无人机遥感技术论文汇总十篇

时间:2022-05-25 06:55:53

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇无人机遥感技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

无人机遥感技术论文

篇(1)

水土保持监测作为生产建设项目水土保持工作的重要组成部分,是水土流失预防监督和治理的重要基础。常规的水土保持监测技术手段无法很好满足生产建设项目水土保持监测准确性、及时性和完整性的要求。无人机遥感具备准确性、实时性和全面性的特点,成为生产建设项目水土保持监测新的技术手段。通过对已完成的西气东输项目前期充分调研分析,通过无人机对项目的重点区域进行遥感监测,对该技术应用于长输管道工程监测进行探讨。

1.工程概况

西气东输二线工程西起新疆霍尔果斯口岸,向东南延伸至上海、香港,全长近万公里,是我国天然气四大进口战略信道中的西北信道,工程新疆段自新疆霍尔果斯口岸入境后,基本沿G312由西向东敷设,从哈密市出疆,管线长度约1340km。本次论文研究对象选择其中典型果子沟路段的两处渣场为例。本次选取果子沟两处渣场,1#渣场设计堆渣量1.5万m3,2#设计堆渣量4.7万m3。渣场主要挡蓄西气东输二线工程管道开挖的弃渣。弃渣堆放场挡土墙呈L形设计方案,两墙肩依山体斜坡为固定支承点,山体斜坡岩性多为坡积和中强风化岩石,挡土墙肩嵌入山坡、梁凸出部位。本次渣场围护设计采用重力式挡土墙型式。1#渣场挡土墙全长236m,采用浆砌块石填筑,优选弃渣料,不够时再外借。挡土墙墙顶宽度0.6m,迎渣面坡度1:0.4,背渣面坡度1:0.2,墙面高度4m,地面以上高度3m,前后墙趾宽度0.5m,高度1m。2#渣场挡土墙全长308m,采用浆砌块石填筑,优选弃渣料,不够时再外借。挡土墙墙顶宽度0.6m,迎渣面坡度1:0.3,背渣面坡度1:0.2,墙面高度2.5m,地面以上高度1m,前后墙趾宽度0.5m,高度1m。挡土墙每隔15m设一道伸缩缝,缝宽2cm,用M2.5砂浆填缝,墙内布设排水孔,采用管径6cm的塑料管,排水孔坡度5%,间距1m,梅花形布置。渣场外坡按照1:2堆至1820.5m,顶部修成5%的坡度,以便于排水。外坡采用浆砌石网格砌筑,网格规格2×2m,采用C15、F200细粒混凝土,网格内播撒草籽。

2.无人机遥感技术在典型区域的监测应用

长输管道工程空间跨距长,多无人区,采取全线普查法获取水土流失数据的难度大,投入大,时间长。因此,监测区域的土壤侵蚀背景数据及施工前后扰动、治理效果的对比等,主要通过遥感监测方法与典型调查方法相结合的途径获得。以遥感影像为数据源,按照《水土保持监测技术规程》(SL277-2002)规定,对监测区域进行外业调查,建立遥感解译标志,通过解译,获得监测区域在施工前后各种土地利用类型、土壤侵蚀类型和侵蚀强度的分布、面积和空间特征数据。

2.1人机交互式解译流程

采用人机交互式解译法进行遥感影像的解译与判读,同时,对比分析重点监测地段的土地利用和土壤侵蚀状况,包括工程区域和扰动带两部分,其中工程区域以管线中心线左右各500m范围为监测区域,扰动带则以管线中心线左右各20m为监测区域。

2.2土地利用解译

在遥感影像的土地覆盖信息基础上,依据人机交互式解译原理和野外实地考察的结果建立项目区土地利用类型典型遥感影像解译标准,形成土地利用现状图。土地利用分类参照国家土地利用分类标准进行分类,本次选择的典型渣场所处位置进行遥感影像处理,分析工程所处的土地利用现状为有林地,见图1。

2.3土壤侵蚀专题信息提取

在土地利用图生成后,以人机交互式解译原理和野外实地考察的结果分别建立土壤侵蚀类型遥感影像解译标准。土壤侵蚀分类、制图和数据库建立均按照SL190-2007规定的标准土壤侵蚀分类分级系统进行。本次工程属于天山山脉,工程沿山间河谷地带布设,典型渣场选取在不影响行洪的山间洼地,所处位置为水力轻度侵蚀区域,详见图2。本次无人机的遥感监测,获到的只是施工结束后的一个时段的数据,只代表了这一时段的现状,本期的数据可与工程施工前、施工过程中的数据对比分析,即可得到工程施工过程中的变化情况,也可了解到工程在自然恢复期的各项措施的实施后的效果。

3.无人机遥感技术特征分析

通过本长输管道工程选取典型渣场的应用实例分析,将无人机遥感技术应用到生产建设项目水土保持监测工作中,可以准确、及时、全面地反映施工过程各阶段的工程进展和水土流失防治等情况,特别是在长输管道等大型线状工程,优势更加突出和明显。(1)无人机准确性高。生产建设项目水土保持监测的重点往往是以米记的水土保持措施,传统卫星遥感对大范围的航拍有优势,但对重点区域精度无法满足监测需求。无人机低空遥感可根据需求,调整飞行高度以获取不同精度的成果。本次无人机低空飞行高度在50~300m之间,遥感像素分辨率为0.25m,经过精度检验,成果平面精度的误差为1~3m,完全满足水土保持监测判读、位置、面积等信息提取的要求。(2)无人机时效性好。无人机遥感与传统卫星遥感相比,较好地弥补了其时效性差和机动性低的缺点。可以根据不同项目监测工作的需求,由现场监测人员确定遥感的时间和范围,在较短的时间内完成遥感影像获取和监测信息的提取,能较及时地反映工程水土流失和水土保持情况,满足定期常规监测和灾害性事件应急监测的需求。而传统的卫星遥感,机动性相对较差,不能及时的由现场监测人员掌握。(3)无人机更直观全面。无人机遥感成果对比传统的常规监测方法,更能较为直观和全面地反映工程现状,不但能为业主、施工、监理、监测等部门在施工管理、施工总体布局、施工进度控制等方面提供支持。而且可为水行政主管部门、业主单位水土保持监督管理提供参考。

