电力电子汇总十篇

时间:2022-11-28 14:58:19

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇电力电子范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

电力电子

篇(1)

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。现已成为现代电气工程与自动化专业不可缺少的一部分。

一、电力电子学

电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。1974年,美国的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。

利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。

电力电子技术是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。

二、电力电子技术的应用作用

1、优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。

2、改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

3、电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

4、电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。

三、电力电子技术器件

02年出现了第一个玻璃的汞弧整流器。1910年出现了铁壳汞弧整流器。用汞弧整流器代替机械式开关和换流器,这是电力电子技术的发端。1920年试制出氧化铜整流器,1923年出现了硒整流器。30年代,这些整流器开始大量用于电力整流装置中。20世纪40年代末出现了晶体管。20世纪50年代初,晶体管向大功率化发展,同时用半导体单晶材料制成的大功率二极管也得到发展。1954年,瑞典通用电机公司(ASEA公司)首先将汞弧管用于高压整流和逆变,并在±100千伏直流输电线路上应用,传输20兆瓦的电力。1956年,美国人J.莫尔制成晶闸管雏型。1957年,美国人R.A.约克制成实用的晶闸管。50年代末晶闸管被用于电力电子装置,60年代以来得到迅速推广,并开发出一系列派生器件,拓展了电力电子技术的应用领域。 电力电子电路 随着晶闸管应用的推广,开发出许多电力电子电路。

四、电力电子电路器件类别

1、将交流电能转换成直流电能的整流电路;

2、将直流电能转换成交流电能的逆变电路;

3、将一种形式的交流电能转换成另一种形式的交流电能的交流变换电路;

4、将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。于是配合这些电力电子电路出现了许多的触发控制电路。

五、电子电路器件分类

1、控制电路主要由分立的电子元件(如晶体管、二极管)组成。直到80年代后期,还用得不少。

篇(2)

关键词:

电力电子技术;电力系统;应用

1引言

作为一个具有较强专业性、综合性和系统性的技术平台,电力电子技术其涵盖了多个领域的专业技术内容。经过长时间的发展和变化,其被广泛的应用于各个行业当中,极大幅度地推动了我国电力能源领域的发展。随着科学技术的不断发展进步,电力系统中的电力电子技术的应用范围和深度也得到了进一步的增加。电力电子技术的应用,提高了电力系统的整体工作效率和工作性能。电力电子技术应用于电力系统的整个发电、配电、输电已基本检点的环节当中,是现代电力系统发展建设中的重点内容。电力电子技术应用于电力系统中,可以有效地提高变电控制的整体效果。我国电网建设工作一直在有条不紊的开展,不断扩大的电网规模对于变电运行管理提出了更高的要求。通过电力电子技术的应用,可以实现高效、高质量、高精度、高性能的控制和管理,有效地降低了管理成本和工作难度,提高了系统运行的安全性和稳定性。在电力系统运行的过程中,电力电子技术的应用可以有效地实现对电力系统运行的实时监控和管理,有效地提高了电力系统运行中的容错效果,减少了后期管理维护的难度和成本,让电力系统的运行更加可靠。电力电子技术的应用通过结合先进的信息化管理技术,让电力系统运行中的相关数据信息可以得到更加全面的收集和处理,通过计算机对相关数据进行分析处理,为管理决策的制定和计划的编制提供科学的依据。

