时间:2022-12-01 02:09:57
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇建筑抗震设计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2建筑设计中要重点关注的几个抗震设计
(1)建筑构件和连接点处的抗震设计。如今人们的生活水平日益提高,随之也对居住质量有了更为严格的要求,就施工的整体质量而言,与之直接相关联的便是建筑构件的合理搭设和对连接点的科学设置。如今新世纪出现了许多新的工艺和材料,这样施工就迎来了更大的挑战。例如说建筑物的外部设计,其中会用到大理石、瓷砖等新材料,室内装饰设计用到的则有吊顶和人工造影等技术。就实际施工而言,一定要对材料质量和施工技术有所保证,才能使建筑物的抗震性得到保障,同时要重点监督和管理其牢固性,以免在地震发生时意外坠落而造成人员的伤害。
(2)建筑物顶部的抗震设计。如今的建筑行业,普遍对顶部过高、过重的问题有所避免。因为顶部产生的压力会导致建筑墙面也形成相应的较大压力,这会使建筑物的抗震性和牢固性在一定程度上有所减弱。在建筑设计过程中,务必要保证建筑物整体有一个合理的重心,与此同时还要花心思用于材料选择,选取的顶部材料要尽量是重量轻、刚度较均匀的,这样建筑结构才能将抗震能力充分发挥出来。
(3)建筑设计中关于设计限制的问题。通常都是在建筑前期确定建筑物的抗震级别,并且这是以建筑物的实际使用情况为依据,所以要在施工过程中严格按照国家规定,要使建筑物的抗震性能有所保障,以免有墙体裂缝或坍塌的现象出现。
3建筑设计过程中要考虑到的抗震设计
根据上述内容,我们了解到建筑抗震设计和建筑设计之间息息相关的联系。为了确保最大程度的抗震性,就一定要在实际施工中紧密结合起二者的联系,同时还要在施工过程中真正融入抗震理念,如此才能使原有的建筑常规从根本上被打破,才能使建筑物抗震现状得到彻底改善,接下来从建筑物的形状、平面和空间三方面设计来具体阐述二者的结合。
(1)形状设计建筑物的形状设计也就是针对建筑进行的“体型”设计,具体包括了各部分施工技术、建筑物平面布局和立体空间等的设计。在建筑行业发展的新时代,很多方面都有所创新就建筑物思维整体外观而言亦是如此。由此有诸多样式的建筑外形出现,所以,在形状设计的过程中,需要对不同外形的不同特点予以充分考虑,不同的建筑外形,也会有不同的建筑特色和实际需求,施工单位应该加以充分考虑。通常情况下,凸凹形状的建筑体型,通常可以使建筑物的抗震性得到大大提升,然而在实际的建筑建设过程中,原有的常规形状的建筑物已无法满足现代化经济发展需求,所以,建筑物整体抗震性的提高,首先需要对建筑的形状进行科学、合理的设计。
(2)建筑物的平面设计在建筑物施工,平面设计是重要的环节,对建筑物日后的使用将起到决定作用。例如,分别作商务和居住用途的建筑物,它们在平面设计上必然存在很大差别,为了使使用需求得到进一步满足,就一定要按照用途,来对平面构造进行科学设计;另外,为了将抗震元素融入到平面设计之中,不仅要对施工材料的坚固性加以重点考虑,还需要对构架安装的合理性、内部各因素的协调性加以综合考量。要想完美地实现平面设计和抗震设计的结合,就对设计者提出了很高的要求,不但要工作经验丰富,要需要深入地研究审美观念和抗震技术,前提还得不对内部美观产生不利影响,在此基础上再确保抗震性能的最大化。
(3)空间设计对建筑物进行空间设计,是在三维空间内进行的关于建筑物的竖向设计方案。因为日益加快的城市化进程和急剧增加的城市人口,增加了城市的人口压力,所以出现的建筑物楼层愈发高。为了使土地占有面积尽量减少,在现代社会中愈发流行高层建筑,如此就对建筑物的空间设计有了更严格的要求。通常说来,建筑物层数越低,稳定性就越高,受到地震的损害也就会越小;反之稳定性越差,受到地震的伤害也就越大。所以,融合建筑物的空间设计和抗震设计在一起,这样建筑物的整体抗震性才能得到保证。
自从1886年世界上第一栋近代高层建筑——美国芝加哥家庭保险公司大楼(HomeIuranceBuilding,10层,高55m)建成以来,至今已有100多年的历史了。高层建筑不仅在材料和结构体系上逐渐多样化,而且在高度上也有大幅度增长。而一次又一次地震灾难及教训,警示人们:防震减灾任重道远,刻不容缓。
从上个世纪开始,各国的专家、学者对抗震设计进行了一系列研究。进入90年代,结构抗震分析和设计已提到各国建筑设计的历史日程。特别是我国处于地震多发区(地震基本烈度6度及其以上的地震区面积约占全国面积的60%),高层抗震设计设防更是工程设计面临的迫切的任务。作为工程抗震设计的依据,高层建筑抗震分析更处于非常重要的地位。
二、材料的选用和结构体系问题在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。
