化学家汇总十篇

时间:2022-05-07 19:33:29

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇化学家范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

化学家

篇(1)

战略引领为导向

熟悉樊澄的人知道,他大学的专业是有机合成,后来又获得了北京大学工商管理专业硕士学位,他还持有高级会计师、高级工程师、注册会计师等资格。

或许正是因为这种专业背景,使他的视野并不局限于财务,而是常常站在更高的层面理解财务、运用财务,赋予财务更加广泛而深刻的功能。难怪他的同事开玩笑称,樊总关注的不仅仅是数字表面的“物理反应”,而是更加重视财务数据背后的“化学反应”。这也使他的工作中充满了创新与质变。

樊澄非常重视战略引领和战略实施。为实现“竞争实力世界前列、发展能力持续增强、客户体验独特美好、相关利益稳步提升”的战略目标,国航确立了“枢纽网络战略、成本优势战略、资源聚合战略、产品创新战略、品牌战略、专业化战略和人才战略”的7大战略重点,每年通过战略解码确定公司的年度战略管理点,并建立多层级管控架构推动战略实施。这些年来,国航的战略目标日益明晰,战略进程得到稳健推进,在网络布局,成本控制,运行效率和市场竞争力方面取得了长足进步。

基础管理为抓手

牵牛要牵牛鼻子。这一点在樊澄的工作风格中得到了充分的体现。

初到国航,正值公司上市伊始,针对上市公司财务管理的特点,樊澄以整章建制为切入点,全力推动财务工作的基础管理,确保财务工作有章可循,财务管理有序高效。2010年2月,樊澄亲自挂帅,启动了“国航财务管理支持板块采购和资产管理模块”项目,旨在通过系统建设推动采购、资产管理流程的标准化,搭建国航采购信息及资产管理信息的数据平台,使信息统计更为快速、准确,为有效控制公司采购成本和资产管理成本提供数据支持,使业务数据及财务数据实现有效集成,推动财务核算的精细化,为管理层决策提供支持。

樊澄始终致力于建立理念领先、完整有效的内部控制与风险管理体系,推动实施全面风险管理。在他的主导下公司对财务管理进行战略规划,全方位诊断财务管理体系,确立财务管理的目标和路径。此外,完成了财务内控的基本框架和内控操作指引,编制了公司内部控制规范,通过构建公司风险管理体系,增强了公司抵御风险的能力。

资金管理是企业管理和财务管理的核心,对于资产负债率普遍较高的航空公司而言,资金管理尤为重要。樊澄着力于公司资金管理体系的建设,如倡导资金集中管理,搭建境内外统一资金管理平台。如今,公司已实现境内外资金的统一归集、调度及监控,大幅提高了资金使用率和安全性。

此外,樊澄率先提出了优化结构性成本的管理理念,他强调从飞机整个寿命周期进行成本的战略管理,在源头上控制结构性成本;公司坚持注重成本效率,力求以合理的投入实现最佳的回报,以合理的规模来实现成本管理的规模效应,确保公司维持了在行业中的成本优势。

资本运作为助力

篇(2)

【正文】

1661年,R.Boyle所著《怀疑的化学家》在牛津出版。化学史家曾经不止一次地指出过,正是这部著作使古老的“黑术”(古埃及“化学”概念的直译)走上了科学的道路。遗憾的是,341年过去了,我国学者对它的研究一直不多。除了少量文献间接而零星的提及它之外,系统的研究似乎还没有过。因此,《怀疑的化学家》究竟怀疑什么?实在还是值得我们深入讨论的问题。但愿我们的一孔之见,能够收到抛砖引玉和拾遗补缺的作用。

怀疑之一:在怎样的基础上建立元素说或要素说?

早在17世纪以前,化学家们就把我们周围的多样化的世界,限定为由几种最简单的“元素”(elements)或“要素”(principles)构成的世界。对此,R.boyle首先表示了怀疑。R.boyle指出:“尽管我在逍遥学派人士的书籍中遇到精微的推理,并在化学家们的实验室里看到美妙的实验,但因我疑犹而迟钝的天性而不禁觉得,如果他们都拿不出比通常拿出的更为有力的论据来证明他们的主张的正确性的话,那么,人们便有足够理由,对于结合物的那些物质组分,亦即一些人要我们称之为元素,另一些人要我们称之为要素的东西的确切数目是多少的问题,保留他们的一些怀疑。”[1](注:R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第17页。)

R.Boyle指出,逍遥学派的四元素说,并不是按照实验的要求建立起来的,而是按照演绎的逻辑建立起来的。他们历来不大重视收集实验证据来证明他们的学说。他们仅仅满足于现有的理论,而不希望理论变得更加完美。他们也做实验。但是,他们的实验是为了解释真理,而不是为了证明真理,就像数学家用几何关系,天文学家用天球模型来解释世界一样。

16世纪,医药化学家巴拉塞尔苏斯(Paracelsus,1493-1541)——他被R.Boyle戏称之为“被煤烟熏出来的经验主义者”——最早对这种学说提出了异议。在巴拉塞尔苏斯看来,构成世界的不是土、水、气、火四元素,而应该是盐、硫、汞三要素(principles)。但是,R.Boyle指出,巴拉塞尔苏斯对三要素的证明却带有许多神秘色彩,和一些不易被人识别的神秘工序。“任何一个严肃的人要弄懂他们的意思,就好比去找出他们的万能酊剂一样,简直比登天还难。”[1.p.23]

这就是说,无论是用演绎逻辑,还是用经验主义加神秘主义的方式来建立元素的概念都是错误的。R.Boyle还指出,逍遥学派和医药化学家通常用“火”作为结合物组成元素的分析工具,也是值得怀疑的。R.Boyle说:“火并不总是仅只对种种元素成分起分离作用,至少也有时会对物体的组分起改变作用。”[1.pp.26]就是说,必须对古代元素理论的逻辑基础、神秘主义特点、以及化学实验方法进行重新的审视,才能建立严格科学的化学哲学。由此,R.Boyle很有信心地认为,“我对逍遥学派人士和化学家们为了证明元素的存在和数目所采用的那样鉴定方法进行质疑是有一定道理的。”[2](注:R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第27页。此处的“化学家”,实际上也可以翻译成“药剂师”,特指16世纪以巴拉塞尔苏斯和海尔孟为代表的医药化学家。)

怀疑之二:化学家能否创造自然界中先前并不存在的物质?

R.Boyle是一位笃信上帝的基督徒。他认为只有上帝才是自然界独一无二的创造者。化学家的创造是不可能超过上帝的。化学家所创造出来的化合物,总可以被分解成上帝原创的那些物质。化学家并不能创造出上帝所未曾创造过的物质。

为了证明这一点,R.Boyle首先给出四个关于化学微粒概念的表述[1·pp.33~37]。这个表述由四个命题构成。用我们通常可理解的语言来表达就是:

命题1:所有的化合物都是不同的微粒构成的。

命题2:微粒可以结合成微粒团或微粒簇。

命题3:生命物质(动物或植物)可以用火法分解出少数几种物质。

命题4:构成凝结物的物质就是“要素”或“元素”。

既然构成化合物的微粒就是要素或元素,那么,这些微粒是预存于各种不同物质形态中的基本元素呢?还是化学家们的最新创造?

为了证明基本元素是预先存在的,R.Boyle举了这么一个例子:

金作为一种贵金属,可以与银、铜、锡、铅、锑矿石共生或者共熔。这些共生或共熔后形成的物质,既不是金,也不是任何可以与之共生共熔的其它物质。此外,金还可以融入王水。[3](注:即今“盐硝酸”(nitrohydrochloricacid),它是一种由三分盐酸和一分硝酸组成的黄色混合液,气味浓烈,腐蚀性强。因为它能融化“高贵的金属”(如,金、铂),故称“王水”。)当金被融入王水之后,金的微粒成了王水的一部分,并被王水“掩盖”起来了。如果将融化金的王水蒸发,还可以得到结晶形态的盐(,黄色针状晶体)。用我们现在的反应式来写就是:

附图

显然,还可以将含金的盐,通过还原重新得到金。类似的实验还可以在其它物质之间进行。这样就很容易形成一个结论,当反应物的金以最初凝结物参与一个化学反应过程时,是以凝结物的整体形式进行的。金作为最小微粒的结合物,仍可以参与构成许多完全不同于金的化合物。而当金参与其它物质的构成时,金本身的性质和结构并没有发生改变。从金到含金盐,再回到金,整个过程都表明了金的某种不变性。从含金盐的升华分解可以证明,所有分解出来的“元素”或者“要素”一定是预先存在着的。所以,化学家并不能创造预先不存在的东西。

怀疑之三:火是万能分析工具吗?

在R.Boyle发表《怀疑的化学家》之前,火一直被当作分析结合物的万能工具。R.Boyle根据自己的化学实践指出,不论平庸的化学家们对此做过怎样的证明,发过怎样的训示,这恰恰是值得怀疑的。

R.Boyle认为,要确定火在化学反应中的作用并不是简单的事。他举例说,将愈创木放在火炉中燃烧,可以使愈创木分离成灰烬与油烟;而在曲颈瓶中蒸馏同样的树木却产生了极为不同的“异质”[4](注:这是海尔孟化学哲学的一个术语,泛指本质上相异的物质。)物质。可见,火对于直接燃烧某些物质与隔离于密闭容器之中来蒸馏或升华某些物质,其作用方式和作用效果是不相同的。

除此以外,用火来完成一个分析过程,它的作用强度也是不可忽视的。R.Boyle以肥皂的生产为例,当火的强度适当的时候,它可以便盐、水、油或油脂发生共沸使之混合成一体。若对这种混合体再施加更强烈的热的作用,这一产物又会被分解成一种既含油也含水的成分、一种含盐成分以及一种土状成分。

医药化学家巴拉塞尔苏斯说,万物都是由盐、硫和汞构成的。可是,R.Boyle说:“这种可能却从来不曾被实现过,更不用说要将所有这三要素一起分离出来。”[1.p.43]其中最显著的例子是,无法从金中分离出盐、硫或汞来。从铅银混合熔液、铜锌矿石、威尼斯云母、莫斯科玻璃、骨质项链、或从可熔的纯砂中都分离不出三要素中的任何一种。这表明,尽管火法分析被视为一种惯常的分析方法,但是,火法并不一定能够分析出“元素”来。

另一方面,对于某些化合物,不用火法分析,用另外一些方法反倒能够有效地进行化学元素分析。R.Boyle举例说,将金和银熔炼为一体后,再用火法很难将它们分离开来。而将它们置于镪水[5](注:即浓硝酸,这是法国人在16世纪合成的一种强酸,当时的法国化学家称它为分离剂。)中却很容易将金和银分开来。一些含金属的盐,用火法几乎不能将这些金属分离出来,而将它们置于矾的水溶液就可以沉淀出所要分离的物质来。

由上种种,R.Boyle得出的结论十分明显:“火并不是一切结合物的万能分析工具。”[1.p.56]

怀疑之四:将火作用于某一结合物所得到的物质,是先存于该结合物之中的吗?

