数据挖掘论文汇总十篇

时间:2023-02-27 11:06:34

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇数据挖掘论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

数据挖掘论文

篇(1)

1.2IBMSPSSModelerIBMSPSSModeler是一个数据挖掘工作台,用于帮助用户快速直观地构建预测模型,而无需进行编程。其精密的数据挖掘技术使用户能够对结果进行建模,了解哪些因素会对结果产生影响。它还能可提供数据挖掘相关的数据提取、转换、分析建模、评估、部署等全过程的功能[3]。通常,SPSSModeler将数据以一条条记录的形式读入,然后通过对数据进行一系列操作,最后将其发送至某个地方(可以是模型,或某种格式的数据输出)[3]。使用SPSSModeler处理数据的三个步骤:(1)将数据读入SPSSModeler;(2)通过一系列操纵运行数据;(3)将数据发送到目标位置。

2客户流失预测分析

2.1数据预处理数据预处理[6],将需要的客户投保数据按照业务预测分析的要求,将数据抽取到中间数据中,同时对数据清洗和转换,满足业务预测分析要求。每日凌晨调用存储过程将核心业务系统数据提取到中间数据库,寿险业务数据与其他数据一样,存在不安全和不一致时,数据清洗与转换可以帮助提升数据质量,进而提升数据挖掘进程的有效性和准确性。数据清洗主要包括:遗漏数据清洗,错误数据处理,垃圾数据处理[1]。

2.2数据选取数据预处理后,可以从中得到投保人的投保信息,包括投保人姓名,投保年龄(有效保单为当前年龄,无效保单为退保年龄),保费,投保年期,保单状态等。数据如图1所示。

2.3客户流失预测模型建立寿险业务按渠道来分可分为个人保险、团体保险、银行保险、网销保险、经代保险五类。由于团体保险在寿险公司发展比较缓慢,团险业务基本属于停滞阶段。结合寿险公司的营销特点,选定个人保单作为分析的对象,通过IBMSPSSModeler预测模型工具[3],使用决策树预测模型对客户流失进行预测分析。

2.4结果分析通过使用IBMSPSSModeler决策类预测模型分析某寿险公司2013年个人客户承保情况来看有以下规则:(1)投保年数在1年以内,首期保费在0~2000元或大于9997.130保费的客户比较容易流失。(2)保单终止保单中,女性客户较男性客户容易流失。(3)投保年数在2年以上,湖北及河北分支机构客户流失率比较容易流失。(4)分红寿险相对传统寿险,健康寿险的客户比较容易流失[1]。

篇(2)

二、石家庄地区制药企业专利数据挖掘

本文对石家庄地区制药企业的专利数据进行挖掘分析,挖掘对象是华北制药集团公司、石家庄制药集团有限公司、石家庄神威药业股份有限公司、石家庄四药股份、河北以岭药业股份有限公司、石家庄市华曙制药集团、河北医科大学制药厂、河北圣雪大成制药有限责任公司等地址在石家庄且具有一定代表性的药企,希望通过这些药企数据能够找到石家庄地区制药领域的核心组成,并能为药企更好地发展提供有力的信息支持。IPC号是目前权威的专利技术主题的标识编码之一,基本包含了各行各业的专利信息,是一个庞大的专利信息体系。目前国内外很多分析方法及技术大部分是基于专利的IPC分类号来分析专利技术主题的,此分析方法有一定的参考价值和科学性,而且对于具有大量专利信息的分析具有很好的总结概括效果。本文以专利全部IPC号为分析对象,并且构建IPC号之间的关联规则,在最大程度上揭示隐含的专利技术关联性,从而为石家庄地区制药企业专利技术的发展提供参考。

