时间:2023-01-07 21:51:03
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇传感器设计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
压阻效应于1865年由LordKelvin首先发现,现在这个原理广泛应用于传感器原理中。当传感器薄膜结构上的压敏电阻受到外界压力作用时会产生形变,使电阻率发生变化从而引起电信号的改变,这就是压阻式压力传感器的工作原理。由此可见,压敏电阻的变化与受到的压力大小和压阻系数有关。本文中的气压传感器是基于硅的压阻效应设计的,制备的气压传感器芯片结构截面图。传感器结构由一个单晶硅弹性薄膜和集成在膜上的4个压敏电阻组成,4个电阻形成了惠斯通电桥结构,当有气压作用在弹性膜上时电桥会产生一个与所施加压力成线性比例关系的电压输出信号。
1.2气压传感器制作工艺流程
整个流程主要是采用硅表面微加工工艺。与传统的压阻式压力传感器的加工方法相比,该工艺流程采用了外延单晶硅硅膜的工艺进行真空腔密封,这种方法可以克服传统的湿法刻蚀工艺的缺点,加工出的单晶硅膜具有很好的机械性能。①首先,对硅衬底采用各向异性干法刻蚀,刻蚀出一道道约5μm深的浅槽。然后采用各向同性干法刻蚀,使浅槽下方形成一个连通的腔。②采用外延工艺,在衬底上进行单晶硅外延,并利用外延的硅材料将浅槽完全封住,从而在下面形成一个接近真空的密封腔。外延工艺如下:温度为1135℃,采用的是H2,PH3等气体,外延时的真空度为80torr。③在对外延硅层的局部区域进行小剂量硼离子注入。该部工艺主要是为了制作压敏电阻,压敏电阻主要位于膜四边的中央。④对局部区域进行大剂量硼离子注入。该步工艺主要是要实现压敏电阻条之间的欧姆连接,并为压敏电阻的引出做准备。⑤在硅片表面生长一层氧化层及氮化层,用作绝缘介质层。⑥对氧化层和氮化层光刻并图形化,形成接触孔。⑦溅射金属层并光刻图形化,形成引线及压焊块。
2测试电路设计
此压阻式气压传感器,压敏电阻初始电阻值为163Ω,满量程输出电阻变化最大为9Ω,针对此微小阻值变化量,本文中设计了一款专用接口测试电路。该测试电路主要包括STM32系列单片机及ADS1247模/数转换模块和液晶显示模块。电路应用时将惠斯通电桥输出节点与测试电路连接起来,通过硬件和软件的结合实现外界气压信号的检测并转化为数字电信号进行输出,读数在LCD显示屏上进行显示,测试电路板的说明如图4所示,针对部分重要模块的电路设计在下文说明。
2.1电源电路设计
测试系统中需要用到3.3V和5V两种电压(选用的STM32单片机规定工作电压为2.0V~3.6V,ADS1247数/模转换模块模拟电源部分供电电压为5V),根据测试电路元件的需求,采用国产LM2940-5和LM1117-3.3两个稳压模块来进行电源供电的设计。
2.2ADS1247模/数转换电路设计
ADS1247是TI公司推出的一种高性能、高精度的24位模拟数字转换器。ADS1247单片集成一个单周期低通数字滤波器和一个内部时钟、一个精密(ΔΣ)ADC与一个单周期低通数字滤波器和一个内部时钟。内置10mA低漂移电源参考和两个可编程电流型数字模拟转换器(DAC)。通过程序设置,在输出电压裕度内,DACS可为外部提供多种强度的电流,分别为50μA、100μA、250μA、500μA、750μA、1000μA、1500μA。除此之外,ADS1247还具有一个可编程放大器(PGA),放大倍数可设置为1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍。
3气压传感器性能测试分析
气压传感器作为一种高空探测的工具,它的性能好坏直接影响到高空探测的准确性,针对本传感器结构进行测试并从数据中对气压传感器的灵敏度、线性度、测试精度进行了分析及拟合修正。
一、概述
对于电阻应变片式测力传感器(以下简称“测力传感器”)来说,弹性体的结构形状与相关尺寸对测力传感器性能的影响极大。可以说,测力传感器的性能主要取决于其弹性体的形状及相关尺寸。如果测力传感器的弹性体设计不合理,无论弹性体的加工精度多高、粘贴的电阻应变片的品质多好,测力传感器都难以达到较高的测力性能。因此,在测力传感器的设计过程中,对弹性体进行合理的设计至关重要。
弹性体的设计基本属于机械结构设计的范围,但因测力性能的需要,其结构上与普通的机械零件和构件有所不同。一般说来,普通的机械零件和构件只须满足在足够大的安全系数下的强度和刚度即可,对在受力条件下零件或构件上的应力分布情况不必严格要求。然而,对于弹性体来说,除了需要满足机械强度和刚度要求以外,必须保证弹性体上粘贴电阻应变片部位(以下简称“贴片部位”)的应力(应变)与弹性体承受的载荷(被测力)保持严格的对应关系;同时,为了提高测力传感器测力的灵敏度,还应使贴片部位达到较高的应力(应变)水平。
由此可见,在弹性体的设计过程中必须满足以下两项要求:
(1)贴片部位的应力(应变)应与被测力保持严格的对应关系;
(2)贴片部位应具有较高的应力(应变)水平。
为了满足上述两项要求,在测力传感器的弹性体设计方面,经常应用“应力集中”的设计原则,确保贴片部位的应力(应变)水平较高,并与被测力保持严格的对应关系,以提高所设计测力传感器的测力灵敏度和测力精度。
二、改善应力(应变)不规则分布的“应力集中”原则
在机械零件或构件的设计过程中,通常认为应力(应变)在零件或构件上是规则分布的,如果零件或构件的截面形状不发生变化,不必考虑应力(应变)分布不规则的问题。其实,在机械零件或构件的设计中,对于应力(应变)不规则分布的问题并非不予考虑,而是通过强度计算中的安全系数将其包容在内了。