篇(2)

1 引言

土地综合整治是国土资源工作的重要组成部分,是确保我国粮食安全、提高粮食综合生产能力的有力支撑,是一项涉及面广、实施时间长、管理程序复杂的系统工程,对保证国民经济和社会可持续发展,实现耕地总量动态平衡,加速农业、农村现代化有着不可替代的作用。现阶段,我国土地综合整治事业正处于管理模式调整和管理水平提高的关键时期。如何建立一套科学的监管体系,确保土地综合整治专项资金发挥预期绩效,全面完成国家补充耕地计划和项目建设任务,让项目长期发挥效益,促进社会经济可持续发展,已成为我国当前土地开发整理工作的一项首要任务。

2 无人机航摄系统简介

2.1 无人机航摄系统组成

无人机航摄系统主要由飞行控制系统、地面站系统、航拍摄像系统和影像处理软件四部分组成。

2.2 无人机航摄系统的特点

(1)低空飞行,空域申请便利。飞行系统升空准备时间短,操作简单,运输便利。

(2)系统可快速获取超高分辨率数字影像和定位数据,可针对特殊监测目标搭载全色波段、单波段、多波段等传感器,并可进行多角度摄影。

(3)系统为多种小型遥感传感器提供了良好的搭载平台,如探地雷达、热成像仪、气象传感器、合成孔径雷达等,易于拓展监测功能,以满足多种快速监测所需。

(4)系统的置建费用较低,运营成本、维护成本和操作手的成本远远低于载人机系统。

3 试验方案

3.1 试验区概况

本文选择宁乡县大成桥乡土地整理项目作为试验。该项目位于宁乡县大成桥乡东北角区域,属丘陵地区。土地综合整治面积4km?,分割成四小块,如图1所示。

3.2 试验目的

采取航空摄影方式获取不同时间阶段的地面影像资料和数字线划图,通过数据变化分析对比对土地整治项目全过程实施动态监控。

3.3 试验方案流程

本次实验方案主要分为“事前、事中和事后”三个阶段,使其达到“事前预控、事中监控和事后验控”的效果。试验方案流程如图3所示。

由于实验区域范围不发生变化,因此在进行航线设计时只做一套方案,采取对项目区进行3次航飞,分别为规划设计前航飞一次、施工过程中航飞一次、竣工后航飞一次。如图2所示:

4 动态监测

4.1 事前预控

主要是获取项目区内DOM、DLG产品,向设计部分提供设计依据。DLG数据叠加DOM数据可为设计人员提供更为直观的设计效果,更能合理地进行道路、水渠及其附属工程的设计,而DEM成果可作为土方量计算的依据。

在方便设计部分的同时也为土地监管部门留下了历史依据,为项目实施过程中是否存在夸大土方量,田间道路重复建设,桥梁维修虚报为桥梁新建,虚列拆迁补偿费、青苗补偿费及其他变更工程,整理田块面积错报,整理田块数量漏报,整理结果、质量瞒报等现象起到了防微杜渐、提前预防的效果。

4.2 事中监控

在项目施工过程中,工程量大,土地监管人员无法直观地了解到项目区的施工情况。而事中阶段能根据土地监管部门的需要,采用无人机定期对项目区进行航飞,可飞一次或者多次,主要是获取生产项目区的DOM数据,能直观地反映出项目区施工进度及施工质量,并能及时发现施工单位是否按照设计图纸进行施工,是否存在工程质量问题。对存在质量问题的工程起到了实时监控的作用。如图4所示:左边影像为项目施工前,右边影像为项目施工中。

4.3 事后验控

项目验收是项目完成的最后一个关键环节。事后阶段无人机航飞主要是为生产项目区的竣工验收图纸、竣工后DOM和DEM 数据。通过竣工后影像与施工前影像获取对比,可直观地检查出其工程是否按照设计图纸进行施工,是否存在偷工减料、瞒报工程量等现象。如图5所示。

5 结语与展望

在大力发展RS技术运用于土地整理动态监测的时代,无人机航摄技术的产生无疑又是一个新的转折点。相对于传统的RS技术,其高效、快捷、成本低的特性,促使土地监管部门加强了土地监管力度。无人机航摄技术能够全面提高规划设计和预算编制的科学性,为土地监管打下了坚实的基础,在今后的土地整理动态监测项目中对提高土地整理项目竣工验收质量和进一步规范土地整理权属管理工作等方面具有广阔的应用前景。

参考文献:

[1] 金伟,葛宏立,杜华强,徐小军. 无人机遥感发展与应用概况[J]. 遥感信息,2009(01)

[2] 陈亚岭,付治河,张景湘. 3S技术在土地动态监测中的应用[J]. 光盘技术,2007(05)

[3] 滕晓波,陈春花. 3S技术在土地利用动态监测中的应用[J]. 全球定位系统,2010(03)

[4] 于洪苹,程朋根,夏友青. 土地动态监测中3S技术的应用[J]. 安徽农业科学,2011(03)

[5] 廖克,成夕芳,吴健生,陈文惠. 高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J]. 测绘科学,2006(06)

[6] 楼立明,刘卫东,冯秀丽. 基于高分辨率遥感影像的土地利用变化监测[J]. 遥感技术与应用,2004(01)

篇(3)

中图分类号:U412.36+6 文献标识码:A 文章编号:

前 言

航空摄影测量技术作为空间信息技术体系的两大分支之一,无人机航空摄影测量系统具有运行成本低、执行任务灵活性高等优点正逐渐成为航空摄影测量系统的有益补充,是空间数据获得的重要工具之一[1]。

目前国内无人飞行器航测遥感技术在测绘行业有了很大的推广应用,但大都是生产制作DOM及DEM,对于大比例尺DLG的生产只是进行过小面积实验,很少进行实际的生产应用。本文从生产实践出发,以目前最先进的航测技术为主线,分析探讨了高速公路地形图航测,在现阶段具有一定的理论与实际意义。

