路基路面论文汇总十篇

时间:2022-05-29 09:50:59

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇路基路面论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

路基路面论文

篇(1)

路桥过渡段设计质量影响着道路桥梁的日常行车安全。这就要求相关部门在进行路桥过渡段路面路基结构设计过程中,结合实际情况,防止设计不合理而造成路桥过渡段出现变形现象发生。同时,技术人员需对道路桥梁过渡段情况进行详细检查,从而为道路桥梁的性能提供保障。

1路桥过渡段路基路面结构设计的重要性

当前,各个地区的经济往来越来越频繁,这就要求相关部门进一步加快路桥建设步伐,这也是社会主义现代化建设的需要。在这一背景下,就必须对路桥工程进行进一步设计,促使工程建设水平得到有效提升,满足新时期路桥运输要求。针对路桥过渡段而言,结构设计对于路桥的安全性、稳定性均具有重要影响。因此,要满足路桥工程稳定性要求,就必须增强设计方案的可行性和实用性。

2路桥过渡段路基路面结构的常见问题

2.1桥头引道过渡段结构设计不当。针对桥头引道路基过渡段而言,较为常见的处理方式有粗粒填筑、加筋土、钢筋混凝土过渡板法等[1]。上述方式难以避免桥头跳车现象,通过研究发现,桥头跳车主要原因在于人们没有找到可行的定型搭板处理计算方式。同时,搭板的长度不符合规定也会导致这一现象发生。2.2桥头引道软土地基处理不当。开展图纸设计过程中,如果设置的地质钻孔比较少,钻探的深度不符合标准规定,就会导致工作人员很难明确路基深度和范围,也难以探明软土路基性质,这种情况下,会导致软土路基段出现沉降,从而导致桥头跳车。进行设计过程中,针对软土地基,理论和实际之间存在一定的差异,会导致路基设置难以达到预期效果。2.3桥头引道路堤边坡防护措施不合理。雨水侵袭,道路桥梁会受到一定影响。我国一些沿海地区,降雨比较多,因此,需要对桥头引道路堤采取相应的防护措施。但是,若防护措施不够合理,即便实施相应的道路桥梁防水、排水工作,也难以实现预期效果,进而使台背填土冲刷流失,进一步降低了路基的强度,从而引发桥头跳车现象。

3路桥过渡段路基路面结构设计措施

3.1无搭板设计方案。近年来,路桥过渡段结构设计中,搭板设计得到广泛应用,能够有效降低路基沉降发生率。在采用该方式进行具体施工过程中,为使施工质量得到提高,采用不设置搭板的设计方案,需要进一步转移设计重心,重点设计填筑工程,对其进行适当的填筑和加固,促使道路桥梁的性能以及路面、路基面承载力得到提升。相关单位需要采用先进的科学技术,进一步提高压实力度,进而为路桥过渡段的施工质量提供保障。3.2有搭板设计方案。路桥过渡段沉降问题相对普遍,针对这一情况,可在桥头位置设置搭板,从而防止桥头跳车情况发生。此外,对桥台搭板进行进一步分析,其长度主要是以坡度值作为依据进行设计,通过这种方式,能够保障其有能力承担车辆行驶过程中所带来的负荷,从而有效降低沉降发生率[2]。采用这种方式比较简单快捷,但不是全部的路桥工程均能够使用这一方式。对于路桥过渡段,设置相应的桥头搭板,以防止桥头出现沉降现象,取得了一定的效果,但是还是存在一定弊端。例如,一些承受较大交通压力的路桥,如果为其设置搭板,跳车现象就难以解决,导致这一路段被磨损,若路堤台衔接处发生沉降问题,逐渐向其他方位转移,会促使局部位置出现沉降问题。这种情况下,技术人员需将实际工程情况作为依据,从而对搭板进行合理化设计。图1为搭板设置示意图。对桥梁搭板的宽度进行设置,对搭板的宽度以及桥面的宽度进行控制,要求宽度一致,采用这一方式进行设计,能够有效防止行车过程中发生安全事故。针对桥梁板的边缘位置,两者之间要设置0.5m的差距。这种情况下,相应技术人员和施工人员,需针对搭板厚度进行科学设置,并且充分考虑位移情况,设置的搭板厚度越大,出现的位移就会越小。在对桥梁建设过程中,工作人员应控制搭板厚度。在我国,一些小型路桥搭板厚度在20~36cm之间。但是对大型搭板进行设计过程中,需要对厚度做进行一定调整,一般情况下,其厚度被控制在30~40cm之间[3]。设计人员进行搭板设计过程中,需进一步研究搭板的长度,从而避免搭板设计缺乏合理性。同时,可以利用锚固栓连接台顶和塔板,从而有效降低沉降情况。此外,结合桥台实际情况,对搭板筋进行合理设计,从而有效提升过渡段性能。3.3路桥过渡段路基路面压实设计。对路桥过渡段进行具体施工过程中,可以同时对路桥台背和桥坡填实和填土,采用这一方式,能够有效防止沉降现象的发生。同时,结合相关施工方案对其进行具体施工,也可以采用分层填筑的方式。对每一层的厚实度进行合理控制,按照相关规定对不同环节进行具体施工,首先将土卸下车,然后使用推土机推平,此后对路面进行洒水[4]。相应施工人员要使用专用工具对路面进行填平,然后使用压路机实施具体的压实操作。

4结语

当前我国基础设施的建设还不是十分完善,如道路和桥梁的过渡段位置,结构设计存在一定问题,影响车辆行驶的安全性。这种情况下,相关部门应当加大重视力度,并对路桥施工技术进行深入研究,使我国路桥施工质量和施工水平得到有效提高,从而为人们提供一个安全、良好的出行环境。

作者:史龙 单位:石家庄宏业交通建设监理有限公司

参考文献:

[1]范明亮.浅谈路桥过渡段路基路面结构设计[J].黑龙江科技信息,2017(9):219.

篇(2)

1概述

高速公路排水设计对于高速公路路基的稳定性及路面的使用寿命有着显著的影响。高速公路排水设计应包含以下两个方面的内容:其一是要考虑如何减少地下水、农田排灌水对路基稳定性及强度的影响,一般称之为第一类排水;其二是要考虑如何将路表水迅速排出路基之外,最大限度地减少雨水对路基、路面质量的影响,减少因路表水排水不畅或路表水下渗对路基、路面结构和使用性能产生的损害,这称为第二类排水。

第一类排水设计通常采用适当提高路基最小填土高度或在路基底部设置隔水垫层等办法。施工期间一般都考虑在施工前开挖临时排水边沟,排除施工期地表水并降低地下水,同时在路基底部掺加低剂量石灰处理,设置40cm厚的稳定层等。采用这一系列措施可起到事半功倍的效果。

第二类排水设计一般包括:

(1)通过路面横坡、边沟、边沟急流槽等,将路表水迅速排出路基以外;

(2)设计中央分隔带纵向碎石盲沟、软式透水管及横向排水管,将施工期进入中央分隔带的雨水及运营期中央分隔带的下渗水迅速排出路基之外;

(3)设计泄水孔以迅速排除桥面水;

(4)设计中采用沥青封层、土路肩纵横向碎石盲沟或排水管,将渗入路面面层的水引出路基之外。

综上所述,笔者结合扬州西北绕城高速公路在设计以及施工中出现的问题谈一点自己的体会。

2边沟排水设计

边沟设计在高速公路排水设计中占有很大的比重,设计人员都给予高度重视,但在设计过程中往往会忽视一些施工中的问题,如边沟的尺寸不考虑具体情况,死搬硬套有关规范、规定;又如施工单位大都未能按有关设计要求将原地表土、河塘清淤土等弃土运送至取土坑内用于复垦还田,而是弃放于路线两侧河塘中,造成部分河塘无法将路基水排入。另外由于沿线农田为分户承包,当地乡镇为了减少地方矛盾的产生,常常要求增加、改移和调整小型构造物设置位置。还有一点就是设计中没有充分考虑利用高速公路施工中超宽填土土方等。

2.1边沟尺寸选定

边沟的排水能力主要取决于以下几个设计参数:边沟底流水坡度、边沟截面尺寸、形状、边沟的表面粗糙程度。

依据江苏省高速公路设计及公路排水设计规范要求,高速公路的边沟一般采用边坡为1∶1的梯形明沟,因此,可采用《公路设计手册路基》中梯形断面沟渠的水力计算公式计算梯形排水边沟的排水能力:

Q=WC

式中:Q—流量;

W—边沟断面面积;

C—流速(谢才)系数;

R—水力半径;

i—边沟沟底纵坡。

根据高速公路所处地理位置,采用扬州市历史最大小时降雨量,以流入边沟的水不溢出边沟为限,并假设扬州西北绕城高速公路的路基平均填土高度为3.5m,由此,汇水带宽约为23m,则可依据不同的边沟沟底坡度、不同的边沟底宽(或边沟截面积)的排水能力,计算出所能承受的路面排水最大长度。扬州西北绕城高速公路一般每公里设置三道涵洞,即300m左右有一道涵洞,也就是说路面排水长度一般在100m~200m之间。

通过分析、计算确定,扬州西北绕城高速公路边沟采用50cm的梯形边沟即可满足路基排水需要。

2.2边沟设计的原则

(1)一般路段的路基边沟设计原则:以填筑式边沟为主,尽量减少路基边沟积水现象的发生。这主要是吸取已建成的高速公路中的教训:1部分路段在汛期内路基水不能及时排除。2地方群众干扰路基水排入灌溉涵洞内。

(2)路基边沟纵坡的要求:根据交通部部颁《公路路基排水设计规范》要求,采用浆砌片石修筑的边沟为满足排水需要,边沟纵坡应不小于0.12%,由于本项目位于丘陵岗区和冲积平原区,原地形既有较大起伏又有部分平坦地段,本着既要解决路基排水问题,又要经济合理的原则,确定路基排水边沟沟底纵坡一般情况下不小于0.15%。

(3)对于边沟水进入涵洞及跨越通道等情况的处理:沿线设置的涵洞有排涵、灌涵和灌排两用涵。对于需排入排涵的边沟,其边沟底标高不低于涵洞中心的标高;需排入灌涵的边沟,其沟底标高不低于涵顶标高;而对于灌排两用的涵洞应按灌涵要求设置,特殊情况时可适当降低。为防止冲刷涵洞,原则上采用边沟急流槽连接边沟和涵洞洞口。一般情况下边沟尽量少穿越通道,当排水需通过通道排入涵洞时,应优先采用边沟盖板涵,特殊情况下可采用边沟倒虹吸穿越通道。

(4)对边沟标高及纵坡方向的问题:根据路线纵断面和沿线自然地形情况综合确定,通常以沿线自然地形为主确定排水方向。边沟底标高控制应以该段路肩边缘最低点标高以下大于1.7m为宜,原因是考虑到路线中央分隔带横向排水管不能因边沟积水而引起倒灌。对于个别特殊路段不能满足1.7m要求的,可放宽至1.4~1.5m,若另一侧边沟较低时应优先采用单侧布设横向排水管。

(5)对于挖方段边沟:考虑到中央分隔带横向排水管排水要求,边沟底标高不低于路肩标高1.2m,同时要求边沟纵坡不小于0.5%。施工期要求各施工单位必须首先在挖方段边坡顶开挖截水沟以防止路基外侧水进入路基,并且应做好挖方段本身临时排水沟的设置工作。