17世纪以前的化学家们认为,火只能分离先存于结合物中的物质,却不能改变这些物质。对于这个流行了两千年来的观念,R.Boyle用可以检验的实验得出了一个富有挑战性的结论:“火的运用,实际上往往非但可能将复合物分解成一些微小的成分,而且可能促使这些成分以一种新的方式复合。也许,一些含盐物质、含硫物质、以及具有另一些结构的物体可能是通过这种方式产生的。”[1.p.82]R.Boyle提出一个例子说,“勿须使用任何附加剂,也可以从植物中制得玻璃。”[1.p.83]而且,从植物制取玻璃只能在用火的过程中得到。对此,任何人都没有充分的理由断言,玻璃是预先存在于植物之中的。

诸如此类的实验证明:“火既常能分解物体,亦常能改变物体。我们运用火有可能从结合物中得到并非预先存在于其中的物体。”[1.p.84]

怀疑之五:“元素”(或“要素”)究竟以怎样的方式混合成物质?

亚里士多德曾经举例说,将一滴酒加入到比它多达数万倍的水中,这滴酒会因为受制于水而变成水。R.Boyle认为,这是不可理解的。假若亚里士多德的这个论断可以成立的话,则人们就完全可以将所有的贱金属都变成贵金属。比如,他可以将一块金熔化,然后再象滴酒那样,一粒一粒地加入极少量的铅或者锑,这样累积性的增加下去,所有的铅或者锑就都有可能转变成金了。这显然是荒谬的。

但是,这种被加入的物质与先前已经存在的底物之间,究竟是怎样一种结合方式呢?

第一种关系:并置关系

当一种物体被加入到另一种物体之后,出现了表面上看起来具有整体性相同的性质。比如,铜的颗粒被加入熔炼的液态金之后,就看不到原先的铜了。但是,金和铜却在复合过程中保持着自身的性质。二者只是以并置的关系构成一个整体,表现某种联合而已。并置的混合物所表现出来的性质也是并置的。这好比用白线和黑线相间织成的布那样。虽然,白线和黑线分别保持了它原来的性质不变,但它的整体感观印象却是灰色的。要知道并置混合物的性质,把这些组分拆开就清楚了。这种关系可以解释如下一些化学实验事实:

将三分银与一分金混合,通过熔化使之完全熔融,从而使生成的金属具有新性质。然后,将这种具有新性质的金属投入镪水溶液中。结果,具有新性质的金属会被迅速溶解。其中,银被溶化在镪水溶液中,而金则被沉淀下来。然后,还可以将银从镪水溶液中恢复出来。这就证明,当化学家把金和银熔融成“合金”的时候,金和银两种物体是并置的。

第二种关系:“极其牢固的”结合关系

在R.Boyle看来,结合物的结合,有些是非正常类型的。比如,水与水的混合;将两种不同的酒倒在一起,等等。化学家不必研究这样的结合。化学家所关心的结合,是指两种或多种不同种类的物体通过微小组分而互相结合,如,灰与砂子熔化成玻璃,糖溶于酒和水中,所得到的物质[6](注:其实这种结合仍包含不同的形式。前者是通过化学反应的结合,后者则是物理的结合。在R.Boyle时代,这样的区别还十分模糊。)。在这样的结合方式中,结合物中的组分并没有保持着它们原来的性质。因而,也不可能用火法分析从这些“新物质”中分离出原来的组分来。比如,不可能将玻璃再分开为砂子和灰。但这并不否认,在某些情况下,可能实现各种组分的重新分离。但是,这样的分离过程,对于大多数结合物来说是不可能实现的。这表明,大部分的结合物是“极其牢固的”(R.Boyle语)。这些物体既不是“元素物体”(即我们今天所讲的“单质”),也从未有元素被分离出来的可能。

R.Boyle发现不同元素的粒子或粒子团在化合或混合后形成新的物质的时候,可能存在以下三种不同的情形:

第一种情形:反应性的粒子之间虽然发生了极为紧密的结合,并已形成了前所未有的新的物质和物质特性,但是,这些粒子却依然保持其作为反应物粒子的基本特性不变。

R.Boyle以金和银熔解后形成合金为例说明了这个问题。即,当金和银以某一适当的比例熔在一起后,利用镪水可使银溶解,而金则原原本本地留了下来。

这里所涉及的是合金问题。总的说来,按照我们今天的化学观点,将不同的金属结合成合金是物理变化,而不是化学变化。这一点不仅R.Boyle时代认识不清,现在也依然容易引起人们的误解。

当我们将不同的金属共同熔炼的时候,不同的比例,不同的熔炼方式和不同的温度条件,会获得不同物理性能的生成物。一种是以金间化合物的形式存在,如,两个金原子与一个纳原子可以形成一种二金钠、一个锡原子与一个铜原子可以结成锡化铜(CuSn)。在这种情况下,电负性较强的一种金属会把电子扔向电负性较弱的另一种金属。它们之间不具备通常的化合价理论所描述的那种结构方式,而只是一种结合倾向。所以,金间化合物的结合不牢固。另一种是以固溶体形式存在的。当两种金属熔化之后,某种金属原子的位置被另一金属原子所挤占,而形成原子位置的置换,或某种金属原子填补了另一金属元素的裂隙。这是合金工艺中出现最多的一种情形。经过这样的原子置换或填隙所获得的产品,比原来各自独立的金属具有更多更好的物理性能和化学性能。合金的第三种形式是两种金属元素的机械混合。这样的机械混合所得到的“生成物”,照样可以获得新的性能。无论是金间化合、固溶体形式的均匀混合,或是机械的不均匀的混合,它们都只是物理变化,或者更倾向于物理变化,而不是完全意义上的化学变化。这也就是R.Boyle所讲的,金属熔炼之后金属粒子“仍有可能保持其自身的性质”的现代解释。当然,这样的解释在R.Boyle那个时代是不可能有的。因为那个时候,还没有对物理变化和化学变化做出区分。

第二种情形:某些粒子团,粒子之间的结合并不紧密,以致于当这些粒子遇到其它种类的微粒时,则倾向与这些微粒发生结合。它使参加结合的两种粒子都丧失其原有的性质而被赋予新的性质。

与上一种情形实质上是物理变化不同,R,.Boyle所描述的这一种情形显然是化学变化。他举的例子是,将铜溶于镪水或硝石精中,对溶液进行结晶,可以得到一种很好看的矾(即硫酸铜)。还有,将红铜与浓醋酸一起产生化学反应,结晶后得到的铅糖。这种醋酸被紧紧地固在了铅糖一起。继续对铅糖加热蒸馏,得到的不是原先参加反应的醋酸,而是一点也不酸具有强渗透性的东西[7](注:袁江洋推测这种“一点也不酸”的东西可能是铅糖受热失水分解后得到的醋酸酐。对此,我们不表示异议。)

转贴于 第三种情形是,物质发生化学反应之后,实现了更加紧密的结合。

按照并置论的推测,将蓝色的粉末与黄色的粉末相混合,直观上应该得到绿色的粉末。可是,当把红铅与硇砂以适当比例混合后再置于玻璃容器中加热时,原来的砖红

R.Boyle的这些发现开启了人们科学地认识化学物质的结构方式的道路。由之取得的第一个认识成就,是正确区分了物理变化和化学变化。

怀疑之六:造物主究竟用多少种元素创造了世界?

所有的结合物,不多也不少,正好是由三要素(硫、汞、盐)或四元素(土、水、气、火)构成的吗?是否存在这样一种情形,某些物质是由两种元素微粒构成的,而另有一些物质则是由三种、四种、五种甚至更多的元素的微粒构成的?

首先,R.Boyle认为,关于物质构成的三要素说肯定是不能成立的。他问:有谁可以证明,从贵金属中能够分解出盐、硫和汞呢?R.Boyle以打赌的口吻说:“如若有谁声称能够做成这个实验,并甘愿在万一遭到失败之后赔偿损失的话,我愿意给他提供实验所需的全部材料和资金。”[1.p.105]对于不纯的金子,从中提取出不属于金的杂质元素来是做得到的。R.Boyle说,你把这些提取物叫做“金的酊剂”或“硫”都是无关紧要的。大概,从金中提炼出汞来也是可能的。但是,R.Boyle绝不相信可以从金中分离出盐来。R.Boyle还用威尼斯云母做实验,将其置于强火中灼烧,也没有分离出医药化学家所说的三要素来。这就足以证明,三要素的说法是站不住脚的。

对于某些物质,它不能被分解出三要素;而另一些物质则可以分解出多于三种的组分来。因此,“三”这个数目,并不能代表物体的那些普适要素的数目。R.Boyle以葡萄为例,证明粘液和土也是构成结合物的元素。我们没有理由把这两种要素从物质的基本组成要素排斥出去。

因此,自然界的元素究竟有多少?还需要进一步的研究。

怀疑之七:究竟什么样的存在物可以称为元素?

R.Boyle指出,其实,不管是逍遥学派的哲学家,还是医药化学家,他们的“元素”或“要素”都不能反映物质构成的真实情况。他们随意加诸于火法分析产物之上的名称,说明不了任何问题。一个人对自己生养的孩子取什么名字,当然有他的自由。化学家对他们火法分析所得到的产物给以命名,当然也是他们的权利。但是,他们把这些产物理解为一种简单性的存在物,把它们叫做“元素”或“要素”就大错特错了。

R.Boyle指出:“人们正是依据一些微不足道的性质来定义一个个化学要素的。譬如,当人们利用火分解某种复合物时,倘若得到了一种可燃且不溶于水的物质,那么他们便会称之为‘硫’;倘是有味道、可溶于水的物质,则必定被当作‘盐’;而一切固定的、不溶于水的物质皆命之曰‘土’。又,我敢说,不问其构成,只要是挥发性的物质,都会被他们叫做‘汞’。”[8](注:R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第134页。从这一段文字,读者不难看出,17世纪以前的欧洲化学家们所使用的硫、盐、汞和土,都不是我们现在化学意义上所指称的对应概念。)而且,当他们定义了“可燃烧,有气味”原始而简单性物质的“硫”[9](注:此处的“硫”是17世纪以前的化学家曾经作为三要素存在的硫,不是我们今天作为化学元素的硫。)之后,如果有人说,存在一种不可燃的硫。则说这个话的人会被指责为相信“阳光灿烂的黑夜或液态的冰块”那样幼稚可笑。然而,经由火法分析所得到的产物是否都具有上述简单的性质?这是值得怀疑的。

第一,在火法分析中,加入不同的“作用剂”(催化剂或反应剂)同一种物质将会嬗变出性质截然不同的物质。R.Boyle举例说,蒸馏油橄榄所得到的油本身具有很强的腐蚀性和很难闻的气味。如果在这种油中加入医药化学家所讲的那种循环盐进行煮解,即可变成一种很香的油。这就证明,当使用火法分析来判断其组成要素时,其火法分析的产物与添加剂有关。

第二,火法分析可能增加底物的重量。R.Boyle把火理解为“众多的快速运动的微粒”。由于它们十分微小,且可快速运动,因此,它们能够穿过一些最坚固、最密实的物体,甚至穿过玻璃。如此,当人们使用火进行化学分析时,火微粒就可能进入这些物体,并同这些物体发生结合,并导致增重。比如,火作用于生石灰时,就似乎有大量的火微粒相当牢固地被结合到其中去了。

第三,火法分析既不能得到元素,也不能得到复合这种物质的混合成分,而是得到了新的物质。按照R.Boyle的“元素”概念,元素是那些指可以复合成其它物体,而不能由其它物体来复合的完全均一的物质。元素直接结合而生成的物质,R.Boyle称为第一结合物或原始结合物。第一结合物的再次结合生成第二结合物。当然,第二结合物中的某些结合物还可以经再次组合,又可形成第三结合物。如此等等,不一而足。R.Boyle认为,只有弄清了这样一些结合关系,才能理解究竟什么是元素?