2电力电子技术在电力系统中的应用

第一,发电环节的应用。电力系统的发电环节是一个较为复杂的综合性系统,其中存在多个发电组和相关设备,设备的结构相对复杂,并且整体技术含量相对较高。相关技术人员必须要具有专业的技术水平,才能完成相关设备的设计、运行、管理与维护工作。在电力系统的发电环节,应用电力电子技术,可以有效地提高整个发电系统的设备工作效率。励磁控制是现阶段广为运用的发电机控制方式,其通过利用品闸管整流电路的方式来实现设备的连接,整个控制系统的结构相对简单,具有较高的可靠性,并且造价成本也处于一个可接受的状态之下,性能可以有效地满足相关技术需求。而静止励磁的控制方式,则通过对励磁机进行改造,去除惯性环节,从而达到提高稳定性和运行效果的目的。科学的整改方案,可以更好地结合电力系统的运行规律来实现控制,让电气工作效率得到更好的保障。变速励磁控制的方式,主要通过变频设备,对于发电中机组运行速度进行相应的调节和控制,提高电力功效,让机组的变化速率处于一个自动控制的状态下,结合励磁设备的控制,让整个功率的输出更加稳定、高效,并最大程度地降低系统的功耗,其被广泛应用于风力发电和水力发电的过程中。在发电厂发电设备中,其发电设备的用电量是客观存在的,并且在整个设备的耗电量中占据着一个较高的比例。为了实现对这类能源消耗问题的有效控制,变频器的出现和应用已经被广泛的认可和利用。变频器通过控制,可以对发电机机组的工作频率进行自动调节,从而实现对能源消耗的节约。在电力电子技术不断发展的形势下,各类变频技术逐渐得到了更加深入的发展,并为提高发电系统的工作效率,减少能耗提供了巨大的帮助。第二,输电环节的应用。在现代科学技术不断发展的趋势下,电力电子技术的发展与应用,使得越来越多的电子器件得到了生产和运用,为电力系统的发展创造了更多的平台和支持。在输电系统中,电力电子器件的运用,有效地对于电网稳定性进行了保障,提高了电网运行的可靠性,让电网运行发展更加安全、可靠。在当前电力系统的输电环节中,直流与轻型直流输电是较为常见的两种方式。这种输电方式可以有效地提高输电的容量,并且可以灵活地进行调节与控制,输电过程较为稳定,并且实现了对长距离电力传输带支持和供应。针对于不同的电力输送需求,可以采取不同的输电方式,让直流输电技术的优势得到最大限度的发挥。随着技术的进步,柔流输电技术也逐渐受到了关注和应用。柔流输电技术融合了微电子、微处理、电力电子技术、控制技术以及通信技术等多方面的技术,实现了对交流输电的灵活控制,让交流电网的稳定性得到了很好的保障,并有效地降低了输电成本。柔流输电技术通过为电网提供无功功率和感应,从而达到提高输电效率和质量的目的。第三,配电环节的应用。在配电环节中,有效地控制是确保电能质量的关键。电能质量的控制需要在配电过程中对于频率、谐波、电压等要求进行有效地满足,并且对干扰和瞬态波动问题的干扰进行避免。现阶段,电力电子技术应用的过程中,基于DFACTS的电能质量调节装置的应用,可以有效地对电能质量进行保证。随着柔流输电系统的发展和成熟,配电质量的控制方式得到了丰富和进一步的发展。DFACTS技术可以被视为缩小版的FACTS设备技术,二者工作原理、性能、结构、功能都存在一定的相似性。随着电力电子器件不断发展,市场上电气设备出现求过于供的现象,DFACTS设备市场前景广阔,市场需求量。DFACTS设备市场介入相对容易。而且该设备的成本投入比较少,技术开发比较简单。随着市场不断发展,DFACTS设备产品将进入高速发展状态。

3结束语

总而言之,随着科学技术水平的不断提高,各类新技术的出现和应用,电力电子技术的发展也逐渐步入了新的阶段。相关技术人员应该加强对新技术的研究和应用,对新技术的优势进行充分的发挥,更好地促进电力系统的发展和完善,提高电力生产效率,为我国电力事业健康稳定发展做出更大的贡献。

作者:李西娟 单位:中煤邯邢技校

参考文献:

篇(3)

电力电子技术的应用能够让我国的民用电力设备效果得到大幅度的提升,让我国人民的用电质量感受到明显的变化。如今是一个科技化的时代,所以针对一些用电量较大的工业企业来说,电力电子技术的应用将会有助于其改造传统工业的生产工艺,让企业能够将工作效率得到进一步的提升,并且稳步的迈向机电一体化的队伍当中。

1.2智能化发展

我国的电力电子技术已经进入到了一个相对成熟的阶段,而国家的相关科研单位也开始着手在其中加入更为高端的科技手段。这种做法不仅有利于电力系统的向前发展,同时还会增加电力电子技术的使用范围,让其更加的智能化与人性化。