我国高层建筑中常采用的结构体系有:框架、框架-剪力墙、剪力墙和筒体等几种体系,这也是其他国家高层建筑采用的主要体系。但国外,特别地震区,是以刚结构为主,而在我国钢筋混凝土结构几混合结构却占了90%.如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大的考验。钢结构同混凝土结构相比,具有优越的强度、韧性和延性,强度重量比,总体上看抗震性能好,抗震能力强。
震害调查表明,钢结构较少出现倒塌破坏情况。在高层建筑中采用框架-核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土结构的位移值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增加了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;
此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
唐山钢铁厂震害调查资料统计参数结构形式总建筑面积(万㎡)倒塌和严重破坏比例(%)中等破坏比例(%)钢结构3.6709.3钢筋混凝土结构4.0623.247.9砌体结构3.0941.220.9在高层建筑中,应注意结构体系及材料的优选。现在我国钢材产量已居世界前列,建筑钢材的类型及品种也在逐渐增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用型钢混凝土结构(SRC)、钢管混凝土结构(CFS)或钢结构(S或),以减小柱断面尺寸,并改善结构的抗震性能。
在超过一定高度后,由于钢结构质量较轻而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。工程经验表明:利用钢管混凝土承重柱自重可减轻65%左右,由于柱截面减小而相应增加使用面积,钢材消耗指标与钢筋混凝土结构相近,而工程造价和钢筋混凝土结构相比可降低15%左右,工程施工工期缩短1/2.此外钢管混凝土结构显示出良好的延性和韧性。
我国建筑行业相比欧美一些建筑业比较发达的国家起步比较晚,而且在建筑行业起步初期人们只是一味的重视建筑的美观性,认为只有修建的奢华和富丽堂皇才能彰显出自己的社会地位和身份象征。只有符合人们审美趋势的建筑才是好的建筑,就比如苏州园林和一些南方比较具有代表性的园林等等。因此在这样的社会背景下一个阶段中阻碍了建筑业的发展,局限了建筑业的发展方向。人们对他的牢固性和抗灾害性能没有更高的要求,这也就使得一些建筑师为了迎合大众的口味,不至于被社会所淘汰而没有进行创造设计,因此设计的建筑也没有长足的发展,抵挡不了天灾的发生,对人们的生命财产构成了一定的威胁。
1.2没有处理好建筑设计与抗震设计之间的关系
建筑设计是在建筑施工之前就需要完成的工作,设计图纸就像一张标注明确的地图,它会指导人们应该去哪里,如何去哪里。因此建筑设计是十分重要的,一张表美的建筑图纸就相当于工程量完成了三分之一,将抗震理念融入到这张图纸中也是对抗震设计提出了更高层次的要求。但是由于目前的技术有限,建筑师还不能很好的将抗震设计融人到建筑设计中去,不能使两者更好的协作,发挥很好的作用。因此说不能协调建筑设计与抗震设计的关系是抗震设计常见的最根本问题。
1.3缺乏实践
为了提高建筑的抗震性,一些建筑师盲目的从国外引进先进的经验和技术,并没有结合我国建筑构造的自身特点加以创新改造,而是为了讲究工作效率,赶进度,生搬硬套地将这些所谓的先进前沿技术强加于一些本不符合的建筑物上,没有起到应有的抗震作用反而在一定程度上弄巧成拙,破坏了建筑本身的美感,更严重的还会使建筑物在地震时产生扭转建筑物的作用,对人们的生命财产造成更大程度上的伤害。因此建筑师这种急于求成缺乏实践精神的建造理念,不会对建筑物的抗震性能起到很好的作用。
1.4建筑设计问题
对于一些建筑的设计本身就存在不合理的问题,因此我们从以下几个方面进行探究:第一,建筑体型的设计,目前人们越来越追求建筑美感,因此将部分建筑的外立面都涉及成凹凸不平或者一些没有规则的不光滑表面,如果发生地震对这种建筑物的破坏是最大的,表面平滑的建筑则相对可以减少地震对他的破坏,尽可能的做到建筑物与钢架结构相对比较匀称。第二,平面设计,对于一些建筑物人们会使用一些柱子、内墙进行装饰。但是在确定柱子的数量与距离上就需要好好的下功夫去研究,比如人民大会堂的柱子多少根,每根之间的间隔距离是多少这都是很有讲究的,不对称性、不协调性对抗震起到了负面的作用。第三,竖向布置问题,越来越多的大型商场随着人们物质生活的需要而产生,并且大型商场是人们比较容易聚集的地方,如果没有很好的抗震性能则技术衾浼会对人们的生命财产造成很大的威胁。很多商场现在都是高层建筑,下层一般柱子相对较多、墙体较少,但是高层一般柱子较少、墙体较多,如果柱子与墙体分布不合理,这在地震中会起到特别不好的作用,也会加大对人们的伤害。下层柱子与上层柱子应该互相对齐,在空间上起到很好的支撑作用,对稳定整个商场的空间结构都起到了不可估量的作用。