怀疑之八:土、水、气、火是元素吗?

四元素说“强有力的证明”基于以下经验事实:

燃烧一节刚砍下来的青橄榄树,冒出来的树汁是水,烟雾状的东西是气,火焰和炭火当然是火,灰烬无疑就是土。不仅如此,用相同的办法还可以进一步地证明,这些被火法分离出来的东西,无不和青枝一样含有四种元素。比如,把树汁收集起来置于火上,会看到沸腾,产生出雾状蒸汽,并感觉到热,从而证明其中含火,水份蒸腾完毕之后,仍可见或多或少的土。其次,橄榄油本身也象水分一样具有潮湿性和流动性,点燃之后也会产生火焰、雾状的气体,以及存在于烟油、雾气和残渣中的土。即使那残余的土,进一步地用剧烈的火进行燃烧,也还可以烧成象水一样可以流动的物质,变成气体,等等。同样的分析,对于奶汁、羊毛、亚麻种子、丁香、硝石、海盐乃至于锑矿石都会有如此结果。

R.Boyle借用卡尼阿德斯的口气反驳了上述“证明”:

首先,把蒸汽说成气是没有道理的。蒸汽可用玻璃瓶收集并发生凝结。它证明,蒸汽始终都不过是无数十分微小的液滴的聚集物。就是说,蒸汽的实质是水,而不是气。

其次,把火看作是存在于橄榄枝等物体中的元素也是可笑的。当人们用火法分析离解某种物体时,这种物体是人外加热源中获得热的。没有外加热源,被离解的木材、粘液或其它什么东西,是不会发热的。R.Boyle解释说,物体所获得的热,要么通过火的直接作用获得,要么就是大量的火原子穿过容器壁上的微孔并迅速扩散到物体的其它部分引起的。所谓物体本身包含了一种“火”元素,并没有充分可靠的证据。

再其次,四元素说把一切流动性的物体都归结到“水”元素的存在。任何一种化学油皆含有这种元素,并且,油的可燃烧性还证明里面含有火。这也是错误的。R.Boyle举例反驳说,高纯度的酒精比油的流动性更好,可燃烧性比油更充分,并且还不象油的燃烧那样,会产生那么多包含“土元素”的油烟和油渣。

最后,四元素说的支持者认为,树木的那种固定盐,在剧烈火的作用下,也会变成蒸汽,从而证明,盐也具有四元素的内秉性。R.Boyle则反驳说,将盐放在烈火上焙烧,所得到的实际上是盐的发散物。若用容器将这些发散物收集起来,不难发现,这些被称作“蒸汽”的东西,仍然保持着盐的本性,而非气体的本性。

又,四元素说的支持者把盐可熔化于水的性质归结为“水”。这也是不正确的。盐能否熔化而成“水”,完全取决于热。是热以各种不同的方式作用于物体的种种微粒成分,并使之运动。这与水元素没有关系。

凡此种种均证明了一个事实,物质的性质是不能用四元素说来进行解释的。而且,R.Boyle十分幽默地指出,只要人们不闭眼就可以发现四元素的缺陷。

怀疑之九:化学家找到元素了吗?

在《怀疑的化学家》第六部分,R.Boyle总结性地给元素下了一个定义:

“而且,为避免误解,你必须事先声明,我现在所谈的元素,如同那些谈吐最为明确的化学家们所谈的要素,是指某些原始的、简单的物体,或者说是完全没有混杂的物体,它们由于既不能由其他任何物体混成,也不能由它们自身相互混成,所以它们只能是我们所说的完全结合物的组分,是它们直接复合成完全结合物,而完全结合物最终也将分解成它们。然而,在所有的那些被说成是元素的物体当中,是否总可以找出一种这样的物体,则是我现在所要怀疑的事情。”[10](注:R.Boyle著,袁江洋译,《怀疑的化学家》(中文版),武汉出版社,1993年版,第202页。这段话的英文版可见于美国)宾夕法尼亚大学收藏的《怀疑的化学家》(1661年牛津版)的第350页。有兴趣的读者可以通过互联网翻看这本书。网址是:http://library.upenn.edu/etext/collections/science/boyle/chymist/001.html.)

R.Boyle的这个定义是十分明确的,它包含以下三层意思:

1.元素是原始的、简单的、完全没有混杂的物体。

2.元素不能由其他物体组成,也不包括元素之间的相互合成。所有由其他物质组成的,或元素与元素相互合成的,都是结合物,不是元素。

3.元素是结合物的组分;完全的结合物最终也将被分解成元素。

按照R.Boyle的观点,物质世界是由元素构成的;结合物的分解可以证明元素存在的客观性。但是,所谓的元素,既不是亚里士多德主义的“四元素”,也不是医药化学家的“三要素”。化学家还没有真正找到组成世界的所谓“元素”。

我们认为,这个结论标志着旧的元素概念的终结和新元素概念的开始,从而使《怀疑的化学家》成为化学史上的里程碑。

怀疑之十:上帝必须先造元素后造万物吗?

既然世界是由元素构成的,这是否意味着:上帝在创造世界之前必先创造元素?

这个问题在20世纪的高能物理中已经有了一个十分明确的答案。就宇宙的演化历史而言,是先有元素,后有由元素组合而成的物体。按照伽莫夫的说法,宇宙中的元素起源于一个大爆炸核综合过程。

显然,这样的认识在R.Boyle时代是不可能有的。就17世纪化学和物理学的认识水平而言,要揭示化学元素的起源,化学元素如何结合生成具有独立的分子特征的物体,还十分困难。所以,R.Boyle告诉化学界:“我们并无多大必要说,造物主必须先在手头准备好元素,然后再用元素去造成我们称为结合物的那些物体。”[1.p.232]

【参考文献】

[1] R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第17页。

[2] R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第27页。此处的“化学家”,实际上也可以翻译成“药剂师”,特指16世纪以巴拉塞尔苏斯和海尔孟为代表的医药化学家。

[3] 即今“盐硝酸”(nitrohydrochloricacid),它是一种由三分盐酸和一分硝酸组成的黄色混合液,气味浓烈,腐蚀性强。因为它能融化“高贵的金属”(如,金、铂),故称“王水”。

[4] 这是海尔孟化学哲学的一个术语,泛指本质上相异的物质。

[5] 即浓硝酸,这是法国人在16世纪合成的一种强酸,当时的法国化学家称它为分离剂。

[6] 其实这种结合仍包含不同的形式。前者是通过化学反应的结合,后者则是物理的结合。在R.Boyle时代,这样的区别还十分模糊。

[7] 袁江洋推测这种“一点也不酸”的东西可能是铅糖受热失水分解后得到的醋酸酐。对此,我们不表示异议。

[8] R.Boyle著,袁江洋译,“怀疑的化学家”(中文版),武汉出版社,1993年版,第134页。从这一段文字,读者不难看出,17世纪以前的欧洲化学家们所使用的硫、盐、汞和土,都不是我们现在化学意义上所指称的对应概念。

篇(3)

(1)拉瓦锡,对高中学生来说,是非常熟悉的一位化学家,但其背后的一些故事却鲜为人知。众所周知,拉瓦锡发现了氧气,实际上最先发现氧气的不是他,而是另一个化学家普利斯特里,学生听到这里非常好奇,可把两个科学家发现氧气的过程逐一道来,学生听完故事,对拉瓦锡产生由衷的敬佩,这对学生就是潜移默化的情感价值观教育。

(2)学习苯分子结构时,法拉第是学生是非常熟悉的科学家,是他发现了苯,在引导学生自己推测苯分子可能的结构时,引出以凯库勒梦幻曲为题,介绍他梦出苯分子环状结构的故事。这是化学史上有名的化学家趣事,学生听了当然觉得新鲜,一个梦就能成就他的伟大发现,其实凯库勒就是一个爱做梦继而有重大发现的科学家。从这个故事,学生体会到之所以凯库勒夜有所梦,是因为他对问题苦思冥想的结果,也源于他对苯分子结构强烈而浓厚的兴趣。

篇(4)

清华才子横刀夺爱

44岁的李天乐出生于北京,外表温婉清丽,骨子里却十分好胜。1990年,她以东城区理科状元的身份被北京大学化学系录取。在聚集了中国最顶尖人才的学府里,身材高挑、成绩优秀的李天乐非常出众,本科毕业后又以高分考取了本专业的硕士研究生。

在学业精进的同时,李天乐也收获了甜蜜的爱情,她与本科同班同学陈华恋爱了,他们是彼此的初恋,两人一起读书、做实验,又双双考上了研究生,十分恩爱。

然而,在北大和清华共同举办的一次学生联谊活动中,清华才子王晓晔对李天乐一见钟情,两人共舞一曲,天衣无缝的配合、曼妙默契的舞姿,博得了阵阵掌声。王晓晔对李天乐展开了疯狂的爱情攻势。

王晓晔比李天乐小一岁,出生在江苏省江阴市,当年,他考入南京化工学院化工机械系,三年读完了四年本科,随后考入清华大学精仪系攻读硕士,每学期都能拿到全额奖学金。尽管知道李天乐“名花有主”,但在王晓晔看来,没有他攻不下来的堡垒。

有一天,王晓晔得知李天乐有出国留学的想法,但陈华不同意,两人闹了矛盾。王晓晔觉得这是天赐良机,他对李天乐说:“我正好也有出国的想法,我支持你。”李天乐顿时兴奋起来。

王晓晔抓住这个机会,乘胜追击,他甚至到北大上选修课,李天乐的脏衣服他也抢着洗。一次,李天乐扭了脚,王晓晔连着几天背着李天乐上下楼。李天乐也对这个执著的小伙产生了好感。

但让李天乐烦恼的是,陈华虽然在出国的问题上与她较劲,其他方面处处迁就她,她找不到分手的理由,也无法割舍掉这段感情。此时,王晓晔不断以筹办出国吸引李天乐,两人一起上托福、GRE考试辅导班,一起查阅国外学校信息,投递申请自荐表。能言善辩的王晓晔不停地向李天乐描述:美国有世界顶尖的学术环境,思想开放自由,生活节奏闲适惬意。在那样的环境下,两人肯定能赢得事业的辉煌与爱情的浪漫。王晓晔的激情描述,勾起了李天乐的无限憧憬。

出国费用对王家来说是一笔不小的负担,而李天乐的父母本就反对女儿出国,自然难以提供出国支援。于是,王晓晔给美国宾夕法尼亚大学校长写了一封信,客观地评价了自己和李天乐的才华,诉说了他们连飞机票都买不起的困境。没想到,该校不仅寄来了邀请他们访学的录取通知书,而且还给他们寄来了2000美元。

1998年2月,两人坐上了飞往美国的国际航班。

清秀女变身野蛮妻

到美国后,作为留学生,王晓晔与李天乐不能正式就业。经济压力很大,他们只能租住在地下室,最困难的时候,一天只能吃一顿饭。

王晓晔利用课余悄悄到中餐馆打工,工钱很低,但管饭。王晓晔只吃一点,余下的饭菜全部打包,带给李天乐。这让李天乐十分感动,王晓晔乐观地安慰她:“困境会很快过去的,总有一天,我们会在美国拥有自己的住房,拥有我们温暖的家。”

2000年秋,王晓晔与李天乐同时戴上了美国常青藤大学的硕士帽。不久,王晓晔就在华尔街一家电脑公司谋到了电脑软件工程师的职位,李天乐也被美国著名企业百美施贵宝公司录用为化学研究员。两人于2001年9月举办了简朴的婚礼。婚后不到三个月,他们就拿到了绿卡。

王晓晔所在的公司人才济济,职场竞争压力非常大,为了保住工作,他不敢分心,每天回家,都累得精疲力竭,原先由他大包大揽的家务活就落到了李天乐身上。时间一久,李天乐不乐意了,一次,她忍不住对王晓晔抱怨:“以前都是你做家务,现在啥都不管了。”正忙着设计电脑软件的王晓晔头也不抬地说:“你没看我忙着吗?”