1 航测系统与工作内容

1.1 航测系统

国内航测技术发展较快,航测系统操作系统也较多较复杂,一般有MapMatrix系统、高分辨率遥感影像一体化测图系统PixelGrid以及Y amaha RMAX和Canon EOS一1 Ds MarkII数字单反相机集成的低空无人直升机数字摄影系统。

航测系统是基于航空,卫星遥感,外业等数据进行多源空间信息综合处理的平台。它不但为基础数据生产,处理和加工提供了一系列集成的工具,而且还采用了统一的数据管理接口将处理的数据有效的管理起来,为后期数据增值和共享提供基础[2]。

1.2 工作内容

本文讨论对高速公路区域条带地区进行航拍作业,要求如下:

(1)航空摄影,高速公路区域采用无人机航拍;

(2)利用航测手段测制1:2000数字地形图、DEM\DOM成果;其任务包括航飞、外业控制测量、内业空三加密、DEM\DOM制作、数字地形图制作、地形图编辑,成果整理与提交。

2 技术依据与成图精度

2.1 技术依据

(1)、CJJ8-2010《城市测量规范》;

(2)、《1:500、1:1000、1:2000地形图航测内业规范》GB7930-87;

(3)、《1:500、1:1000、1:2000地形图航空摄影测量数字化测图规范》GB15967-1995;

(4)、GB/T 20257.1-2007《1∶500、1∶1000、1∶2000地形图图式》;

(5)、GB 14804-93《1∶500、1∶1000、1∶2000地形图要素分类与代码》;

(6)、《基础地理信息数字产品数据文件命名规则》CH/T1005-2000;

(7)、《数字测绘产品检查验收规定和质量评定标准》GB/T18316-2001;

(8)、《测绘产品检查验收规定》CH1002-2005;

(9)、《测绘产品质量评定标准》CH1003-2005;

(10)、《公路勘测规范》(JTG C10-2007)。

2.2 成图精度

(1) DOM精度

DOM数据中地面明显地物点对最近野外控制点的图上点位中误差依据GB/T 18315-2001应符合下表规定:如下表1所示。

表1DOM精度要求mm

中误差的两倍值为最大误差。阴影、摄影死角、森林、隐蔽等困难地区的地物点对最近野外控制点的图上点位中误差按上述精度规定值放宽0.5倍。

(2) DEM精度

本测区的DEM格网尺寸为2.5m×2.5m。DEM格网高程值相对于最近野外控制点的高程中误差不得大于表中表2规定。

表2DEM精度要求m

高程中误差的两倍值为格网高程的最大误差。高大林木覆盖区、高层建筑阴影遮盖区等困难地区的高程中误差按上述规定可放宽0.5倍[3]。

3 总体流程图

高速公路地形图航测的总体流程图如图1所示:

图1高速公路地形图航测的总体流程图

4 具体流程

4.1 空三解密

本文拟采用数字摄影测量工作站的空三软件VirtuoZo AAT中的VzLowCor模块对无人机数码影像进行畸变纠正,然后利用VirtuoZo AAT+PATB小数码自动空三加密模块,以小数码航片作为空三加密的原始数据,运用PATB平差软件进行光束法区域网平差。通过航测内业方法(包括内定向、相对定向、公共连接点的转刺)构建空中三角网,并将外业控制点成果导入系统按严密的数字模型进行区域整体平差,得到优化后的外方位元素和加密点成果。

转点、选点采用软件全自动功能模块进行处理操作,在少量人工干预情况下实现工作效率最大化。

(1)、按编制的加密计划,开始建立相应的加密分区,把小数码影像以相应的各航线关系建立相应的加密测区。输入相应的摄影比例尺参数、相机参数、影像分辨率等。

(2)、进行内定向,注意各航线的相机文件有无旋转,需要旋转的片子相机参数必须要对应旋转180度。

(3)、添加相邻航线间的偏移点(即航带间连接点),相邻航线间只加首尾两点即可,航线过长的情况下可适当的在中部添加点,以便后续工作进行航线间自动转点。

(4)、相对定向、全自动转点。由软件自动计算完成,在大面积水域或大面积植被情况下无法计算,软件会自动记录并在计算完成后提示哪些模无法自动完成。可由人工干预适当加些关联点再自动匹配计算即可完成。

(5)、挑点。调用PATB计算,选用5*6布点布局进行粗差踢除。

4.2 DOM制作

本文利用Virtuozo全数字摄影测量系统工作站进行1:2000数字正射影像图DOM的制作。在全数字摄影测量工作站中,导入空三成果恢复测区并创建立体像对,作业生产区域DEM数据,并用特征点、线参与计算修改生成DEM。利用DEM数据对原始影像进行数字微分纠正,通过自动生成的镶嵌线对整个测区的模型正射影像进行无缝拼接,并最终完成数字正射影像图。最后按矩形图廓对影像进行分幅裁切,形成DOM数据成果。

利用DEM完成影像微分纠正,按照分区对测区内影像以像元大小为0.1m进行双线性内插或三次卷积内插法进行重采样,生成分区正射影像(DOM)。通过自动生成的镶嵌线对整个测区的模型正射影像进行无缝拼接。DOM接边中高大建筑物的投影差带来的接边倒影,可采用调换左右片生成正射影像进行贴补,使高层建筑物达到无缝接边,并最终完成数字正射影像图。

4.3 DLG制作

利用全数字摄影测量工作站VirtuoZo测图模块,导入空三加密成果恢复航摄数字影像的立体模型,采用内业判读,进行各地形要素的数据采集,生成图形文件。

作业不允许在1:1的模型比例尺下采集,一般放大1.4倍或两倍进行采集,以保证立体采集的精度。作业时需要注意的要素关系如下:

(1).数据采集时保证数据的完整性,减少断缺,避免遗漏、移位;线线相连的,必须进行捕捉;平行的要素,进行平行拷贝表示。道路、水系必须要能够真实表示形状,圆弧之处必须有足够的点来表示形状。面状要素需闭合,如房屋、湖、塘等;要素相交时应捕捉。

