求,阻碍了特殊教育学校教育事业的发展。

二、如何改变特殊教育数学教学的现状

1.采用创新教学方法。基于特殊教育学校学生认知能力和实践能力较弱的特点,可以采用以实践为主,趣味性较强的教学方式:项目教学法。因为数学教学内容较为抽象,领悟难度较大,教师可以将整体的教学任务分割成短时间可以完成的教学模块,在每个模块设立单独的学习目标,以此循序渐进,帮助学生层层深入了解。

例如:在学习三角函数时,教师首先可以通过不同的三角函数石膏模型加深学生对不同三角形的概念理解,然后,教师可以反复要求学生辨认sin,cos,tan等角的计算过程,使学生在大量的实际操作中留下深刻的印象。最后,教师可以邀请学生自行出题,在同学间相互传阅,相互探讨。这种阶段性明显的教学方式能够防止学生在学习时由于跨度太大而丧失信心。还可以采用现场教学法。

教师可以定期邀请知名特殊学校、儿童康复中心等地的专家进入课堂,在课堂中针对学生的不足设立相应的学习环境,在学生习惯的环境中传授知识。这种教学形式是在充分了解学生心理状态的情况下实施的,能够避免学生在课堂中感到不安,提高学习效率。

2.大力培养特殊教育数学教学专业人才。我国正大力倡导教育公平,这是一个良好的契机,能够加快我国特殊教育学校的数学教学进程。

3.对此,国家教育部门应该在师范专业培养计划中增加对专业进行特殊教学的人才培养,使特殊教学教师培养走上轨道,形成完善的体系。

只有教师适应了特殊教育学校数学教学的氛围,凭借过硬的专业素养形成了专门的教学方法,学生才能够真正感受到适合自身的学习方式,体会数学学习的快乐。

3.帮助学生树立良好的学习习惯。学习的主体是学生,只有学生把握自己的学习心态,摆正学习态度、教学方法才能真正对学生产生效果。对此,特殊教育学校的数学教师可以积极鼓励学生自学,尽可能打消学生的消极念头,帮助他们树立正确的学习心态和勇于竞争的自信。

教师还可以邀请一些在社会上获得成功的特殊人士进入课堂,向学生传授自己的经历和成功的方法,以此激励学生积极向上,勇敢地面对学习上的困难。

上一篇: 初三化学总复习总结 下一篇: 工商管理研究生论文
相关精选
相关期刊