李天乐委屈地说:“就你知道工作忙,我的工作不忙吗?你太自私了!”王晓晔正遇上软件开发的难题,压抑得很,他认为李天乐不体谅他,两人话不投机,大吵起来。一想到自己以前被王晓晔宠着,现在他竟然敢跟自己吵架,李天乐心里有些失衡,大哭起来。王晓晔只得赶紧道歉,才劝住了她。

王晓晔不仅工作忙,出差也多,李天乐对此十分不满。2006年农历正月初一,王晓晔要到洛杉矶出差。收拾行李时,李天乐不满地阻止道:“今天是春节第一天,咱中国人讲究合家团圆,你却出差了,这叫什么事啊?”王晓晔无奈地说:“美国并不过春节啊,工作总得有人做。”

李天乐说服不了王晓晔,开车就要到他公司找老板当面说理。车子刚发动,王晓晔一把关掉引擎,夺过车钥匙说:“听说公司正要裁员,你一闹,只能给老板留下坏印象。”

“那是我重要还是老板重要?”李天乐不依不饶。

王晓晔没有理会李天乐,自顾自地提着行李出了门,开车绝尘而去。李天乐感觉婚后王晓晔越来越冷落她,伤心地哭了半天。

2007年5月,李天乐的一位同学到美国进行商务考察,告诉她陈华在她出国不久后就娶妻生子。李天乐听后极为难受,当晚,她无缘无故地对王晓晔大发脾气。王晓晔顶了几句,这无疑是火上浇油,李天乐声嘶力尽地哭喊:“王晓晔,你是个负心汉,我抛弃爱情、顶着父母的压力跟你来到美国,你给了我什么?我真恨自己当初瞎了眼。”

她的话让王晓晔很受伤,他负气地回击说:“你要后悔就回去找陈华吧,不可理喻!”他预测到李天乐还要有“瓢泼大雨”,便出门找朋友喝酒了。

李天乐又气又急,找不到倾诉对象,最后竟怨恨起陈华,如果当初陈华同意跟她一起出国,也许会是另一番景象。她从同学处要来陈华的电话,把陈华劈头盖脸骂了一通。还是不解气,她又发短信把陈华和他的妻子侮辱了一番。

婚姻危机投铊杀夫

2008年3月,手头有了存款,王晓晔提出购房计划。个性要强的李天乐提出购房款采取AA制。

他们花了63万美元在美国新泽西州门松镇一处高档住宅区购置了一套房屋。两人精心装修,仿佛又回到了恋爱阶段。住进了新房,王晓晔也刻意放慢了工作节奏,专心陪伴李天乐,试图修补夫妻关系。李天乐的情绪也好了不少,主动提出了生孩子的计划。

2009年1月,李天乐生下儿子,刚满月她就提出回公司上班,请个保姆带孩子。王晓晔认为李天乐应该做全职妈妈,他的薪水已足以养家,两人因此争吵不休。而此时,李天乐在主管竞选中落败,她把落败的原因归咎于王晓晔,认为是他拖了自己的后腿。在一次争吵中,她甚至说家庭就是一个樊笼,而她就是那只被囚禁的鸟,抱怨、失望交织,李天乐变得歇斯底里,每次争吵,都把王晓晔骂得狗血喷头。

起初,王晓晔还能忍,但李天乐的不依不饶让他忍无可忍,不甘示弱地与之针锋相对。他们的争吵频率迅速上升到每周一次甚至几次,因声音过大,引起邻居报警,警察几乎每周都要登门平息他们的争吵。

当年年底,夫妻俩回国探亲。在飞机上又为先到谁家争吵起来,以至于下了飞机后,他们各回各家。

2010年5月,两人又因家庭琐事吵起来,王晓晔见李天乐又一把鼻涕一把泪地数落自己浪费了她的青春与爱情,他烦心透了,说:“离婚吧!”

李天乐瞬间跳了起来:“你现在事业有成了,想到要离婚了,当初是谁说爱我要对我好的,现在你的翅膀硬了,想把我甩了,那好,我成全你!”

按照美国的法律规定,夫妻离婚需分居一段时间。他们本打算把房子卖掉,分钱后劳燕分飞,但因金融危机,房价下跌,此时卖房,要亏很多。两人遂达成协议,实行屋内分居。

李天乐认为是王晓晔辜负了自己,因此在财产分割及孩子的抚养费上寸步不让。而王晓晔指责她的骄横导致了婚姻的破裂,认为自己没有错,也斤斤计较。这更加深了李天乐对王晓晔的恨意。

两人签订了离婚协议后不久,王晓晔就带一个美国女孩回来过夜。两人的亲密状让李天乐心中横生醋意,她没好气地对那个女孩说:“这是我的家,你给我出去。”王晓晔挡在中间说:“这房子有我的一半,你无权干涉。”李天乐气得哭了一个晚上。王晓晔接连谈了几个女朋友,全部带回了家,还把家折腾得一片狼藉,李天乐气愤至极,指着王晓晔的鼻子骂:“你别得意得太早,我早晚要让你付出代价。”

从2011年元旦后,王晓晔经常感到疲劳乏力,有时早晨起床后还会晕眩。1月14日,他前往普林斯顿大学医疗中心就医。可治了一段时间后,病情反而不断加重,还出现了恶心、掉发的现象。

1月25日,医院对王晓晔进行了医学检验,报告显示王晓晔系铊中毒,而此时王晓晔已处于昏迷状态,情况紧急,院方立即向当地警方报案。就在报案后的第二天,王晓晔因病情加重去世。尸检报告显示为铊中毒。

四天后,李天乐被警方拘捕。警方在其家中发现了金属铊,而且通过调查李天乐的上班纪录,发现她自2010年11月起,就以研究工作为由,先后向公司申请了几次金属铊。

篇(5)

【分类号】G633.8

正常的初中化学教学中化学家是在放在化学史这一节中的,一般的化学老师并不把这节作为重点的内容,多数是让学生自己学习。这实际上是一种误导。在日常的教学中我们可以利用化学家的故事调节课堂气氛,可以利用化学家的真、善 、美进行德育教育,这样既可以摆脱学生对化学枯燥、乏味的认识,还可以教育学生在学习过程中求真、务实、创美。激发学生学习化学的热情,对化学的热爱。其实最为重要的是化学家艰苦卓绝的探索精神,一大批优秀的化学家,他们留下的除了物质财富,还留下了对科学的献身精神,对国家、民族的忠贞不屈,追求美好事物的崇高理想,这些都会给学生们留下深刻的印象。

因此化学家在初中化学教学中占有极为重要的作用,本文由于篇幅的限制,主要分为两点做具体的阐述。

一、化学家的求真精神对学生学习化学的促进作用

什么求真精神?这里的“真”实际上就是客观真理,也就是人们对自然规律正确的认识。化学这门学科就是一门研究自然物质的内在结构 、化学性质、变化合成的自然科学 。化学这门学科诞生比较晚,“化学”一词,若单是从字面解释就是“变化的科学”。化学如同物理一样皆为自然科学的基础科学。化学是一门以实验为基础的自然科学。门捷列夫提出的化学元素周期表大大促进了化学的发展。现在很多人称化学为“中心科学”,因为化学为部分科学学门的核心,如材料科学、纳米科技、生物化学等。化学是在原子层次上研究物质的组成、结构、性质、及变化规律的自然科学 ,这也是化学变化的核心基础。现代化学下有五门二级学科:无机化学、有机化学、物理化学、分析化学与高分子化学。在此期间诞生了大量的化学家,他们追求真理、发现真理,在科学的道路上勤勤恳恳、任劳任怨。用自己的青春和热血告诉我们什么叫做科学探索。

科学求真务实的精神可不是嘴上说说,历史这样的化学家太多太多。例如元素周期表中卤族元素的氟 、氯 、溴 、碘。这四种元素的发现史就是一部化学家求真求实的历史。在这四种元素中氯是最早被发现的,舍勒是个“燃素说”理论的信奉者,在1774 年他用软锰矿(MnO2)与浓盐酸在一起做实验,加热后得到新的气体, 这种新的气体就是氯气,但是他不知道这就是氯气。著名的化学家拉瓦锡经过多年的研究终于确定了“燃烧理论” 就是有氧燃烧,当时人们确定有氧气的存在。但是到了1810 年,另一位化学家戴维做了一个实验,把磷放到其中燃烧,结果只得到一种氯化物,没有氧化物 ,同样的实验,把他放在氢气中没有得到理想中的水,只有盐酸气。这次化学家可以肯定这是一种单质,这种气体是绿色所以把他命名为氯。一开始之所以没有发现氯气,就是因为一些化学家坚持传统的观念,主观意念,没有实事求是。但是后来的化学家一直孜孜不倦的追求,精心的做各种实验,最后终于发现了氯气。科学的发现不是一帆风顺的,化学的道路往往都不是很平坦。

还有两种元素就是溴和碘,这两种的元素的的发现可以称得上是一种传奇,一位 17岁的法国在校专科生巴拉德于 1824 年发现了溴这种气体 ,巴拉德在做他的课后作业,也就是研究他老家蒙培埃盐的湖水,他在分析结晶盐后,并没有什么新奇的发现,但是在实验剩余液体中他偶尔发现了溴。碘的发现同样充满传奇色彩,一位法国的药剂师库尔特瓦斯做了一个实验,就是用海藻灰来制作硝酸钾 ,突然一只猫把海藻灰和桌子上的浓硫酸瓶撞倒。但是奇迹发生了,一股蓝紫烟慢慢升起,这是库尔特瓦斯从未见过的气体,引起了他的高度重视。也许有人会说这种发现就是偶然结果,但是大家都忽略了一些必然的因素,如果是你发现了紫烟,你会引起注意吗?你的大脑有必要的化学知识的储备吗? 科学的发现需要严谨的科学精神,坚持不懈的科学追求!