对于测力传感器来说,它是通过电阻应变片测量弹性体上贴片部位的应变来测量被测力的大小。若要保证贴片部位的应力(应变)与被测力保持严格的对应关系,实际上就是保证在测力传感器受力时,弹性体上贴片部位的应力(应变)要按照某一规律分布。在实际应用中,对于弹性体贴片部位应力(应变)分布影响较大的因素主要是弹性体受力条件的变化。
弹性体受力条件的变化是指当弹性体受力的大小不变时,力的作用点发生变化或弹性体与其相邻的加载构件和承载构件的接触条件发生变化。如果在弹性体结构设计时,未能考虑这一情况,就可能造成弹性体上应力(应变)分布的不规则变化。这方面最典型的实例是筒式测力传感器(见图1)。
当筒式测力传感器上、下端面均匀受力时,在弹性体贴片部位的整个圆周上应力(应变)的分布是均匀的。当上、下两个端面上受力情况发生变化后,力在两个端面的作用情况不再是均匀分布的,这时弹性体贴片部位圆周上应力(应变)的分布情况就难以预料了。如果筒式测力传感器弹性体的高度与直径之比足够大,弹性体贴片部位圆周上的应力(应变)基本上还是均匀分布。但是,在实际应用中,通常很少能为测力传感器提供较大的安装空间位置,因而筒式测力传感器弹性体的高度与直径之比很难做到足够大,弹性体贴片部位圆周上应力(应变)将不均匀分布,而且不均匀分布的情况随弹性体受力情况的变化而改变。在这样的条件下,弹性体贴片部位的应力(应变)与被测力不能保持严格的对应关系,将造成明显的测力误差。
为了减小由于弹性体受力条件的变化引起的测力误差,有些传感器设计者采取在筒式测力传感器弹性体上增加贴片数量的方法,尽可能将弹性体上贴片部位圆周上应力(应变)分布不均匀的情况测量出来。这样的处理方法有一定的效果,可以减小弹性体受力条件的变化引起的测力误差。但这种方法毕竟是一种被动的方法,增加的贴片数量总是有限的,还是很难把弹性体上贴片部位圆周上应力(应变)分布不均匀的情况全部测量出来,测力误差减小的程度不够显著。
由于弹性体受力条件的变化引起的测力误差的实质是弹性体贴片部位圆周上的应力(应变)的不规则分布,如果能使弹性体贴片部位圆周上的应力(应变)分布受到一定条件的约束,迫使贴片部位的应力(应变)按照某一规律分布,因而使得弹性体贴片部位的应力(应变)与被测力基本保持严格的对应关系,由此来减小因弹性体受力条件的变化引起的测力误差。
对于筒式测力传感器来说,在承载强度足够的条件下,如果将弹性体贴片部位圆周上不贴片的部位挖空(见图2),使得应力只能在未挖空的部位分布,大大改善了应力(应变)不规则分布的情况。或者说,应力(应变)的不规则分布仅仅限于未挖空的部位,并且其不规则分布的程度不会很大。因此,在未挖空的部位粘贴电阻应变片,就能使测得的应力(应变)与被测力基本保持严格的对应关系。
上述处理方法实际上出于这样一个原理:通过某种措施,使弹性体上的应力(应变)集中分布在便于贴片检测的部位,实现测得的应力(应变)与被测力基本保持严格的对应关系,以保证传感器的测力精度。
作者曾用上述方法对筒式测力传感器进行改进。改进前的普通筒式传感器测力误差大于1%F.S.,改进后(局部挖空)的筒式传感器测力误差为0.1~0.3%F.S.,测力精度明显提高。
三、提高应力(应变)水平的应力集中原则
若要测力传感器达到较高的灵敏度,通常应该使电阻应变片有较高的应变水平,即在弹性体上贴片部位应该有较高的应力(应变)水平。
实现弹性体上贴片部位达到较高应力(应变)水平有两种常用的方法:
(1)整体减小弹性体的尺寸,全面提高弹性体上的应力(应变)水平;
(2)在贴片部位附近对弹性体进行局部削弱,使贴片部位局部应力(应变)水平提高,而弹性体其它部位的应力(应变)水平基本不变。
以上两种方法都可以提高贴片部位的应力(应变)水平,但对弹性体整体性能而言,局部削弱弹性体的效果要远好于整体减小弹性体尺寸。因为局部削弱弹性体既能提高贴片部位的应力(应变)水平,又使得弹性体整体保持较高的强度和刚度,有利于提高传感器的性能和使用效果。
局部削弱弹性体提高贴片部位应力(应变)水平的原理是:通过局部削弱弹性体,造成局部的应力集中,使得应力集中部位的应力(应变)水平明显高于弹性体其它部位的应力水平,将电阻应变片粘贴于应力集中部位,就可以测得较高的应变水平。
局部应力(应变)集中的方法在测力传感器的设计中经常被采用,尤其在梁式测力传感器(如弯曲梁式和剪切梁式测力传感器)的弹性体设计中被广泛应用。局部应力(应变)集中方法应用较为成功的当数剪切梁式测力传感器。剪切梁式测力传感器是通过检测梁式弹性体上的剪应力(剪应变)实现测力的,其弹性体的结构如图3所示(为了便于说明问题,这里仅以一简支梁式的弹性体为例)。
由材料力学中有关梁的应力分布知识可知,当梁承受横向(弯曲)载荷时,在梁的中性层处剪应力(剪应变)最大。如果要检测梁上的剪应变,应该在梁的中性层处贴片。为了提高贴片处的剪应力(剪应变)水平,可将弹性体两侧各挖一个盲孔(见图3的2处),盲孔的中心应在中性层处。电阻应变片应该粘贴在盲孔的底面上,即图3中工字形断面(A-A剖面)的腹板上。
对于梁形构件来说,其弯曲强度是主要矛盾。在一个梁满足弯曲强度的情况下,剪切强度一般裕量较大。当在中性层附近挖盲孔后,该截面上腹板上的剪应力(剪应变)明显提高,然而该截面上的弯曲应力提高很小。因此,剪切梁式弹性体应用局部应力集中方案后,被检测的剪应变大大提高,使该测力传感器的灵敏度显著提高,而对整个梁的弯曲强度影响很小,使整个梁保持了良好的强度和刚度。
四、小结