1.数据准备。数据来源的准确与否是数据分析与挖掘的基础,是数据分析与挖掘的根本。本文所使用的石家庄地区制药领域专利数据由万方数据公司提供,以制药企业地址为石家庄为检索条件,搜索出了包括从1985—2014年间石家庄地区制药领域专利644条,分别分布在A、B、C、D、E、F、G、H八个大部。对专利数据库中的644条专利进行筛选,根据“分类号”字段限制,它涉及专利信息的分类,有些IPC所涉及的范围与石家庄地区制药领域没有联系或联系很小,不宜保留。根据“申请人(专利权人)”字段的限制,剔除与石家庄地区制药不相关或制药企业地址不在石家庄地区的专利。最后筛选出590条最符合该领域特点的专利。由于IPC号在几乎所有现存数据库中均是以一个字段存储一个专利的所有IPC分类号的,形如:A61K38/26、A61K9/08、A61K47/12、A61P3/10,且每个专利一般都有好几个分类号,而每个企业又研究大量的专利,所以在进行专利分析之前,需要对专利IPC号进行数据整理。由于过于细致的IPC分类号并不利于专利主题的分析与揭示,所以本文中采用专利小类分析,就是取IPC号的前4位。并将申请人与其对应的多条IPC号进行拆分,拆分后的数据项有773条,即显示每个申请人对应的一条IPC分类号。

2.数据挖掘。本文数据挖掘过程将采用Excel和SQLsever2005软件,首先对所得到的数据导入SQLserver2005进行挖掘,利用SQLserver2005可以直接进行IPC号的关联规则挖掘,然后对专利信息进行分析。

3.数据挖掘结果与分析。基于关联规则制作依赖关系网络图,可以更加直观地看到各个IPC号之间的关联和依赖状态。

(1)以A61K、C12N、C12P、C07D、C07C为中心的核心专利技术群。这些专利的IPC分类号是关键部分药物组成的各种化合物即药物主要成分的重要聚集组。A61K(医用、牙科用等的配置品)是项集次数最多的,即支持度较高的,C12P(发酵或使用酶的方法合成目标化合物或组合物或从外消旋混合物中分离旋光异构体)、C12N(微生物或酶;其组合物)、C07D(杂环环合物,例如邻氯苄星青霉素的合成)、C07C(无环和碳环化合物)通过专利相关知识我们已经知道这些都是药物的合成成分,即土霉素、链霉素、青霉素等多种抗生素和维生素的主要成分组成,是制药领域的核心。这也是和石家庄地区制药企业的核心领域相符合的。另外这些专利主题的相互关联、依赖说明了石家庄地区制药企业在该领域具有很好的布局网络,在研发数量上也占有一定优势,所以说是石家庄地区制药企业的主要研究领域。

(2)以B65G、C12M为中心的辅助设备专利技术群。药品的生产离不开设备的支持,所以设备方面的专利也能体现制药企业的技术水平。在图1中也能体现出来,专利间有着很强的依赖性和关联性,在核心专利周边有B65G(运输或贮存装置,例如装载或倾斜用输送机、车间输送机系统、气动管道输送机)、C12M(酶学或微生物学装置),这些是制药的辅助技术手段,与中心专利是相互联系的,也是制药过程中必不可少的,在这些方面的提高有利于制药核心领域的发展。先进药品的研制离不开先进制药设备支持,所以设备水平的提高也是关键的。如图3所示,石家庄地区制药企业在这一方面的技术依赖网络也已经形成,说明在此技术领域也已经拥有较强实力。但与中心主要专利相比,辅助设备专利技术还是需要不断提高的。

篇(3)