二、化学家创新探索的示范作用

在初中化学教学中我发现现在的化学教学倾向于灌输式教学,不注重化学的创新探索。这是很大的误区,长期知识的灌输,往往会枯燥乏味,而且很重要的一点就是消灭学生的科学的创新探索的精神。

就拿化学中最重要的知识点元素周期表来说,青年医生普劳特在1815年就提出一种重要的观点就是“氢原子构成论”。他的观点相对偏激,就是认为这个世界是由氢原子构成的。

到了1829年一共发现了54种化学元素。著名的化学家段柏莱纳把54种的15个分成5组:

锂 钙 磷 硫 氯

钠 锶 砷 硒 溴

钾 钡 锑 碲 碘

经过坚持不懈的研究后他发现,每3种元素的化学性质都很相似,他命名为“3素组”。

1826年,法国地质学家尚古都画了一种图形纸,他把各种化学元素重新排列,做了一个圆柱体,这个圆柱体像一根螺纹似地螺旋线, 这样的形状非常的形象直观。

在1868年,俄罗斯著名的化学家门捷列夫画了一张表格――《根据元素的原子量及其相似的化学性质所制定的元素系统表》,现在咱们叫化学元素周期表。1869年2月17日,门捷列夫经过日夜的研究正式写出第一张化学元素周期表,发表在1869年的《俄罗斯化学学会志》门捷列夫的这篇论文,这篇论文门捷列夫提出来两条著名的观点:“1.按照原子量大小排列起来的元素,在性质上呈现出明显的周期性。2.原子量的大小决定元素的特征。”

就是这篇论文被后人赞为“化学史上划时代的文献”。然而这并没有引起化学学会的注意和重视。相反,门捷列夫创新探索受到大家的一致的嘲笑,甚至有人说门捷列夫是“不务正业”。面对这样的冷嘲热讽,门捷列夫坚持自己的观点,慢慢他的观点被世人接受。

创新探索是一种可贵精神,可能在当时很难被接受,但是这就是创新。在实际的教学中这些化学家的故事都可以激励学生积极探索,在解化学题时对化学产生兴趣,甚至将来有志于投身到化学事业中去。

参考文献:

1 江得兴 . 哲学原理 .苏州 : 苏州大学出版社,1999.

篇(6)

世界著名学术期刊Nature的顾问编委员Philip Ball在对多位世界著名化学家就什么是化学学科的大问题进行专题访谈后,撰写了题为“化学家想知道什么(What chemists want to know)的专论[1]”。设问的中心议题是:化学在绝大多数科学技术领域中已经成为具有关键作用的学科组成之一,是否意味着它将被视为仅仅是一种得心应手的“工具?”或者说它仍然有着自身的主要化学问题等待着继续深入和突破?该文发表在2006年8月3日出版的Nature上[Nature 442, 3 August(2006)50-52]。所谈及的问题和学者们的真知灼见,对于化学学科的建设、发展以及化学教育的改革都有参考价值。

人们所以关注这个问题,起因很多,主要可以归结为以下两个方面,一个是有志于就读大学化学专业的优秀学生生源出现持续下降的趋势,迫使国外多所院校的化学系改变名称,或者缩小招生规模;另一方面,化学家在配合其他领域的发展方面,存在着过分关注具有强烈应用背景的课题的倾向。在融入其他学科或相关技术领域的过程中,呈现出化学的基础科学面貌变得模糊不清的问题。而和化学同为基础学科的物理学和生物学,在积极参与相关先进科学技术的前期研究、发明或开发的同时,对本学科中的大问题的研究热情却一直有增无减。例如物理学家始终热衷于诸如宇宙起源、以及从原子到天体的整个尺度范围内的空间、时间和物质是由什么来控制的等问题;又如生物学家在试图通过DNA的解码、以及如何支配蛋白质的结构和相互作用来回答Erwin Schroedinger提出的“什么是生命”的问题等。面对公众对化学的日益漠视,甚至认为化学作为一门基础学科的时代已经结束等误解,化学界必须正视并认真回答这个问题,也就是作为三大基础科学之一的化学,还是一门富有生命力的基础学科吗?它的大问题又是什么呢?

此外,近年来人类社会一直受到能源、资源和环境等问题的严重困扰,其中,涉及人们日常生活的各个方面的环境问题,不仅关系到人类社会的持续发展,而且直接影响到人体的健康和寿命的长短,更是日益受到社会的普遍关注。尽管环境问题的产生和作为自然科学之一的化学并无直接的关系,但是由于人们在谈及污染问题时,多以污染物的存在和危害性为依据(例如上个世纪70年现的与臭氧空洞生成有关的氟里昂和近日由有毒奶粉引出的三聚氰胺事件),自然会联想到与研究和合成物质密切相关的化学,当人们不能严格分清化学学科和包含着化学过程的物质生产过程之间的差别时,把环境污染问题更多地归因于化学,应当是一种可以理解的误解。从污染物的源头来看,它可能是人工合成的,也可能是原来就存在于自然界的,即所谓“纯天然的”。它们的发现、分离、分析和化学合成工作属于经典的化学工作。化学家从物质组成、结构和变化等方面帮助人们认识了它们,并且学会了利用现有的物质作为原材料合成它们和新的物质,或通过化学修饰以改善它们的性能和某些功能,以及发现或发明能够对抗某些有毒或有害物质和病虫害的药物等。通过化学家们几百年的工作,人类社会所能应用和享用的化学物质日益丰富,以科学技术为基础的社会生产力和人类的生活质量也因此得以持续发展。但是必须明确的是:科学技术的应用、社会生产力发展所选择的主要途径、对社会各界需求的物质资源和生活资源的生产和分配等等任务,并不是化学科学的基本任务。所以,依据一切(化学)物质都是化学的研究对象,因而简单地把化学物质的存在等同于化学,即由所谓“处处有化学”推衍出来的“因为我们生活在一个物质世界中,化学不可须臾别离,所以化学是最重要的基础学科”和“因为所有的污染物都是化学物质,所以化学是环境污染的罪魁祸首”两种极端而片面的看法的同时存在,就不足为奇了。

由于对化学的误解一直没有得到彻底的澄清,而且以上两种相互对立的极端观点依然在通过教学、科普活动及大众媒体广为散布,不仅导致所谓厌化学症(chemophobia)的形成,并致使国内外不少高校化学系的招生质量逐年下降(尽管就业比率仍然保持中等水平)和纷纷改变系名(就连美国化学会在2004年都曾经有过改名为分子科学与工程学会的建议[1])等现象的存在,应当认为都是事出有因的了。因此,化学是否仍然是一门基础的自然科学,是否绝大部分的重要化学问题通过融入其他学科领域后,仅仅保留为一种“化学”视角?已经成为一个迫切需要面对并回答的问题,而且必须以化学是否仍然有着亟待解决的、富有挑战性的大问题来回答。Ball所写专论的重要性也在于此。

2什么是化学中的大问题

文中简要介绍的大问题,非常具有启发性和前瞻性,通过它们可以预见到化学在今后20年或更长一点的时期将呈现于世人之前的新面貌,同时它作为中心科学的作用将得到进一步地发展和深化。如果化学界和化学教育界能够就此形成共识,必将对化学专业建设和人才培养起到振聋发聩的作用。不仅如此,它对于初等化学教育和教学改革也有重要的指导作用,因为这是现在的中小学生未来步入社会时将要面对的实际啊!Ball根据专家访谈时收集到的意见和看法,归纳为以下几个方面的大问题。兹分述如下,为了有助于读者理解专家们的意见并形成自己的看法,在撰写本文时将尽可能地引用他们的原话。

2.1化学合成虽然无可替代仍然有着亟待解决的大问题

和其他“发现”科学如物理学、生物学、天文学以及地球科学相比,化学合成一直被认为是化学的最独特之处,而且通常是无可代替的。1890年法国化学家Marcelin就曾经自豪地用“Chemistry creats its objects”来描述化学的这个特点。曾经担任美国化学会会长的Ron Breslow(美国哥伦比亚大学的有机化学教授)进一步扩展了Marcelin的说法,他指出:“化学合成使得化学得以设立一个大多数其他学科无法企及的目标。”并提出“是否可以创立一门合成天文学?即通过改变引力常数来影响宇宙万物的性质,从而使其优化”的建议。尽管目前合成生物学也已经成为一门独立学科,但是在化学家看来,它不过是应用化学的另一个基于如DNA合成和蛋白质设计的分支而已。加州理工学院的核酸化学家Jacqueline Barton则强调:“化学是唯一能够制备前所未有的物质的科学”。

但是过于关注合成化学有可能使得化学家们不自觉地扮演着“修补匠”的角色,为了满足好奇心或者为了获利做着玩转分子世界的工作。由于工业发展带来的挑战已成为科学创造的重要推动力,因而致使工业化学和学科化学的分界线变得模糊不清。所以Barton指出:“化学是为工业添加燃料的科学事业。例如石油化工,还有制药、生物技术以及计算机芯片”。Breslow同意化学面对的大问题不如实际生活中提出的挑战性问题来得多的看法。例如从日光获取能量的实用方法,制造能够荷载大电流的室温超导体;还有迫切需要学习如何在完成生产过程的同时不至于损害环境等问题,都是些面对实际的挑战性问题。

没有人会低估应用和工业化学的重要性。但是如果化学家们对什么是我们能够知道的问题的关注远远不如什么是我们能够做的问题时,亦即过分关注为特定问题寻求特定解决方案的现状,是否会影响到化学作为一门基础科学的发展前景和进展的步伐?这是一个值得认真思考的问题。

伦敦皇家研究所有无机化学家John Meurig Thomas认为,化学是一门很特别的科学,例如,人们可以认同化学键的一般原理但是在特殊的分子中,却经常会遇到必须做出新的规定或修改原有理论的情况。他还说:“如果想找到一个能够普遍适用于酶、材料、表面等等的催化理论是一件荒谬可笑的事情”。值得关注的是,在大部分化学家垂青于实际问题和一些领域逐渐偏离化学的形势下,化学是否还存在某些大问题?如果是这样,它能否和物理学及生物学的学科前沿问题一样具有强烈的激励作用?

2.2细胞的化学基础和功能分子的结构功能关系问题

对于其他领域中的前沿问题,化学家确有协助解答的能力和义务。Nature所征得的比较一致的意见是,化学家们最关心的问题中有很大一部分被认为是属于生物学的。Stanford大学的物理化学家Richard Zare说:“对我来说,最大的有待回答的问题是关于生命过程的化学”。Barton对此表示同意,他说:“要真正地了解生命过程,一定要回归到化学”。

Harvard大学的化学家,George Whitesides的看法更加明确。他说:“细胞的本质完全是一个分子层次的问题”,而且“只靠生物学真的解决不了”。他认为生物学中“真正需要着力的”部分,如精确定量和分子层次的探究一直受到忽视的原因在于生物学家研究的是整个器官。Salk Institute for Biological Studies (San Diego, California)的分子生物学家,诺贝尔奖得主Sydney Brenner对此持有相同的看法。

对于分子生物学中基本过程的认识至今依然存在着许多困惑:如蛋白质折叠、生物分子功能的基因标记、以及高度选择性的分子识别等,基本上都属于分子层次的问题,即化学问题。尽管分子生物学家可以认为对于上述过程已经有了较全面的了解,但是从化学来看,却并非如此。生物医学和药物开发迫切需要的、基于分子层次的、合理且有预见性的科学依据的不足,就是最有力的例证之一。

University of California(Santa Barbara)的化学工程师Matthew Tirrell认为,涉及生物分子过程化学本质的信号传递是一个关键问题。也就在这个意义上,化学被视为一门信息科学。1894年德国化学家Emil Fischer用于解释生物分子识别的锁钥概念,可以看成是法国University of Louis Pasteur (Strasbourg)的超分子化学家,诺贝尔奖得主Jean-Marie Lehn把化学称作信息物质科学的由起。