在测力传感器的设计过程中,如能自觉地按照上述两种应力集中的原则,对弹性体进行结构设计,就能够收到提高测力传感器的测力精度和测力灵敏度的良好效果。灵活、恰当地运用应力集中的原则,对于设计和生产高性能的测力传感器具有重要的实用意义。
参考文献
[1].刘鸿文主编,《材料力学》,高等教育出版社,1979年
PrinciplesofConcentratingStressintheDesignofLoadCells
Abstract:Thispaperintroducestwoprinciplesofconcentratingstress,whichareusually
本研究以病原菌为检测对象,通过蛋白A将病原菌抗体固定于金叉指阵列微电极表面,制备了一种阻抗型传感器。以Fe(CN)3-/4-6作为氧化还原对,经过化学电阻抗谱表征电极表面修饰及抗原捕获过程,采用等效电路阐述其阻抗谱的变化。实验结果表明,待测溶液中病原菌浓度的对数值与叉指阵列微电极的电子传递阻抗的变化值呈线性关系。传感器系统将上面的输出信号进行电压放大、A/D转换等处理,然后由已知的定量检测模型得出表征被测物含量的数值,并通过LCD装置进行显示,且可在超过安全值时进行报警。
1.2基本结构
实现定量检测和自动报警等功能,单片机是核心部件。本设计选用STC89C52单片机,它是一种低功耗、高性能CMOS8位微控制器,可满足系统工作的要求。该系统以STC89C52单片机为核心,包括阻抗测试模块、阻抗电压转换模块、电压放大电路模块、A/D转换模块和显示及报警模块。此系统采用模块化设计不仅便于扩充不同测量单元,而且可防止各模块间相互干扰,利于仪器稳定。
2硬件选型及电路设计
2.1集成放大器选择
A/D转换电路所需的电压幅值一般为2V,而叉指微电极输出的电压信号比较小,所以需要对叉指微电极输出的电压信号进行放大。主放大电路采用放大器ICL7650,其电路具有电源电压范围宽、静态功耗小、可单电源使用及价格低廉等优点,广泛应用在各种电路中。
2.2A/D转换模块设计
经放大电路输出的电压值是模拟信号,不能直接送入单片机进行处理,还必须进行A/D转换后送入单片机进行处理。本设计选择ADC0809芯片作为AD转换装置,此芯片功能简单,能稳定实现本设计的要求。
2.3显示及报警模块设计
2.3.1显示电路设计
传感器需要输出液晶显示结果,主要包括检测物名及物质浓度等。本系统选用LCD1602液晶显示屏,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块,能够同时显示16×2(16列2行,即32个)字符,可满足显示检测物名称和浓度的要求。
2.3.2报警电路设计
为了实现超限自动报警的功能,需要蜂鸣器接受单片机发出的超限报警信号发出警报,警示微生物的数量已经超标。要实现自动报警的功能,可采用实现单频音报警。其接口电路较简单,发音元件为压电蜂鸣器,当在蜂鸣器两引脚上加3~15V直流工作电压时,可产生3kHz左右的蜂鸣振荡音响。压电式蜂鸣器结构简单、耗电少,更适于在单片机系统中应用。压电式蜂鸣器约需10mA的驱动电流,可在单片机一端口接一只三极管和电阻组成的驱动电路来驱动。浓度超标时,单片机P3.6输出高电平,驱动蜂鸣器报警,提醒检测者被测物超标,并做相应处理。
3软件设计
为了便于程序修改和升级,软件系统采用模块化设计方法,主要程序包括:主程序、键盘处理子程序、数据处理子程序、液晶显示子程序及报警子程序。系统工作流程为:检测人员通过键盘输入被测物种类,MCU通过判断处理之后,阻抗测试仪测量获得多个阻抗值,经阻抗电压转换电路和放大电路,A/D转换器处理,将得到的数字信号送入MCU;MCU对数字进行计算、比较等处理,得到被测物浓度,判断出浓度是否超限;接着,MCU将浓度送入LCD进行显示,判断比较结果是否需要进行报警,需要时则控制报警器报警。
2光电开关与斯密特触发器
2.1光电开关
大多传感器电路所选择的都是槽型光电开关,其一般会利用最标准的U型结构,发射器及接收器在U型槽的两边,呈现出一个光轴,在对应检测物通过该槽并隔断光轴时,这时的光电开关就出现了开关量号。以槽式光电开关来讲,其最适宜检测运行速度较高的物体,其可以很好的分辨出透明及半透明的物体,应用安全性较高。因为光电开关输出及输入回路之间是利用电缘绝来实现的,因此其能够应用于众多的场合中。利用集成电路相关技术以及表面安装工艺制作的新型光电开关元件,其具有较好的延时性、拓展性、外同步、抗干扰、可靠性、运行区域稳定、自行诊断等诸多智能化功能。该光电开关属于脉冲调制主动式的光电探测体系类电子开关,其主要应用的冷光源为红外光、红、绿、蓝色光,可以不接触、无损害、快速将各类固体、液体、透明体、黑体、柔软体等物质控制其对应状态及动作。
2.2斯密特触发器
该传感器电路运用斯密特触发器对相关电平进行转换,便于很好地满足于传感器体系测量的精确度,斯密特触发器自身有着巧妙的滞后特性数字化传送门。其电路阀值电压为两个,正向阀值及负向阀值电压;双稳态触发器及单稳态触发器不相同,斯密特触发器整体上是电平触发型的电路,并不会依靠周边较为陡峭脉冲。其属于阀值开关电路的一类,输入级输出特性容易突变的门电路。该电路设计为阻隔相关输入电压所存在的微笑变化而导致的输出电压变化。斯密特触发器对应输出情况转换是由其相关输入信号变化而决定的,输入信号在最低电平提高时,电路状况变化中输入的电平及其相关输入信号是与高电平处降低中的输入变化电平不相同的,其对应阀值电压被称之为正向阀值及负向阀值电压。并且,因为斯密特触发器之内会有相关正反应,因此其输出电压所对应的波形通常较为陡峭。使用斯密特触发器不止是可以把周边转化减缓信号所呈现的波形进行一定整形,最终形成边沿陡峭型矩形波,并且能够把其互相叠加于矩形波的脉冲高与低处电平噪音合理清除。