(2).房屋采集在房角上,需启用直角闭合的功能。对屋顶上的楼梯间、电梯间、冷却塔、水箱、卫星接收天线、烟囱以及临时性的建筑物不采集。

(3).有方向的线状符号(如:陡坎、围墙等),应特别注意采点顺序,采集时锯齿应在数字化方向的左侧,采用左手规则。

(4).自由图边、测区最近的电力线、等架空杆位必须测绘,以保证图内电力线、有准确的连接方向。

(5).内业采集过程必须做到除成果不能定性的因素外,基本上与该要素的最终表示效果一致,不给下道工序遗留多余的工作量,能在本工序完成的内容一定要在本工序内完成。

(6).每一个像对的测绘面积原则上不得超过基本控制点边线外1cm;图幅及像对必须在测图仪上完成接边。

6 小结

本文详细探讨高速公路地形图航测的整体流程,建议利用无人机航空摄影测量技术进行地形图生产,尽可能在载人机不便或无法完成的情况下,由无人机来完成。如多块小面积、危险场所、远离机场或没有可供其起降场地的区域。总之,目前无人机航测技术应该体现在载人飞机航测技术的补充方面。

参考文献

篇(4)

2.地方政府环境保护支出效率核算及影响因素实证研究

3.最严格环境保护制度:现状、经验与政策建议

4.中国地方政府环境保护支出的效率分析

5.无人机遥感系统在环境保护领域中的应用研究

6.论环境保护视角下消费税改革的再次深化

7.我国环境保护规划的分析与展望

8.基于经济责任的环境审计路径选择——浅析经济责任审计中的环境保护责任审计

9.当前国内外环境保护形势及其研究进展

10.中国环境保护事业60年

11.最严格环境保护制度:内涵、框架与改革思路

12.“十一五”环境保护投资评估

13.新疆十大水生态环境保护目标及其对策探析

14.从环境权到国家环境保护义务和环境公益诉讼

15.中国西部能源及矿业开发与环境保护协调发展研究

16.地方政府环境保护激励模型设计——基于博弈和合谋的视角

17.环境保护事权与支出责任划分研究

18.湖南省农村环境保护社区机制质量的实证研究

19.资源、体制与行动:当前中国环境保护社会运动析论

20.生态环境保护司法体制改革构想

21.我国生态环境保护与治理的法治机制研究

22.工程项目施工组织环境保护方案设计研究

23.环境保护权利话语的反思——兼论中国环境法的转型

24.农村环境保护法治建设的成就、问题和改进

25.环境保护检举权及其司法保障

26.建立中国最严格的环境保护制度的思考

27.环境保护相邻权制度之体系解释与司法适用

28.大秦岭西安段生态环境保护规划探析

29.论我国公众参与环境保护法律制度的完善

30.经济增长、环境保护与生态现代化——以环境社会学为视角

31.关于尾矿库的建设与环境保护问题的思考

32.企业环境保护意愿影响因素实证分析

33.构建环境保护税制体系 促进我国经济发展方式转变

34.美国水环境保护立法及其启示

35.我国海洋渔业环境保护管理机构间的协调机制探析

36.中外公众参与环境保护的立法比较

37.基于生态环境保护视角的土地整理生态效益评价——以成都市三河镇土地整理项目为例

38.我国环境保护投资效率问题研究

39.可扩展的环境保护档案元数据研究与实践

40.推进环境保护税立法的若干看法与政策建议

41.关于国家环境保护“十三五”规划的战略思考

42.环境保护与旅游经济协调发展研究——基于中国四大世界自然与文化遗产旅游目的地的面板数据分析

43.云南环境保护主要问题及对策研究

44.交通运输发展与环境保护探析

45.改革开放三十年中国环境保护政策演变

46.城市环境保护满意度及案例分析

47.京津冀地区资源开发利用与环境保护研究

48.日本土壤环境保护立法研究

49.澳大利亚生态环境保护的举措及经验借鉴

50.日本水环境质量影响因素及水生态环境保护措施研究  

51.中国环境保护事业的初创——兼述第一次全国环境保护会议及其历史贡献

52.中央财政环境保护专项资金优化设计探讨

53.湖南省环境保护投资现状分析

54.流域地方政府水环境保护绩效考评体系设计及其应用

55.构筑促进环境保护的公共财政制度

56.公众环境意识和参与环境保护现状的调查报告

57.公司的环境保护责任

58.关于我国环境保护费改税的思考

59.公众参与环境保护研究综述

60.生态文明建设视角下土地利用规划与环境保护规划的空间衔接研究

61.中国环境保护规划评估制度建设的主要问题分析

62.国家级流域水环境保护总体规划一般模式研究

63.论南海海洋环境保护公众参与制度的完善

64.环境保护:海外投资者面临的法律问题

65.新时期国家环境保护战略研究

66.无人机遥感技术在环境保护领域中的应用进展

67.环境保护社会治理的思路和政策建议

68.环境保护与经济发展的利益冲突分析——基于各级政府博弈视角

69.中国流域水环境保护规划体系设计

70.公众参与环境保护模式研究:社区磋商小组

71.中国环境保护投资对可持续发展的影响研究

72.公众对环境保护的网络参与研究——以PX项目的网络舆论演化为例

73.作为生态和环境保护手段的空间规划:联邦德国的经验及对中国的启示

74.中国工业环境管制强度与提升路线——基于中国工业环境保护成本与效益的实证研究

75.关于林业生态环境保护的若干哲学思考

76.我国生态环境保护的法律问题研究

77.中国农村环境保护的定位和策略分析

78.农村环境保护:国内外的经验、做法与启示

79.湄公河下游水资源开发与环境保护——各国政策取向与流域治理

80.加强生态环境保护 促进贸易与环境协调发展

81.借鉴国内外成功经验 完善广东农村环境保护管理机制

82.进一步促进农村环境保护的财政政策研究

83.三峡库区流域水环境保护分区

84.地方政府竞争的博弈行为与流域水环境保护

85.论中央环境保护专项资金项目绩效评价指标体系构建

86.生态环境保护与经济社会发展的协调统一——以潘得巴自然保护与社区发展项目为例

87.新常态下我国环境保护的战略与原则

88.环境保护中政府规制对企业行为的影响及其博弈分析

89.中国城市与农村环境保护的差距比较

90.环境保护与公众参与

91.环境保护市场化机制研究

92.环境保护税与排污费制度比较研究

93.论生态文明建设中农村环境保护的问题与对策——基于政策与法律对比分析的视角

94.三峡库区生态环境保护研究

95.我国开征环境保护税研究

96.我国农村环境保护之立法及执法完善研究

97.环境保护税法的实体原则与程序原则

篇(5)