主要采用关联规则与频次分析相结合的数据挖掘方法,关联规则旨在提示处方中存在的两个或两个以上腧穴之间的配伍形式,频次分析能够提供针灸治疗某一疾病选用的腧穴及其频繁程度。罗玲等在全面采集古代针灸治疗中风文献基础上,重点进行了选穴的经络症状关联分析,发现针刺治疗中风半身不遂使用腧穴频次最多的为曲池、肩等手阳明经穴;肩、曲池、足三里、百会、风池配伍是最常用处方;多选用足少阳经和手足阳明经穴位。针刺治疗中风不省人事使用腧穴频次最多的为督脉百会穴、心包经中冲穴;风池、百会、曲池配伍或大椎、百会、风池配伍是最常用处方;经脉多选用督脉和足少阳、手阳明等阳经穴位。以上表明针灸治疗中风遵循了辨证循经取穴的处方规律。何冬凤等在全面采集现代针灸治疗心绞痛临床文献基础上,重点进行了选穴的经络部位关联分析。结果发现,心绞痛选穴分布在心包经、膀胱经、任脉、心经最多;选穴主要分布在上肢部、背部、胸部,上肢部用穴中近90%分布于心包经和心经,背部用穴近95%分布于膀胱经,胸部用穴全分布于任脉和心经。以上表明针灸治疗心绞痛遵循了辨位循经取穴的处方规律。数据挖掘结果证实了古代、现代取穴规律和特点与针灸临床理论的一般规律和特点是基本相符的。经络辨证提示了经穴效应的循经性,特定穴的选用提示了经气会聚状态是腧穴发挥效应特异性的关键。

1.2腧穴运用规律的研究

1)神经系统疾病:赵凌等收录了从先秦至清末的偏头痛针灸专著,采用多层关联规则挖掘算法,计算腧穴项集的支持度和置信度,发现手足少阳经脉的穴位丝竹空、风池、率谷、颔厌、头临泣出现频次最高,偏头痛处方配伍中以合谷一风池出现的频次最高,少阳经的交会穴选用最多。杨洁等发现针灸治疗贝尔面瘫中,手足阳明经穴选用最多,重视局部穴位,配合远端选穴,地仓穴为使用频次最多经穴,交会穴、五输穴、下合穴等特定穴运用广泛。吴粮葶等挖掘针灸治疗中风后遗症的现代文献,表明针灸治疗中风后遗症选穴以循经为基础,首选阳经腧穴,分布主要在四肢,阳明经与少阳经的配伍关系最为常用,特定穴为选穴的主体,特别重视交会穴及肘膝关节以下的特定穴。李旗等挖掘出针刺治疗格林巴利综合征所选腧穴以足三里、合谷、曲池、阳陵泉、外关、三阴交使用频率最高,经络则以手足阳明经最为常用。CongMen等以不同针刺手法刺激小鼠足三里,构筑神经元混沌放电的复杂网络来刻画神经元放电时间序列的时变特性。

2)消化系统疾病:任玉兰等通过多维、多层的关联规则分析针刺治疗功能性消化不良的古文献,发现足三里、中脘、脾俞、胃俞、内关是治疗FD最常用的主要腧穴,足三里与中脘相配是最主要穴位组配方式;取穴以循经为基础,主要集中在任脉、膀胱经、脾胃经上;所选腧穴以特定穴为主体,遵循局部与远端取穴相结合原则。张勇等以古文献中治疗鼓胀的经穴为原始数据,运用频数统计及关联规则算法,统计出古代治疗鼓胀最常用经穴为足三里、水分、气海等,通过2次priori关联结果,最终确认组穴1(复溜,中风)和组穴2(复溜,脾俞)在临床应用中具有强关联性。郑华斌等发现在治疗肠易激综合征中,特定穴的使用广泛,其中以足三里为最,其次为天枢、上巨虚、中脘等,脏腑辨证取穴为针刺治疗肠易激综合征的重要原则,以足阳明胃经的足三里和天枢为主。

3)心血管系统疾病:何冬凤等收集从先秦至清末有关胸痹的文献,挖掘结果为历代针灸治疗胸痹以心包经选用频次最高,阴经使用最为频繁,特定穴的选用占有绝对优势,如五输穴原穴络穴等,体现了循经取穴原则。高丽美通过频次分析及关联规则算法挖掘现代穴位贴敷治疗心绞痛文献,结果表明心俞、膻中、内关、厥阴俞使用频次最多,腧穴选用以特定穴为主,俞募配伍使用最多。腧穴分部以胸腹部、背部腧穴为主;以足太阳膀胱经、任脉、手厥阴心包经选用频次较高。