3电路模块设计及实现
总体传感器电路模块呈现为:电梯脱离信号光电开关触发信号触发器终端处理元件。在相关电梯并未脱离缓冲器时,对应传感器有一个小挡板位于槽型光电开关之间,合理得隔档LED对三极管的触发。在电梯脱离了相关缓冲器时,经由安装于传感器间的对应弹簧将挡板有效的弹开,这时LED就能够轻易的触发光敏三极管。
1 引言
力传感器是目前广泛使用的传感器,在长期使用过程中,由于使用环境、本身结构的变化,需要对其进行标定,以此保证测量的精度。近年来,随着虚拟仪器技术的出现和发展,越来越多的技术人员开始基于该技术来开发自动化测量设备。博士论文,标定。虚拟仪器是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向[1]。而在众多的虚拟仪器开发平台中,美国国家仪器公司(NI)的LabVIEW应用最为广泛。本文主要介绍了基于LabVIEW的力传感器标定程序的设计。
2 标定的原理
所谓标定(或现场校准)[2]就是指用相对标准的量来确定测试系统电输出量与物理输入量之间的函数关系的过程。标定是测试中极其重要的一环。标定除了能够确定输入量和输出量之间的函数关系之外,还可以最大限度地消除测量系统中的系统误差。
传感器的校准采用静态的方法,即在静态标准条件下,采用一定标准等级(其精度等级为被较传感器的3~5倍)的校准设备,对传感器重复(不少于3次)进行全量程逐级加载和卸载测试,获得各次校准数据,以确定传感器的静态基本性能指标和精度的过程。为简化系统的设计,此处标准量采用砝码加载的方式获得。
3 系统组成
3.1硬件组成
系统的硬件组成如图1所示:
图1 系统硬件组成
由图可以看出,系统主要包括计算机、力传感器,数据采集卡、接线盒等。本系统中,力传感器采用电阻应变式压力传感器,四个应变片采用全桥的工作方式。数据采集卡采用NI公司的PCI-6221,该采集卡的主要参数如下:它具有16个模拟输入端口,2个模拟输出端口,24个数字输入输出端口,采样速率最高可达到250kS/s。接线盒采用NI公司的SC-2345,此接线盒直接与数据采集卡相连,接线盒上有SCC信号调理模块插座。SCC模块是NI公司提供的信号调理模块,其上面包含信号调理电路,可以将传感器处采集的信号转换成适合数据采集卡读取的信号。本系统所用的SCC模块为SCC-SG04,此模块适用于连接采用全桥工作方式的电阻应变式压力传感器。
3.2软件组成
本系统软件基于LabVIEW 8.2来开发。LabVIEW是一种图形化的编程语言。博士论文,标定。博士论文,标定。与其他开发工具不同,用LabVIEW编程的过程不是写代码,而是画“流程图”。这样可以使用户从烦琐的程序设计中解放出来,而将注意力集中在测量等物理问题本身。它主要针对各个领域的工程技术人员而设计,非计算机专业人员[1]。博士论文,标定。
因为所用的力传感器属于应变式电阻传感器,其电阻变化率与应变可以保持很好的线性关系,即输入与输出量之间呈线性关系,所以可以用一条直线对校准数据进行拟合。此直线就称为拟合直线,所求得的方程为拟合方程。图2所示为传感器标定程序的采样页面。
此程序采用LabVIEW的事件驱动编程技术进行编制的。事件[3]是对活动发生的异步通知。事件可以来自于用户界面、外部I/O或程序的其它部分。在LabVIEW中使用用户界面事件可使前面板用户操作与程序框图执行保持同步。事件允许用户每当执行某个特定操作时执行特定的事件处理分支。
图2 标定程序采样页面
图3 采样程序
直线拟合的方法[2]有很多种,比如最小二乘法、平均选点法、断点法等等。其中,最小二乘法精度比较高,此处利用它进行直线拟合。根据最小二乘法,假定是一组测量值,是相应的拟合值,mse为均方差,则拟合目标可以表达为,期望mse最小。
LabVIEW中的分析软件库提供了多种线性和非线性的曲线拟合算法,例如线性拟合、指数拟合、通用多项式拟合等等。本程序选择Linear Fit.Vi 来实现最小二乘法线性拟合。
标定子程序的工作流程如下:用户先通过多次采样,获得各个输入量对应的输出量,通过While循环的移位寄存器保存这些值。博士论文,标定。采样完成后,把这些值输入Linear Fit.Vi进行拟合,拟合的曲线在Graph控件中显示出来,同时该Vi自动求出方程y=ax+b中的斜率a和截距b,这样,输入输出量之间的函数关系就可以确定下来了,如图4所示。
图4 标定程序拟合前面板
4 小结
基于虚拟仪器的力传感器标定程序能够方便地对力传感器进行标定。博士论文,标定。该系统具有人机界面友好,灵活方便,自动化程度高等特点。
参考文献:
【1】.候国屏;王珅;叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].清华大学出版社.2005
【2】.张迎新等.非电量测量技术基础[M].北京航空航天大学出版社,2001
互联网iso论文参考文献:
[1]任刚.新媒体时代的传统媒体如何应对挑战[J].科技信息.2013(04)
[2]牟宗友.互联网传媒与文化传承的关系研究[J].中国市场.2016(15)
[3]邬政.传统媒体如何成为“互联网+”的受益者——浅析传统媒体融媒时代的转型定位[J].中国地市报人.2015(05)
[4]候金凤.移动互联网下手机用户使用行为特征的研究[J].电脑知识与技术,2016(7).