3中央分隔带排水设计

高速公路中央分隔带排水设计主要为排除中央分隔带内积水,可分为施工期间和道路营运期下渗水的排除。

施工期间排水量取决于最大瞬时降雨量及中央分隔带的汇水面积。一般情况下,由于高速公路中央分隔带内设置有通讯、监控用管线的人手孔,因此,中央分隔带排水长度应为两个人手孔之间的间距,一般路段的最大间距为180m。

扬州市历年最大瞬时降雨量为28.8mm/10min,根据本次设计中央分隔带宽为2m,计算出中央分隔带施工期需要的最大排水能力为:

Q=Aγ=2×180×0.0028.8=1.0368m3/S

式中:A—中央分隔带汇水面积;

γ—最大瞬时降雨量

横向排水管的排水能力按长管自由出流的流量计算公式进行计算:

式中:K—流量模数,与管道断面形状、尺寸和粗糙度有关;

H—水头高度;

L—横向排水管长度

由以往高速公路设计经验可知,高速公路横向排水管长为15m左右,横向排水管坡度为2%,采用以上公式计算出施工期最大瞬时降雨量时所需要的横向排水管管径为255mm。如果按有关排水设计规范要求50m设置一道横向排水管,即排水长度缩短为50m,则需要的横向排水管管径为75mm。

但在实际施工过程中存在许多问题,如中央分隔带是在基层施工后进行开挖施工的,开挖的边沟表面粗糙,沥青不易粘结牢固,不能形成均匀、无破损的防渗层。土工布因有接缝,不能形成整体而达到完全不透水的程度。因此,当盲沟积水时侧面仍将无法阻止水渗入路基。

由于施工质量不易控制,造成横向排水管标高误差或产生淤塞,从而使上游横向排水管排水不畅,大量的水流向最低处,而最低处的横向排水管由于设计时包裹无纺土工布或产生淤塞,使排水能力严重不足,从而导致下游中央分隔带积水严重,有的下雨后几天中央分隔带仍有积水,使路基长时间浸泡,影响了路基、路面的强度。

由于通讯、监控管线人手孔的设(下转第9页)(上接第13页)置阻断了中央分隔带排水,造成中央分隔带积水或积水渗入人手孔。

为了解决这些问题,采用以下办法处理:对于设计底坡小于0.3%的,采用锯齿形纵向矩形碎石盲沟,并于盲沟底部设置软式透水管和每隔30~50m设置集水槽汇集中央分隔带雨水或渗水;根据以上计算,中央分隔带每隔30~50m设置一道横向排水管,将盲沟中的水排出路基以外;在中央分隔带内设置2cm厚水泥砂浆层、沥青防渗层及土工布防渗层,防止中央分隔带中水从侧面向路基渗透。

4路面渗水的排水设计

沿路面边缘设置由透水性填料集水沟、横向出水管和过滤织物(土工布)组成的路面边缘排水系统。

通过设置沥青封层、土路肩纵横向碎石盲沟和排水管,将渗入路面面层的水引出路基之外。由于通过沥青面层下渗的水量有限,考虑到排水路径的限制,因此,设计中采用每10m左右设置一道Ф5cm横向排水管以确保路面下渗水的排除。

篇(3)

2.路基的沉陷路基的沉陷问题也是比较严重的公路问题。主要有以下三个原因导致这类问题:(1)施工问题所导致的路基软土层含水量超标,使得在路面挤压之后,路基内部的砂石分布出现不均匀的状况,长时间这样下去,公路的镂空部分经过车辆的压力作用就会直接塌陷甚至是自身的重量也会导致塌陷;(2)设计时忽略了公路自身是持续不断的受到剪力作用的,从而导致了公路的损伤;(3)设计时做的剪力处理与路面下部的实际地质情况不相符,或者地下出现反水现象导致了软土层的水分出现严重超标状况所带来的路基沉陷。

3.边坡的滑塌我国公路中最为常见的问题就是边坡的滑塌。造成边坡的滑塌主要是有以下原因:(1)路基的边坡自身的土质存在问题;(2)长时间的雨水冲刷再加上渗水的作用,使得路基内部的沙土流失和土壤的结构变松散。(3)施工过程中的疏忽也导致边坡不断下滑,最终造成局部坍塌甚至是直接断裂。边坡的滑塌问题在长期遭到积水冲刷和雨水渗漏的区域最为严重,它对公路的损坏属于蔓延式,会持续进行,如果不及时地进行修善和处理,就容易导致公路遭到持续的损坏最后达到无法使用的程度

。4.路面的早期破损路面的早期破损对混凝土路面的影响是比较低的,一般得到混凝土公路对于早期破损的预防能力比较高。由于混凝土公路是采用一体浇筑版块进行拼接的。但是,路面的早期破损对沥青公路的影响是比较大的。由于沥青公路的沥青干燥度比较高,使得沥青表面容易出现细小的裂纹,因而在温度和雨水的影响下,路面才刚投入使用就会有破损现象。

5.面层的不平整就公路这种交通基础设施而言,其路面施工存在以下两种形式:(1)第一种是传统的沥青路面,此种路面比较容易出现铺设之后不平整的现象。一般施工的温度太高、油石的混合捣碎不够充分、施工铺设时出现大块土石的混入、材料的混合比例不正确等都会导致路面鼓起以及出现不规则的地坑和局部的尖锐物凸显现象;(2)第二种是混凝土浇筑的路面,此类路面出现不平整的现象比较少,如果出现的话,就是浇筑不合格造成的。

二、路基路面的施工技术

路基不仅仅是交通基础设施线形轮廓的主体,也是路面的基础,因此,它的质量的好坏对路面的稳定性是有着极其重要的影响。掌握好路基的施工技术,有利于确保路面的基础质量,路基路面的施工技术主要包括了以下几个方面。

1.填筑路基在填筑之前一定要先做好场地的清理工作,进而加快施工的速度和提高施工的质量。同时,在填筑前要使用导排措施处理路基范围内的地下水。分层填筑方案主要包括竖向填筑和水平填筑。竖向填筑指的是从中心向前进行填筑。在进行竖向填筑的施工中,一般使用夯击机进行压实填料,一般选取沉陷量小并且粒径均匀的砾石填料,以确保填压是密实的。竖向填筑不同于水平填筑,通常是采取混合的填筑方式,也就是上层为横向而下层为竖向。以进一步确保填压足够密实,必要时也要采取地基加固等措施。水平填筑有利于压实,但是这个环节和用土水平的分层是不相同的。为了防止水毁和保证填筑强度是均匀的,透水性比较差的用土要填铺于底层,并且在表面构成双向横坡。在同一层用土却不同的地方要采取斜坡的搭接方式进行连接。

2.开挖路堑(1)在正式进行施工前要做好准备工作,做好临时的排水渠道修建工作,并且配备相关施工机械,同时落实相关环保措施;(2)在正式进行土方开挖工作时,要利用好适于种植草皮的表土,严禁使用掏洞方式获取表土,除此之外,要充分利用有用的材料进行路基填筑;(3)要安排好边沟的排水措施,重视并处理好所出现的地下水路堑;(4)要推广使用人工压实的方式处理路基,确保其足够的稳定性和强度;(5)进行压实工作的时候要控制好最佳汗水的比率和有效土层的厚度;(6)在含水量比较高的地层,要先用干粉等物质吸除过多的水分;(7)软土地的压实工作,需要按照实际情况进行;(8)浅层软土地基,适合先在地表进行土工布的铺筑,然后进行填筑路堤,确保达到排水和过滤的作用;(9)含水量比较低的地层,对相应的土质要事先浸润。

3.基层和底基层的施工路桥基层和底基通常是由石灰和水泥的稳定结构来构成的,要提高材料质量并且保证强度达到要求,就需要控制好材料含水量以及其配合比。控制含水量时,要确保压实度并且避免出现干缩的裂缝,就要控制好混合料的压实和拌合,使含水量趋向最佳,确保路面成型或者压实的时候有足够的含水量。混合料在被拌制之前,需要对各材料的含水量进行检测,做好混合料原始的含水量的预测工作,便于在出现气温发生变化或者集料含水量发生改变的情况下及时做出反应,保证施工的时候混合料是处在最佳的状态。拌料和压实时,要对含水量进行跟踪验证,确保施工状态是符合要求的。除此之外,在材料配合比的控制方面要做到进行拌制混合料工作之前,要先对混合料进行调试和拌和,以符合要求,从而保证机械处在完好的生产状态。要准确地进行投料的拌合,实时进行施工配合比的检验,确保其符合目标配合比。

4.路基路面的排水技术(1)地下排水技术地下排水技术主要是依靠渗透,渗沟、盲沟以及渗井等实现的,水势较猛的情况下,能够采用渗水管渗沟排水的方法。(2)路面的排水技术路面排水的任务主要是快速排出路面区域的降水,从而防止水自路面渗透下去而导致路基边坡受到冲刷。路面排水技术主要有以下两种途径:a.分散性排水,这种方法适合在地势平缓或者路线纵坡低于0.3%的区域实行。具体可以通过硬化路肩和加固路基边坡来实现;b.集中性排水,这种方法指的是在硬路的肩外侧进行水泥的混凝土预制块的设置或者浇筑沥青混凝土拦水带,与硬路肩路面形成三角形集水槽,在每隔20~50米的间距处设置泄水口使其与路堤的边坡急流槽进行衔接,从而把雨水排放到坡脚的排水沟里。在降水量比较低的地区比如说我国西部地区主要采用的是在中央设置分隔带的措施实现排水。(3)地面的排水技术地面的排水技术一般使用急流槽、排水管、边沟和跌水等地面的排水设备。高速公路和一级公路的排水系统,一般使用的是铺砌方法来防护的。高速公路和一级公路所经过的水网路基面已经改良了不少,路面的灌溉沟渠都被重新的建造了,因此不再从排灌的涵洞进行排水,这样做就达到了提高路基施工质量的目的。

5.路基路面的各类防护工作由于施工导致了土质的平衡结构的破坏,再加上外界环境的不断侵蚀,路基路面遭受到了不同程度和方面的威胁,因此做好其防护工作具有重要的意义。路基路面的防护工作从做好坡面防护工作开始。坡面和外部环境是直接接触的,因此,最容易遭受路面岩性风化和地表水冲洗等自然灾害。可以采用栽植耐蚀性植物防护带以及使用凝聚脂材料做护面板的方法来防治水流冲洗,来提高坡面防护能力。除此之外,可以在路面的边缘修筑一些砌石的挡土墙,进行地基挡护,减少自然灾害对地基结构的侵蚀。

篇(4)