中图分类号:TP301 文献标识码:A 文章编号:1009-3044(2013)28-6473-02

物联网被认为是继互联网之后的又一次技术革命,物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,被称为继计算机、互联网之后世界信息产业发展的第三次浪潮,是新一代信息技术的重要组成部分。

信息产业和环保产业属于国家未来重点扶持的新兴产业之一。而“环保物联网”这一将物联网技术和环境保护工作的结合可以助力环保产业的发展,而环保产业对信息技术的需求又可促进物联网技术的进步。[1]因此,物联网在环保领域的应用是有助于我国环境问题的解决和信息技术的发展的新兴课题。

1 我国环境保护的信息化发展历程

我国的大规模信息化建设始于上世纪80年代中期,而环保产业的信息化始于“九五”时期。至今的十余年间,环境信息化建设经过了三个阶段:准备期(90年代初至90年代中后期),基础期(1996-2001)和成长期(2002至今)。准备期的工作内容主要是管理信息(MIS)系统的建设和基础数据库的开发。基础期的核心则是在准备期的基础上,进行环境信息网络建设。该过程伴随着环保部门的办公信息化,以及环保理念的信息化宣传。之后,随着国家环保局“金环工程”的启动,以及一些类支持性法规政策(如《环境信息化“九五”规划和2010年远景目标》、《环境信息管理办法》、《环境信息标准化手册等》)的出台,我国的环保信息化正式迈入了快速成长的阶段。

2009年,总理提出要加快推进物联网发展、建立中国感知中心,物联网技术的重要性进一步凸显,并成为国家重点发展的战略性新兴产业的重要组成部分。在这一背景下,“环保物联网”的概念于2010年提出并开始流行起来。目前在环保领域,物联网应用的建设已成为培育和发展战略性新型环保行业、推动环境管理升级的重要手段。

2 环境数据收集网络基础上的环境监测

作为环保物联网最核心的工作之一,针对环境监测的数据收集主要包含环境质量监测和污染源监测两个方面。

2.1环境质量监测数据的采集

传统的环境监测是利用若干点源的监测来反映监测区域的总体环境情况,这种方法往往较为局限和片面。因而随着环境监测特别是宏观的需求的提高,一系列全局性的信息技术逐渐进入监测领域,并发挥重要作用。最典型的是“3S”技术(又称空间地球技术)。“3S”是由遥感(RS),全球定位系统(GPS),地理信息系统(GIS),整合成的一个综合性信息收集平台。[2]监测过程中,首先由RS技术(通过卫星或机载热红外设备)获得监控区域的光谱图像资料。由于大气、水体等污染常常伴随着图像化的信息,经过同往期的图像比较可以发现环境变化明显的区域,针对这些区域再进行GPS定位,进行重点监测,独立进行数据的收集。GIS技术则是一个针对数据进行综合管理和分析的平台。三种技术的联合运用,可实现大范围的环境监测。

“3S”技术在环境监测中具有监测范围广、速度快、成本低、可实现长期动态监控等优点,因而是目前大范围环境质量监控,尤其是大气环境监控、内陆水体环境监控、海洋环境监控以及城市生态环境监控等领域的主流技术。目前“3S”技术已有航空、航天以及无人机等遥感平台构成立体化,全方位的环境信息收集网络。[3]

2.2 污染源在线监测

全局性的环境监控以外,还需对排污企业为代表的重点污染源进行监控以实现对排污企业实现实时的监管。在这方面,物联网的应用主要体现在在线监测系统上。在线监测是近年来污染源监测的发展趋势,其含义是通过装在处理企业和排污设备上的各类监测仪表收集污染物数据,再经由信息网络将监控数据传至环境监测部门,实现监控和管理的过程。在线监控的意义在于监控数据更加真实可靠,同时可避免数据的滞后性。

典型的污染源在线监控系统包括数据收集系统和信息综合系统。前者安置于污染治理设施和排污设备上。主体是各种常规指标和污染物指标的检测仪器。收集的数据通常由运行记录仪和设备采集传输仪进行加密、储存、发送等。信息综合系统主要由计算机终端设备、监控中心系统等构成,对收集到的数据进行分类、分析、并入库储存以完成环境数据管理的过程。监控中心系统通常是由信息管理软件和数据库构成。[4]目前我国已在113个重点城市建立监控中心,实现对三千多个排污点实行在线监控,随着在物联网技术的促进下,监测网络已有相当规模。

3 物联网技术助力环保产业发展

国务院日前印发的《关于加快发展节能环保产业的意见》提出未来三大目标:产业技术水平显著提升、国产设备和产品基本满足市场需求、辐射带动作用得到充分发挥。在环保产业快速发展的这一时期下,物联网也在该领域起到了重要的作用。下文将在环保行业数据库和环保企业运营方面阐释物联网技术的应用。

3.1环保行业数据库的建设与管理

在全球信息化特别是大数据时代即将到来的背景下,数据库的建设和完善对一个产业的发展至关重要。作为基础数据平台,数据库是环保物联网中重要的一环,环保产业数据库主要包括环境保护资讯数据库、法律法规数据库、统计数据库、产品数据库、技术数据库、项目数据库、企业数据库和专家数据库、M&A数据库等。环保企业和研究机构等可以通过这些数据库进行查询、运算、分析,以得到环境状况、政策法规、行业发展现状、市场潜力、竞争主体情况、主流与前沿技术等信息,为产业链上的环境制造业和环境服务业的行业咨询与研究,企业相关决策制定等提供依据。[5]

3.2 环保企业运营过程的控制和管理

在近年来迅猛发展的领域,如物流、电子商务等,已在相当程度上通过基于物联网的信息管理技术实现了智能运营。以企业资源计划(ERP)系统为代表的综合管理系统在企业运营中可将物资资源管理(物流)、人力资源管理(人流)、财务资源管理(财流)、信息资源管理(信息流)集成一体,实现对运营流程的科学管理和优化,以达到资源的最高效配置。而现阶段,我国环保产业对这类系统的应用还不够充分和彻底,尚处于起步阶段,尤其是中小型环保企业。