[5]曾青菲.基于用户体验的互联网产品差异化设计探究[J].艺术教育,2016(7).
[6]周鸿祎.我的互联网方法论[M].北京:中信出版社,2015.
互联网iso论文参考文献:
[1]中国互联网络中心(CNNIC).第29次中国互联网络发展状况统计报告[R]}2012年1月.
[2]淘宝网.淘宝公告,http://bbs.taobao.com.
[3]百度百科.http://baike.baidu.com/view/5052997.htm.
[4]魏宏.我国B2C电子商务现状及问题分析.标准科学[J].2004(8):52-54.
[5]黎军,李琼.基于顾客忠诚度B2C的网络营销探.讨中国商贸[J].2011(5):34-35.
[6]沃德·汉森.网络营销原理[M].北京:华夏出版社,2001:5.
[7]RaftA.M}Robertj.&FishersB.InternetMarketingBuilding[J].QuarterlyJournalofEconomics2004,9(12):49-68.
[8]戴夫,查菲.网络营销战略、实施与实践[M].机械工业出版社,2006:4.
[9]王耀球,万晓.网络营销[M].北京:清华大学出版社,2004:2.
[10]凌守兴,王利锋.网络营销实务[M].北京:北京大学出版社,2009:4.
互联网iso论文参考文献:
[1]张军国.面向森林火灾监测的无线传感器网络技术的研究[D].北京林业大学,2010.
[2]叶佥昱.无线传感器网络中的信息压缩与路由技术研究[D].北京邮电大学,2009.
[3]王怿.水下传感网时钟同步与节点定位研究[D].华中科技大学,2009.
[4]高峰.基于无线传感器网络的设施农业环境自动监控系统研究[D].,2009.
[5]许华杰.无线传感器监测网络环境不确定性数据处理研究[D].华中科技大学,2008.
[6]马奎.无线传感网移动接入与信息获取优化策略研究[D].中国科学技术大学,2008.
[7]李莉.无线地下传感器网络关键技术的研究[D].北京邮电大学,2008.
[8]李石坚.面向目标跟踪的自组织传感网研究[D].浙江大学,2006.
1 引言
由于在局部的温度通常具有不一致性,因此在检测环境温度时,传统的单一测点测量温度的方法并不能够准确说明实际的温度信息。在同一环境中,对多点进行温度测量,能够有效解决这一问题,使得温度测量更加准确。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20[1]。
本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。
2 系统方案
无线数据传输按照传输方式的不同,可以分为:点对点、点对多点以及多点对多点。本论文所设计的系统由主控芯片51单片机、主接收器以及多个测量终端组成。每个测量终端都是通过无线传输模块nrf9e5传递数据,进而形成无线传输的温度采集系统。系统框图如图1所示。
将相应的温度传感器分布在所要测量环境的不同位置,就能够精确评估环境温度。然后再将这些测量得到的温度经过无线通信模块发送到主控芯片上,主控芯片对数据进行处理和显示。
3 硬件电路设计
3.1 无线数据传输模块
nrf9e5具有和8051相互兼容的微控制器,但是时序和指令都与其有些差别。nrf9e5与cpu的数据交换是通过串口来进行的。
nrf9e5和其他模块通信主要是通过自身内部的并行口和内部的spi口。nrf9e5与nrf905等具有一样的功能。收发器在与微控制器进行数据交换的过程中,主要是通过片内的spi和并行口。在要传输通信的数据准备好之后,就能够产生中断,供微控制器使用。
3.2 温度测量电路
温度检测的方法有很多,比如采用热电偶等。但是本论文采用的是ds18b20温度传感器。该温度传感器采用的是one-wire总线,即只采用一根信号线与单片机进行连接。该测温传感器能够测量零下55度到125摄氏度的温度范围,同时分辨率能够达到0.5摄氏度。工作电压范围很宽,一般为3.0至5.5v。
3.3 主控芯片
本论文设计的数据采集器使用的主控芯片是at89s52单片机。msc-51单片机是八位的非常实用的单片机。本论文所使用的at89s52单片机就是基于这款单片机的。msc-51单片机的基本架构被atmel公司购买,继而在其基本内核的基础上加入了许多新的功能,同时扩展了芯片的容量以及加入flash闪存等等。51内核的单片机具有很多优点,因此无论是在工业上还是在一些电子产品上应用都很多。全球也有许多大公司对其进行扩展,加入新的功能。即使是在今天,51单片机仍然在控制系统中占据很大市场。
下面对本论文所使用的单片机作简要介绍。这款单片机具有最大能够支持的64k外部存储扩展,同时还具有8k字节的flash空间。该单片机具有4组i/o口,分别是从p0到p3,同时每组端口具有8个引脚。每个引脚除了能够作为普通的输入和输出端口外,还具有其它功能,也就是我们通常所说的引脚复用。其还具有断电保护、看门口、计时器和定时器。51单片机一般的工作电压是5v。