2公路工程路基路面压实技术体系的健全

在现阶段公路工程路面压实过程中,进行压实技术模块的优化是必要的,路面质量与压实作业质量密切相关,进行摊铺速度及其压路机碾压长度的控制,保证好这两者的协调性。这样即使应对较高的气温,也可以满足压实作业的质量工作需要。在实际施工中,碾压环节也容易出现沥青混凝土材料的牯轮现象,可以利用碾压轮的洒水进行控制。在路面沥青混合料的施工环节中,如果路面的沥青混合料表层没有冷却完毕,就不能进行相当重量物体的放置,避免往上面放油料、矿料等物体。在公路路基路面施工过程中,如果无法确定压路机的压实性,就需要进行振动夯板的应用,进一步的提升压实性。这就需要针对路面沥青的出场温度等进行碾压段的长度控制,保证公路工程质量的优化。在公路工程路基路面压实环节中,进行压实质量的控制非常必要,这可以进行相关质量检测方法的应用,比如进行核子密度仪法等的应用,保证沥青混合料的路基路面的整体压实度的控制。这种方法是需要做好压实质量的检测工作,比如需要进行测定层的厚度控制。在沥青表面层的压实密度控制过程中,进行散射法的测定非常必要。在土基层材料的压实控制过程中,可以进行直接透射的方法应用。做好相关的测试,比如进行仪器位置的确定,保证仪器的预热工作。可以按照随机取样的方法进行测试位置的确定,进行仪器的预热,再进行核子仪测试位置的放置。通过对仪器测量及其测量数据的应用,保证路面的整体密实度。测量设备要进行打开,按照相关的测量方案进行工作,保证对测量结果的读取,要保证核子密度仪器的良好工作及其放置。在路基路面压实过程中,进行灌砂法也能保证路面的压实质量,但是这种测量方法具备一定的局限性。其不能进行填石路堤的路基路面施工。要进行这种方法的应用,需要进行一定规格的均匀砂的配制,并且按照一定的高度进行测试,从而落实好路基路面的压实质量检测工作。为了保证公路工程的路基路面压实性,进行压实度的控制体系的健全是必要的,这需要满足路基填土及其路面结构材料的应用需要,满足公路路基用土的需要。需要针对土的塑性指标、土层的有机质含量等进行分析,保证路基的填筑,对公路进行修建。在路面结构层的施工中,进行碎石、砾石集料质量的控制是必要的,这也要进行级配的控制,保证结构层的良好密实性,以提升其强度及其稳定性。在路堤的填筑环节中,进行堤基的碾压是必要的,这样能够保证路面的足够强度。在路堤填筑环节中,需要注意到不同层次的路基的压实施工。比如在第二层路面碾压中,如果进行重型压路机的不合理应用,很可能就出现土层的坍塌情况,这种情况可能随着碾压遍数的增加而不断严重。在公路施工过程中,做好含水量的试验工作也是必要的,主要有烘干法及其酒精燃烧法。通过方法的应用,可以进行土层的含水量的检测,这种方法比较快捷简易,但是,不适合进行有机质土层的检测,在一些施工工程中应用比较普遍。标准击实试验分轻型和重型两种试验方法,采用哪种方法,应根据有关规范的规定或工程科学试验的实际需要选定。在一般情况下,加水法也是比较好测试手段。在施工过程中,土层可以反复进行使用。但是不能反复使用比较容易击碎的试料。针对高含量的土,为了保证试验的良好性,可以进行减水法的应用,这种方法适合进行试料的干燥处理。在方法应用的过程中,需要进行不同土样的含水量状态的采集。这里需要明确好含水量及其干密度的关系,从而进行着两者关系图的确立,这里可以进行曲线的设置,做好相关的计算及其重做工作。合理选择压实机具和采用正确的压实方法,采用的压实机具应先轻后重,以便能适应土体强度的增长。碾压速度应先慢后快,以免样土被机械推走。组织压实机具合理的工作路线,直线段一般先两侧后中间,以便保持路拱;在弯道部分没有超高时,由低的一侧开始逐渐向高的一侧碾压。相邻的两次轮迹应重叠轮宽的三分之一,保证压实均匀不得漏压,对于压不到的边角,应辅以人工或小型机械夯实。

篇(5)

1 前言

水泥混凝土路面有很多的优点:路面强度高、承载能力大,耐磨耗能力强,能见度好,使用寿命长,养护费用少,行车的油耗也较沥青路面少10%——15%,正因为有这些优点,所以水泥混凝土路面在许多省市广泛使用,也取得了比较好的效果。

80年代至90年代初期,我国的水泥混凝土路面建设呈现一个高峰期。但从道路使用运营状况来看,大多数的水泥混凝土路面难以达到20一30年的设计使用年限,并且出现一些较严重的缺陷,如路面的早期断裂、错台边角破损、平整度及粗糙度差等给行车和养护带来一定的困难,且不易处理,修复费用高难度大。究其原因,除了设计施工质量问题外、还有各种自然因素的影响。因此本文将从设计构造的角度,就如何提高水泥混凝土路面的使用性能,有效的控制路面的缺陷,结合自己的实践体会与具体做法提出一些探讨意见,供同仁参考讨论。

2 水泥混凝土路面设计中的理论依据问题

2.1 路面设计指标可靠度的分折

公路工程结构的设计安全等级为3个等级.路面工程的安全等级仅考虑高速公路。一级公路和二级公路的路面,相应的安全等级要求规定为一级、二级和三级。为三级和四级公路路面增加一个设计安全等级-- 四级。并规定了相应的设计基准期为20MPa;而设计安全等级为四级的路面结构的目标可靠指标和目标可靠度.系按前三级的数值级差递降得到的。按施工技术、施工质量控制和管理要求达到和可能达到的具体水平.选用其他等级。降低选用的变异水平等级,须增加混凝土面层的设计厚度要求;而提高选用的变异水平等级.则可降低混凝土面层的设计厚度或混凝土的设计强度要求。可通过技术经济分析和比较予以确定 但对于高速公路的路面,为保证优良的行驶质量,不宜降低变异水平等级 材料性能和结构尺寸参数的变异水平等级.按施工技术、施工质量控制和管理水平分为低、中、高三级 由滑模或轨道式施工机械施工.并进行认真,严格的施工质量控制和管理的工程.可选用低变异水平等级。由滑模或轨道式施工机械施工,但施工质量控制和管理水平较弱的工程,或者采用小型机具施工,而施工质量控制和管理认真、严格的工程可选用中低变异水平等级。采用小型机具施工,施工质量控制和管理水平较弱的工程。可选用高变异水平等级。

设计时.可依据各设计参数变异系数值在各变异水平等级变化范围内的情况选择可靠度系数。目标可靠度是所设计路面结构应具有的可靠度水平。它的选取是一个工程经济问题:目标可靠度定得较高,则所设计的路面结构较厚,初期修建费用较高。但使用期间的养护费用和车辆运行费用较低;目标可靠度定得较低,初期修建费用可降低,但养护费用和车辆运行费用需提高。通常采用“校准法”来确定目标可靠度。“校准法”是对按现行设计规范或设计方法设计的已有路面进行隐含可靠度的分析,参照隐含可靠度制定目标可靠度,则所设计的路面结构接纳了以往的工程设计和使用经验,包含了与原有设计方法相等的可接受性和经济合理性。

2.2 交通量计算取值的分析

轴载换算公式是以等效疲劳断裂损坏原则导出的。对于同一路面结构,轴载和标准轴载产生相同疲劳损耗时。才能等效换算。在交通调查分析双向交通的分布情况时,应选取交通量方向分配系数,一般可取0.5;并依据设计公路的车道数.确定交通量车道分配系数(应剔除2轴4轮以下的客、货车交通量),即为设计车道的年平均日货车交通量ADTT,然后用轴载当量换算系数法或车辆当量轴载系数法求得),再根据设计基准期l和轮迹分布系数、交通量增长率求得累计f 用次数N,确定交通分级。

2.3 水泥混凝土路面结构组合的设计分析

对于路基用土.高液限粘土及含有机质细粒土.不能用做高速公路和一级公路的路床填料或二级和二级以下公路的上路床填料;高液限粉土及塑性指数大于16或膨胀率大于3%的低液限粘土,不能用做高速公路和一级公路的上路床填料。因条件限制而必须采用上述土做填料时,应掺加石灰或水泥等结合料进行改善。对于基层材料选择时。特重交通适宜贫混凝土、碾压混凝土或沥青混凝土时,设计计算应按复合式路面分析。且强度以试验为准 对水泥混凝土面层下基层的首要要求是抗冲刷能力不耐冲刷的基层表面。在渗入水和荷载的共同作用下会产生淤泥、板底脱空和错台等病害,导致行车的不舒适,并加速和加剧板的破裂。混凝土面层下采用贫混凝土基层,主要是为了增加基层的抗冲刷能力,并不要求它有很高的强度。高强度的贫混凝土并不能使面层厚度降低很多,反而会增加混凝土面层的温度翘曲应力,并产生会影响到面层的收缩裂缝。另外.新规范取消了基层顶面综合模量的规定值的要求。

对于面层板来说,我国绝大部分混凝土路面的横向缩缝均未设传力杆。不设传力杆的主要原因是施工不便。但接缝是混凝土路面的最薄弱处,唧泥和错台病害,除了基层不耐冲刷外.接缝传荷能力差也是一个重要原因。同时,在出现唧泥后。无传力杆的接缝由于板边挠度大而容易迅速产生板块断裂。此外,接缝无传力杆的旧混凝土面层在考虑设置沥青加铺层时.往往会因接缝传荷能力差易产生反射裂缝而不得不加大加铺层的厚度。为了改善混凝土路面的行驶质量,保证混凝土路面的使用寿命,便于在使用后期铺设加铺层,新规定了在承受特重和重交通的普通混凝土面层的横向缩缝内必须设置传力杆。另外,新规范仅强调了在邻近桥梁或其他固定构造物处设置胀缝,取消了变坡点、小半径曲线设胀缝的限制,使行车更顺畅。

3 路面接缝处理的设计

水泥混凝土路面接缝多,易于损坏,尤其是胀缝位置面板破损较为普遍和严重。有的道路在通车l~3年后逐步破碎损坏。破损率高达50%~90% 以上。究其原因是多方面,影响因素也复杂,但笔者认为主要是胀缝的构造问题、施工工艺及管理问题。从胀缝设计构造的角度主要解决位置设置、构造型式、传力杆设置和面板局部加强。胀缝设置应遵循新颁水泥混凝土路面设计规范第4.2.5条规定外,要尽可能少设或不设胀缝,特别是平纵线形标准较高的平原微丘地形设置长间距胀缝,或只在结构物衔接处。这一点已经在国外工程中得到证实。其次一般常用的胀缝型式为设传力杆和不设传力杆两大类,不设传力杆的胀缝其传荷能力较差,在重车反复作用下,胀缝的两侧容易发生错台。而设传力杆的胀缝,其传荷性能较好,从实际的应用效果来看,设传力杆的胀缝能较好的抑制胀缝病害,因此建议对于交通量大、重载车多的公路和城市道路采用传力杆的胀缝为最佳;反之可采用不设传力杆的枕梁式胀缝。但为了减少车辆反复冲击作用.枕梁上最好设置一层缓冲橡胶垫。根据传荷受力的需要设置传力杆。传力杆宜用

直径为32~35 较粗的光园钢筋,同时胀缝两侧30~40mm 面板范围内因传力杆存在而受力复杂,应在胀缝两侧30~40cm水泥混凝土板内布置加强钢筋。

4 结束语

综上所述.在公路水泥混凝土路面设计中,还有许多问题.只有认真研究设计规范,并结合生产实际,才能设计出经济合理的路面结构。

参考文献

篇(6)

1概述

半刚性基层沥青路面是黑龙江省公路的主要路面结构形式,它具有与柔性路面完全不同的结构特征。因此,其病害成因和维修对策也与传统的柔性路面有所不同,主要体现在:(1)半刚性基层有较高的刚度,其受力特性类似于“板体”,具有较强的荷载扩散能力。因此在整个施工和运营期间必须保持半刚性基层的整体性;(2)半刚性基层沥青路面的结构承载能力主要由半刚性基层提供,沥青面层主要起功能层作用。半刚性基层的弯拉疲劳损坏是这种路面结构的主要破坏形式;(3)采取防水下渗措施的重要性。规范规定,不管是二层式或三层式结构,其中至少必须有一层是型密级配沥青混凝土混合料。当各层均采用沥青碎石时,沥青面层下必须做下封层。忽视这些区别,而仍旧采用传统柔性路面的维修方法,是导致半刚性基层沥青路面维修失败的主要原因。近些年来,类似的工程教训很多。根据半刚性基层沥青路面的典型病害特征及产生原因,提出了路面养护维修的主要对策。内容包括:按结构性损坏与非结构性损坏进行分类和维修、半刚性基层的最小维修面积、维修施工的平面布置等。