1.3电力电子技术的高频化

伴随着电力电子技术的广泛使用,为了让其能够更好的为我国的电力系统服务,已经开始逐渐的对传统技术手段进行了突破,将运行系统不断的高频化。这样不但节约了企业的设备占地面积,同时还从很大程度上提升了电力系统的运行效率。

2电力电子技术在电网中的应用现状

2.1在发电系统中的应用

发电系统是整个国家电网中的重中之重,那么电力电子技术在这个系统中的应用也将起到至关重要的作用。其主要的功能为改善发电设备的运用效率以及调节运行系统中的功能效率等,其中包括发电机励磁的控制、恒频、以及水泵的调速等等。电力电子技术主要应用的是晶闸管在励磁中的价格、性能、结构等优势,从而保证其能够更完美的应用与电力系统当中。除此之外,在风力以及水力发电机的操控当中,电力电子技术主要依靠的是变频电源来掌控转子励磁电流的转换频率,以保证电力能源能够发挥出最大的有效使用功效。在我国的各大企业中,能够制造高压力变频器的实属凤毛麟角,所以电力电子技术将有效的填补这一部分的空白。

2.2在输电系统中的应用

电力电子技术在我国电网的输电系统中主要应用的是柔流输电技术,这种技术能够将电力系统中的电压、功率、相位角进行有效的控制与调节。在电力能源进行输送的过程当中,难免会出现不同程度上的消耗,而这种技术的应用将从很大程度上将其输电能力的稳定性进行改善。针对我国电网目前的情况来看,如果采取远距离高压直流输电的话将会相比交流输电降低很大一部分的损耗,因为直流输电将避免电抗压降的问题,并且还会降低电缆网线等设备的投入资金,这样不仅能够解决稳定性差的问题,同时还会缓解企业的经济压力。

2.3在配电系统中的应用

在配电系统中最为重要的就是提高电力能源的质量和供电系统的稳定性。而这两项是否能够过关将取决与电压、不对称度以及频率等相关因素的质量能不能达到标准。而电力电子技术在国外的一些大企业当中也取得了比较成功的成绩,并且也为企业带去了相当可观的经济收益。电力电子技术可简称为DFACTS技术,在配电系统的应用中可以被理解为是一种控制单利能源质量的新型技术。与此同时,由于DFACTS设备同FACTS设备的功能与使用方法大致相同,所以DFACTS的设备也可以被理解为是FACTS的浓缩版本。

2.4在节能环节中的应用

节约电能大致包括两个方面:电动机的节电潜力和电动机的调速节电技术,这两中节能方法有效的相结合才能够形成一个比较完善的节能体系。就我国目前的形式来看,交流调速技术已经被广泛的应用到了矿山以及炼金等重金属行业中,而在国外较发达的国家中,在水泵以及风机等设备的运行中也都相继的应用了交流调速技术。

篇(4)

【关键词】

大功率;电力电子技术;可靠供电系统;研究

1前言

大功率电力电子技术在电力系统中发挥着重要的作用,主要涉及到了电力系统的发电、输电、配电以及用电等方面。实现大功率电力电子技术供电可靠性,在本文中从两方面进行分析,第一,提升大功率电力电子技术的供电可靠性,可以通过提高工业敏感负荷的供电可靠性来实现;第二,将大功率的电子技术应用于发电机励磁系统中,以提升发电机的阻尼转矩,来实现系统的动态可靠性提升。

2大功率电力系统可靠性供电概述

从敏感负荷角度对电力系统供电可靠性进行分析。实现供电的可靠性不仅要求电力系统中不能长时间断电,还需要对电力供电系统的动态电压质量提出更高的要求。对系统中的电压跌落以及电压短时中断的时间进行限定,在实际供电中,不同的电压跌落中,其敏感负荷所能够承受的电压跌落时间存在着差异性。在一般规律下,跌落幅度越大,其敏感负荷所能够才承受的时间越短。传统的供电可靠性统计统计,只能以停电时间超过1分钟或者5分钟实际依据。在我国,对于自动重合闸成功或者备用电源投入成功的现象不能视为用户停电,而此时敏感负荷用户有可能遭受到一定的电力损失。那么在实际的电力系统供电中,提升供电的可靠性,需要从电网方面进行综合考虑,以优化的配电网结构,改善动态带电压质量[1]。