4 软件设计
4.1 通信协议
本系统为单点对多点的无线通信,主接收器在可靠通信范围内分别与每个数据终端通信。主接收器与每个数据终端都有一个唯一的地址,因此在通信过程中必须明确接收方的地址。系统通信协议定制如表1所示。
4.2 温度测量程序
本论文采用的温度传感器是one-wire总线的器件,与主控芯片进行一根数据线连接,就能够同时实现数据和时钟信号的双向传输。但是这样就要求主控芯片的时序必须具有严格的要求。在出厂之前,每个器件的rom上都光刻上64位的编码,这个编码地址序列是唯一的,我们可以通过这个编码地址序列来进行多
点的组网。但是本论文所设计的温度采集系统,在每一个结点只是用一个温度传感器,因此在程序中并不需要读取其rom编码。
5 总结
在实际的温度测量过程中,测量单点的温度往往并不能够准确反映实际温度信息,需要对同一环境进行多次测量,同时要对多个温度节点进行测量。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20。本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。
参考文献
[1]马祖长,孙怡宁,梅涛.无线传感器网络综述[j].北京:通信学报,2004,25(4):15-17.
[2]郑启忠,耿四军,朱宏辉.射频socnrf9e5及无线数据传输系统的实现[j].单片机与嵌入式系统应用,2004(8):51-54.
[3]季一锦,尹明德.一种基于nrf9e5的无线监测局域网系统的设计[j].国外电子元器件,2004,(12):22-25.
1、前言
地磁场的异常波动是发生地震的重要征兆,对地磁场异常的监测可以为地震预报研究提供重要的数据资料 [1]。
虚拟仪器技术是利用编程软件,按照测量原理,采用适当的信号分析与处理技术,编制具有测量功能的程序就可以构成相应的测试仪器[2],降低了仪器的开发和维护费用,缩短了技术更新周期,显著提高了仪器的柔性和性价比[3]。
2、硬件结构
分布式地磁场异常监测系统总体结构如图1所示。磁场传感器通过RS232串口将计算出的地磁场方位值前期数据发送给电脑1,电脑1上的虚拟仪器软件完成对信号的读取、计算、分析、显示、存储等并通过电子邮件将相关数据传送给远端的电脑2。
3、软件设计
3.1、软件的总体功能
如图2所示,监测系统主要有数据采集模块、显示模块、磁场异常报警模块、数据处理模块、数据保存模块、电子邮件发送模块等组成。
3.2、软件前面板
前面板如图3所示,主要分为3个模块:通信参数设置模块、监测结果显示及保存模块、异常报警模块等。论文参考,电子邮件。论文参考,电子邮件。设置的通信参数主要有与传感器通信时的波特率、数据位、数据文件保存的位置、软件异常及地磁异常时发送电邮的收发件人电子信箱地址等。论文参考,电子邮件。论文参考,电子邮件。
图2 软件总体功能框图
图3 软件前面板
3.3、地磁场方位值的计算
地磁场方位值计算模块如图4所示,将VISA读取控件缓冲区中的字符串数组读出,截取其中第9和第10个元素,进行数制、进制转换得到地磁场方位值,接到前面板进行显示。论文参考,电子邮件。论文参考,电子邮件。
图4 方位值计算模块
3.4异常报警
将当前时刻的方位值与正常方位值相比较,如果相差5度,即认为是地磁场的异常波动,报警指示灯亮,发出报警音,同时启动邮件发送模块。
3.5 数据保存模块
调用日期/时间字符串控件,读取windows日期时间,和地磁场方位值一起写入指定目录的txt文件中。当地磁场异常时,触发磁场异常逻辑为真,写入文件控件将从此时刻开始5秒内的时间值、地磁场方位值写入txt文件中。
图5 邮件发送第一帧
图6 邮件发送第二帧
3.6 邮件发送
4.实验
如图7所示,实验方法为:将传感器与电脑1串口相连,通过虚拟仪器软件监测地磁场的异常情况,当地磁发生异常或接收传感器数据异常时,电脑1上的监测软件报警,并把异常数据记录到数据文件中,同时通过电子邮件模块向指定信箱发送指定格式邮件,监测者在电脑2上查看相关异常邮件。做法是转动传感器使其与地磁场磁北指向夹角为200°,用一块磁铁沿着与传感器指向垂直的方向自远及近靠近后又自近及远离开传感器,记录下整个过程磁铁与传感器距离、地磁场方位值、异常情况及邮件接收情况。实验结果如表1所示。
反复实验表明,监测软件准确地记录下了磁铁靠近传感器的过程中该处磁场的变化情况,且当地磁异常时电脑2及时地接收到了相关异常数据邮件。
1 引言
目前,水资源的管理和节约成为世界性的难题。在控制人们意识上浪费的同时,各种节水设备也应运而生。目前大多都是着眼于用水节约和效率,却忽视了废水的循环使用。为此,本文基于“绿色设计”的原则,设计了一种基于单片机控制的家庭智能节水系统,最大限度的做到“水尽其用”。
2 智能节水系统设计思路