2半刚性基层路面的典型病害特征

半刚性基层沥青路面的典型病害可划分为两大类型:非结构性损坏和结构性损坏。前者指半刚性基层的板体性未受到破坏,而后者是指路面损坏位置下的半刚性基层受到损坏,板体强度减弱或完全丧失。

2.1非结构性损坏

该类病害主要有桥头跳车、间距规则的横向裂缝、路表局部网裂和正常车辙等,病害特征如下。

2.1.1桥头跳车

桥头跳车有两种情况:(1)台背填土压实不足,导致填土在台背后数十米范围内下沉。其特征为:沉降在行车方向是渐变的,延续距离相对较长,路面的整体强度未受破坏,路表面也少有损坏,但行车时具有明显的“波浪”感;(2)由于桥梁与台背填土刚度的差异而产生的不均匀沉降,从而出现的跳台。其特征为:延续距离短,只有几米,路面少有损坏发生,行车时具有明显的“瞬间跳车冲击”感。

2.1.2间距规则的横向裂缝

这种裂缝一般为半刚性基层的结构性收缩而导致的反射裂缝。它横向贯穿公路全幅路面,深度方向贯通全部结构层,并且缝隙宽随季节变化。一般认为这种裂缝不可避免,对路面的整体性没有损害。

2.1.3纵向裂缝

这种裂缝的数量较少,大多发生在高路堤地段路基外侧。成因是路堤中央与外侧压实不均匀、旧路帮宽或地基受外部水源的长期侵蚀,导致路基或地基的不均匀沉降。一般情况下裂缝较宽。

2.1.4路表局部网裂

路表局部网裂多发生在行车道轮迹下,成因为路面局部施工缺陷。如:材料不均匀、基层成型不好、沥青面层与基层间有软弱夹层等。它起始于轮迹处,而远离轮迹处的路面施工缺陷由于受车辆荷载的影响较小,因此难以出现此类损坏。

2.1.5正常车辙

正常车辙是指施工质量正常的情况下所出现的车辙。它特征是:(1)由于半刚性基层的刚性较大,车辙主要是沥青面层受交通荷载的二次压密和蠕变作用而产生;(2)重载对车辙的影响十分明显。

2.2结构性损坏

该类损坏主要有路面局部凹陷龟裂和结构性辙槽。

2.2.1路面局部凹陷龟裂

这种损坏是路面局部网裂的延续。因局部网裂没有得到及时的维修封堵,雨水渗人到基层,而高速行驶车辆轮胎的强大“泵吸”作用使半刚性基层的胶结材料被吸出。长时间下去,导致基层材料散失,路面出现局部下陷和网裂,进而由局部网裂发展成为明显的凹陷龟裂,对行车的平顺性和安全性有很大影响。其特征为:起始于轮迹处,路面结构在该处完全破坏,在破坏过程中雨天有灰浆外泻痕迹。

2.2.2结构性辙槽

结构性辙槽是由于路面承载能力不足,在车辆荷载和环境因素的综合作用下而在轮迹处产生的路面变形。辙槽产生初期伴有微细裂缝,其发展规律类似于路面局部凹陷龟裂。

3路面维修对策

针对以病害,在制定路面维修方案时需考虑四方面影响因素:(1)病害的类型和平面位置。对行车的影响以及行车对病害发展的影响;(2)病害的严重程度;(3)经济条件;(4)维修目标。主管工程师在综合评估后必须作出明确回答。

3.1非结构性损坏的维修

维修的基本目的有两个,一是恢复行车平顺,二是封闭裂缝,以避免引发结构性损坏。

3.1.1恢复行车平顺

主要是对桥头跳车和车辙的处理。它们的平面分布截然不同,桥头跳车是横向的,车辙是纵向的。

对桥头跳车应以整幅路作为维修宽度,维修长度应满足三个要求:(1)从桥梁伸缩装置起,伸人正常路段一定长度;(2)保证摊铺机能正常施工;(3)拉坡平顺。铣刨厚度以沥青面层的一个结构层为单位,一般只铣刨表层。

对车辙的维修,在其横向平面位置应作适当调整。我国车辆基本为左位驾驶,驾驶员驾驶车辆有明显靠车道左侧行驶的习惯,从而导致车辙在行车道上分布偏左,部分高速公路行车道左轮迹的车辙外轮廊还延伸到超车道。因此,维修宽度应满足以下条件:(1)包括车辙的整个影响范围;(2)与摊铺机的摊铺宽度及碾压机的轮宽相适应;(3)纵向接缝距行车道轮迹外边缘30cm以上。维修长度以车辙出现的长度作为基本长度,并伸人相邻路段一定距离,或以结构物为界。在与相邻路段的连续上要注意轮迹平过度,选择合适的碾压机械和碾压方式,必要时辅以人工修整,避免在连接处形成新的行车冲击点。如需铣刨,铣刨厚度以沥青面层的一个结构层厚度为宜。

3.1.2封闭裂缝

对于单条横缝和纵缝建议采用常规的灌缝措施。如果缝隙太宽灌缝难以实施,可沿裂缝两侧切割出10一15~宽的条形槽,深度为沥青面层全厚。随后清洁槽壁,人工填实至表层底部。最后,涂刷粘油层,用细粒式沥青混合料填筑碾压作为路面表层。这种处理方法属柔性连接,由于胶结材料充足,可以适应缝宽的季节性变化,宜在春融或秋冬交替季节实施。

局部网裂发生于行车轮迹位置,对路面整体结构的危害最大。其维修原则是:(1)及时处置,以免损坏范围和程度扩大;(2)维修范围不宜定得太小,在横向至少以一个单向车道为单位,在纵向以一辆重车长度的1.5倍为单位。同时,保证路面维修的横、纵向平整,减小颠簸;(3)在平面上全部清除局部网裂的影响范围;(4)与摊铺机和碾压设备相适应;(5)维修深度以沥青面层的结构厚度为单位;(6)纵向接缝位置与车辙处理方案相同。

3.2结构性损坏的维修

3.2.1局部凹陷龟裂

虽然局部龟裂表现的是路面存在局部缺陷,但也可能是整个路段施工所存在的问题,只是该处路面裂缝出现得早、局部渗水严重而提前破坏。因此,局部凹陷龟裂分以下两种情况进行维修。

(1)基层局部存在缺陷

有两种备选方案:一是将损坏的基层挖出,用半刚性材料回填修补;二是将损坏的基层局部挖出,用沥青混合料回填修补。

(2)整个路段基层均匀存在缺陷

有三种备选方案:①如果整个路段达到大修期限,则对存在缺陷的半刚性基层进行翻新重铺,同时对局部凹陷龟裂一并处置;②虽然存在缺陷,但累计轴次远未达到使用期限,则按3.2.1(1)方法进行处置;③如对有缺陷的路段实施整体补强措施,施工前将局部凹陷龟裂仍按3.2.1(1)的方案先行处置。

3.2.2结构性辙槽

这种辙槽的特点是路面承载力不足,基层损坏或板结完全丧失。它对路面结构和交通安全的威胁较大,需专门设计维修方案。

确定维修方案时要考虑以下因素:(1)辙槽虽然只在轮迹处发生,但它反映了整幅路面均有缺陷;(2)辙槽的产生表明了半刚性基层已受侵害或已破坏;(3)两侧车道未出现辙槽,表明两侧车道与行车道实际上成为拥有不同承载能力的“两种路面”,此时行车道的结构承载力已达到极限,而两侧车道的结构承载力有较多富余,尚有较长的使用寿命。

因此,拟定两种维修方案:(1)一次性整幅重铺基层,彻底消除缺陷,使整个路段的路面完全恢复其正常的使用性能;(2)两侧车道与行车道分期维修,先维修行车道。根据两侧车道的承载能力,结合已有的交通资料分析确定其剩余使用寿命,以此作为行车道辙槽损坏维修方案的设计使用寿命。待两侧车道与行车道同时达到使用寿命末期时再一并整幅处置。

4结论与建议

将传统的柔性基层沥青路面养护维修经验应用到高等级公路半刚性基层沥青路面的养护维修上,导致路面维修失败的原因主要是:

(1)忽视半刚性基层沥青路面病害的成因。只考虑损坏的平面位置和尺寸,不考虑病害的成因、轮载分布和对路面病害的影响,从而造成维修范围在短时期内再次破坏。

(2)对防水下渗的认识不足。自由水对半刚性基层的侵蚀破坏作用远大于对柔性基层,因此,规范对沥青面层的密级配结构组合非常重视。但在养护维修过程中往往忽略了这一点,过分强调维修路段的摩擦性能,如采用空隙率较大的n型级配,从而导致维修路段渗水量加大,基层很快受水侵蚀破坏。

(3)对半刚性基层板体结构的认识不足。由于加人了无机结合料,使半刚性基层形成板体结构,从而具有较大的刚度。可减薄沥青面层的厚度。然而,由于对其形成机理认识不足,对半刚性基层小面积局部损坏采用半刚性材料作小面积局部开挖修补,并且在完工后立即开放交通。其结果导致维修路段在短时间内再次发生破坏,车辆荷载的作用使破坏范围扩大。

根据以上分析,提出如下半刚性基层沥青路面的养护维修对策要点。

4.1半刚性基层的维修

在对局部凹陷龟裂进行维修时,必须对半刚性基层进行处置。传统的做法是采用同类的半刚性材料来维修半刚性基层,但在具体操作时应注意以下要点。

(1)保证基层开挖的面积或维修的面积足够大,以使维修后的半刚性基层能够真正形成板体。一般情况下,在横向不应允许局部或一个单向车道的开挖,而建议横向整幅开挖;纵向开挖的长度建议不小于重车长的1.5倍,至少大于6m;深度方向应将原基层整层挖除。只有这样才能使维修后的半刚性基层整体受力。如果开挖面积太小,新的半刚性基层难以形成足够大的板体,而是独立受力的“块”体,易破坏。

(2)基层修补完成后可立即铺筑沥青面层,但维修完成后不能立即开放交通,必须等半刚性基层强度达到了一定的程度后方可开放。其原因是:①维修是在短时间内完成的,半刚性材料的初期强度仍未形成,如果此时承受连续的车辆荷载将会破坏已经初步形成的半刚性材料凝胶结构,从而导致板体结构难以形成;②车辆荷载对维修位置所施加的冲击力要大。

(3)另一方面,由于沥青混合料模量与半刚性材料相近,而养护单位常备的路面维修材料和设备主要是针对沥青面层的,因此,用沥青混合料修补局部损坏的半刚性基层在受力和成本方面更具优势。它不需要扩大基层的开挖,使得维修工程量和施工对交通的影响都较小,也是半刚性基层沥青路面快速修补的好方法。

4.2采用密实防水的沥青面层维修材料

对于局部损坏的维修,养护单位不可能按原有路面的结构和材料逐层恢复。中粒式型沥青混合料可作为沥青面层维修的典型材料,因为它既密实防水,又可保证维修路段沥青表层的抗滑要求,其经济性也相对较好。

4.3辙槽分期维修实施时旧路面结构层的处置

采用分期维修措施时,先维修行车道。此时,尽管整个行车道的结构承载能力不足,但半刚性基层结构仍然很密实,因此可以作为柔性基层或弱粘结稳定基层使用。在正常情况下,将旧路面沥青表面的1--2个层次铣刨掉,然后喷洒粘层油,重新铺筑新的沥青面层与两侧车道路表面衔接,就足以实现分期维修的目的。如有必要,可在新面层下面设置一层玻璃格栅,以增强抗疲劳性能,延缓反射裂缝的出现。