建筑的平面布局在建筑设计中占有很重要的位置,一个建筑拥有良好的平面布局该建筑的使用功能也必然很好,而且平面布局布置的是否合理对建筑的抗震性能也有着一定的影响。考虑建筑设计在抗震设计中的应用,第一步就是要保证建筑的刚性程度和建筑结构的质量,在布置上要求二者有着相互的对称性,避免结构受力产生严重的变形状况产生。抗震受力墙一定要与抗震结构相互协调,刚度较大的建筑空间楼板还有高强度电梯的安置尽可能的放在建筑的中心位置,防止建筑发生扭转效应。进行平面布局设计时,不能忽略建筑结构中抗侧移结构布局需要注意的因素,保证建筑的使用功能和建筑的抗震性能都不会受到任何不利的影响,使建筑的抗震设计能够完美的发挥出其技术的优良特点。
1.2建筑的纵向布局设计
纵向布局中包含的内容较少,主要包括建筑工程中外沿的高度设计,还有建筑结构的质量以及建筑物整体的刚度布置。无论建筑的使用功能是房屋建筑还是商业建筑,也不论建筑是高层建筑还是多层建筑,在纵向布局中都会涉及到这些问题。设计师再设计时要严格按照相应的设计规范,严格控制建筑物沿与建筑刚度的比值,对于结构中剪力墙的布置,要遵守两点:第一剪力墙的分布要十分均匀,第二点对于剪力墙的构建一定要贯穿整个建筑一直延伸到建筑的底部,一定要避免中间发生断裂的情况。
1.3建筑的整体布局设计
建筑的整体布局设计,主要是指建筑的平面和立体空间上的设计。在建筑的整体布局中,要使建筑平面和建筑空间在形状上,既规则又简洁。建筑的平面形状可以是圆形、矩形、方形等,这样的形状能够提高建筑抗震的水平。在建筑的整体布局设计中,要避免凹凸行的设计,这样的设计对建筑抗震起到了一定的制约作用。严重是还会出现扭转效应。要设计出具有立体美和具有艺术性的建筑,就一定要将建筑艺术和建筑所具备的功能,与建筑抗震设计结构结合到一起。例如:南昌绿地紫峰大厦,该建筑的高位268m,其框架是核心筒结构,对该建筑的抗震设计,在建筑三分之二处,东西里面内凹,其内凹部分的荷载通过结构柱支撑在41层与43层之间的跨悬臂转换墙上。其整体结构设计融入了新年功能化设计的思想,并对建筑结构进行小震下的反谱计算,以及中震弹性复核。
2建筑设计过程中应重视的抗震设计问题
2.1建筑物屋顶抗震设计
屋顶太高或太重,是目前建筑设计最主要的问题。屋顶过高或者过重,会加重地震的作用,导致建筑变形,对建筑物自身的抗震能力有所制约。建筑屋顶的重心和建筑底部的重心不在一条线上,那么就会导致建筑抗侧力不能连续,从而加剧建筑的扭转效应,制约建筑的抗震水平。所以,设计师在进行设计的时候,一定要避免屋顶超高超重的现象,使得整个建筑的结构与刚度均匀的分布下来,让屋顶与建筑的重心保持在同一条线上。如果建筑物的屋顶设计的过高,那么就一定要保证建筑具有良好的抗震稳固性,降低建筑扭转效应。
2.2设计限值控制
相关文件规定,在建筑设计过程中,要考虑抗震要求的限值控制。房屋的建筑高度和楼层的数量。在实际设计当中,有的建筑高度超标,有的建筑层数超标,有的建筑高度没有超标,但是其宽度超标。这些超标,都将会给建筑抗震带来一定的安全隐患,特别是一些高度和宽度超标的建筑,因此,在建筑设计中,只要完全融合建筑抗震设计,就能够有效的进行限值控制。例如:防裂度为8的时候,粘土砖等对称建筑的总高度要低于18m,建筑的层数一不能超过6层;底层框架为砖房的建筑高度应该保持在16m,层数保持在5层以内;建筑材料为钢筋混泥土框架房屋的时候,其高度要保持在45m以下,而框架的抗震墙高度应该保持在100m以内。
中图分类号:TU973+.31文献标识码: A 文章编号:
一、基于性能的抗震设计的产生
20世纪初期,日本的森房吉教授(1868—1923)在对当时的地震灾害和理论认识进行研究之后,提出了最早的结构抗震设计方法。在之后的一百年间,随着科学技术的不断发展,人们对地震的反映特征和发展特征的研究和把握不断深入,结构抗震设计理论及方法也在不断进步当中。
目前 “大震不倒,中震可修,小震不坏”,作为抗震结构设计指导思想被国际普遍认可。至此,抗震结构设计可以说已经取得了显著的进步,此类建筑在地震中也表现出较好的抗震性能。但是,目前的三个水准的设计理念主要是以保护人类生命安全为目的,对于地震造成的其他破坏不能很好地进行控制。尤其是现代社会的高速发展使得大量人群、财富和资源可能集中在某一区域,如大城市中。在这些区域一旦发生地震,将会造成巨大的经济损失,对生还者的心里造成严重打击,也是十分不利于震后重建工作的开展。因此,要求人们在进行抗震设计时不仅防止地震对生命安全造成伤害,也要尽可能减少房屋倒塌对其他方面造成破坏。基于以上考虑,在1994年美国洛杉矶大地震和1995年日本阪神大地震之后,基于性能的抗震结构设计被广泛研究推广,并被认为是未来抗震结构设计的主要指导思想。
这项设计最早出现在桥梁抗震设计中,用量化的抗震指标来控制抗震性能,从而改进传统的设计理念。1995年,这一理念被美国放眼21世纪委员会提出了之后,便得到了美国政府的大力支持,日本、新西兰、澳大利亚、英国、智利等国家也先后投入研究。