目前在环保产业中,通过“智能管理平台”的研究主要集中在生活垃圾的收转运系统的优化管理、地沟油及餐厨垃圾收运体系监控和管理、进口废料的监管、资源的回收循环的管理等方面。

4 结束语

同为国家“十二五”期间重点发展产业,信息产业和环保产业将在国民经济中占据更大的比重,而信息技术在环保产业中的实践,则对环境保护工作的现代化有重大意义。通过对物联网在环保领域应用的梳理,可以发现物联网技术在环境保护管理以及环保产业的发展中都具有广泛的应用。以“3S”系统和污染源在线监测系统为核心的数据收集网络可为环境保护工作提供第一手数据,可实现污染源的监管,污染物总量的控制,以及对环境突发状况的及时应对。另一方面,物联网作为一个综合信息平台,也为环保产业,尤其是企业和研究机构提供了信息管理和运营管理的有效工具,为环保产业的发展起到了助力作用。

目前,我国环境保护工作的信息化在一些领域(如遥感技术、信息传输设备)等方面已取得一定成果。但总体来看,目前还处在建设和发展的阶段,尚存在不够完善的地方,还有较大的提高空间,如环保企业的智能化管理运营等。

未来,我国的环保信息化将顺应国际前沿趋势向智能环保的方向发展。这意味着环保物联网将在在智能层、网络层和应用层达到更透彻的感知、更全面的互连互通和更深入的智能化。总之,将以物联网为代表的信息技术将更深更广地融入环保领域的方方面面,将是信息技术工作者和环境工作者共同努力的目标。

参考文献:

[1] 陈艺虹,于立强.信息化与环境保护[C].优秀学术论文选,2003.

[2] 刘桂芳,卢鹤立.从数字地球系统看3S技术[J].安阳师范学院学报,2005(2).

篇(6)

中图分类号:TD67 文献标识码:A 文章编号:1672-3791(2014)07(b)-0096-02

我国作为一个矿业大国,金属矿业的整体水平落后于矿业发达国家,还大量存在开采方式落后导致的资源浪费、环境极大破坏等问题,矿业技术水平提升缓慢,装备研发能力不强等。有效提升科技含量、集约资源开发、减少环境污染,促进人和自然和谐可持续发展,是我国矿山企业至关重要的迫切课题,是矿业智慧发展的未来方向。

1 智慧矿山的发展

矿山生产模式大致经历了四个阶段:一是原始阶段,即主要通过手工和简单挖掘工具进行矿产采掘活动,无规划、效率低、资源浪费极大。二是机械化阶段,即大量采用机械设备进行矿产生产活动,机械化程度较高,但仍无规划、生产较粗放、资源浪费比较严重。三是数字化矿山阶段,采用自动化生产设备进行作业生产,采用信息化系统作为经营管理的工具,实现数字化整合、数据共享和互操作,但仍面临诸多系统集成、信息融合、数据存储与分析等复杂问题,而且核心仍围绕扩大开采量,对绿色开采、人文关怀、可持续发展等方面仍不够重视。四是智慧矿山阶段,通过智能信息技术的应用,使矿山具有人类般的思考、反应和行动能力,实现物物、物人、人人的全面信息集成和响应能力,主动感知、分析、并快速做出正确处理的矿山系统,人为的因素将降低最低程度,矿山企业的人财物产销存等能协同、自动运作,实现矿山企业的集约、高效、可持续发展。新一代互联网、云计算、智能传感、通信、遥感、卫星定位、地理信息系统等各项技术的成熟与融合,实现数字化、智能化的管理与反馈机制,为智慧矿山发展提供了技术基础。在芬兰、加拿大、瑞典等发达国家已为此目标发展了20多年,我国正处于起步阶段。

2 智慧矿山的特征

与以前各阶段相比,智慧矿山具有如下特征。

(1)可持续。前三个阶段的矿山生产模式都重在矿产生产的管理,呈现出从单一提高矿产生产效率到综合提高矿产生产与经营管理的整体效率提升的发展趋势。到了智慧矿山阶段,不仅关注矿山生产,更综合考虑了生产与经营管理的协调、企业与人的协调、资源开采与环境的协调,关注企业的稳定、可持续发展,从而使矿山具有更持久的生命周期。

(2)自动。矿山生产模式的发展历程实际上是生产工具的发展过程,智慧矿山利用遥感技术、智能技术实现对矿山运作的自动、实时感知;并能将历史数据进行存储和归类处理,形成基于特定场景的响应处理,形成接收、分析、响应的闭环过程,具备了生物智能。人工参与的程度反映其智慧发展的程度,有学者称“无人”是智慧矿山的终极标志。

(3)整体协同。强调各系统的开放、信息的整合、运作的协同,发挥矿山管理的整体功能。具体体现如:自动采集矿井中的特定气体指标、实时进行分析,并根据历史数据和设定阀值在超量指标时及时发出警告甚至启动紧急救生装置等;根据经营管理电子商务平台收到的订单数量、产品规格指标等,定期分析并反馈到生产部门,根据历史产销关系、产品指标与生产配方关系等数据,相应控制生产数量和生产冶炼配方等,实现产销平衡等等。

(4)随时随地。原始阶段的生产地点局限于生产作业现场的单点,局限于生产作业现场的特定环境条件;机械化阶段的生产地点可扩展到生产作业面,并拟补了特定环境条件的局限性;数字化矿山则通过信息化手段实现远程操作,生产操作地点可以扩展到信息化所能达到地方;智慧矿山则通过卫星地理定位技术、遥感技术、移动互联、大数据处理等新一代信息技术实现无处不在、无时不在的随身智能融合服务。