4.4新铺沥青面层的平面布置

路面损坏与车辆荷载相伴而生,维修效果应考虑荷载影响。因此,新铺沥青面层的平面分布须注意以下要点:

篇(7)

1前言

水泥混凝土路面有很多的优点:路面强度高、承载能力大,耐磨耗能力强,能见度好,使用寿命长,养护费用少,行车的油耗也较沥青路面少10%——15%,正因为有这些优点,所以水泥混凝土路面在许多省市广泛使用,也取得了比较好的效果。

80年代至90年代初期,我国的水泥混凝土路面建设呈现一个高峰期。但从道路使用运营状况来看,大多数的水泥混凝土路面难以达到20一30年的设计使用年限,并且出现一些较严重的缺陷,如路面的早期断裂、错台边角破损、平整度及粗糙度差等给行车和养护带来一定的困难,且不易处理,修复费用高难度大。究其原因,除了设计施工质量问题外、还有各种自然因素的影响。因此本文将从设计构造的角度,就如何提高水泥混凝土路面的使用性能,有效的控制路面的缺陷,结合自己的实践体会与具体做法提出一些探讨意见,供同仁参考讨论。

2水泥混凝土路面设计中的理论依据问题

2.1路面设计指标可靠度的分折

公路工程结构的设计安全等级为3个等级.路面工程的安全等级仅考虑高速公路。一级公路和二级公路的路面,相应的安全等级要求规定为一级、二级和三级。为三级和四级公路路面增加一个设计安全等级--四级。并规定了相应的设计基准期为20MPa;而设计安全等级为四级的路面结构的目标可靠指标和目标可靠度.系按前三级的数值级差递降得到的。按施工技术、施工质量控制和管理要求达到和可能达到的具体水平.选用其他等级。降低选用的变异水平等级,须增加混凝土面层的设计厚度要求;而提高选用的变异水平等级.则可降低混凝土面层的设计厚度或混凝土的设计强度要求。可通过技术经济分析和比较予以确定但对于高速公路的路面,为保证优良的行驶质量,不宜降低变异水平等级材料性能和结构尺寸参数的变异水平等级.按施工技术、施工质量控制和管理水平分为低、中、高三级由滑模或轨道式施工机械施工.并进行认真,严格的施工质量控制和管理的工程.可选用低变异水平等级。由滑模或轨道式施工机械施工,但施工质量控制和管理水平较弱的工程,或者采用小型机具施工,而施工质量控制和管理认真、严格的工程可选用中低变异水平等级。采用小型机具施工,施工质量控制和管理水平较弱的工程。可选用高变异水平等级。

设计时.可依据各设计参数变异系数值在各变异水平等级变化范围内的情况选择可靠度系数。目标可靠度是所设计路面结构应具有的可靠度水平。它的选取是一个工程经济问题:目标可靠度定得较高,则所设计的路面结构较厚,初期修建费用较高。但使用期间的养护费用和车辆运行费用较低;目标可靠度定得较低,初期修建费用可降低,但养护费用和车辆运行费用需提高。通常采用“校准法”来确定目标可靠度。“校准法”是对按现行设计规范或设计方法设计的已有路面进行隐含可靠度的分析,参照隐含可靠度制定目标可靠度,则所设计的路面结构接纳了以往的工程设计和使用经验,包含了与原有设计方法相等的可接受性和经济合理性。

2.2交通量计算取值的分析

轴载换算公式是以等效疲劳断裂损坏原则导出的。对于同一路面结构,轴载和标准轴载产生相同疲劳损耗时。才能等效换算。在交通调查分析双向交通的分布情况时,应选取交通量方向分配系数,一般可取0.5;并依据设计公路的车道数.确定交通量车道分配系数(应剔除2轴4轮以下的客、货车交通量),即为设计车道的年平均日货车交通量ADTT,然后用轴载当量换算系数法或车辆当量轴载系数法求得),再根据设计基准期l和轮迹分布系数、交通量增长率求得累计f用次数N,确定交通分级。

2.3水泥混凝土路面结构组合的设计分析

对于路基用土.高液限粘土及含有机质细粒土.不能用做高速公路和一级公路的路床填料或二级和二级以下公路的上路床填料;高液限粉土及塑性指数大于16或膨胀率大于3%的低液限粘土,不能用做高速公路和一级公路的上路床填料。因条件限制而必须采用上述土做填料时,应掺加石灰或水泥等结合料进行改善。对于基层材料选择时。特重交通适宜贫混凝土、碾压混凝土或沥青混凝土时,设计计算应按复合式路面分析。且强度以试验为准对水泥混凝土面层下基层的首要要求是抗冲刷能力不耐冲刷的基层表面。在渗入水和荷载的共同作用下会产生淤泥、板底脱空和错台等病害,导致行车的不舒适,并加

速和加剧板的破裂。混凝土面层下采用贫混凝土基层,主要是为了增加基层的抗冲刷能力,并不要求它有很高的强度。高强度的贫混凝土并不能使面层厚度降低很多,反而会增加混凝土面层的温度翘曲应力,并产生会影响到面层的收缩裂缝。另外.新规范取消了基层顶面综合模量的规定值的要求。

对于面层板来说,我国绝大部分混凝土路面的横向缩缝均未设传力杆。不设传力杆的主要原因是施工不便。但接缝是混凝土路面的最薄弱处,唧泥和错台病害,除了基层不耐冲刷外.接缝传荷能力差也是一个重要原因。同时,在出现唧泥后。无传力杆的接缝由于板边挠度大而容易迅速产生板块断裂。此外,接缝无传力杆的旧混凝土面层在考虑设置沥青加铺层时.往往会因接缝传荷能力差易产生反射裂缝而不得不加大加铺层的厚度。为了改善混凝土路面的行驶质量,保证混凝土路面的使用寿命,便于在使用后期铺设加铺层,新规定了在承受特重和重交通的普通混凝土面层的横向缩缝内必须设置传力杆。另外,新规范仅强调了在邻近桥梁或其他固定构造物处设置胀缝,取消了变坡点、小半径曲线设胀缝的限制,使行车更顺畅。

3路面接缝处理的设计

水泥混凝土路面接缝多,易于损坏,尤其是胀缝位置面板破损较为普遍和严重。有的道路在通车l~3年后逐步破碎损坏。破损率高达50%~90%以上。究其原因是多方面,影响因素也复杂,但笔者认为主要是胀缝的构造问题、施工工艺及管理问题。从胀缝设计构造的角度主要解决位置设置、构造型式、传力杆设置和面板局部加强。胀缝设置应遵循新颁水泥混凝土路面设计规范第4.2.5条规定外,要尽可能少设或不设胀缝,特别是平纵线形标准较高的平原微丘地形设置长间距胀缝,或只在结构物衔接处。这一点已经在国外工程中得到证实。其次一般常用的胀缝型式为设传力杆和不设传力杆两大类,不设传力杆的胀缝其传荷能力较差,在重车反复作用下,胀缝的两侧容易发生错台。而设传力杆的胀缝,其传荷性能较好,从实际的应用效果来看,设传力杆的胀缝能较好的抑制胀缝病害,因此建议对于交通量大、重载车多的公路和城市道路采用传力杆的胀缝为最佳;反之可采用不设传力杆的枕梁式胀缝。但为了减少车辆反复冲击作用.枕梁上最好设置一层缓冲橡胶垫。根据传荷受力的需要设置传力杆。传力杆宜用

直径为32~35较粗的光园钢筋,同时胀缝两侧30~40mm面板范围内因传力杆存在而受力复杂,应在胀缝两侧30~40cm水泥混凝土板内布置加强钢筋。

4结束语

综上所述.在公路水泥混凝土路面设计中,还有许多问题.只有认真研究设计规范,并结合生产实际,才能设计出经济合理的路面结构。

参考文献

篇(8)

二、SMA混合料的技术性能

它具有耐磨抗滑、密实耐久、抗疲劳、抗高温车辙、减少低温开裂等优点,适用于高等级道路沥青路面的上面层使用。

1.高温抗车辙性。(1)SMA由粗集料骨架和沥青玛蹄脂两个部分组成;(2)粒径≥4.75mm的粗集料高达70%~80%。矿粉用量为10%左右,细集料较少,一般为10%~20%左右;(3)因骨架嵌挤作用,混合料高温条件下抵抗荷载变形能力较强,有着较强的高温抗车辙能力。

2.低温抗变形性。在低温条件下,由于SMA混合料中有着相当数量的沥青玛蹄脂,当温度下降时,沥青玛蹄脂具有较高的粘结能力,它的韧性和柔性使得混合料具有良好的低温变形能力。

3.耐久性。在SMA混合料中,粗集料骨架空隙被富含沥青的玛蹄脂密实填充,并将集料颗粒粘结在一起,沥青在集料边、面形成较厚的沥青膜。此外,SMA混合料空隙较小,沥青与水或空气的接触较少,因而SMA混合料的水稳定性和抗老化性、抗疲劳性较普通沥青混合料好;同时,又由于SMA混合料基本是不透水的,对中、下面层和基层有着较好的保护作用和隔水作用,使沥青路面保持较高的整体强度和稳定性。

4.表面独特性。SMA混合料一方面要求使用坚硬、粗糙、耐磨的高质量碎石,另一方面采用间断级配的矿料,压实后表面形成的构造深度大,一般超过1mm,而摩擦系数也能满足8BBM以上,这使得沥青面层具有良好的抗滑性和耐磨性能,还能减少溅水,减少噪声,从而提高道路行驶质量。

5.SMA混合料施工前控制。(1)合格的原材料是工程质量的第一前提。必须通过大量的调查了解、取样试验,在进行质量、产量、运输等各方面的综合考虑后初步选定了用于SMA路面施工的玄武岩砂石材料,并按要求对原材料加工、储存、运输等作了严格的控制,使其各项技术指标均满足高速公路路面工程对粗细集料的质量要求;(2)配合比设计阶段。一个完善的配合比设计必须是经过反复的对比、试验,综合考虑各项关键技术指标后才能确定。经过反复试验,反复调整,最终完成了SMA-13的目标配合比设计和施工配合比设计;(3)工前技术交底不能少。SMA混合料施工技术要点较多。因此,在SMA路面正式摊铺前,要求所有技术人员和机械操作人员必须充分了解并掌握SMA路面的施工工艺和技术特点,作好技术交底。

6.SMA-13沥青玛蹄脂碎石路面的施工。(1)施工前的准备工作;(2)砂石材料的供应情况:正式开工时,堆料仓保证有4000m3以上的材料储量,避免施工时因缺料而产生等料现象,从而造成混合料温度过高或停机情况出现;沥青供应:充分考虑沥青拌和楼的日产量和时产量,每天(按20小时的有效施工时间算),开工前将所有沥青储存罐全部注满,同时配备30吨以上的改性沥青运输车,避免因运输车辆的不能正常运行导致沥青用量跟不上而停机待料;(4)矿粉供应:SMA所用矿粉均由石灰石经粉磨而成,必须组织了8-10辆运输车辆,保证矿粉的及时供应;(5)柴油、重油及纤维于开工前全部准备就绪。配备足够的混合料运输车(运输车辆在装料前先用清洁液将车厢清洗干净),避免因运输车辆不足造成拌和楼停机等车;(6)施工现场的机械设备准备:摊铺机至少2台。采用单幅双机摊铺,以避免沥青玛蹄脂料离析;8-12吨全钢轮压路机至少3台,无触点平衡梁一套,平板夯机一台,各施工机械的使用性能在施工前必须进行了全面检查,以保证各施工机械都能正常工作。