3大功率电力电子技术提高供电可靠性的应用

3.1转换开关转换开关电源供电中发挥着重要的作用,在实际电力系统电源供电中,包含两路或者多路的电源供电,转换开关应用其中,能够实现多路电源之间的相互切换。在本文中以两路电源供电为例进行分析,当有一个电源电路在正常供电时,则另外一个线路中的电源供电就会处于备用状态。一旦线路中出现线常用电源供电异常的情况时,转换开关开始发挥作用,自动切换到被用电源线路中。以转换开关的形式,实现线路正常供电,其开关投入使用成本较低,应用广泛[2]。

3.2动态电压恢复器动态电压恢复器简称DVR,DVR通过线路中的变压器串联在线路电源与敏感负荷之间。当线路正常输电时,线路中在没有产生电压跌落的情况,DVR完全不发挥作用,其在线路中所输出的电压补偿为0。当线路中出现了较大的电压跌落时,此时,DVR就会发挥其真正的作用,DVR通过自身输出与跌落电压值相同的电压补偿值,来实现线路中的电压补偿。线路中所补偿的线路电压为额定电压。从DVR的工作原理上进行分析,其实际的作用就是对提供线路中电压补偿,避免线路由于电压跌落出现故障[3]。

3.3不间断供电电源不间断的供电电源,简称为UPS。目前,随着科技不断发展,UPS已经逐渐趋向于市场化,其主要有三种类型:在线型、离线型以及在线互动型。在实现的UPS中,需要具有储能单元,其中最为常见的储能单元为的电池储能。在线型的UPS在逆变器支持下实现负荷供电,实际供电与电源无关,因此在电压质量获得上比较高。

3.4发电机励磁大功率的电力电子技术在发电机励磁中的应用,作用突出。首先需要对发电机的励磁系统进行分析,发电机的励磁系统能够实现机端电压的维持,合理分配多台电发电机之间的无功功率,继而提升电力系统的稳定性。目前,在电力系统中,半导体励磁是其最为主要的励磁方式,在实际电力系统运行中,可以按照电源的不同,将半导体励磁分为他励和自励。现行在电力企业中比较实用的就是基于励磁电力电子装置的三相晶闸管全桥整流器,在该整流器中采用时间常数比较小的一阶惯性环节。

4微网可靠性供电

4.1交流微网结构与特点典型的交流微网组成有:光伏发电、储能电源、风电机组以及柴油发电机组等。在以上的组成部件中,风电以及储能等电源,在电力电子变换器的转换下,实现了对额定电压频率交流电的转换,并在静态开关的转换下连接在微网母线上。交流微网的特点比较突出,主要表现在以下方面。第一,微网的电压等级比较低,在实际线路中与配电网相连,在大功率电力系统的尾端;第二,容量比较小,在10KV等级的微网容量为数百千瓦到十兆瓦之间;第三,电流实现双向流动,在微网结构中为分布式的电源网状,基于微网这样的特点,其能够实现的功能比较多。一方面能够实现对大电网的功率输送,另一方面,也能够从大功率电网中吸收功率;第四,微网具有多种工作模式,其中比较突出的就是并网和离网两种形式。并网工作形式帮助微网能够在大功率电网中正常运行,而离网是指,当大电网出现故障时,微网能够迅速的脱离大功率电网,而实现独立运行。

4.2微网分布式电源电流保护微网分布式电源主要包含两大类的电源,第一,逆变器接口电源。例如光伏发电、风力发电以及储能电源等。第二,传统发电机接口电源。例如柴油发电机、燃汽轮机等。当微网分布式电源线路中出现故障时,以上两种电源类型所能够提供的短路电流存在着较大的差异。对于逆变器接口电源来说,电源线路在线路中容易受到电力电子器件等耐流能力的影响与限制,其电源所能够提供的短路电流值不超过线路中额定电流的1.5倍。在这样的线路背景下,该种电源类型不能够实现有力的电流保护。而对于另外一种分布式电源进行分析,当线路中发生短路时能够利用串联等效电抗的形式,实现较大短路电流的供应,因此该种电源类型与逆变器接口分布式电源相比,具有明显的优势,能够实现电流保护。