二、基于性能抗震设计的特点
通过与现行抗震设计理念的对比,可得到基于性能抗震设计理念的特点。
1.采用多级设防。与现阶段“大震不倒、中震可修、小震不坏”的三阶段设防目标
相比,基于性能的抗震设计注重多级防护,注意保护建筑的内部设施与非结构件,从而达到了在地震发生时既保护业主安全又减轻了业主和社会的经济损失。
2.投资准则效益。投资准则效益反映了抗震设计思想的重要转变,是基于性能抗震设计的一个基本原则。即从只注重安全变为同时注重安全、经济等多个方面。根据这一准则,结构设计按照结构性能的要求,考虑到所拥有的所有资源,在安全和经济之间找到平衡、合理的切入点,得到优化的最佳方案。
三.设防水平
1.地震设防水平。地震设防水平是指在未来可能作用于建筑结构的地震强度大小。由于地震设防水平直接决定了建筑物的抗震能力,所以它在基于性能的抗震设计的理论中占有重要的位置,应充分考虑到已优化的经验基础,并根据地震参数具体确定。
2.结构性能水平。结构性能水平是在预期地震等级的作用下对建筑物破坏的最大程度。由于基于性能的抗震设计是考虑到结构构件、内部设施、非结构构件、装修等多种因素,因此除了应该对对建筑主体结构带来的损失有控制力外,还要充分考虑到对非主体的损坏的控制。所以说,能兼顾主体与非主体结构破坏程度的结构性能水准才是科学的、合理的。
四、基于性能抗震设计的方法
目前基于性能的抗震设计方法主要有:位移影响系数、直接位移、能力谱设计等方法。
1.位移影响系数法。该方法基于结构性能设计,即通过分析预先得到位移的最大期望值,然后利用模态、等效的方法进行确定,从而修正此系数。但是此方法目前也存在着一些问题,比如无法具体地体现出抗震水准与具体结构、楼层的损坏情况。
2.直接位移设计法。本方法适用于结构性能设计,即根据地震等级预期计算位移,使结构达到预期位移。本方法最大的特点是概念简单,但是只能从建筑材料的极限变化确定相应数值,不能考虑到预期之外的地震效应。
3.能力谱法。能力谱法是将地震反应谱与能力谱曲线转化成需求谱,从而评判该建筑的抗震性能。本方法侧重于对结构的实际性能进行评估与检验。另外,能力谱法只适用于分布比较均匀且平面结构可化简的结构。
总结:
基于性能的抗震设计是一个涵盖范围很广的体系,与现行抗震设计相比,它具有以下优点:
基于性能的抗震设计目标多而且具体,具有更强的可操作性与适应性,也具有更
大的实际作用意义。
基于性能的抗震设计提供给了设计者更大的灵活性。在符合相关规定与要求的前
提下,设计者可自行选择能实现业主抗震目标的设计方案与相对应的结构措施,充分发挥了设计者的创造性与创新性。
基于性能的抗震设计将之前单一的以保障业主生命安全的抗震目标转变为在不同
的地震风险等级下满足不同的抗震需求,并综合了经济、安全等多方面因素,充分考虑到了投资、震后损失、灾后重建、社会效益与业主的承受能力等多方面因素,更符合当今社会的需求。
基于性能的抗震建筑结构设计思路已经成为了未来抗震设计的主要发展思想,,得到了国际社会的广泛认可。特别是美日两国,在这一方面进行了大量的研究,并得到了一定成果。我国在这个项目的研究上起步较晚,但是为达到与国际社会同步,我国与国际社会上在这方面取得先进成果的专家多次进行学术交流,中国许多高校目前也已经开展了此项研究,从而发展出适合我国国情的基于性能的抗震设计方法。
参考文献:
欧进萍,何政,吴斌,邱法维;钢筋混凝土结构基于地震损伤性能的设计[J];地震工程与工程振动;1999年01期
孙俊,刘铮,刘永芳;工程结构基于性能的抗震设计方法研究[J];四川建筑科学研究;2005年03期小谷俊介,叶列平;日本基于性能结构抗震设计方法的发展[J];建筑结构;2000年06期
中图分类号:TU3文献标识码: A
地震灾害涉及到人类的生命和财产安全,是人类生活面临的重要的问题,也是建筑结构抗震设计的主题之一。因此,在建筑结构设计的时候,必须充分考虑到抗震设计,这已经在房屋建筑结构设计中占据非常重要的位置,在设计时只有采取适当的措施,以防止地震对建筑物的造成的巨大破坏,为减少地震的损失与危害在设计上做出应有的贡献,以保护人民的生命和财产安全。
一、 建筑结构抗震的重要性
在建筑结构中应用抗震结构的设计,首先能够保证人员的生命安全,为内部人员的逃生以及求救争取宝贵的时间; 其次,强化了建筑结构的设计,增加了建筑结构的抗震性,也将是建筑结构的使用寿命得到提升,使其利用价值得到不同程度的飞跃。建筑的基本功能是供人们居住,随后才是审美价值的体现。就建筑的基本功能来说,其能够供人居住的首要前提是安全,包括使用安全以及建筑物自身的安全。也就是说,建筑物只有在保证了自身安全的前提之下,才能够供人们使用。因此,在建筑物的设计和建设过程中,往往需要对影响建筑安全性的因素作全方位考虑。地震作为一种不可预知的自然灾害,其对建筑物安全性能的影响极大。而建筑物的安全一旦遭受威胁,必然会出现倒塌事件,从而砸伤和掩埋生命,给人们带来物质和精神上的双重损失。因此,建筑物在建设初期就必须做好抗震的准备工作,从根本上确保人们的生命和财产安全。