四、SMA混合料施工中控制

(1)改性沥青SMA-13的拌制。采用先进的沥青拌和楼进行混合料的拌和,该拌和楼必须具有除尘系统、控温系统和计量称重系统;(2)SMA-13混合料的摊铺。①由于SMA的沥青马蹄脂粘性较大,运料车的车厢底部须涂刷较多的油水混合物;为了防止表面混合料结壳,运料过程中要加盖蓬布,而且运料车数量也要适当增加。为保证平整度,也要做到缓慢、均匀、连续不间断地摊铺。这是提高路面平整度最主要措施。②上面层采用非接触式平衡梁装置控制摊铺厚度和平整度。③将摊铺机调整到最佳工作状态,调试好螺旋布料器两端的自动料位器,并使料门开度、链板送料器的速度和螺旋布料器的转速相匹配。螺旋布料器的料量应高于螺旋布料器中心,使熨平板的挡料板前混合料在全宽范围内均匀分布,并在每天起步前就应将料量调整好,再实施摊铺,避免摊铺层出现离析现象。④摊铺应选择在当日高温时段进行,路表温度低于15℃时不宜摊铺。摊铺遇雨时,立即停止施工,并清楚未压实成型的混合料。遭受雨淋的混合料应废弃,不得卸入摊铺机摊铺;(3)SMA-13混合料的碾压。碾压是SMA路面施工中极其关键的环节,碾压工艺、碾压遍数、碾压温度等的情况如何,直接影响到SMA路面的压实度、平整度和渗水情况;(4)路面压实完成24小时后,方能允许施工车辆通行;(5)施工接缝的处理。采用三米直尺沿纵向位置,在摊铺段端部拉尺,使得直尺呈悬臂状,以摊铺层与直尺接触处定出接缝位置,用锯缝机割齐后铲除;继续摊铺时,应将接缝锯切时留下的灰浆擦洗干净,涂上少量粘层改性沥青,摊铺机熨平板从接缝后起步摊铺;碾压时用钢筒式压路机进行横向压实,从已经施工完成的路面上开始碾压逐渐移动新铺面层。

五、SMA混合料施工阶段的质量管理

1.原材料的质量检查:包括改性沥青、粗集料、细集料、填料、木质絮状纤维等。

2.混合料的质量检查:油石比、矿料级配、稳定度、空隙率;混合料出厂温度、摊铺温度、初压温度、碾压终了温度。

3.碾压成型路段的质量检查:厚度、平整度。宽度、横坡度、压实度、偏度;摊铺的均匀性。同时还应进行构造深度和渗水的跟踪检测。

4.施工压实度的检查以钻孔法为准,钻孔检测频率单幅每公里每车道2个。

5.渗水系数合格率宜不少于90%,当合格率宜小于90%时,应加倍频率检测,如检测结果仍小于90%,需对该路段面层进行处理。

六、结束语

篇(9)

以往“基层不平面层调,下层不平上层找”的老方法,对平整度要求很高的高速公路来说是根本行不通的。如规范允许基层顶面偏差10mm,当用沥青混合料将10mm低洼处填平时,尽管表面是铺平了,但该处多出的10mm松厚经压实后仍会出现低洼现象,其深度为10-(10/1.2)=1.7mm(1.2为沥青混合料平均压实系数)。如误差大于10mm则不平整度将更大,由此可见基层顶面的平整度对沥青面层的平整度影响可谓举足轻重。

1.1重视基层平整,厂拌混合料摊铺机铺筑

二灰碎石半刚性基层的施工,过去习惯采用平地机作业,它的缺点是高程、厚度难以控制,且反复找平表面容易离析,同时混合料浪费也多。按照高速公路基层施工规范标准,采用混合料集中厂拌、进口摊铺机来铺筑,可以保证所铺混合料均匀、表面平整,高程、纵横坡、厚度等指标能满足设计要求。

对设计厚度超过30cm者可分二层铺筑,摊铺宽度控制在6~8m时平整度效果较好。

1.2控制混合料的最大粒径及含水量

为提高基层平整度及方便摊铺机铺筑,基层混合料集料最大粒径宜适当减小。因为集料粒径越大,混合料越易产生离析,且对搅拌、摊铺设备的磨损也大。因此,适当减小集料最大粒径,有利于摊铺机作业和基层顶面平整度的提高。

另外,混合料施工含水量的控制亦十分重要,含水量过小影响结构的板体形成,含水量过大碾压成型困难,且易形成路面大波浪,致使基层平整度降低,甚至导致结构层收缩开裂。

实践表明,提高沥青路面平整度必须从基层抓起,而提高基层施工质量的关键在于采用精良的施工机械,如好的稳定粒料厂拌设备与进口摊铺机。

2.施工机械作业的影响

2.1摊铺机

2.1.1基准钢丝及装置的准确程度

在施工中我们采用底面层“走钢丝”、中、上面层“走雪撬”的基准控制方法,收到了较好的效果。

底面层施工前,先要张拉好用于承托仪表传感器的基准线(2~3mm钢丝绳),然后设好各桩(桩距10m),根据测量的挂线高确定各桩位钢丝的高度。应精心测量、认真调整,并检查钢丝拉力不得小于784N。否则,由于测量不准、量线失误或拉力不够钢丝下挠等都会通过架设在钢丝上的仪表反映到摊铺路段上,造成路面波浪状起伏,影响平整度。

2.1.2摊铺机仪表性能及微调器的正确使用

路面标高的控制是靠仪表来实现的。摊铺机带全自动调平装置,能够根据自动找平仪的指令达到设计高程,这样铺筑的路面平整度好。如仪表反映迟缓,加上微调器使用不当升降太快均会反映到新铺路面上,影响平整度。

2.1.3 摊铺机熨平板加热及调整

在湖北随岳南高速公路施工中,我们使用了德国产ABG422型、ABG311型、VOGELE2000型、VOGELE1800型摊铺机。这四种摊铺机的熨平板加热装置中ABG型属于液化气加热,VOGELE型属于电加热。摊铺前,如果熨平板加热温度不够或加热不均匀,摊铺时会造成温度较高的混合料与温度较低的熨平板粘结,使得摊铺层面出现拉毛、小坑洞、深槽等不规则的凹凸不平。因此,摊铺前熨平板温度必须加热到85°C~90°C。

另外,摊铺前一定要认真检查熨平板的平直度,若有正拱或反拱现象,则必须调整撑拉熨平板的拉杆长度,使熨平板下表面同属一坡度,以确保路面横向平整度。

2.1.4摊铺机振捣器、夯锤对路面平整度的影响

振捣器、夯锤的频率与摊铺速度、混合料级配、温度和厚度等有很大的关系,应按使用说明书规定认真选定合适的频率。如果摊铺较薄的上面层,振捣器、夯锤频率过大会造成熨平板共振,使摊铺机找平装置处于不稳定状态而影响平整度。同时,应经常检查振捣器、夯锤皮带,皮带过于松弛会使振捣频率、夯实次数快慢不一,形成路面“搓板”。

2.1.5校正行驶方向引起路面不平整

摊铺机行驶方向发生偏斜时,必须及时校正。此时,摊铺机履带一边前进,另一边缓慢前进,快的一边熨平板前方会有一个向前抬高的小台阶,慢的一边熨平板后端会有一个向后推挤的小台阶,影响路面平整度,应在碾压时采取措施予以消除。

此类校正行驶方向出现的小台阶,在曲线半径较小的路段容易产生。

2.2压路机

路面平整度好坏的关键在摊铺机,但与压路机的碾压有着不可分割的关系。合理的碾压工艺与正确的碾压操作是保证路面平整度的重要手段。

2.2.1碾压方式及碾压速度的控制

碾压沥青混合料应采用组合碾压的方式,初压时首先采用双钢轮压路机,碾压2遍,速度为1.5~2km/h;复压紧接在初压后进行,应采用重型轮胎压路机,碾压4~5遍,速度为3.5~4.5km/h;终压采用双钢轮压路机,碾压2遍,速度为2.5~3.5km/h。碾压时除按规范标准进行外,应注意碾压路线和方向不得突然改变,以免使混合料产生推移或发裂。

2.2.2碾压温度的控制

沥青混合料的温度控制是沥青路面施工过程中的关键,现场应有专人负责对来料车、摊铺后、碾压前、碾压中及碾压终了的温度进行测试。碾压应在混合料较高温度下进行最为有利,一般初压不低于120°C,复压不低于90°C,终压完成时不低于70°C。温度越高越容易提高路面的平整度与压实度,温度偏低导致沥青混合料颗粒间摩擦阻力加大,使沥青面层压实度不均匀,且容易形成局部松散和发裂,影响路面平整度。

2.2.3压路机的正确使用

轮胎压路机使用时,应注意检查各个轮胎的新旧程度和轮胎压力,必须做到新旧一致、压力相等。否则轮胎软硬不一,在碾压过程

1.基层施工质量的影响

以往“基层不平面层调,下层不平上层找”的老方法,对平整度要求很高的高速公路来说是根本行不通的。如规范允许基层顶面偏差10mm,当用沥青混合料将10mm低洼处填平时,尽管表面是铺平了,但该处多出的10mm松厚经压实后仍会出现低洼现象,其深度为10-(10/1.2)=1.7mm(1.2为沥青混合料平均压实系数)。如误差大于10mm则不平整度将更大,由此可见基层顶面的平整度对沥青面层的平整度影响可谓举足轻重。

1.1重视基层平整,厂拌混合料摊铺机铺筑

二灰碎石半刚性基层的施工,过去习惯采用平地机作业,它的缺点是高程、厚度难以控制,且反复找平表面容易离析,同时混合料浪费也多。按照高速公路基层施工规范标准,采用混合料集中厂拌、进口摊铺机来铺筑,可以保证所铺混合料均匀、表面平整,高程、纵横坡、厚度等指标能满足设计要求。

对设计厚度超过30cm者可分二层铺筑,摊铺宽度控制在6~8m时平整度效果较好。

1.2控制混合料的最大粒径及含水量

为提高基层平整度及方便摊铺机铺筑,基层混合料集料最大粒径宜适当减小。因为集料粒径越大,混合料越易产生离析,且对搅拌、摊铺设备的磨损也大。因此,适当减小集料最大粒径,有利于摊铺机作业和基层顶面平整度的提高。

另外,混合料施工含水量的控制亦十分重要,含水量过小影响结构的板体形成,含水量过大碾压成型困难,且易形成路面大波浪,致使基层平整度降低,甚至导致结构层收缩开裂。

实践表明,提高沥青路面平整度必须从基层抓起,而提高基层施工质量的关键在于采用精良的施工机械,如好的稳定粒料厂拌设备与进口摊铺机。

2.施工机械作业的影响

2.1摊铺机

2.1.1基准钢丝及装置的准确程度

在施工中我们采用底面层“走钢丝”、中、上面层“走雪撬”的基准控制方法,收到了较好的效果。

底面层施工前,先要张拉好用于承托仪表传感器的基准线(2~3mm钢丝绳),然后设好各桩(桩距10m),根据测量的挂线高确定各桩位钢丝的高度。应精心测量、认真调整,并检查钢丝拉力不得小于784N。否则,由于测量不准、量线失误或拉力不够钢丝下挠等都会通过架设在钢丝上的仪表反映到摊铺路段上,造成路面波浪状起伏,影响平整度。