5结论

随着电力系统不断发展,电力系统的供电可靠性逐渐受到社会所关注。因此,在本文中对大功率电力电子技术进行分析,研究大功率电力电子技术提高供电可靠性的应用,并对微网可靠性供电进行详细研究。在电力电力技术可靠性供电中的应用研究中,分别对转换开关、动态电压恢复器、不间断供电电源以及发电机励磁等方面进行详细研究,针对这些供电系统的作用论述,希望能够为电力供电系统发展带来帮助。

参考文献:

[1]贺超.具有高可靠性的数字化大功率电力电子集成模块研究与应用[D].杭州:浙江大学,2014.

篇(5)

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

篇(6)

一、电力电子技术的内容、特点和发展趋势

1.1电力电子技术的内容和特点。电力电子技术是将电子技术应用在电力领域,实现电力系统的智能电网化,也是集电力、电子技术和控制为一体的综合领域。其主要研究的是电力变换等内容,电力的变换是为了人们能够更加方便、有效的使用电能,为人们的生活提供更好的服务。电力电子技术与传统的电子技术相比较拥有对电流和电压更强的承受能力,也具有更大的功率。然而在大功率下,一些元器件本身会出现器件发热、效率降低、功耗增加等情况,为了解决类似情况,元器件自身都采用开关的形式,这种运行形式是电力电子器件在电力电子技术中使用和运行的最大特点。1.2电力电子技术的发展趋势。电力电子技术一共分为制造技术和变流技术两个部分。器件的制造技术是将器件内的控制、驱动等功能进行集成,形成集成电路,并降低功耗,是电力电子技术的一个未来发展方向[1]。在上个世纪八十年代,整流电路在电子电力技术当中占有主导地位,但是随着自关断等元器件的出现与应用,电力电子技术中出现了很多新式的电路。而电力电子技术当中的控制功能对电力电子技术的发展起很大的促进作用,使电力电子技术中的控制系统得到了前所未有的发展,并取得了巨大的成果。目前,电力电子技术的控制功能,逐渐由传统的模拟控制转变为新型的数字控制,这样转变也是控制系统在电力电子技术中的一个未来发展的方向。

二、电力电子技术在电力系统中的应用

2.1电力电子技术在发电过程中的应用。改变电力系统中元器件的运行方式是电力电子技术对电力系统改变的主要目的。在发电过程当中,主要设计的元器件包括水力发电机、发电厂水泵、太阳能控制软件等。在水力发电过程中,水流的流量等方面决定着发电机的效率,水利发电机的转速是随着水流的变化而发生变化的,所以保持恒定的输出功率,是电力电子技术提高水利发电机运行效率的重要手段。发电厂风机水泵是发电厂用于发电的主要元器件,其效率决定着发电的电量,而传统的水泵具有耗电量高、运行效率低等缺点,利用电力电子技术对水泵进行变速,可使其降低能耗、提高效率。太阳能新型的、可持续的能源,使用电力电子技术建立太阳能控制系统,让太阳能进行直流和交变电流的转化,从而实现发电,利用太阳能发电对人类的未来进行可持续发展有着重要的贡献。2.2电力电子技术在输电过程中的应用。在输电过程中,其输出方式分为直流输电、轻型直流输电和柔流输电技术三种方式。直流输电方式的主要优点包括输电量大、输电稳定和调节控制方便等。在远距离的输电过程中,直流输电方式具有很大的优势[2]。但随着科学水平的提高,直流输电方式得到了很大的改进和提高,输电方式产生了新的变化,而新的输电方式便是轻型直流输电方式。轻型直流输电能够解决很多直流输电当中遇到的困难与阻碍(比如向无交流电源进行输电)。轻型直流输电使用的是由IGBI等电子元件组成的,利用脉宽调制技术进行逆变的输电方式,是一种新的科学技术。柔流技术形成于二十世纪八十年代末,其主要的优点是对交流输电的控制,提高系统稳定性。它不仅可以增强交流电在输出过程中的稳定性,还能够降低输出能耗,为交流输电提高质量和效率。