4)其他系统疾病:王洪彬等借鉴文献计量学及数据挖掘的相关方法,对针灸治疗更年期综合征的常用腧穴及经络进行描述性统计。发现现代治疗女性更年期综合征所选取的穴位中以三阴交、肾俞、关元、足三里使用频率最高,膀胱经、任脉、脾经腧穴应用最为广泛。王静等发现源于149篇文献的186条数据元素组成的阿片类药依赖针灸治疗数据库中,用穴频次居于前五的经穴足三里、三阴交、内关、合谷和神门构成了穴—穴,症—穴,研究对象—穴,—穴和戒毒分期—穴等关联规则中的穴位主体。

1.3刺灸方法的应用规律研究

贾春生等提出建立刺灸法文献数据库并设计文献数据应用平台,在此基础上分析数据资料,建立刺灸法数据挖掘模型。此后,各学者运用数据挖掘方法对穴位注射、火针、穴位敷贴、穴位埋线、刺络放血等刺灸法进行了特异性规律及特点的研究。刺灸法挖掘技术的应用中,频次分析最为常用,能够提供各类刺灸法治疗不同疾病的频繁程度,筛选其治疗的优势病种。张选平等发现穴位埋线疗法主要优势病种是内科的胃脘痛、肥胖病、痫证、哮喘、腹痛、面瘫、便秘;外科的腰腿痛;皮肤科的牛皮癣和五官科的重睑术。刘新等总结出放血针具共涉及9种,以三棱针使用频次最高,将放血量人为分为6个等级,其中放血量为少许(少于0.1mL)的出现频次最高,为401次。许晓康等发现水针疗法在内科疾病治疗中出现频次最高,其次为外科疾病,相对于其他疾病,呃逆出现频次最高。

1.4腧穴疾病谱的研究

吴粮葶等通过规范病症、腧穴名称,统计中风后遗症所属病症的针灸病症谱及总结针灸治疗中风后遗症的腧穴谱,结果显示针灸病症谱分布呈偏向性,腧穴谱遍布十四经脉,首选阳经腧穴,常用腧穴以阳明少阳经穴为主。邢晶晶等通过文献比例、疾病比例对内关及其常见配伍的针刺病谱进行分析,总结出内关针刺病谱主要分布于脾胃系和心系;单穴内关针刺病谱中冠心病文献比例最高;内关配伍足三里针刺病谱中呃逆文献比例最高;内关配伍三阴交针刺病谱中焦虑抑郁文献比例较高。黄宗雄等通过对清代及清以前昆仑穴相关文献的整理,挖掘得出:昆仑单穴主治病证33种,筛选出2种优势病证;配伍主治病证45种,筛选出19种优势病证及其高频配伍处方。陈文修等统计出百会单穴主治病证73种,筛选出22种优势病证;配伍主治病证106种,筛选出21种优势病证及其高频配伍处方。

1.5名老中医经验挖掘

张华等对田从豁教授临床病历资料进行整理,发现田从豁教授临床应用穴方共19个,阴交、肓俞、水分配伍使用频次最多。陈裕收集当代名中医针灸治疗偏头痛医案247篇,总结出临床与肝阳上亢型关联密切的是足少阳胆经,血瘀阻络型是手少阳三焦经,风邪上扰型是足太阳膀胱经,气血不足型是足阳明胃经。并且,根据关联规则挖掘提出的基本配穴规律与中医经络理论相契合。

1.6针灸临床决策支持系统构建

针灸临床决策支持系统对于实现针灸临床决策模式的转变有重大意义,基于数据挖掘方法,各学者在此方向进行了有益的探索。任玉兰等提出建立疾病症状、证候症状关系的样本数据库、概率数学模型;再通过遗传算法进行针灸治疗最优方案的选择,构建具有人工智能特征的针灸临床循证诊疗决策辅助支持平台。王佑林等利用复杂网络的K核心思想并改进来寻找针灸治疗疾病所用穴位的主穴信息,使其更好地适应中医决策系统并提供支持。李云松等发现在决策系统中,使用一元字串和二元字串的特征更适合腧穴处方的自动生成,提出了一种基于K近邻方法的腧穴处方自动生成算法,通过分析病历库中与目标现病史最相似K条病历的穴位配方,来自动给出患者针灸治疗的推荐方案。胡绿慧等提出使用Weka平台进行编程,分析穴位的支持度与置信度,找出适用于针灸临床方案决策研究的最好方法,用以指导临床医生的方案决策。