2.1.2摊铺机仪表性能及微调器的正确使用

路面标高的控制是靠仪表来实现的。摊铺机带全自动调平装置,能够根据自动找平仪的指令达到设计高程,这样铺筑的路面平整度好。如仪表反映迟缓,加上微调器使用不当升降太快均会反映到新铺路面上,影响平整度。

2.1.3 摊铺机熨平板加热及调整

在湖北随岳南高速公路施工中,我们使用了德国产ABG422型、ABG311型、VOGELE2000型、VOGELE1800型摊铺机。这四种摊铺机的熨平板加热装置中ABG型属于液化气加热,VOGELE型属于电加热。摊铺前,如果熨平板加热温度不够或加热不均匀,摊铺时会造成温度较高的混合料与温度较低的熨平板粘结,使得摊铺层面出现拉毛、小坑洞、深槽等不规则的凹凸不平。因此,摊铺前熨平板温度必须加热到85°C~90°C。

另外,摊铺前一定要认真检查熨平板的平直度,若有正拱或反拱现象,则必须调整撑拉熨平板的拉杆长度,使熨平板下表面同属一坡度,以确保路面横向平整度。

2.1.4摊铺机振捣器、夯锤对路面平整度的影响

振捣器、夯锤的频率与摊铺速度、混合料级配、温度和厚度等有很大的关系,应按使用说明书规定认真选定合适的频率。如果摊铺较薄的上面层,振捣器、夯锤频率过大会造成熨平板共振,使摊铺机找平装置处于不稳定状态而影响平整度。同时,应经常检查振捣器、夯锤皮带,皮带过于松弛会使振捣频率、夯实次数快慢不一,形成路面“搓板”。

2.1.5校正行驶方向引起路面不平整

摊铺机行驶方向发生偏斜时,必须及时校正。此时,摊铺机履带一边前进,另一边缓慢前进,快的一边熨平板前方会有一个向前抬高的小台阶,慢的一边熨平板后端会有一个向后推挤的小台阶,影响路面平整度,应在碾压时采取措施予以消除。

此类校正行驶方向出现的小台阶,在曲线半径较小的路段容易产生。

2.2压路机

路面平整度好坏的关键在摊铺机,但与压路机的碾压有着不可分割的关系。合理的碾压工艺与正确的碾压操作是保证路面平整度的重要手段。

2.2.1碾压方式及碾压速度的控制

碾压沥青混合料应采用组合碾压的方式,初压时首先采用双钢轮压路机,碾压2遍,速度为1.5~2km/h;复压紧接在初压后进行,应采用重型轮胎压路机,碾压4~5遍,速度为3.5~4.5km/h;终压采用双钢轮压路机,碾压2遍,速度为2.5~3.5km/h。碾压时除按规范标准进行外,应注意碾压路线和方向不得突然改变,以免使混合料产生推移或发裂。

2.2.2碾压温度的控制

沥青混合料的温度控制是沥青路面施工过程中的关键,现场应有专人负责对来料车、摊铺后、碾压前、碾压中及碾压终了的温度进行测试。碾压应在混合料较高温度下进行最为有利,一般初压不低于120°C,复压不低于90°C,终压完成时不低于70°C。温度越高越容易提高路面的平整度与压实度,温度偏低导致沥青混合料颗粒间摩擦阻力加大,使沥青面层压实度不均匀,且容易形成局部松散和发裂,影响路面平整度。

2.2.3压路机的正确使用

轮胎压路机使用时,应注意检查各个轮胎的新旧程度和轮胎压力,必须做到新旧一致、压力相等。否则轮胎软硬不一,在碾压过程中形成轮迹,使沥青面层横向平整度超标。钢轮压路机应装雾状喷水装置以防混合料粘轮,轮胎压路机应有专人负责用1∶3的油水混合液喷洒轮胎表面,防止碾压时将沥青混合料粘起形成路面不平整。

压路机应停在冷却后的沥青路面上,否则极易形成小坑槽影响平整度。

3.施工过程中其它因素的影响

3.1沥青拌和站的生产能力应与摊铺能力相匹配

实践证明,当沥青拌和站的生产能力与摊铺机的摊铺能力相匹配时,摊铺机能连续、均匀、不间断作业,此时路面平整度就好。但在低温季节施工,如供料不及时,摊铺机待料时间过长,虽然ABG型摊铺机装有防爬锁,但因混合料温度下降会引起局部不平整,而且自动找平系统在每次启动后,需行驶3~8m后才能恢复正常,因此切忌摊铺机经常停机。只有加强拌和站管理,保证连续供料,运用中途不停机加油,操作手轮换休息等办法,做到每天早晨开机,晚上收工关机,中途力争不停机,以确保路面摊铺作业连续不间断。

3.2摊铺作业速度的影响

沥青路面施工技术规范要求:“摊铺过程中不得随意变换速度或中途停顿”。在施工过程中我们感到这是提高路面平整度的一个关键环节。

摊铺速度过快,易造成摊铺层表面的粗颗粒在熨平板下沿摊铺方向滑动,使表面粗颗粒后方出现小坑小空洞,从而影响面层平整度和预压密实度;但亦不能太慢,否则会影响生产效率。摊铺速度经实践比较后认为:上面层应控制在2~3.5m/min,中、下面层2~4m/min为好。

摊铺过程中一般不宜随便改变速度,因为速度变化必然导致摊铺层面预压密实度起变化,从而最终压实度有差异,影响路面平整度。

3.3运料车辆与摊铺机的配合

摊铺作业时,常因运料车辆操作不熟练而与摊铺机配合不协调,使混合料洒落在摊铺机行走履带前,如不及时清除会使摊铺机左右晃动,造成自动调平系统工作仰角发生变化,影响路面平整度。因此,必须专人负责指挥倒车,严禁运料车撞击摊铺机。

3.4施工缝的处理

沥青路面施工缝处理的好坏对平整度有一定的影响,往往连续摊铺路段平整度较好,而接缝处的一个点数据较差。因此,接缝水平是制约平整度的重要因素之一。处理好接缝的关键是要舍得切除接头,用3m直尺检查端部平整度,以摊铺层面直尺脱离点为界限,以切割机切缝挖除。新铺接缝处采用斜向碾压法,适当结合人工找平,可消除接缝处的不平整,使前后两路段平顺衔接。

3.5现场人工修补

施工过程中,不论何种原因,只要是混合料中混杂有少量的枯料、花料,摊铺到路面后就必须彻底挖除,换上合格的混合料。人工填平混合料不可能达到摊铺机铺筑的水平,必然会影响路面平整度。

3.6桥头与伸缩缝的处理

平整度好的路面,必须与减少和消除桥头跳车相结合,才能解决好高速公路的行车舒适问题。湖北随岳南高速公路高度重视桥头跳车问题,如采取先填路堤后钻桩,采用工程性质良好的材料填筑桥头路堤,用手扶震动压路机处理边角以减少桥头路堤日后的沉降,收到了很好的效果。由于车辆在高速公路上高速行驶时产生的冲击力大,国产橡胶板式伸缩缝经受不了大交通量高速行车的冲击。因此,湖北随岳南高速公路对大、中桥桥面伸缩缝一律采用自德国进口和中德合资江苏毛勒桥梁附件有限公司生产的毛勒伸缩缝,这种伸缩缝是当今国际上公认的性能可靠且又耐久的桥面伸缩装置,安装使用效果明显,桥面行车平稳舒适,接缝处无跳车现象。

4.路面结构类型与平整度的关系

施工中发现,采用相同的摊铺机和相同的碾压工艺,摊铺不同类型的路面结构层,其各自的平整度不同。相同的厚度,开级配料由于其混合料松铺系数较密级配大,所以平整度不如密级配。在同一级配条件下,厚度小的结构层比厚度大的平整度好。沥青路面平整度涉及的面很广,影响因素很多,关系到路基、路面施工全过程,情况复杂,有的是机械性能引起,有的则是人为操作、安排失误造成,我们只有在充分研究分析产生的原因后,才能对症下药抓好施工中的每一细小环节。沥青路面平整度是施工机械、人员素质、操作水平的综合反映,只有加强施工现场管理,精心组织施工,才能保证路面平整度,提高路面工程质量。

施工中发现,采用相同的摊铺机和相同的碾压工艺,摊铺不同类型的路面结构层,其各自的平整度不同。相同的厚度,开级配料由于其混合料松铺系数较密级配大,所以平整度不如密级配。在同一级配条件下,厚度小的结构层比厚度大的平整度好。

引言

国内自上世纪70年代引进旋喷桩技术以来在房屋基础、铁路基础以及市政基础中得到广泛应用,其加固体强度高、加固体形状可控等特点而被广泛接受。该技术形成的固结体,其形状与喷射流动方向有关,在旋喷时期喷嘴一边喷射一边旋转和提升,固结体呈圆柱状,其可提高地基的抗剪强度,改善土体的变形性质。

1.旋喷桩加固机理

旋喷桩是利用钻机将带有特殊喷嘴的注浆管钻至土层的预定深度,之后用高压脉冲泵将水泥浆液通过钻杆下端的喷射装置向四周以高速水平喷入土体,在喷射过程中通过3600旋转并徐徐提升注浆管,钻杆在以一定速度逐步向上提升和旋转浆液形成高压喷出后具有很大动能即产生高压、高速喷射流,其高压喷射流可置换大量软弱层并挤密桩周土,并可让沙砾石垫层或粘土与水泥浆充分混合、胶结、硬化,固结成为一个整体,最终可在桩周围形成具有高强度的水泥土桩实现改良土壤、增加地基强度、减少土体压缩变形、提高地基承载力。其加固过程可分为三个步骤:

破坏土体。在高压喷射流冲击土体时其能量高度集中于一个很小的区域,因此该区域内与周围土和土结构间会产生很大的压应力作用,当该应力超过土颗粒结构的破坏临界值时则土体会受到破坏,且破坏力与流速的平方成正比,而要增加流速则应增加喷射压力,使其具有足够的能量冲击并破坏土体,其压力越高、流速越大、破坏力也越大。

旋喷成桩。高压喷射流对土体的破坏作用导致土体由整体变为松散状态,随着喷射流的连续冲切和移动其对土体破坏的深度和范围不断扩大,被切削下来的部分细小土粒被浆液置换发生升扬置换作用,随着液流以泥浆的形式被带到地面,而其余的土颗粒在喷射动压力、离心力和重力的共同作用下,在横断面上按照质量大小有规律的重新排列并与浆液搅拌混合形成新型的水泥-土网络结构。

水泥与土的硬化。在喷射过程中土体被破坏粉碎成各种粒径或大小不同的土团,其间隙被水泥浆所填满,因此在水泥土内可形成一些水泥及细土颗粒较多的微区,而土团内则无水泥,水泥的水解水化作用及其与土颗粒间作用,并不断在水泥和土颗粒周围形成各种晶体,并不断生成、延伸并交织在一起形成空间网络结构,土团则被包围在骨架中间,随着土体被挤密,其内部水分也逐步消失,并形成特殊的水泥土骨架结构而增强了水泥土的强度。

2.施工工艺

2.1 灰浆制作

其应按照灰浆的配比要求,根据泥浆罐的容量提前制作灰浆,制作过程中应充分搅拌,其搅拌时间不少于15min,且超过初凝时间的浆液也不可使用,对搅拌成的灰浆应经过两道过滤网过滤以防喷嘴堵塞。