3 智慧矿山的顶层体系

智慧矿山总体上体现为三大体系,就是智慧生产体系、智慧人文体系、智慧管理体系。智慧生产体系,主要基于数字化矿山,采用新型信息技术实现远程遥控、无人值守、自动机械化的采选等生产过程,降低作业成本,提高开采效率;智慧人文体系是关注矿山员工的职业健康和安全,通过信息化技术实现生产安全监测、人员定位、工作时长管理、自动化安全及健康预警响应,降低安全事故,提高员工健康保障;智慧管理体系是关注矿山生产经营管理,根据市场需求和矿山资源情况,动态平衡产供销关系,实现资源的合理开采,提高矿山的服务期限和价值。

3.1 智慧生产体系

智慧生产体系主要包括:矿山地质管理系统、生产执行系统、数字化的生产设备系统。

(1)矿山地质管理系统主要采用矿山地测采三维系统,关注矿山地质勘探、矿石储量、矿石质量情况的掌握,并建立平顺的采剥和采掘计划,实现优化开采设计,降低开采损失贫化率,降低采矿成本。以矿山三维建模为核心的矿山测量、矿山模型、矿山资源管理、采矿设计的矿山全生命过程管理,对应着地质资源信息从产生、加工、统计分析、指导生产这一地质资源信息的生存期间内的各个环节,通过真三维模型构建矿区工程的结构、形态特征以及空间展布,使矿山工作者可以直观、清楚地观察目标,通过平移、旋转、缩放、虚拟漫游、剖面显示、融合显示、动画显示等可视化操作,动态研究其内部细节,并与地测空间信息数据库、地质编录智能分析系统集成,支持各类地测平面图件绘制、地矿三维建模、品位及储量计算等工作,实现地质资源信息在地测采环节间的无缝流转。

(2)生产执行系统主要管理现场生产过程,覆盖矿山现场生产、质量、设备、仓库、检验、计量等多个环节,强化职能部室、矿、选厂、冶炼厂之间的信息共享和业务协同,支持管理人员根据人财物各种资源的状况和产供销各个环节的信息,合理组织生产,协调开展生产经营活动。在生产管理方面,主要满足生产业务单元生产计划、现场调度、现场作业管理、生产数据收集的需要,通过系统的建立,强化现场生产制造的业务执行,实现自动下达生产计划,自动收集现场生产数据。在计质量管理方面,强化了全过程质量管理原则,集称重、采样、制样、化验等工作流于一体,支持质量标准及检测规则制定、各生产阶段的质量检查、产成品的质量合格信息等质量过程,实现全公司质量信息共享及产品生产质量数据全程可追溯。在设备管理方面,支持建立责、权、利和谐统一的设备管理体系,突出设备管理工作的制度化、规范化、标准化,实现设备信息共享。在标准管理体系上,以设备编码、人员岗位管理为主线,设备管理四大标准为核心,实现设备安装、点检、检修、报废全生命周期管理。

(3)数字化的生产设备系统主要实现生产现场的数字化、自动化机械作业,一方面,要能通过数字指令实现对矿区采选冶过程的机械作业;另一方面,还要能通过数字信号与后台控制系统、生产执行系统进行信息集成,及时获知生产状况,控制生产过程。主要包括:智慧无人机械开采工作面系统、智慧充填开采工作面系统、智慧炮掘无人工作面、智慧运输系统、智慧提升系统、智慧供电系统等。

3.2 智慧人文体系

一是通过生产过程的自动化,大量减少矿区艰苦环境下的现场作业人员,提高生产过程的技术要素,从体力型到技术型过渡,从职业上提高职工素质,大大改善队伍结构和员工待遇水平。二是持续关注现场生产的职业健康,改变艰苦行业、高危行业的环境条件,提供健康、安全的生产环境,保障人身健康。在矿山生产企业中,职业健康与安全包含了:环境、防火、防水等多个方面,主要包含如下子系统:智慧职业健康安全环境系统、智慧环境监测系统、智慧防灭火系统、智慧爆破监控系统、智慧冲击地压监控系统、智慧人员监控系统、智慧压风系统、智慧通风系统、智慧排水系统、智慧水害监控系统、智慧视频监控系统,智慧应急救援系统,智慧污水处理系统等等。这些子系统提供安全生产的各类条件,通过各种仪器设备对各类环境指标数据进行实时的自动监测,并能对超出预警界限的指标发出自动预警,特殊情况下还能启动人身应急救援系统,从而构筑起一套完整的人文保障体系。

3.3 智慧管理体系

智慧管理体系是运用信息技术,有效集成矿山的资金流、物流和信息流,对人、财、物、产、供、销进行综合管理,全面整合生产经营各类信息,提供管理决策支持。从管理运营角度有效整合矿山企业的内外部资源,协同上下游关系,优化配置内部资源,实现从资源的合理开采、节约消耗、有效销售,提高企业的经营业绩。智慧管理体系主要包括:以ERP系统所覆盖的人力、财务、供应链、设备、项目、供应商、客户关系等方面管理等,以及办公自动化、造价管理、知识管理、审计监控、科技项目等职能化管理方面,还有,基于各个方面的经营数据基础上通过经营分析模型构建的决策支持系统,形成各层级管理人员开展经营管理的综合体系。

纵观矿业发展的大趋势,我国金属矿业面临着绿色开发、深部开采、智慧采矿这三大发展主题。智慧采矿是矿业科技创新的重要方向,是矿业向知识经济过渡的产业形态,是新世纪矿业发展的前瞻性目标,还有一系列的技术难题有待解决,需要在持续探讨和应用实践中逐步创新求解。

参考文献

[1] 王李管,刘晓明,黎常青,等.数字矿山技术平台总体规划[C]//王李管.数字矿山技术发展与应用高层论坛论文集长沙:中南大学出版社,2013:3-9.