2分析与展望

2.1数据挖掘结果能够与传统的中医学理论相契

合并提供新知《席弘赋》云:“凡欲行针须审穴。”可见临证选穴及配伍的重要性。查阅近几年针灸数据挖掘的结果,不难发现,针灸处方的配伍仍大量选用“原络配穴”“俞募配穴”“八脉交会配穴”“合募配穴”“远近配穴”等传统配穴方法,遵循着“循经取穴”的规则,体现了“经脉所过,主治所及”“腧穴所在,主治所及”的规律。数据挖掘在验证传统的中医学理论的同时,还能在海量的文献中发掘出新知,如赵凌等挖掘偏头痛文献时即发现古代针灸治疗该病多采用同名经的配穴方法,发生疾病时即可在相联系的手足同名经的相应部位针刺;赵华等挖掘田从豁教授治疗痹症经验的结果提示上肢疼痛与寒凝、血瘀相关,风寒痹阻与下肢发凉相关。这些新的治疗方法、不易发现的疾病、证候、症状之间的联系,通过数据挖掘为临床提供了新的思路与治疗模式。

2.2数据挖掘在针灸领域存在的不足及展望

篇(4)

一、客户关系管理(CRM)

CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。

二、数据挖掘(DM)

数据挖掘(DataMining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。

常用的数据挖掘方法有:(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。

三、数据挖掘在客户关系管理中的应用

1.进行客户分类

客户分类是将大量的客户分成不同的类别,在每一类别里的客户具有相似的属性,而不同类别里的客户的属性不同。数据挖掘可以帮助企业进行客户分类,针对不同类别的客户,提供个性化的服务来提高客户的满意度,提高现有客户的价值。细致而可行的客户分类对企业的经营策略有很大益处。例如,保险公司在长期的保险服务中,积累了很多的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。保险公司必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在保险种类、保险年份和保险金额上具有极高的相似性,因而形成了具有共性的客户群体。经过数据挖掘的聚类分析,可以发现他们的共性,掌握他们的保险理念,提供有针对性的服务,提高保险公司的综合服务水平,并可以降低业务服务成本,取得更高的收益。

2.进行客户识别和保留

(1)在CRM中,首先应识别潜在客户,然后将他们转化为客户

这时可以采用DM中的分类方法。首先是通过对数据库中各数据进行分析,从而建立一个描述已知数据集类别或概念的模型,然后对每一个测试样本,用其已知的类别与学习所获模型的预测类别做比较,如果一个学习所获模型的准确率经测试被认可,就可以用这个模型对未来对象进行分类。例如,图书发行公司利用顾客邮件地址数据库,给潜在顾客发送用于促销的新书宣传册。该数据库内容有客户情况的描述,包括年龄、收入、职业、阅读偏好、订购习惯、购书资金、计划等属性的描述,顾客被分类为是或否会成为购买书籍的顾客。当新顾客的信息被输入到数据库中时,就对该新顾客的购买倾向进行分类,以决定是否给该顾客发送相应书籍的宣传手册。

(2)在客户保留中的应用

客户识别是获取新客户的过程,而客户保留则是留住老顾客、防止客户流失的过程。对企业来说,获取一个新顾客的成本要比保留一个老顾客的成本高。在保留客户的过程中,非常重要的一个工作就是要找出顾客流失的原因。例如,某专科学校的招生人数在逐渐减少,那么就要找出减少的原因,经过广泛的搜集信息,发现原因在于本学校对技能培训不够重视,学生只能学到书本知识,没有实际的技能,在就业市场上找工作很难。针对这种情况,学校应果断的抽取资金,购买先进的、有针对性的实验实训设备,同时修改教学计划,加大实验实训课时和考核力度,培训相关专业的教师。