该设计用MCS-51单片机作为控制电路的核心控制部件来构成控制器,单片机输出不同程序信息,经过移位寄存器74LS164驱动,使得数码管显示相应内容,红外传感器以及混浊度传感器和水位传感器检测到的模拟信号经过8位模数转换器ADC0809转变成数字信号写入单片机,经过单片机处理再把数字信号经过8255A送给电磁阀电路和继电器电路,控制其工作与否。从结构来说该设计包括A/D转换和扩展I/O口。输入部分包括按键设置、水位传感器、浑浊度传感器和红外传感器。输出部分包括LED显示、继电器驱动电路、电磁阀驱动电路和发光二极管。系统设计框图如图1所示:
图1 系统设计框图
3 智能节水系统硬件选择
家庭节水系统通常包括4个主要构成部分,分别是收集器、处理器、储存器和供给器。系统中要用水位传感器和浑浊度传感器及多个电磁阀、继电器等,既有模拟量又有数字量。
3.1单片机的选取
ATMEL公司的89系列单片机也称Flash单片机是以8031为核心构成,它和 INTEL公司的MCS-S1系列单片机完全兼容,扩展了它的功能。89系列单片机存在下列很显著的优点:
(1)内部含Flash存储器;(2)和AT80C51插座兼容;(3)静态时钟方式;
(4)错误编程亦无废品产生;(5)可反复进行系统试验。
鉴于以上的优点,经过分析比较,根据本系统的特点,选用ATMEL公司89系列的标准型单片机AT89C51。其片内含有128字节的数据存储器(RAM)和4K字节的可电擦电写闪烁程序存储器E2PROM,这足以满足系统实现其功能。
3.2模数转换芯片
在众多的转换器中以逐次逼近式A/D转换器的性价比最高,应用最广泛,国内使用较多的芯片有ADC0808/0809,ADC0801-ADCO805及ADC0816/0817和AD574等,根据本系统的特点和要求选用中速、低廉的逐次逼近式ADC0809模数转换芯片。它包括一个高阻抗斩波比较器;一个带有256个电阻分压器的树状开关网络;一个逻辑控制环节和8 位逐次比较寄存器(SAR);一个8位三态输出缓冲器。
该系统中ADC0809与AT89C51单片机的连接如图2所示,采用等待延时方式。论文大全。ADC0809的时钟频率范围要求在10-1280kHz。ADC0809的CLOCK脚的频率是单片机时钟频率的1/6,因此当单片机的时钟频率采用6MHz。ADC0809输入时钟频率即为CLOCK=1MHz,发生启动脉冲后需延时100μs才可读取A/D转换数据。
图2 模数转换电路
3.3 按键的识别和输出显示
常用的键盘有阵列式键盘、独立式键盘。本设计中有4个按键,不必采用阵列式,而采用独立式键盘键接一个上拉电阻与P1口的一个管脚连接。对于按键的识别,有动态扫描和中断两种方式,在该设计中,按键的使用并不是很频繁,所以采用了中断的方式进行按键的识别.
对于输出,有动态并行输出、LCD液晶显示屏和静态译码输出三种方式。水箱中的液位要提供给用户,采用了最简单的八段数码管作为显示部分的硬件电路。该设计中只用到两个数码管显示,不会占用很多硬件资源,所以采用了静态显示。这样在发光二极管导通电流一定的情况下,显示器的亮度大,而且显示稳定。在输出方式上,由于对数码管响应速度不高,采用了串行移位的方式。这里采用74LS164进行显示驱动。
3.4电磁阀与继电器的控制
为使系统安全、稳定,采用了24V电磁阀和12V 继电器。由于电磁阀不能直接与单片机相连,采用了光电隔离,再通过IRF 530进行驱动。继电器的驱动采用的是最简单的方法,即三极管驱动,通过I/O脚电平的翻转来对电磁阀进行开/关控制。论文大全。电磁阀开关动作的控制脉冲宽度可选为30ms。其控制电路如图3所示。
图3 电磁阀控制电路
3.5浑浊度传感器、液位传感器和红外传感器
APMS-10G浑浊度传感器可以根据溶液含有的杂质、灰尘的颗粒大小、密度不同,产生光电经滤波后输出即得到浑浊度检测信号。采用AT89C51单片机与APMS-10G浑浊度传感器通信,读出浑浊度值,再将数据通过串行口传给主机,采用可控三态门74LS125将两路串行通道隔离,通过可控端分时使用,当P17输出高电平时,与APMS-10G的通道导通;当P17引脚低电平时,与主机的通信回路导通。从机串口平时与主机保持通信畅通,将串口设为中断状态,随时可以接收主机发来的指令。
众多的的传感器当中。谐振式水位传感器采用了先进的传感原理,高Q值的谐振电路,具有较强的抗干扰能力、结构灵巧、精密、简单易于制造。该设计中采用了谐振式水位传感器作为中位水箱和低位水箱中的水位检测装置。
红外传感器安装在水龙头内,当人手触发传感器时,信号传递给单片机。对于红外传感器,则利用热释电红外传感器直接接收运动人体的信号,使用574S红外探头。此电路只需要接收系统,不需要发射系统,通过技术处理,可以只接受运动的人体信号,比常规红外光接收器抗干扰性强。论文大全。
4 智能节水系统主程序流程图
系统主程序流程图如图4所示。设计的思路是首先初始化,让所有芯片都恢复最开始的设置,等所有芯片都准备好了之后,则读取E2PROM内的数据,接着进行A/D采样,读取水位传感器和浑浊度传感器采集到的数据,再对数据进行数据处理,若有数据输入,则转入相应的子程序并显示水位的高度;没有数据输入则继续下面的按键判断。有键按下时,判断是哪个按键按下,然后再转入相应的子程序;若无按键按下,则转回A/D采样子程序,重复上述的程序,如此往复进行下去。