自组织现象使得化学家产生了这样的认识,即分子可以按照某种程序相互作用并以某种特定方式聚集,而人工复制的分子聚集体则隐含着化学信息具有定向传递和放大的可能。Lehn说:“就我而言,认为化学对于所有的大问题都有着最重要的贡献,包括研究自组织过程是如何产生的,以及它又如何使得宇宙成为一个能够反映其母源物种的物质世界等在内。”Lehn相信,下一步的工作将是设计分子的‘学习体系’,这种体系不仅可以编程,而且可以训练。事实上,很多化学家所关注的另一个化学生物学关键问题就是记忆的化学基础。Barton认为:“当我们一旦得到答案之后,就有可能设计新的思维和记忆方式,至少做到学会如何保存旧有的思想和记忆。”Whiteside则希望知道如何能够运用化学使硅电子器件和灰质结合在一起,他问道:“怎样才能把我的计算机装入我的大脑?”这类问题看起来似乎应该属于神经科学家和电子工程师研究的范畴,但是神经元之间的信号传递则属于化学过程;这种类型的中介过程需要用化学语言提供指令。

呈现在化学家们面前的这些研究方向,能否确认为真正的化学问题?Whiteside持完全肯定的态度,他说:“我所持的观点就是,目前令人感兴趣的科学,就是化学”。因为即使是那些明显和化学相去甚远的领域例如天文学中的关键问题,就像‘还有多少类似于地球的星球’或‘土星的月球Titan上面有什么?’等基本上都属于分子层面的问题。当谈及学科交叉问题时,他认为由于物理学和生物学在解决分子层次的机制问题时存在着某些困难。促使化学家致力于了解(或预测)分子结构和功能之间的关系,从而成为对化学的最重要挑战之一,例如构效关系对于药物分子设计的重要性。Barton问道:“我们怎样能够对特定的细胞、器官或组织的分子做上特定的标记?又怎样能够使得在需要分子移动时,它就会移动?”构效关系的深入了解,对于工业合成用催化剂的设计也很重要,目前仅对简单小分子合成用的催化剂所涉及的构效关系了解比较充分,而且遗留的细节问题仍然不少。

2.3分子的动态特性和难以穷尽的化学物质世界

诺贝尔奖获得者,加州理工学院的物理化学家Ahmed Zewail指出,分子的动态行为和它们的分子结构一样,对于分子的活动性有着重大的影响。显然,生物分子间的相互作用并不像锁钥匹配关系(亦即只要在结合部位和底物分子间达到很好的几何匹配,就可以有效地完成整个过程)那样简单。例如分子和溶剂间相互作用时的动态学就有可能起着关键的作用。

目前,化学家对化学反应的动态过程研究,是以复杂的多维势能面(类似于崎岖的山地)为基础的。例如把蛋白质折叠的问题简约成为分子中肽链跨越势能面时的轨迹问题,以及它最后是如何停在和正确折叠构象对应的“能谷”中的问题等。Thomas说:“生物学对构效关系的考虑一般是不充分的,必须了解分子在势能面上的运动情况。”换句话说,动态学才是关键。即使化学家破解了分子设计的原理,化学家又能怎样运用它们呢?Barton说:“即使达到了这样的阶段,例如人们能够在实验室中以100%的产率合成任何一种分子,不再需要研究生花上一年的时间来完成它时,也不能算是真正地掌握了合成。所以涉及使原子能够按照预先设定的方式并有效地聚集成为新分子的过程和规律是个大问题。只有解决了这个大问题,我们才能够制造任何我们所想要的物质。”同时,能源、资源以及其他生产成本都达到最优化,而且对环境最友好的化工生产工艺和企业的诞生,将成为现实。这个涉及到化学合成的大问题,不仅具有重大的学科价值,而且可以极大程度地体现出化学在解决人类社会发展中所能起到的无可替代的作用。

只有化学家才知道加工原子和分子到底有多么困难,而有些分子是很多其他学科所依存的。例如,物理学家和生物学家是不会去制造室温超导体和人造微生物的。但是,如果化学被肢解并分属于其他学科,这类能够触及物质奥秘的训练基础也就不复存在了。认为化学的核心-推理式合成缺乏智慧的看法是错误的。有关化学家除了试图了解这个世界,还试图了解所有可能的世界的学科特色,Breslow说得好:“化学有其实用的方面,但是这不是基础科学。当我们确定地知道,自然界能够提供的分子和反应是非常有限,相对于处在继续创造和发现过程中的奇妙化学世界而言,不过是一个巨大无比的水桶中的一滴微小水珠时,化学的基础科学的性质就再也明白不过了。”

根据访谈,Ball在文中归纳出化学应当面对的6个方面的大问题,它们分别是:

(1)如何设计出具有特定功能和动态特性的分子?

(2)什么是细胞的化学基础?

(3)怎样制造未来在能源、空间或医药领域所需要的材料?

(4)什么是思维和记忆的化学基础?

(5)地球上的生命起源问题,以及在其他星球上如何才能够出现生命?

(6)如何才能够查明所有元素间的可能组合?

3化学学科发展的主线和对化学教育及教学改革的启示

Philip Ball在这篇专论中所提及的化学大问题,虽然涉及化学学科的很多领域,但是未必已经穷尽。参与访谈的化学家们各自由本领域的视角出发,提出的问题非常精辟,视角独到,脉络清晰,不仅有振聋发聩的作用,而且具有很好的启示作用,却也未必能够完全覆盖化学学科的所有领域。但是他们针对化学学科发展提出的意见和设想,不仅能够开阔我们的视野,更有很好的示范和启示作用。未尽之处,应当是留给我们的思考和想象空间。它将有助于人们从现代化学的众多成就中,辨明学科的发展主线和前进的轨迹。

例如根据估算,由常见元素组成的,和典型药物分子大小相当的分子总数,可能达到1040的量级。Breslow说:“目前,已知的化学世界,包括化学家已经使之‘膨胀’了的自然界在内的分子总数,还不到它的1%。”这是反对试图把化学还原为一种目标狭窄的学科的主要原因。诺贝尔奖得主,Cornell大学(Ithaca,NY)的理论化学家Roald Hoffmann则明确指出:“不能把宇宙还原为少数几种基本粒子或者是数以百计的元素,应当扩展到所有可能被合成的数量无限的分子。分子能够具有的结构和性能是难以穷尽的。”

此外,查明并制备化学元素之间可能生成的所有分子和使化学合成产率都能达到100%,本身就是一个大问题。而且是化学所特有的大问题。由于化学物质的性质决定于分子的组成和结构(有时还要考虑体系所处的环境),分子的形成过程则取决于相应组分在给定反应体系中的动态历程和作用机制。因此仅仅满足于经典的活化分子有效碰撞理论和依据缺乏‘柔性’的锁钥关系而做出的分子设计,显然是难以完成这个历史任务的。Lehn近年来提出的Constitutional Dynamic Chemistry(组分动态化学)Adaptive Chemistry(适配化学)思想[2],以及在这个思想指导下完成的一系列组成和结构都相当复杂的化学合成研究,为他在上个世纪80年代提出的化学信息论提供了新的实验证明。从中可以隐约地看到解决化学合成领域中大问题的一线曙光。

我们可以把目前化学学科发展中最值得重视的问题归结为:对什么是我们能够知道的问题的关注远不及于什么是我们能够做的问题。其实,这也是我们在目前进行的化学专业教育以及中学化学教学改革中,同样应该关注的问题啊!

篇(7)

在家校合作教学中,第一,学校应对自身在家校合作教学中的角色进行正确定位。学校在家校合作中起主导作用。学校应该认识到家校合作是学校与家长进行平等、双向交流的平台,在家校合作中,学校起主导作用而非领导作用,充当的是服务角色而非其他。第二,学校应将家长的参与上升到学校管理及教育决策的层面,而不应把家长的参与仅仅局限在家长充当学校教育工作的支持者和学习者的层次上。学校应该认识到,家长参与学校管理及教育决策,虽然在形式上是家长分享了学校教育的管理权和决策权,但在实质上它对提高学校的教育和管理质量、开发家长资源及有效加强民主监督等方面都有着积极的作用。第三,开办或完善家长学校,把家长培养成为孩子的合格的家庭教师以及学校教育管理的最佳合作伙伴。第四,学校应为留守儿童的身心健康成长创造各种条件,加强与留守儿童家长的合作。学校可以利用节假日家长回家期间召开留守儿童家长会,及时地与家长沟通;可以举办家长培训班,并请一些在子女教育上比较成功的留守儿童家长现身说法,提高家长教育方法的科学性。第五,在具体的实践工作中,教师应了解学生的不同家庭背景,有的放矢地与家长进行合作。

二、家校合作的最佳辅助:家庭的配合

家校合作作为学校教育发展的重要推动力量,理应受到家长们的高度重视,家长要充分认识到家校合作不仅是家长的权利,而且是家长的义务。作为学校教育的参与者,家长与学校是平等的,家长有权利参与学校的一切教育活动,包括教育的决策。家长参与学校教育能为学校提供更丰富的教育资源,能够为学生创造更优质的教育环境,从而能够促进学生的健康成长。从这个意义上说,家长的参与又是家长必须履行的义务。因此,家长应该珍惜自己的权利,积极地履行自己的义务。具体来讲,家长必须树立正确的家校合作观,摒弃以往单纯地简单配合学校教育的被动局面。另外,家长要对自身的角色进行准确定位,即家长应以平等参与者的身份积极参与学校的各项教育活动,了解学校的各项政策并可对此作出反应,同时也可以为学校提供必要的教育信息与教育资源等。

三、家校合作的有力保障:社会的支持

首先,应建立健全的家校合作的相关政策法规。家长参与学校教育的权利和义务只有上升到法律的高度,才能保证家长以平等的身份与学校合作,从而为青少年接受最优质的教育奠定基础。一方面,在法律中应明确家长参与学校教育既是家长的权利,也是家长的义务,明确家长参与教育的合法性。另一方面,在法律中应明确规定“家长参与教育的指导思想、基本原则、组织架构、权利责任、经费保障等,并且要确保有效运作”。其次,建立完善的家校合作组织机制。建立家校合作组织体系应遵循以下要求:(1)家校合作组织是独立于学校之外的社会团体,与学校不存在从属关系,这样才能保证家长以独立的身份全面参与学校教育决策、教育过程,并监督、评价学校的教育管理等工作;(2)各级家校合作组织应有严密的组织分工;(3)每一级家校合作组织要有规范的组织章程及严密的实施制度。再次,加强对家校合作实施情况的监督检查。为切实推动家校合作的开展,充分发挥家校合作的教育功能,必须加强对家校合作实施情况的监督与检查。监督检查的主体应包括教育主管部门和与之有切身利益的家长。作为教育主管部门,应该将家校合作工作纳入学校考核的内容,使学校对家校合作有任务感,这就为学校主动要求家长参与学校教育奠定了良好的基础。同时,教育主管部门应联合相关科研机构及教师、家长共同制定一套科学的家校合作考核标准。只有遵循科学的考核标准,才能使监督检查工作有章可循,使家校合作的监督检查工作落到实处。

事实上,很多家长都很想在学习上帮助自己的孩子,但是可能出于各种各样的原因,例如没有好的方法、自身在知识水平上的不足等等,没有很好的发挥家庭的作用。如果给予家长一定的指导,提供合理的途径的话,家长是非常欢迎的。要想通过家校合作,培养初中生学习化学的兴趣、提高学习化学的能力,必须做到以下几点:

(一)更新观念,转变思想

家长要更新观念。从家庭来说,需要增强主人翁的责任感和对学校的认同感,摒弃以往单纯的、只是被动的配合学校的局面。家长要积极主动的与教师沟通,了解孩子在学校的表现;提高家庭教育的能力,家长在与学校的合作中,应不断向化学任课教师学习,掌握家庭教育的一些基本知识和方法。在化学学科的学习中,家长应该尽可能的进行全方位的配合,包括提建议、请家长做指导教师、提供实践基地等。这样既可以充分调动家长的积极性,又可以挖掘家长中的专家、劳模等人力资源;利用家长可以提供的一些场地,为培养学生学习化学的兴趣提供条件。

篇(8)

【中图分类号】G421 【文献标识码】A 【文章编号】

新课改的核心理念就是以学生为主体,关注学生的全面发展。高中生是一个特殊的社会群体,正处于身心迅猛发展时期,国内外学者经过长期、大量的研究,提出重视中学生常见心理健康问题刻不容缓。模糊、消极的自我意识会引发高中生缺乏自知、自信,自我膨胀,理想自我与现实自我差距过大,形成自贬的思维方式等常见的心理问题。自我意识就是一个人对自己以及自己和他人关系的意识。如何让学生正确认识自己,客观评价自己,满意自己或悦纳自己,能自立、自信、自强,方法和途径很多。自我意识不是一个人生来就具有的,它是个体在社会交往过程中通过认识他人而逐渐认识自己的。在化学教学过程可渗透化学史的教育,通过认识化学家的所作所为来认识自我,分析自己的学习生活活动进一步认识自我。下面我就在化学教学中聚焦化学家汉弗莱戴维的事迹,以史为镜,帮助学生逐步形成客观积极的自我意识,从而有利于学生的心理健康发展。

化学家汉弗莱戴维是伟大而平凡的,但在化学史教学中,对于科学家的总体评价往往采取仰视的态度,只看到他们头顶的光环,把他们“神”话,“完美无缺”,不仅让学生敬而远之,而且会让学生形成极端看问题的模式——非此即彼,更重要的是当学生只看到科学家的伟大,审视自己,自惭形秽,不利于心理健康发展。还原一个真实的有血有肉、有喜怒哀乐、甚至有瑕疵的戴维,平视他,走近他,近距离与他交流对话,选取这样的化学史教学角度,当然有助于激发学生对许多人文问题的独立思考,有助于学生建立客观积极的自我意识。

走近汉弗莱戴维的童年,他只是一个是很普通的活泼可爱的孩子,喜欢钓鱼、远足,爱好讲故事、背诵诗歌,时常作弄小伙伴和老师,他的童年是自由愉快的,有足够的时间思考、想象,个性热情、积极不盲从,富有创造性。但同时戴维读书又是勤奋的,他阅读了很多哲学、神学、几何学、外语书籍。青少年时期,戴维就遭遇了父亲病逝、家境贫困、辍学等一系列变故,戴维毅然扛起了作为兄长的责任,在一位知名外科医生兼病理学家处当学徒。在那里他很受激励,制定庞大的自学计划,在知识的海洋进行广泛的涉猎。反观戴维并不是一个科学天才。这段素材让学生感觉到戴维拥有常人的童年,一样的顽皮、一样的童真,也接受相似的学校教育,遭受人生的变故,还在继续学习!对比之下,审视自己,我该怎样做?我是谁?显然一味贪玩面对自己的学生生涯显然不行,静下心来思考自己的青春岁月该怎样过。学生群体中也不乏来自单亲家庭,以戴维为镜,也应自立自强,从而自信,只要能保持精神上的独立顽强,树立坚定的目标,再大的困难也不算什么了。学生与青少年的戴维作比较,实际上是确定衡量自己的标准,建立起对自己的评价。

化学科学界的戴维是一个实验能力很强、不喜欢重复和证明别人的发现,喜欢创新、敢于突破权威、尊重事实、有坚强毅力的人。在“笑气”的研究过程中,戴维决心亲自实验,并将实验的过程和感受与大家分享,少量“笑气” 用做外科手麻醉剂,解除了病人的疼痛。正是戴维长期坚持,他通过电解发现了多种元素,提出了很多权威的化学理论,发明了安全矿灯,这种安全矿灯使用了100年,拯救了全世界千千万万矿工……学生面对戴维的科学业绩,感慨不已。回想自己的理想也曾和戴维相媲美,“将来我要当工程师,我要当化学家……”理想和现实的差距过大!深究戴维成功的背后,他多了一份热爱,少了一份漠视;多了一份坚定,少了一份动摇;多了一份勇敢,少了一份退缩;多了一份细心,少了一份粗心。一步之遥啊!学生豁然开朗,好好审视自己,在科学素养方面,还欠缺哪些,不足在哪,拥有自知,才能严格要求自己,通过自己的努力,进一步做到独立自主、大胆勇敢、自信自强、坚强不屈。学生与戴维作比较,实际上是提高自我价值目标,更进一步坚定信心建立客观积极的自我意识。

戴维同时又是一个活跃的社会活动家。戴维入选皇家学院,担任学院的讲师后,这位出色的演说家,成功地吸引了广大的大学生、科学家和科学爱好者,戴维成了伦敦的名人,而且让科学这个名词也变得更加时髦起来。尽管实验非常紧张,但他从不耽误宴会,凭他的才华享受着别人的赞美,享受着生活的礼遇。是的,人生是多样的,生活是多元化的,劳逸结合,才能让自己学习生活丰富起来,努力奋斗之后,才可以品尝成功的甘露。戴维工作很繁重,但他仍然享受着生活,快乐面对一切。高中生学习生活忙碌而辛苦,别忘了做情绪的主人,在情绪上独立,悠悠品味人生,才可清醒认识自己,落后了迎头赶上,相信自己会是一个有价值的人,进步了戒骄戒躁,以一个健康的心态面对生活。

戴维又是一个极其平凡的人。戴维“最伟大的发现”是启迪和教导了法拉第这个“千里马”,当法拉第在化学物理方面取得辉煌的成功,接替戴维当了实验室主任,法拉第声誉日高,戴维对法拉第产生了嫉妒。在法拉第当选英国皇家学会会员的过程中,戴维投了唯一的反对票。人们感到非常遗憾与可悲。科学在追求进步是充满了竞争,竞争使新的人才脱颖而出,但是戴维让嫉妒蒙蔽了双眼和心智。高中生这个特殊的群体也渴望人与人的交往,有些学生自命清高,有的学生孤独自卑,有的极度自私,而通过反观戴维晚年嫉妒法拉第事件,好像一面镜子,使学生自我对自己是什么人,要做什么人,能从镜子里面加以认识。积极的自我概念使高中生对事物的看法比较乐观,也比较自信,更能激发上进心,化压力为动力,更好调整和控制各种不良情绪,保持健康的心态。

篇(9)

化学史是化学科学产生和发展的历史,是人类探索和改造物质世界的历史,也是人类精神文明发展的历史,是科学精神最集中的载体。化学史教育是指在化学教学中结合化学史实向学生进行的教育。法国著名的科学家郎之万说过:“在科学教学中加入历史的观点是有百利而无一弊的。”然而,多数教师对化学史的教学并不重视,实际教学中往往一带而过,或者让学生课后自行阅读教材中的化学史素材。上述情况的出现表明教师对于在初中化学教学中进行化学史教育的重要性缺乏了解。笔者结合一些教学案例略谈化学史在初中化学教学中的教育价值及其实现策略。

一、激发学生学习兴趣,调动学生学习积极性

化学史上一些发现、发明和科学家的主要事迹、奇闻轶事,都会引起学生的好奇心,激发其学习兴趣。在氧气性质的教学中教师可介绍普利斯特里发现氧气的实验:“当我获得这种气体后,我发现蜡烛在这种气体中燃烧时竟然发出一种非常亮的火焰,我真不知道该如何去解释这种奇怪的现象。我用玻璃管将这种气体吸进肺中,感到胸部很轻松,很舒服,谁知道这种气体将来会不会是一种时髦的奢侈品呢?但现在只有两只老鼠和我才有享受这种气体的权利啊!”(普利斯特里先用小老鼠做了实验)通过上述叙述,学生在科学家诙谐幽默的话语中体会到氧气的性质,也感到化学科学的学习其实是件轻松快乐而又让人兴致盎然的事。

此外,教师可在自制酸碱指示剂的探究实验的教学中,进行波义耳发现指示剂的故事的讲解;在燃烧与灭火中的教学中,介绍德国商人布兰德想从尿里制得黄金,却意外地分离出像蜡那样的色白质软的物质――白磷;讲解二氧化碳性质的时候介绍普利斯特里发明“汽水”的故事等等来激发学生的学习兴趣。

二、培养学生顽强探索的科学品质

化学史上任何一个科学发现和发明,无不凝聚着化学家辛勤的劳动和忘我的追求,而这一过程更能体现化学家孜孜以求、顽强探索的科学精神。初中阶段元素周期表知识的教学中,由于学生对元素性质的认识较少,难于体会元素周期表对化学学科的重要作用,但教师可对门捷列夫勤奋的一生做适当介绍:在门捷列夫的时代,科学家们只发现了63种元素,但是元素之间是否存在联系呢?门捷列夫经过长达十年的研究,终于发现了元素周期律,并据此制出第一张元素周期表,为20世纪的科学发展指明道路。门捷列夫一生勤奋,涉猎广泛,被称为俄国的达芬奇,在他所写的几千卷著作中,仅有10%是有关化学和物理的,其它的是关于经济、技术、地质等方面著作。“什么是天才?终身努力,便成天才!”就是门捷列夫的名言。学生在感叹科学家对科学知识孜孜不倦求索的同时,也会鞭策自己更加勤奋的学习,以更执着的精神探索科学世界。

“每种纯净物质的组成是固定不变的,所以表示每种物质组成的化学式只有一个。”这是人教版义务教育教科书第四单元课题4化学式与化合价中毫不起眼一句话,却是化学家普鲁斯特用整整 7 年的时间,做了上千次的分析实验才得出的结论,教学中教师也可对此段化学史作相应介绍。

三、增强学生崇尚科学、热爱祖国的情感

化学科学的魅力,在于其能在纷繁复杂的表面现象中揭示出物质及其变化之间的规律,在于其创造性和实用性。在化学肥料的教学中,教师可介绍化学家李比希对肥料工业的贡献:千百年来,普遍的观念认为人和动物总是以有机物(即植物和动物)为食物,庄稼也应该是以有机物为“食物”。但是,人们往田里施绿肥、施粪肥时,庄稼的产量并没有明显的提高。为了探索庄稼的秘密,李比希雇人开垦荒地,种上庄稼,并给庄稼施用各种无机盐,根据哪块地里的庄稼长得茂盛,就能知道庄稼喜欢“吃”什么。很快,李比希发现,庄稼非常喜欢吃“钾”和“磷”。在农业化学上,这是具有重大历史意义的发现。为了给庄稼大量供应钾肥,李比希办起了钾肥厂。李比希还发明了制造磷肥的方法。如果说,许多化学家所研究的定律、结构、化学成分等还只有理论意义的话,那么李比希的这些研究具有重大的实际意义。一位评论家曾这样评论道:“世界上没有任何学者对于人类的贡献,能与李比希相比!”这话固然有点偏颇,不过,李比希的研究工作,使庄稼的产量成倍增长,造福于全人类,这不能不说是他的巨大贡献。显然,这样的化学史实的介绍比空洞的口号更能激起学生崇尚科学的情感。

化学史上人才辈出,科学家们崇高的品德,高尚的情操和他们热爱祖国的高尚品质,更是对学生进行人生观教育的良好素材。在盐的教学中,可介绍我国制碱工业的先驱侯德榜的事迹,教育学生为我国杰出的化学家感到自豪,激发学生的爱国情怀。作为四大文明古国的我国,在化学方面也有杰出成就,四大发明中的造纸术、火药对世界科学的发展具有重要作用,我国古代人民很早就掌握了铜的冶炼技术,并制造出享誉世界的青铜器,通过类似化学史的介绍,提高学生的民族自尊心和自豪感。

四、有助于学生科学思维、科学方法的形成

篇(10)

Introduction of Scientists in Class of Medical Chemistry//LIU Yongdong, ZHANG Shufen, ZHONG Rugang

Abstract The introduction of scientist’s achievements and hard studying process is an important material to expand and enrich the teaching content. In this paper, combined with the whole content of medical chemistry course, the fruitful research work from Arrhenius S.A. and Nernst W. was duly introduced to the students in the class. The introduction of scientists not only riches the teaching content and stimulates the students’ interest in learning, but also gives students more spiritual guide.