(3)对客户忠诚度进行分析

客户的忠诚意味着客户不断地购买公司的产品或服务。数据挖掘在客户忠诚度分析中主要是对客户持久性、牢固性和稳定性进行分析。比如大型超市通过会员的消费信息,如最近一次消费、消费频率、消费金额三个指标对数据进行分析,可以预测出顾客忠诚度的变化,据此对价格、商品的种类以及销售策略加以调整和更新,以便留住老顾客,吸引新顾客。

(4)对客户盈利能力分析和预测

对于一个企业而言,如果不知道客户的价值,就很难做出合适的市场策略。不同的客户对于企业而言,其价值是不同的。研究表明,一个企业的80%的利润是由只占客户总数的20%的客户创造的,这部分客户就是有价值的优质客户。为了弄清谁才是有价值的客户,就需要按照客户的创利能力来划分客户,进而改进客户关系管理。数据挖掘技术可以用来分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定合适的市场策略。商业银行一般会利用数据挖掘技术对客户的资料进行分析,找出对提高企业盈利能力最重要的客户,进而进行针对性的服务和营销。

篇(5)

根据波特的影响企业的利益相关者理论,企业有五个利益相关者,分别是客户、竞争对手、供应商、分销商和政府等其他利益相关者。其中,最重要的利益相关者就是客户。现代企业的竞争优势不仅体现在产品上,还体现在市场上,谁能获得更大的市场份额,谁就能在竞争中占据优势和主动。而对市场份额的争夺实质上是对客户的争夺,因此,企业必须完成从“产品”导向向“客户”导向的转变,对企业与客户发生的各种关系进行管理。进行有效的客户关系管理,就要通过有效的途径,从储存大量客户信息的数据仓库中经过深层分析,获得有利于商业运作,提高企业市场竞争力的有效信息。而实现这些有效性的关键技术支持就是数据挖掘,即从海量数据中挖掘出更有价值的潜在信息。正是有了数据挖掘技术的支持,才使得客户关系管理的理念和目标得以实现,满足现代电子商务时代的需求和挑战。

一、客户关系管理(CRM)

CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。

二、数据挖掘(DM)

数据挖掘(DataMining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。

常用的数据挖掘方法有:(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。

三、数据挖掘在客户关系管理中的应用

1.进行客户分类

客户分类是将大量的客户分成不同的类别,在每一类别里的客户具有相似的属性,而不同类别里的客户的属性不同。数据挖掘可以帮助企业进行客户分类,针对不同类别的客户,提供个性化的服务来提高客户的满意度,提高现有客户的价值。细致而可行的客户分类对企业的经营策略有很大益处。例如,保险公司在长期的保险服务中,积累了很多的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。保险公司必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在保险种类、保险年份和保险金额上具有极高的相似性,因而形成了具有共性的客户群体。经过数据挖掘的聚类分析,可以发现他们的共性,掌握他们的保险理念,提供有针对性的服务,提高保险公司的综合服务水平,并可以降低业务服务成本,取得更高的收益。

2.进行客户识别和保留

(1)在CRM中,首先应识别潜在客户,然后将他们转化为客户

这时可以采用DM中的分类方法。首先是通过对数据库中各数据进行分析,从而建立一个描述已知数据集类别或概念的模型,然后对每一个测试样本,用其已知的类别与学习所获模型的预测类别做比较,如果一个学习所获模型的准确率经测试被认可,就可以用这个模型对未来对象进行分类。例如,图书发行公司利用顾客邮件地址数据库,给潜在顾客发送用于促销的新书宣传册。该数据库内容有客户情况的描述,包括年龄、收入、职业、阅读偏好、订购习惯、购书资金、计划等属性的描述,顾客被分类为“是”或“否”会成为购买书籍的顾客。当新顾客的信息被输入到数据库中时,就对该新顾客的购买倾向进行分类,以决定是否给该顾客发送相应书籍的宣传手册。