总结

综上所诉,电力电子技术在电力系统中起着十分重要的作用,它能够为电力系统的正常运行提供重要的保障,并提高电力系统的效率、降低能耗。也为其未来发展起到促进的作用。本文就电力电子技术在电力系统当中的发电和输电过程进行了简单的分析和研究,希望能够对想了解和研究这方面内容的人们起到一定的作用。

参考文献

篇(7)

在我国发电厂中,发电多是静止励磁系统。使用过程中,励磁机繁重且耗能巨大,电力电子技术的发展便可大大缓解这个问题,可以代替励磁机中的励磁环节,使发电过程变得更便捷且耗能少,易操作,方便控制。同时,电力电子技术在变频控制上同样起到很大作用。发电厂中发出的电能频率多为波动的,而民用的交流电频率要在220V为峰值进行使用,传统的变压方式多为变电站的中转,而电力电子技术可以简化这个环节,使电流更适合民用电的使用。电力电子技术在发电过程中的优势对一些新能源发电同样适用,如广泛使用的风力发电、水利发电等,都离不开电力电子技术来正常运行。

1.2电力电子技术在电力传输过程中的应用

电力电子技术在传输线路上的应用有很多,其中主要以柔流电技术、高压直流电技术以及静止无功补偿器技术上,以线路传输过程中的高压直流电技术为例,说明在电力传输过程中电力电子技术的重要作用。在没有这种技术的时候,对于高压直流电的传送,在传送过程中需加有若干变压器来完成,这不仅增加了传送电过程中的成本,还使工作的程序变得复杂,而电力电子技术的广泛使用,尤其是晶管换流阀在高压直流电传送过程中的使用,使电压变得可以自动化控制,节约成本,减少了传送过程中的工序,而且准确性、安全性和可控性都比传统的传送方法高得多。

1.3电力电子技术在电力使用过程中的应用

电力电子技术不仅能在电力产生、传送过程中有广泛的应用,还能保证在使用过程中带给使用者的便捷。回想我们家中的电力配备,保证安全的是一个全自动的电表,其实在这其中便应用到电力电子技术,它可以增强对电流、电压的可控性,自动感应到电力的强度,进行调控,保证了家庭用电的安全性。同时,在一些大型工厂、单位等,用电量较大,对电力的稳定性要求很高,配有电力电子技术可以使在配电过程中,电流变得更加稳定,避免各种不稳定的波动带来的不良影响。

2电力电子技术对于电力系统的其他应用

2.1节约能源

通过电力电子技术的应用,可以对电能进行综合处理,使电能能够最大限度的发挥出来,并且能够应用得更加合理、高效,真正做到节约能源。例如,在一些造纸厂、冶炼厂等,可以根据工厂的性质和对电能的具体需求,利用电力电子技术,能够将电能自动化的进行合理的分配,使耗电量大、功率大的场所能够达到要求,而对于一些对电量要求不大的地方可以适当的进行节省。据调查显示,2000年的大型工厂的节电量相当于1990年发电的15%,截止到今年,全国又将14个项目列入节电推广项目中,可见,电力电子技术在资源的节约中起到了很大的作用。

篇(8)

大功率,高电压的电力电子设备都是有数量较多的单个性能参数一致的功率器件经过并联、串联、串联后再并联等方式组合而成。

1.1多个功率器件并联时自愈工作原理多个功率器件并联时如图1所示,并联于功率器件匀流电阻两端的光电隔离开关输出信号会同步于功率器件的开断工作状态,该信号与同步触发脉冲器的输出信号进行比较。这两个信号如果同步则比较器不输出,如果不同步则比较器输出控制命令,令与该功率器件串联的断路开关断开,自动断开故障的功率器件,同时通过显示控制总线向显示控制屏发出显示该功率器件故障的指示信息。

1.2多个功率器件串联时自愈工作原理多个功率器件串联时如图2所示,并联于功率器件的光电隔离开关的输出信号会同步于功率器件的开断工作状态,该信号与同步触发脉冲器的输出信号进行比较。这两个信号如果同步,则比较器不输出,如果不同步则输出控制命令,令与该功率器件并联的旁路开关闭合,自动短路掉故障的功率器件,同时通过显示控制总线向显示控制屏发出显示该功率器件故障的指示信息。