Key words medical chemistry; Svante August Arrhenius; Walther Nernst

医用化学是面向医学、药学和生物学等专业的学生讲授现代化学基本概念、基本原理及其应用知识的一门重要基础课程[1],它将为学生日后相关领域的深入学习打下较坚实的基础。尤其现代生物医学进入了分子生物学时代,而化学在这一时代中体现出与现代医学之间越来越密切的联系。因此,医用化学的学习对于生命医学等相关专业学生的发展起到至关重要的作用。然而,由于医用化学课程内容本身较庞杂和枯燥,所以如何扩充课堂教学内容,调整教学方式,进而激发学生兴趣,一直是个具有挑战性的课题。

科学家的光辉成就及其艰辛研究历程的介绍是扩充和丰富教学内容的重要素材[1-2]。阿伦尼乌斯[2-3]和能斯

特[2,4-5]分别是1903年和1920年的诺贝尔化学奖得主,他们两人的工作都涉及多个领域,在医用化学课程的电解质溶液、化学反应热及反应方向和限度、化学反应速率、氧化还原反应与电极电位等章节中都有其相关工作。因此,笔者从教学内容体系安排和教学方式两方面考虑,将两位化学家的研究工作历程及成果编排到课堂的教学中,以期实现对教学内容的扩充、对学生学习兴趣的激发及对学生自信心的培养。

1 科学家阿伦尼乌斯

阿伦尼乌斯(Svante August Arrhenius)是瑞典著名的物理化学家,创立电离学说,提出酸、碱的定义,为化学特别是物理化学的开创作出极大的贡献;提出阿伦尼乌斯公式,为现代化学动力学奠定基础,构成物理化学学科的重要组成部分。由于阿伦尼乌斯在化学领域的卓越成就,因而被授予1903年诺贝尔化学奖。

医用化学教材中的电解质溶液和化学反应速率章节中都涉及阿伦尼乌斯的工作。结合几年来的教学经验,笔者认为可以在电解质溶液章节中重点介绍阿伦尼乌斯的电离理论发现和提出的科研历程及其被普遍公认所经历的曲折和波澜,从中让学生体会到科学问题的提出、解决和被认可不是想象中的一帆风顺,而有着艰辛的历程。从阿伦尼乌斯的电离理论还可以让学生感受到科学问题并不那么神秘莫测,科学家也不是那么遥不可及,所以大家要相信自己,每个人都是可以有所作为的。这部分内容可以主要以故事论述的形式开展。而对于阿伦尼乌斯在化学动力学方面的介绍,可以更侧重于介绍他的博学和兴趣广泛,可以在课堂上引入一些视频,或是通过布置课外兴趣阅读的形式,让学生更多地了解科学家阿伦尼乌斯的科学贡献和成就。

电解质溶液中酸碱电离理论的介绍 电解质在溶液中以何种形式存在,这种存在形式又是如何产生的,这是19世纪科学工作者关注的课题之一。尽管已经有人提出电解质在溶液中可能是以离子形式存在,但就其产生过程,科学界一直普遍认同法拉第(M.Faraday)的观点,即溶液中的离子是在电流的作用下产生的。

阿伦尼乌斯在研究电解质溶液的导电性时发现,气态的氨是根本不导电的,但氨的水溶液却能导电,而且溶液越稀导电性越好;氢卤酸溶液也是有此特点。对于其他的电解质体系,他也做了大量的实验,都发现浓度影响着许多稀溶液的导电性。那么如何揭开这些实验现象和数据背后的秘密呢?阿伦尼乌斯开始了实验之后的思考,他首先想到的是浓溶液和稀溶液本身的差别在哪呢?应该是可以通过加水将浓溶液稀释为稀溶液,可水起到什么作用呢?阿伦尼乌斯顺着这个思路深入思考:纯净的水不导电,纯净的固体食盐也不导电,把食盐溶解到水里,盐水就导电了,这是为什么呢?水到底起了什么作用?他觉得这是决定问题的关键。

基于法拉第的观点,阿伦尼乌斯想是不是食盐溶解在水里就电离成为氯离子和钠离子了呢?这个想法在当时是相当超前和相当大胆的,毕竟当时的学术界一致认同法拉第的观点。阿伦尼乌斯随后提出假定电解质在溶液中具有分子形态和离子形态两种存在形式,当溶液被稀释时,电解质的部分分子就分解为活性的离子,而另一部分仍是以非活性的分子形态存在。因此,溶液稀释时,活性的离子数量增加,导电性也就增强了。就此,阿伦尼乌斯提出全新的电解质中离子的产生原因,即电解质自动电离的新观点。

然而,当阿伦尼乌斯带着全新的观点向他的博士导师克莱夫(P.T.Cleve)教授详细地解释电离理论时,这位作为化学元素钬和铥的发现者的著名实验化学家对此理论并不感兴趣,只说了一句:“这个理论纯粹是空想,我无法相信。”这无疑给满怀信心的阿伦尼乌斯巨大打击,而且他也意识到博士论文能否通过出现问题,虽然他认为自己的观点和实验数据并没有错,但要得到当时观念保守的教授们的认可谈何容易?答辩过程相当艰难,尽管阿伦尼乌斯精心准备,材料和数据都无可挑剔,但经过四个小时的答辩,答辩委员会的教授们仍然认为论文不是很好。但考虑到阿伦尼乌斯大学读书时所有的成绩都很好,尤其是生物学、物理学和数学的考试成绩非常优异,答辩委员会最终以及格的成绩,让阿伦尼乌斯勉强获得博士学位。

著名的化学反应速率的指数定律――阿伦尼乌斯公式 阿伦尼乌斯不但提出了在化学发展史上占据重要地位的电离学说,他还深入研究了温度对化学反应速率的影响。他发现对于大多数反应而言,温度对反应速率的影响要比浓度更为显著。阿伦尼乌斯注意到化学反应体系的温度每升高1度,反应速率约增加12%~13%。若从传统的观点来看,对反应速率的影响无外乎是对反应物分子的运动速率、碰撞频率、浓度及反应体系的黏度等物理性质产生影响,然而温度的这种巨大的影响不能从这些传统的认识中得到圆满的解释。因此,阿伦尼乌斯设想,在反应体系中是一些高能量的活化分子直接参与到化学反应中,非活性分子吸收一定能量后可转化为活化分子,而反应进行的速率取决于活化分子的数量及活化分子之间相互碰撞的次数;当反应体系的温度升高时,活化分子的数量会随温度升高而上升,而且活化分子间的碰撞次数也随温度升高而增加,因此导致化学反应的速率也随温度的上升而增大。

1889年,阿伦尼乌斯在上述观念的基础上提出著名的阿伦尼乌斯公式,也就是著名的化学反应速率的指数定律:

其中,k为速率常数,A为指前因子(也称频率因子),Ea称为化学反应的活化能,也就是非活化分子转化为活化分子所需要的能量,R为摩尔气体常量,T为热力学温度。阿伦尼乌斯公式的提出为现代化学动力学奠定了基础,是物理化学学科的重要组成部分。

此外,阿伦尼乌斯还从事天体物理学、气象学和生物学等方面的研究,曾较早提出大气中的二氧化碳对地球温度影响的论点,还著有《天体物理学教科书》《免疫化学》《生物化学中的定量定律》等著作。

2 科学家能斯特

能斯特(Walther Hermann Nernst)是德国卓越的物理学家、物理化学家和化学史家,在化学热力学和电化学方面作出了开创性的工作,特别是因为其在热力学第三定律方面的杰出贡献而被授予1920年的诺贝尔化学奖。

热力学第三定律的介绍 19世纪末,化学热力学的研究也已取得相当进展,其中的热力学第一定律和热力学第二定律已趋于完善,但不足的是化学平衡常数仍未有任何热力学参数进行推算,还只能借助实验进行测定。19世纪末至20世纪初,研究发现已推断出,体系在低温状态时,反应自由能改变值(?G)与焓的改变值(?H)趋于相等。

能斯特对低温下的化学反应体系进行了研究,通过测定比热和反应热来预测化学反应过程,研究发现当反应是吸热的,那么所吸热量将随温度下降而下降,而达到绝对零度时吸热量将变为零。随后,他在论文中指出,当体系温度趋近于零时,不仅反应自由能改变值(?G)与焓的改变值(?H)趋于相等,反应熵的改变值(?S)也趋近于零。这就是化学史上所称的“能斯特热定理”。他推断,所有固体的熵值在接近绝对零度时都是相等的。

能斯特热定理是一个大胆的实验假说。此后,德国物理学家普朗克(M.Planck)依据统计力学原理指出,能斯特热定理只有对于纯物质的完美晶体才成立。后来的实验事实和统计热力学对熵的讨论表明,有些纯物质(如过冷液体和有些固态化合物)在趋近绝对零度时能存在一个正的熵值。因此,1923年,美国物理化学家路易斯等人对普朗克的表述进行了修改,提出具有完美晶体的各种物质在绝对零度时,体系的熵等于零。至此,完善的热力学第三定律最终被提出。

电化学中的电极电位的计算――能斯特方程 除了在化学热力学方面的开创性工作外,能斯特还提出了描述电池可逆电动势的能斯特公式。他将化学热力学中的自由能变化与电池电动势联系起来,从而将化学热力学规律成功地应用于电化学体系。

1889年,能斯特根据范特霍夫的渗透压理论和阿伦尼乌斯的电离理论提出,在溶解压力的作用下,原电池中的金属进入了溶液,并以离子形式存在;与此同时,溶液中的金属离子又在渗透压的作用下,使金属离子回到金属表面。这是两种方向相反的力,当其达到平衡时,便产生了原电池中的电极电位。在此基础上,能斯特导出电极电位与溶液浓度的关系式,即电化学中著名的能斯特方程:

上一篇: 人事行政部年中总结 下一篇: 消防安全检查工作计划
相关精选
相关期刊