二、提高建筑结构抗震设计的措施
1、合理选址以提高建筑物的抗震能力
地震发生时,如果建筑物本身抗震能力弱,结构不坚固或者建筑刚性强而韧性不足,很容易遭到严重的破坏神之倒塌。如果建筑物选址不合理,地基建在地质不稳固的地方,地震会引起地表的地裂和错动以及地面沉降,这种破坏在地基不稳固的地方更加明显,因此合理选址以提高建筑物的抗震能力非常重要。在建筑物选址时,易选择地层稳固地带,应尽量避开地质不稳固的地方,如断层带、地下采空区、地下水空洞区、易液化土等地方。如果没有条件避开上述不适合建造建筑物的地区时,应采取相应的抗震应对措施。依据国家对建筑物抗震的类别等级,采取人工加固地基、注意建筑结构的整体性、建筑物的外形匀称、建筑物的结构简单减轻建筑物自重等,都可以消除地基液化沉陷。还有一种特殊的地质构造,那就是在地基的主要受力层内还存在土质较软的粘性土层或者不均匀的土层面时,这种地质构造若发生地震,地基会发生不均匀沉降。在此种地质构造地带施工时,应采用桩基和加强基础的措施来加固地基。
2、使用科学的结构形式
目前,我国常用的建筑结构有:钢筋混凝土结构、砌体结构、钢混结构以及钢结构。防裂度和地区不同都是造成结构不同的主要因素, 通常钢筋混凝土结构的抗震能力相对较强,由于自身柔韧性较好, 所以钢筋混凝土在建筑物变形能力控制中,具有良好的承载能力。因此,在建筑结构设计中,必须根据抗震要求以及功能特征选用合理的结构方案,在审核结构体系中,也必须考虑结构侧移度,特别是高层建筑物结构设计。随着高层建筑结构高度增加,不仅会让建筑结构在地震作用以及其他负荷作用影响下增大水平位移,也会让建筑结构抗侧移的刚度增加。而对于不同的钢筋混凝土结构体系、组成方式、构建以及受力特征,在抵抗侧移刚度等方面都具有很大的差异性,所以在使用中,必须根据具体情况,选用合理的高度。
3、强化设计质量
由于地震具有超强的危害性,所以在地震设计时,必须注重各项影响因素。由于我国建筑设计水平相对落后,很多建筑结构使用的方案不够合理,在不能科学布置建筑结构方案的过程中,不仅增加了建筑成本和自身重量,也加大了地震危害。因此,在建筑抗震设计中,必须正确运用抗震理论,根据相关设计原则,不断保障或者提高建筑结构可靠性与安全性。具体原则包括:努力降低地震作用时结构位移与扭转,并且建筑结构必须拥有足够的刚度;结构构件承载能力相对较高,同时具有足够的耗能能力与延性。在这过程中,延性大说明变形能力相对较高,承载力与强度减小速度缓慢,不能有足够的空间吸收,还能耗散地震能量,从自身结构避免坍塌。
4、选择合理的建筑材料
在设计阶段,要进行抗震分析和计算,在选择建筑材料时,要对其参数进行可靠度分析,也要充分考虑材料参数的变异性,而且尽可能选择自振频率不同的材料,避免在地震作用时结构物局部或者整体发生共振,造成严重破坏。
5、合理的平立面布置
建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。
6、多道抗震防线的设置
这样可以避免在地震作用下,由于局部损坏而造成整个建筑结构的损坏,例如框架----抗震墙结构系统,抗震墙可以抵抗较大的侧压力,是第一道防线,当在地震作用下抗震墙发生破坏时,框架结构就起到抗震的第二道防线。 多道抗震防线可以极大的消耗地震能量,延缓或者减轻地震作用对高层建筑的损坏。
7、加强建筑物内部的薄弱部分
在高层建筑中,由于层数较多,建筑面积较大,难免存在一些受力比较大而比较薄弱部分,在建设过程中,要及时对薄弱部分进行加强,采取有效措施增强其强度和刚度,这样就可以极大提高其承载力,避免在地震作用下过早的屈服产生较大变形,导致建筑结构局部损坏或者整个结构的损坏。
8、保障结构的延性
(1)对于建筑结构当中柱、梁等构件,应该按照强柱弱梁的原则,增加柱子的抗弯能力。钢筋混凝土的框架在强震发生时,当地震威力致使建筑结构达到最大的非线性位移时,梁端的塑性铰的塑性转动会比较大。当柱端的塑性铰出现比较晚,那么建筑结构达到最大的非线性位移时它的塑性转动会比较小。这样就保证了框架有了比较稳定的塑性耗能构件。
(2)要提高结构的延性,还要采取强剪弱弯的措施。因为剪切对于破坏根本没有延性,如果某个部位一旦发生剪切破坏时,这个部位在整个抗震结构中的作用就会丧失,柱端发生剪切破坏,建筑结构的局部就会发生坍塌,局部坍塌有可能导致整个建筑物的坍塌。因此,要采取措施来增大梁柱和柱端的组合剪力值,保证任何构件在强震发生时都不会损坏其剪力。
总之,结构抗震设计有许多不确定或不确知的因素,很难做到对结构进行精确的抗震计算,并得到结构在地震作用下的真实反应。因此结构的抗震设计除了必须进行细致的计算分析外,要特别注重结构的概念设计。如选取对建筑抗震适宜的建筑场地,设计延性结构,采用轻质高强建筑材料,设置多道抗震设防,加强结构的整体稳定性,重视结构的抗震构造措施等方面,只有这样才能保证结构的抗震性能。
参考文献:
[1] 李鸣. 浅谈建筑结构抗震设计[J]. 科技致富向导,2013(6):330.