篇(7)

1引言

在经济迅速发展的今天,交通运输业在不断地发展,这使得铁路的建设也更加普遍,铁路交通作为现今轨道交通的一种,具有省时、节能等优点,存在巨大的发展空间。但是,作为重要的交通方式之一,铁路的建设过程中安全问题应该放在首位,这就需要在施工之前对线路进行合理的勘察。在实际铁路的勘察过程中,也还存在着一系列的问题有待于解决,由于铁路一般是线性分布,由一个城市连接多个城市,这就会使途中的地质和地貌有很大的变化。因此,在铁路的勘察过程中,应该尽量减少一些不利因素对于工程的影响,为路线更好的开发奠定基础。

2铁路勘察的目的

铁路工程的建设前期最重要的工作就是勘察,铁路勘察的主要目的就是熟悉铁路所在区域的相关情况,尤其是地质情况,并对实际情况进行掌握,只有这样,才能使铁路的建设人员充分了解相关情况,并预测可能出现的事故等,使这一区域的地质可以得到最大限度的开发,避开开发的不利因素。按照地质条件的不同,可以实现铁路因地制宜的开发项目,在实现物尽其用的同时,还能保障对所在区域铁路施工的有效管理[1]。对于铁路的勘察,主要有以下几点作用:第一,为帮助工程找到最佳的施工地点,可以在规划的环节进行勘察,这就是选点的关键,铁路是跨区域的施工工程,只有将各地区最适合施工的地点选好,才能保障后期的工程顺利完成;第二,为建设工作更好的实施,需要勘察的过程中做好相应的规划工作,在保障勘察资料具有一定的真实性和科学性的同时,要进行工程的可行性研究。

3铁路勘察的现状

当前的铁路行业虽然发展迅速,但在施工过程中,尤其是在勘察的过程中还有许多的问题有待于解决,具体包括以下三个部分:第一,工作人员在工作中的专业性较差,这主要是由于很大一部分的工程师对于其他的一些专业缺少了解,与此同时,设计人员和施工人员的勘察知识不多,就导致对于勘察的知识和技术不够专业,很多情况下,由于一些工作人员对于铁路的勘察专业知识不足,但却对勘察的工作提出了一些想法,也有设计人员对铁路的勘察工作进行随意安排的现象,这些情况在很大程度上阻碍了勘察结果的科学性,更有甚者,完全不尊重施工地点的情况,不做勘察就直接进行施工,这在很大程度上致使事故发生;第二,在勘察的过程中资金没有进行合理的安排,这是由于勘察人员的技术不足以及实际勘察具有很大的难度,致使勘察的成本超过实际的勘察预算,也会影响整个铁路施工的建设进度;第三,勘察的周期没有进行合理的安排,铁路的勘察工作是非常复杂的,需要一定的周期[2]。但是,在很多的铁路工程中,经常是在工程项目进行报送时就需要提交相应的地质报告,或者是可研报告刚刚提交施工单位就要求提交相应的地质报告,这就在很大程度上导致铁路的勘察周期缩短,勘察的结果也受到很大的影响。

4改善铁路勘察的措施

在铁路的勘察过程中,往往会由于很多外界因素影响到铁路的勘察效果,本文根据这些问题给出相应的措施,具体分为以下几个方面:第一,应该重视铁路的勘察对于环境的影响[3]。这是由于铁路是连接多个城市的重要运输线路,每一个城市的环境也不尽相同。因此,在进行勘察的过程中,尤其要注意的是对于环境的影响,这种影响主要包括两个方面:一是铁路的勘察工作会对铁路的周边环境产生相应的影响,主要是由于一段铁路的施工,可能会对这段铁路原有的线路有一定的影响,二是铁路的勘察会对铁路的建设地的地质产生一定的影响,铁路在勘察的过程中,就是对于原有的地质环境进行改变的过程,一旦施工不到位,就极有可能导致施工地点的地面出现变形等现象。第二,应该划分好责任,这主要是清楚勘察工作的流程及技术管理,主要是由勘察单位负责来对问题进行解决。第三,对于施工方法要进行统筹管理,由于勘察要求不同,对应的岩土的勘察重点也不同,在勘察过程中应该尽量减少因目标不清晰造成的各种资源不能尽用的问题。第四,勘察应该加强与设计的联系,这就需要勘察人员及时与设计人员进行沟通和联系,在了解整个铁路设计的前提下,熟悉铁路设计中需要的参数,明确应该勘察的重点,对于勘察的项目进行有针对性的布置,减少工作成本的浪费。

5铁路勘察的技术发展

现今的铁路勘察技术已经逐渐的发展,本文对于勘察的几个技术进行具体的分析:第一,测绘。测绘是铁路勘察中最常用的也是最基础的办法之一,简单来说就是在测绘知识的前提下,通过对要修建的铁路位置进行相应的野外调查,对铁路将要施工的区域进行相应的勘察,在勘察的同时记录好相应的水文、地貌以及地质情况,并对这些数据加以分析和研究,通过分析的结果制定好相应的地形图,从而达到可以帮助后期的施工工作顺利进行的目的。第二,制定并完善相应的铁路勘察管理制度。由于勘察单位不同,相应的勘察侧重点和技术方法也不同,这就导致勘察的结果也不尽相同,这些因素会对铁路的设计和使用方面产生各种不同的影响。因此,各单位应该设置相应的铁路勘察管理机制,对已有管理制度的单位应该对其进行完善,致使铁路相关的勘察单位具有相似的管理制度,从而在很大程度上解决这一系列的问题。第三,使用钻探技术和坑探技术。钻探技术和坑探技术可以有效地探明将要建造的铁路的所在地的地质情况,并且是最重要的勘察手段之一,在铁路工程的勘察工作中是不可缺少的。钻探方法的使用是很广泛的,可以根据具体地质的不同来进行具体的应用。

6结语

综上所述,在铁路工程的勘察过程中,可能会遇到很多问题。例如,工作人员在工作中的专业性较差,在勘察的过程中资金没有进行合理的安排,勘察的周期没有进行合理的安排等,针对这些问题,应该采取一系列的改进措施。例如,应该重视铁路的勘察对于环境的影响,对于施工方法要进行统筹管理等。与此同时,本文根据现今的铁路勘察情况,详细叙述了几种勘察技术的发展课题。例如,测绘技术、制定并完善相应的铁路勘察管理制度、使用钻探技术和坑探技术等。

【参考文献】

【1】兰坚强.山区高速铁路工程地质勘察及存在的问题———以赣龙铁路福建段为例[J].资源信息与工程,2017(02):152-153+155.

上一篇: 心理咨询毕业论文 下一篇: 基层挂职锻炼总结
相关精选
相关期刊