2应用实例

以串联谐振耐压试验设备的变频电源为例进行试验测试,变频电源的输出采用大功率高耐压多只IGBT器件并联后组成桥式输出电路。变频电源的技术参数为:额定输出功率:100kW;额定输入电压:三相380V±12%50Hz;输出电压:0~350V连续可调,输出电压不稳定度≤1%;额定输出电流:286A。图3为桥式输出四分之一桥臂的部分电路,QA11和QA21为输出功率器件IGBT;KA11和KA21分别为QA11和QA21功率器件的自动剔除的高速继电器;RA11和RA21为功率器件的匀流电阻;AI1为功率器件的驱动输入信号端;AO11和AO21为对应功率器件异常后输出指示信号端,高电平为异常;UA11和UA21为比较器;OUTA为桥臂输出端。电路工作原理为,比较器UA11和UA21始终比较输入端1和2的信号,若这两个电平信号始终同步则,它的输出端3处于低电平,继电器KA11和KA21不动作,功率器件QA11和QA21全部正常工作;若某个功率器件击穿或开路,该路对应的比较器1和2路的输入端将会不同步,此时比较器输出端3将输出高电平,驱动该路继电器闭合,切断了该功率器件电源回路,同时使继电器自保持,且输出一个高电平报警信号,其余的功率器件由于电路设计时都具有比较大的冗余,能够继续工作,能够确保试验过程继续进行下去,直到试验工作全面完成。实现了预知故障,提高了电力电子设备工作可靠性。对于串联的功率器件可以采用类似的方法进行单个功率器件损坏后自动剔除。

篇(9)

从有源电力滤波器的构成来看,有源电力滤波器主要采用了电源供电的方式,对电力系统中的谐波进行补偿,其优点是能够进行动态补偿,与传统的固定补偿方法相比具有明显的优势。由此可见,有源电力滤波器在无功补偿方面可以得到重要应用。

1.2有源电力滤波器能够保持电力系统稳定运行

由于有源电力滤波器能够对电力系统中的大小和频率都变化的谐波进行无功补偿,因此可以保证电力系统中的谐波处于稳定状态。基于这一优点,有源电力滤波器在电力系统中得到了重要应用,保证了电力系统能够长时间稳定运行,提高了电力系统的稳定性。

2电力电子技术在电力系统中的应用,产生了静止同步补偿器装置

2.1静止同步补偿器可以当作无功电流源使用

从静止同步补偿器的构成以及其功能设定来看,静止同步补偿器属于无功电流源的重要类型,其电流的变化主要随着负荷电流而发生变化,对补偿电力系统电流损失,提高电力系统稳定性具有重要作用。

2.2静止同步补偿器对电力系统的补偿效果比较明显

由于静止同步补偿器属于无功电流源,并且其补偿电流处于变化状态,这样的无功电流源对电力系统的补偿效果相对明显一些。从这一应用来看,静止同步补偿器对电力系统补偿起到了重要作用。

2.3静止同步补偿器的无功电流可以随时进行控制

从静止同步补偿器的实际使用来看,无功电流并不是一成不变的,而是根据电力系统的实际需要进行不断变化的,其可控性是静止同步补偿器区别与其他补偿器的重要特点,为此,我们应认识到静止同步补偿器的可控性优势。

3电力电子技术在电力系统中的应用,催生了动态电压恢复器

通过对电力电子技术在电力系统中的应用进行分析后可知,动态电压恢复器是基于电力电子技术的重要装置,在电力系统中取得了积极的应用效果,对满足电力系统运行需要,提高电力系统运行质量起到了重要的促进作用。结合动态电压恢复器的实际使用,动态电压恢复器的特点主要表现在以下几个方面:

3.1动态电压恢复器可以认为是动态受控的电压源

动态电压恢复器在整个配电系统中起着电压源的作用,可以通过一些控制方法和手段减少能量消耗,减轻其对电压的不良影响,避免了电压跌落、电压不平衡及谐波等的产生。

3.2动态电压恢复器可以消除负荷电压对电压系统的影响

在电力系统运行过程中,负荷电压容易对电压系统造成不利影响,应用了动态电压恢复器之后,可以提高电压的稳定性,保证电力系统电压稳定运行,充分满足电力系统运行需要,使电力系统在整体运行效果上达到预期目标,稳定了电压系统。

3.3动态电压恢复器可以补偿电压跌落

当直流侧能量通过从系统整流获得时,在系统侧即使发生单相故障,其它两相仍可以提供电能来维持DVR的正常运行,补偿长期的电压跌落也成为可能。而动态电压恢复器可以有效地防止因电压跌落造成的系统故障,延长了设备使用寿命。基于动态电压恢复器的特点,在电力系统运行过程中,动态电压恢复器的应用,可以有效解决电压跌落问题,并在电压跌落过程中进行及时的补偿,保证电力系统在运行中的稳定性满足实际要求,由此可见,动态电压恢复器对补偿电压跌落具有较为明显的效果。

篇(10)

2电子电力技术分类及在电力系统中的可实际应用领域

电力电子技术包括电力电子器件的制作技术和变流技术两个大类,应用领域宽,广泛用于交通运输、电力系统、电子装置电源、新能源等,在家用电器、变频空调、工业设备中预防电源间断的UPS应用、航天飞行器等领域也有应用实践的区域。具体来看,家用节能灯、变频空调、电视音响、洗衣机、微波炉等都是采用电力电子技术。电力电子技术应用广泛,其在工业及科技发展方面的作用也十分突出,下文针对两个不同应用方面提出一点看法

2.1社会供电系统应用

传统的电力供量已无法满足现代需求量,不仅要开发资源,技术的开发更具主要性。提高能源的使用效率,需要电力技术的实践,而电力电子产品相配套使用,能够提高安全指数,经济节能,体现生态化,经济高效化的现代化精神,使现代技术与环境高效统一。据资料表明,新能源发电在未来几十年,总量将增加几倍,随着太阳能、生物质能、风能发电成本的大幅度下降,将增加竞争力。然而二次能源的运用仍有一定的局限性,如,太阳能发电需要解决发电时间的局限性,风力发电需要解决土地资源利用的矛盾,只要在技术上有新突破,克服局限性,将对人类社会造就巨大福祉,科研人员更应该看清实际应用的具体要求进行探究。

2.2远距离输电应用

直流输电(HVDC)和轻型直流输电(HVDCLight)技术相比较,直流输电具有输电容量大、稳定性好、控制调节灵活等优点。1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。之后世界上新建的直流输电工程均采用晶闸管换流阀。FACTS技术是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20世纪90年代以来,国外在研究开发的基础上开始将FACTS技术用于实际电力系统工程。其输出无功的大小,装置结构简单,操作方便,成本较低。诸如此类,通过技术之间的比较探讨才能进行更高效地实践。

3对技术化的应用提出意见和发展指引

3.1针对发展过程的某些具体状况

进行专题探讨,如谐波污染,针对解决方案进行研究,对无源滤波器与有源滤波器两种治理方式进行比较:无源电力滤波器,用无源电力滤波器进行抑制谐波、补偿无功和提高电网的功率因数,但滤波效果受电力系统阻抗的影响较大,与无源电力滤波器相比,有源电力滤波器具有更大的优势,有源电力滤波器可以补偿各次谐波,还可同时补偿无功功率、抑制闪变、调节和平衡三相不平衡电压,滤波特性不受系统阻抗和频率的影响,可消除与电网阻抗发生串、并联谐振的危险。

3.2注重生态化的科技研究,节能

是电力电子技术应用未来发展的重要领域。进行电机系统的节能是趋势所需,据资料表明,按照国家计划,今5年内,将投500亿元,争取年节电达到1000亿kWh,作为国民经济行业主力设备电动机系统的调速节能,存在巨大的需求。未来10年,对经济型调速装置的开发、变频调速,城市交通系统,磁悬浮列车异步电动机的变频调速,电动汽车起动和稳定运行,要求有大量技术施用。

上一篇: 先进护士申报材料 下一篇: 身边的活雷锋事迹
相关精选
相关期刊