2超高层建筑结构抗侧刚度设计与控制
为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。
2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。
2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。
3超高层建筑的性能化抗震设计
超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。
4超高层建筑多道设防抗震设计
除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。
中图分类号:TU318 文献标识码:A 文章编号:
1、建筑结构抗震设计的基本原则
1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能
(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。
1.2设置多道抗震防线
(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。
1.3对可能出现的薄弱部位,采取措施提高其抗震能力
(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
1.4选择合理的结构形式
抗震结构体系是抗震设计应考虑的关键问题。按结构材料分类,目前主要应用的结构体系有砌体结构、钢结构、钢筋混凝土结构、钢-混凝土结构等;按结构形式分类,目前常见的有框架结构、剪力墙结构、框架剪力墙结构、简体结构等。结构体系的确定受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等诸多因素影响,是一个综合的技术经济问题,需进行周密考虑确定。
2、建筑抗震设计中存在的问题
2.1缺乏前期勘察资料
缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。结构的平面布置中外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。
2.2部分建筑物高度过高
按我国现行高层建筑混凝土结构技术规程规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。在这个高度,抗震能力还是比较稳妥的,但是目前不少高层建筑超过了高度限制。在震力作用下,超高限建筑物的变形破坏性会发生很大的变化,建筑物的抗震能力下降,很多影响因素也发生变化,结构设计和工程预算的相应参数需要重新选取。
2.3地基的选取不合理
由于城市人口的增多和相对空间的缩小,不少建筑商忽略了这一问题,哪里商业空间大就在哪里建。建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。建筑的地基选取不恰当可能导致抗震能力差。
2.4材料的选用不科学,结构体系不合理
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。由于我国建筑结构主要以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。
2.5抗震设防烈度较低
许多专家提出,现行的建筑结构设计安全度已不能适应国情的需要,建筑结构设计的安全度水平应该大幅度提高。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内超越概率为lO%的地震烈度,较低的抗震设防烈度放松了建筑的抗震要求。
2.6平面布局的刚度不均
抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。这些都对抗震极为不利。
3、建筑结构抗震设计的措施
3.1建筑选址要正确。
避免抗震危险地段,选择对抗震有利的场地、地基和基础在进行设计时,应根据工程需要,掌握地震活动情况和工程地质的有关资料,作出综合评价,宜选择坚硬土或开阔平坦密实均匀的中硬土等有利地段;避开软弱土、液化土、河岸和边坡边缘,平面分布上成因、岩性、状态明显不均匀的土层等不利地段;同一结构单元不宜设置在性质截然不同的地基土上,也不宜部分采用天然地基,部分用桩基,当地基有软弱黏性土、液化土、新近填土或严重不均匀土层时,宜加强基础的整体性和刚度。
3.2合理的确定平立面布置。
建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。
3.3 结构选型和结构布置要合理。
结构选型根据建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,经技术、经济条件比较综合确定。单从抗震角度考虑,作为一种好的结构形式,应具备下列性能:延性系数高;匀质性好;正交各向同性;构件的连接具有整体性、连续性和较好的延性,并能发挥材料的全部强度。结构布置遵循的原则是平面布置力求对称,使构件分配的力均匀;竖向布置力求均匀,尽可能使其竖向刚度、强度变化均匀,避免出现薄弱层,并应尽可能降低房屋的重心。
3.4刚度、承载力和延性要匹配。