2.2 泵压设置

根据喷射机理在钻杆下钻时采用10Mpa的清水压力进行喷射,其在防止堵塞喷嘴的同时并应在土体第一次喷射时使土体成为混合液减小喷浆时土体的阻力,从而保证浆液被充分搅拌、增加状体强度。

2.3 设置提升速度

在整个桩长范围内应设置两种提升速度,其是为了增加桩的端承力而在桩底部脱档旋喷30s,即使钻杆原位不动而旋转喷浆以增强该部位的搅拌效果并扩大状体直径,形成桩底盘,之后方可变速提钻,正常成桩。

2.4 钻孔

待钻机稳固后应先测量机台的水平度方可开钻,且在钻进过程中应随时检测钻杆的垂直情况,当钻孔达到设计深度后方可停钻。

2.5 旋喷施工

当旋喷管达到预定深度后应立即搅拌浆液,并开始自下而上进行旋喷作业,过程中应根据冒浆情况严格控制旋转和提升速度,在拆卸旋喷管时应快速进行,并保持节间不少于0.2m的搭接长度,并应随时检查浆液的初凝时间、注浆流量、风量以及压力旋转提升速度等,在旋喷过程中应保证注浆压力不小于2Mpa,提升速度应控制在20-25cm/min,旋转速度为20-25r/m等参数。

2.6 送浆

过程中司泵人员应根据泵压情况随时调整异常情况,并应迅速切换送水与送灰浆以保证连续送液,司钻人员则应随时检查钻进时的冒浆情况。

2.7 冲洗

待喷射完成后应及时将注浆管等设备冲洗干净,保证管内、机内不得残存水泥浆,一般采取将浆液换为水在地面上喷射的方法将泥浆泵、注浆管及软管内浆液排除干净。

2.8 桩头处理

当喷射注浆达到设计顶面标高后应继续用注浆泵注浆,当水泥浆从孔口返出后方可停止注浆,喷射作业完成后由于注浆的离析作用而会发生不同程度的收缩,最终在固体顶部出现凹穴,该种情况应采用水灰比为0.5的水泥浆进行补灌,同时应防止其他钻孔排出的泥土等杂物进入。

3.质量控制要点

钻孔和注浆管插入深度。在钻孔过程中应及时记录钻孔深度,并应核对注浆管深度和钻孔深度是否相符,并应保证钻孔垂直度不超过设计要求。

冒浆处理。冒浆是指施工过程中部分土体随浆液冒出,并伴随周围地面隆起现象,其最远可发生在离桩体几十米范围内。首先应及时外排冒出浆液,并将其加以回收再灌入,并可通过冒浆时间、冒浆中含土的种类和数量以及水泥的含量和冒浆的多少等来了解高压喷射的注浆质量,并应根据检测结果放慢施工速度,并待水泥土初凝后方可进行临桩施工以免孔隙内水压叠加,并可采取跳桩施工的方法,即在一个地方施工完成一个桩后将机子挪到另外一个地方,并保证两根桩相隔一定距离,并遵循先施工外测桩后施工内测桩的原则,便于外测桩施工完成后其强度可起到阻挡作用。

压力、流量控制。施工过程中若出现压力下降并低于设计值或压力骤增而超过设计值时均说明注浆管内发生异常现象,一般是有漏奖或接头松动甚至脱落,也有时是发生堵管现象,发生该类现象应立即停机进行检修,施工完成后应及时继续施工喷完该孔。

桩位、桩径、桩长控制。对桩位的允许偏差为±5cm,桩径和桩长以及垂直度偏差应不大于1.5%,喷射孔与高压注浆泵的距离不应大于50m,对采用水泥浆应严格过滤以防堵塞喷嘴,旋喷过程中应随制随用以防止水泥浆沉淀,并应对浆液进行不间断搅拌以防浆液离析而降低其浓度。

垂直度控制。喷浆开始前应将机子调整水平以确保钻杆垂直,对喷浆过程中冒出的浆液、泥巴等应及时清理,避免其堆积过高将机子顶起来,或导致机子倾斜最终造成桩体倾斜,导致在取芯检测时取不到完整的芯样。

4.结语

在高速铁路软土地基施工中高压旋喷桩工艺因设备简单、施工灵活、快速、投资少、效果好,并可减少不均匀沉降等优点而被广泛利用,但在施工中应根据不同的地质情况合理选择设计、施工参数等以确保施工质量。

参考文献:

【1】徐至钧,全科政.高压喷射注浆法处理地基[M].北京:机械工业出版社,2004.

篇(10)

沥青混凝土材料是道路施工中常用的材料,其具有较强的性能,不但可以提高路面的承载能力,还能提高道路的抗滑性以及防渗性,对车辆的安全通行有着保障作用。对道路路面设计的原则进行了介绍,还对沥青路面结构组合的类型以及各层次之间的影响进行了分析,希望可以提高道路设计的质量与水平。沥青路面结构有着多种层次,这些层次通过不同的组合,可以形成不同性能的路面,所以,道路设计中路面结构组合的类型,对道路整体质量有着较大影响,路面结构组合影响着道路的等级强度。路面设计是道路设计的基础,工程师为了提高路基的稳定性,必须改进路面结构,从而提高路面结构的抗变形性。

一、沥青路面结构组合类型选择时需遵循的原则

1、因地制宜的原则。道路工程的工期一般比较长,在施工的过程中需要应用多种材料,为了提高资源的利用率,设计人员需要采用因地制宜的原则对设计方案进行优化,这样才能避免在施工的过程中出现资源浪费问题。沥青路面有多个结构层,不同的层面需要利用不同的施工材料,而且材料的用量也有一定差异,为了降低材料运输的成本,设计人员可以根据施工环境,多选用天然的材料或者当地的建筑资源,这样可以降低工程造价,也可以减少材料运输的费用。

2、方便施工与养护的原则。为了提高施工的质量,设计人员要对施工技术以及流程进行优化,要引进先进的设备,这样可以简化施工操作,也可以提高施工的效率,保证道路工程如期完工。道路在使用一段时间后,受到外界因素的影响,会出现较多的质量问题,为了方便日后养护,设计人员需要在有限的时间内,优化设计方案,还要合理应用资金,实现资源利用的最大化,这样才能保证道路交通的畅通性。

3、综合排水设计的原则。在对沥青路面结构进行优化时,要做好路面排水设计,这样可以延长路面的耐久性,也可以增强路面的承载能力。南方地区,由于夏季雨水比较多,如果路面排水设计存在漏洞,很容易造成路面积水问题。另外,设计人员还要合理布局道路周围的排水设施,需要充分考虑路面结构组合设计。另外,在进行路面改建施工时,也需要结合实际,对道路排水系统进行更改,提高路面的防渗性以及路基的承载能力,使沥青路面结构组合设计更加优质。

4、增加路面结构层功能性的原则。沥青路面是道路施工中常见的类型,沥青这种材料的性能比较强,在设计其层面结构时,要注意提高路面的抗滑性以及耐磨性,还要提高路面结构的抗剪性以及抗拉能力。由于道路暴露在外界环境中,所以自然气候因素以及车载作用力对其质量影响比较大,如果面层材料的强度不高,粘结力不强,则会影响路面的整体质量,还会影响其功能的发挥。面层的等级越高,其承受车载的能力则越强。在城市快速路以及一级公路设计中,由于交通量比较大,所以设计人员需要增强路面结构层的功能,要选择优质的施工材料,提高混凝土面层的质量。沥青结构层一般是由细粒式沥青混凝土作为表面层,中、粗粒式沥青混凝土作为中下面层构成,既可有效防水又可保证强度,所以,优化路面结构层设计,应注意确保路面的刚度以及稳定性。

二、对于设计中应注意的问题

1、加强路床。路面要求路基必须具有足够的稳定性和强度。路床是指路面的结构层之下的0~80cm范围内的路基,而这个范围恰好在路基r工作区的范围内,是路基主要承重的区域。

2、设置垫层和底基层。在目前来看,沥青路面的设计通常采用半刚性的基层结构,常采用的基层大多是水泥或石灰粉煤灰等无机结合料稳定的碎石基层。在路面结构设计中,要考虑土基及路面结构层各层之间有着适当的模量比,这样才能够保证结构层受力后合理稳定。而提高路面耐久性的关键就在于保证层间结合状态的连续。因此,路面结构设计中增加粒料类垫层和无机结合料稳定类底基层,就可以高效地防止雨水和地下水对路面造成的影响,能保证路面的结构始终保持在干燥或者中湿的状态,延长路面的使用期限。

3、基层和底基层的厚度。基层作为沥青路面主要的承重层,就必须具有稳定性、耐久性和高性能的承载能力。可以根据交通量的大小、采用材料的性能等有利于施工进行的因素来确定基层的厚度。沥青路面通常采用的是半刚性基层,包括石灰稳定类、水泥稳定类、石灰粉煤灰稳定类等等。这些稳定类材料的基层一层适宜的厚度为18~20cm,如果压实机的性能比较先进的话,可以适当地提高基层一层的压实厚度。设计基层的厚度应该为基层一层适宜厚度的整数倍。

4、稀浆封层。稀浆分层可以作为新建路面的下封层和沥青路面的罩面。

5、沥青路面的选择。沥青面层应该具有密实、抗滑、平整、耐久等性能。并且还要拥有高温抗车辙、低温抗开裂和良好的抗水损害的能力。沥青面层可以分为沥青贯入式、沥青表面处治、热拌沥青混合料三大类。

三、沥青路面结构组合类型之间的影响

1、各结构层荷载应用分布特点。路面在投入使用后,其各个结构层会受到荷载作用力的影响,而且荷载的大小随道路结构层的深度而递减,在不同的层面中,需要应用不同的施工材料,这些材料的强度会随道路结构层的深度而减小。所以,在设计路面结构层时,需要以强度自上而下的递减方式进行组合,这种组合类型在沥青路面设计中应用较为广泛,而且收到了较好的效果。

2、各结构层特性以及相互影响。沥青路面结构是由多种材料构成,在不同的层面上,需要应用不同的施工材料,这样材料的强度以及影响有一定差异。在组合的过程中,要注意其相互之间的影响,消除各结构层特性的不利因素,并采用有限的措施,对结构层组合类型进行限制。在道路工程中,经常会用到石灰以及水泥这类材料,其受温度影响比较大,如果施工工艺存在漏洞,会导致路面出现大量的裂缝现象,所以,设计人员需要采取有效的措施降低基层材料的收缩问题,可以增加细料含量,还可以增大结合料的剂量,从而降低反射裂缝出现的概率。设计人员可以适当增加面层厚度、设置沥青碎石缓冲层、设置应力消散层或吸收层等; 在潮湿的粉土或粘性土路基上,不宜直接铺筑碎(砾)石等粗颗粒材料。必要时可在路基顶面设土工布隔离层,以防止相互掺杂而污染基层,或导致过大变形而使面层损坏。层间结合应尽量紧密,避免产生滑移,以保证结构的整体性和应力分布的连续性。沥青面层与半刚性基层或粒料层之间应设置透层沥青,根据施工条件如多层沥青层次能否连续施工、施工期内是否多雨等采取相应的层间结合措施。

四、结语

路面作为道路建设最主要的部分之一,在设计时就应该引起我们的足够的重视。就我国目前修建的沥青路面的使用状况看来,因为交通量的急剧增加、交通超载现象严重,在道路的早期运营时就已经损坏了路面。所以我们应该全面深刻地认识城市道路沥青路面设计的要点,总结经验,改进不足,扬长避短,做到精益求精,才能更好的满通量增加对路面质量的要求。

上一篇: 食品药品年度工作计划 下一篇: 行为经济学论文
相关精选
相关期刊