5 结束语
提出了家庭智能节水系统控制器的设计方案、硬件电路和主程序流程图。
(1)从人性化、性价比方面综合考虑器件的优略,为该系统的优化提供了基础。
(2)红外感应水龙头、LED显示和延时可调开关不仅方面使用,便于监控,而且方便自如的调节水流时间,达到了节约用水的目的。
(3)结构简单,使用方便,经济节能环保。
参考文献
[1] 张建钢. 模糊控制洗衣机浑浊度检测系统[J]. 湖北工学院学报,2002(1)
[2] 肖景和、赵健 红外线热释电与超声波遥控电路[M],人民邮电出版社,2003
[3] 张 伟. 单片机原理及应用[M],机械工业出版社,2002.1
少量的硬币使用在日常生活中带来方便,但是硬币的回收,计数分装和打包就非常的麻烦。银行,超市,娱乐场所等硬币的收付,清点和包装的自动化程度很低,基本靠手工操作,难度大,效率低。目前市场上已经存在的硬币处理装置功能单一,自动化程度低,并且依然需要大量的人工配合才能实现。基于这种现状,本论文研究并实现了一种硬币计数定量打包装置,自动化程度高,可以有效的节省人工成本,提供效率。
1 硬币计数定量打包装置系统结构
本设计由伺服电机控制系统,硬币自动计数装置,硬币自动分装定量打包装置组成。硬币计数装置采用了光纤传感器和压力传感器的双重控制,确保系统更高的精度。当硬币计数装置计数到预设值时,系统通过中央控制系统对伺服电机系统发出指令,驱动伺服电机驱动电路来操控伺服电机。本系统中使用的是无刷直流伺服电机,具有体积小,重量轻,响应快,惯性小,力矩稳定等优点。分装打包装置由一系列的机械结构组成,通过伺服电机的带动进行工作。
2 硬币计数定量打包装置的机械设计
本系统的机械结构图2如图所示,伺服电机控制系统包括伺服电机(1),压力传感器,光纤传感器,伺服放大器组成。伺服电机装在四角机架(14)下端,压力传感器,光纤传感器,伺服放大器分别与伺服电机相连。伺服电机输出轴通过联轴器依次连接硬币自动分装定量打包装置和硬币自动计数装置。硬币自动分装定量打包装置包括主动轴(3),轴承座(4)以及轴承,槽轮(12),分度台(11),收集管(10)拔插以及锁止环(13),主动轴下端连接联轴器(2),上端连接轴承座和轴承,轴承座和轴承固定到四角机架上。主动轴中间固定连接拔插及锁止环,拔插及锁止环与槽轮配合连接构成槽轮系统。硬币自动计数装置包括凸轮(5),拉簧(6),集币管(8),运币滑块(9)。凸轮与主动轴连接,并且通过滚轮和运币滑块连接,运币滑块与拉簧连接。集币管底部装有用于检测硬币重量的压力传感器,运币滑块上面通过支座(7)安装用于硬币计数的光纤传感器。
3 硬币计数定量打包装置软件设计
本设计采用人机交互伺服控制系统,凸轮滑块间歇式硬币推送装置,针孔式光纤传感计数器,自带压力传感器的集币器,槽轮联动式分度台,自动封口包装硬币收集管配合实现。
硬币完成分类后经过滑道依次滑至集币管,光纤传感计数器和集币管底部的压力传感器先后对硬币进行技术,反馈检测数据到中央控制器,并且根据数据判断是否一致,如果不一致则进行重新分拣。在传感器计数时,人机交互界面会显示硬币的数额。当硬币的数目和质量参数共同确定硬币的个数达到用户的设定值,伺服电机驱动主动轴带动凸轮旋转,运币滑块移动,将定量硬币送入收集管,运币滑块推送命令完成后在拉簧的作用下完成复位,等待下一次循环命令。同时安装在主动轴上的拔插锁止环拔动槽轮,驱动联动式分度台旋转五分之一圈,收集管工作就绪,硬币掉入收集管,包装袋受硬币掉入时的冲击自动完成口袋的封合,完成一次硬币定量打包动作。
4 系统测试
在系统调试成功之后对系统进行了正确性的测试,对硬币的计数定量进行了测试。系统分别对100枚,500枚,1000枚硬币进行了预设值为10的计数定量。结果如表1所示,系统在100个,500个和100个硬币的测试表现中,表现稳定,没有任何的错误。
5 总结
本论文设计并实现了一种硬币计数定量打包系统,由伺服电机系统,硬币自动计数装置,硬币自动分装定量打包装置组成。本论文阐述了系统框架的设计,机械机构的设计以及软件系统的设计,并且对系统进行了测试,测试结果反应本系统拥有很高的可靠性,计数快速,定量准确,有效的提升了工作效率。同时本设计采用了大量的自动化设置,降低了人工成本。
参考文献
[1]杨云,马利云,苗新敏等.硬币自动分类计数装置的设计[J].现代制造技术与装备,2016(10):40-41.
[2]张玲,张洪涛,张琅等.一种新型的硬币分离整理装置的设计[J].装备制造技术,2016(11):165-167.
[3]刘涛,唐炳娴,张璇璇等.一种计数硬币筛分装置的设计[J].机械工程师,2017(02):112-114.
[4]廖明栋,范缜煜,董福庆.基于DSP的直流伺服电机驱动电路研究与分析[J]. 国外电子测量技术,2013,32(08):77-80.
作者简介
任少华,男,硕士研究生。
杨宝山,男,硕士研究生。
施小明,男,原上海理工大学机械工程学院党总支书记,现上海理工大学监察处处长。
作者单位