当结构具有较高的抗力时,其总体延性的要求可有所降低;反之,较低的抗力需要较高的延性要求相配合。地震时建筑物所受地震作用的大小与其动力特性密切相关,具有合理的刚度和承载力分布以及与之匹配的延性。提高结构的抗侧刚度,往往是以提高工程造价及降低结构延性指标为代价的。要使建筑物具有很强的抗倒塌能力,最理想的是使结构中的所有构件都具有较高的延性,然而实际工程中很难做到。有选择地提高结构中的重要构件以及关键杆件的延性是比较经济有效的办法。
4、结束语
抗震设计问题是一个非常复杂的过程,涉及面非常广泛,需要在设计过程中考虑全面。在以后的设计过程中,还有许多方面需要我们进一步的探讨和研究,我们也期待有更多新型抗震技术应用于建筑中来,减轻地震带来的危害。
1)建筑结构的平面布置。建筑结构的平面布置是影响结构抗震的重要因素,合理的建筑平面布置对建筑结构设计是至关重要的。大量地震灾害表明,平面布置简单、对称规则、质量和刚度分布比较均匀并且具有明确传力途径的建筑结构在地震时不容易发生破坏。规则结构能较为准确地预估结构的作用效应和地震时的反应,较容易采取有效的抗震措施及相应的结构措施来加强其抗震性能。相反,平面布置复杂、不对称且不规则的结构,其地震作用效应很难估计的。因此,高层建筑结构中规范规定,宜采用规则结构,不应采用严重不规则的结构。
2)建筑结构的体系选择。高层建筑结构设计中,就优先采用具有多道防线的结构体系。例如:框架—剪力墙结构、剪力墙结构和筒体结构。这三种结构可以作为地震区高层建筑的首选体系。当建筑物高度不高且层数不多时,可采用框架结构。但当建筑物位于地震区,且高度均较高时,应避免采用框架结构、板柱剪力墙结构。因为,地震具有强破性且持续时间很长,往复次数较多,能够对建筑物造成累积破坏。单一的结构体系在遭遇地震时,一旦发生破坏,很容易造成房屋倒塌,危及人们的生命及财产的安全。当结构体系具有多道防线时,当遭遇地震时,第一道防线遭破坏后,后续的防线仍然能抵抗地震的冲击力,可以最低限度的防止建筑物的倒塌,给人们以充分的时间进行逃生,保证人民的生命安全。因此,高层建筑结构抗震设计中的多道防线是进行抗震设计时所必须设置的。
3)结构薄弱层。当建筑结构的侧向刚度分布不均匀、竖向抗侧力构件不连续和楼层承载力突变时,容易产生薄弱层。薄弱层在地震中是最先遭受破坏的部位。因此,对有明显薄弱层的结构,应采用相应的抗震构造措施来提高其抗震能力。结构构件的实际承载能力是判断薄弱层部位的基础,有意识、有目的地控制薄弱层部位,让它有足够的变形能力,而且不使薄弱层发生转移是提高结构抗震性能的重要手段。
2高层建筑抗震设计常见问题
1)高层建筑结构的地基问题。高层建筑结构在设计阶段,应有完善的岩土工程勘察报告,为结构工程提供基本的设计依据。建筑结构场地应选择在有较稳定的基岩、开阔、平坦、土层坚硬或较密实的有利地段,不应建造在容易发生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危险地段,有利地段的建造对建筑物的抗震是十分有利的。有时由于建设单位工期要求,在确定方案后设计人员就直接进入了施工图设计阶段,从而忽略了岩土工程勘察资料和场地的选择,从而给后续工作带来不必要的麻烦。
2)高层建筑结构平面布置问题。高层建筑为了追求外立面效果的美观而设计成平面不规则、不对称且有较大凹进或较大开洞的结构,这种结构对抗震十分不利。因此,在建筑方案正式确定前,结构工程师就应对建筑平面布置、体型方面的内容提出自己的见解,及时和建筑师进行沟通,尽量选用平面、竖向规则对称、质量和刚度、承载力均匀的平面布置,这对抗震十分有利。
3)高层建筑结构的高度问题。如今的高层建筑结构的高度越来越高,甚至出现了很多超高层的高层建筑,这就对结构工程师的专业知识提出了更高的要求。不同的高度对应不同的结构体系,规范上有明确规定。一旦结构超过了规范规定的限制高度,就应通过专门的审查、论证进行更严格的计算分析和研究。
4)高层建筑抗震设防等级的选取问题。抗震等级是结构抗震设计的重要依据,抗震等级选取不当将给建筑物的安全带来许多隐患,对工程造价也会带来不必要的浪费。抗震等级根据房屋的场地类别、抗震设防烈度、建筑高度、结构类型等因素综合评定。每个结构工程师应当熟练掌握结构的抗震概念设计和规范知识,做到该提高的应当提高其抗震等级,该降低则应适当降低。
5)计算软件的合理应用。高层建筑结构抗震设计时,应该应用正规的结构设计软件进行设计,软件中的各个参数指标能够正确反映建筑物的特征。结构工程师能正确分析结构软件所计算的结果,并做出正确的判断。但有时计算机设计会给结构工程师带来一种错觉,有的结构工程师往往过分依赖计算结果,而减少了结构的概念学习。一旦选择了错误的计算参数,就会导致结构设计出现问题,对结构的安全和经济方面造成影响。因此,结构工程师应加强自身的业务学习和抗震概念设计的理解,做到熟练掌握相关的结构概念设计,并且根据自身的专业知识配合计算结果选择最佳的结构设计方案。
0 引 言
在层高一定的情况下,为提高延性而降低轴压比则会导致柱截面增大,且轴压比越小截面越大;而截面增大导致剪跨比减小,又降低了构件的延性。因此,在高层特别是超高层建筑结构设计中,为满足规程[1]对轴压比限值的要求,柱子的截面往往比较大,在结构底部常常形成短柱甚至超短柱。另外,诸如图书馆的书库、层高较低的储藏室、高层建筑的地下车库等由于使用荷载大,层高较低,在设计中也不可避免地会出现短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌,无法满足“中震可修,大震不倒”的设计准则。为了避免短柱脆性破坏问题在高层建筑中发生,笔者认为,首先要正确判定短柱,然后对短柱采取一些构造措施或处理,提高短柱的延性和抗震性能。
1 短柱的正确判定
规程[1]和规范[2]都规定,柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义--剪跨比λ=M/Vh≤2来判定才是正确的。
框架柱的反弯点不在柱中点时,柱子上、下端截面的弯矩值大小就不一样,即Mt≠Mb。因此,框架柱上、下端截面的剪跨比大小也是不一样的,即λt=Mt/Vh≠λb=Mb/Vh。此时,应采用哪一个截面的剪跨比来判断框架柱是不是属于短柱呢?笔者认为,应该采用框架柱上、下端截面中剪跨比的较大值,即取λ=max(λt,λb)。其理由如下:框架柱的受力情况有如一根受有定值轴压力的连续梁,柱高Hn相当于连续梁的剪跨a,已有的试验研究结果表明[10]:对于剪跨a不变的连续梁,当截面上、下配置的纵筋相同时,剪切破坏总是发生在弯矩较大的区段;对于框架柱,临界斜裂缝也总是发生在弯矩较大的区段。
事实上,在柱高Hn或连续梁剪跨a的范围内,最大剪跨比是出现在弯矩较大区段上的。钢筋砼构件的抗剪承载力是随剪跨比λ增大而降低的。所以,同样条件下,弯矩较大区段的截面抗剪承载力要比弯矩较小区段的小,在荷载作用下,如果发生剪切破坏,就只能是在弯矩较大区段上。用来判断框架柱是否属于短柱的剪跨比λ当然应是可能发生剪切破坏截面的剪跨比λ。
一般情况下,在高层建筑的底部几层,框架柱的反弯点都偏上,即Mb>Mt。此时,可按式(1)或式(2)判定短柱:
或Hn/h≤2/yn(2)
式中,yn- -n层柱的反弯点高度比,根据几何关系,可得:yn=1/(1+Ψ),其中,Ψ=Mt/Mb,0≤Ψ≤1;
Hn- -n层柱的净高。
式(2)具有一般性。当反弯点在柱中点时,Ψ=1,yn=0.5,式(2)即成为Hn/h≤4;当反弯点在柱上端截面时,Ψ=0,yn=1,式(2)即成为Hn/h≤2;如果框架柱上不出现反弯点,就应采用最大弯矩作用截面的剪跨比λ=M/Vh≤2来判断短柱。
当需要初步判断框架柱是否属于短柱时,可先按D值法确定柱子的反弯点高度比yn,然后按式(2)判断短柱。在施工图设计阶段,可根据电算结果作进一步判断。
2 改善短柱抗震性能的措施
当按剪跨比λ判定柱子不是短柱时,按一般框架柱的抗震要求采取构造措施即可;确定为短柱后,就应当尽量提高短柱的承载力,减小短柱的截面尺寸,采取各种有效措施提高短柱的延性,改善短柱的抗震性能。
2.1 使用复合螺旋箍筋
高层建筑框架柱的抗剪能力是应该满足剪压比限值和“强剪弱弯”要求的,柱端的抗弯承载力也是应该满足“强柱弱梁”要求的。对于短柱,只要符合“强剪弱弯”和“强柱弱梁”的要求,是能够做到使其不发生剪切型破坏的。因此,使用复合螺旋箍筋[4]来提高柱子的抗剪承载力,改善对砼的约束作用,能够达到改善短柱抗震性能的目的。
2.2 采用分体柱
由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。
人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素砼连接键等形式。
对分体柱工作性态的理论分析和试验研究表明[3~4]:采用分体柱的方法虽然使柱子的抗剪承载力基本不变,抗弯承载力稍有降低,但是使柱子的变形能力和延性均得到显著提高,其破坏形态由剪切型转化为弯曲型,从而实现了短柱变“长柱”的设想,有效地改善了短柱尤其是剪跨比λ≤1.5的超短柱的抗震性能。分体柱方法已在实际工程中得到应用[5]。2.3 采用钢骨砼柱
钢骨砼柱由钢骨和外包砼组成。钢骨通常采用由钢板焊接拼制或直接扎制而成的工字形、口字形、十字形截面。
与钢结构相比,钢骨砼柱的外包砼可以防止钢构件的局部屈曲,提高柱的整体刚度,显著改善钢构件出平面扭转屈曲性能,使钢材的强度得以充分发挥。采用钢骨砼结构,一般可比钢结构节约钢材达50%以上[6]。此外,外包砼增加了结构的耐久性和耐火性。与钢筋砼结构相比,由于配置了钢骨,使柱子的承载力大大提高,从而有效地减小柱截面尺寸;钢骨翼缘与箍筋对砼有很好的约束作用,砼的延性得到提高,加上钢骨本身良好的塑性,使柱子具有良好的延性及耗能能力。
由于钢骨砼柱充分发挥了钢与砼两种材料的特点,具有截面尺寸小,自重轻,延性好以及优越的技术经济指标等特点,如果在高层或超高层钢筋砼结构下部的若干层采用钢骨砼柱,可以大大减小柱的截面尺寸,显著改善结构的抗震性能。
2.4 采用钢管砼柱
钢管砼是由砼填入薄壁圆形钢管内而形成的组合结构材料,是套箍砼的一种特殊形式。由于钢管内的砼受到钢管的侧向约束,使得砼处于三向受压状态,从而使砼的抗压强度和极限压应变得到很大的提高,砼特别是高强砼的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋,其管径与管壁厚度的比值至少都在90以下,这相当于配筋率至少都在4.6%以上,这远远超过抗震规范[2]对钢筋砼柱所要求的最小配筋率限值。由于钢管砼的抗压强度和变形能力特佳,即使在高轴压比条件下,仍可形成在受压区发展塑性变形的“压铰”,不存在受压区先破坏的问题,也不存在像钢柱那样的受压翼缘屈曲失稳的问题。因此,从保证控制截面的转动能力而言,无需限定轴压比限值[8]。规程[9]规定,钢管砼单肢柱的承载力可按式(3)计算:
N≤φ1φeN0(3)
式中,;
θ=faAa/fcAc称为套箍指标,0.3≤θ≤3;
φ1,φe的物理意义及计算方法见规程[9]。
由式(3)可以看出,当选用了高强砼和合适的套箍指标θ后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋砼柱减小一半以上,消除了短柱并具有良好的抗震性能。