(2)在客户保留中的应用

客户识别是获取新客户的过程,而客户保留则是留住老顾客、防止客户流失的过程。对企业来说,获取一个新顾客的成本要比保留一个老顾客的成本高。在保留客户的过程中,非常重要的一个工作就是要找出顾客流失的原因。例如,某专科学校的招生人数在逐渐减少,那么就要找出减少的原因,经过广泛的搜集信息,发现原因在于本学校对技能培训不够重视,学生只能学到书本知识,没有实际的技能,在就业市场上找工作很难。针对这种情况,学校应果断的抽取资金,购买先进的、有针对性的实验实训设备,同时修改教学计划,加大实验实训课时和考核力度,培训相关专业的教师。

(3)对客户忠诚度进行分析

客户的忠诚意味着客户不断地购买公司的产品或服务。数据挖掘在客户忠诚度分析中主要是对客户持久性、牢固性和稳定性进行分析。比如大型超市通过会员的消费信息,如最近一次消费、消费频率、消费金额三个指标对数据进行分析,可以预测出顾客忠诚度的变化,据此对价格、商品的种类以及销售策略加以调整和更新,以便留住老顾客,吸引新顾客。

(4)对客户盈利能力分析和预测

对于一个企业而言,如果不知道客户的价值,就很难做出合适的市场策略。不同的客户对于企业而言,其价值是不同的。研究表明,一个企业的80%的利润是由只占客户总数的20%的客户创造的,这部分客户就是有价值的优质客户。为了弄清谁才是有价值的客户,就需要按照客户的创利能力来划分客户,进而改进客户关系管理。数据挖掘技术可以用来分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定合适的市场策略。商业银行一般会利用数据挖掘技术对客户的资料进行分析,找出对提高企业盈利能力最重要的客户,进而进行针对性的服务和营销。

(5)交叉销售和增量销售

交叉销售是促使客户购买尚未使用的产品和服务的营销手段,目的是可以拓宽企业和客户间的关系。增量销售是促使客户将现有产品和服务升级的销售活动,目的在于增强企业和客户的关系。这两种销售都是建立在双赢的基础上的,客户因得到更多更好符合其需求的服务而获益,公司也因销售增长而获益。数据挖掘可以采用关联性模型或预测性模型来预测什么时间会发生什么事件,判断哪些客户对交叉销售和增量销售很有意向,以达到交叉销售和增量销售的目的。例如,保险公司的交叉营销策略:保险公司对已经购买某险种的客户推荐其它保险产品和服务。这种策略成功的关键是要确保推销的保险险种是用户所感兴趣的,否则会造成用户的反感。

四、客户关系管理应用数据挖掘的步骤

1.需求分析

只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有资源如已有的历史数据进行评估,确定是否能够通过数据挖掘技术来解决用户的需求,然后将进一步确定数据挖掘的目标和制定数据挖掘的计划。

2.建立数据库

这是数据挖掘中非常重要也非常复杂的一步。首先,要进行数据收集和集成,其次,要对数据进行描述和整合。数据主要有四个方面的来源:客户信息、客户行为、生产系统和其他相关数据。这些数据通过抽取、转换和装载,形成数据仓库,并通过OLAP和报表,将客户的整体行为结果分析等数据传递给数据库用户。

3.选择合适的数据挖掘工具

如果从上一步的分析中发现,所要解决的问题能用数据挖掘比较好地完成,那么需要做的第三步就是选择合适的数据挖掘技术与方法。将所要解决的问题转化成一系列数据挖掘的任务。数据挖掘主要有五种任务:分类,估值预测,关联规则,聚集,描述。前三种属于直接的数据挖掘。在直接数据挖掘中,目标是应用可得到的数据建立模型,用其它可得到的数据来描述感兴趣的变量。后两种属于间接数据挖掘。在间接数据挖掘中,没有单一的目标变量,目标是在所有变量中发现某些联系。

4.建立模型

建立模型是选择合适的方法和算法对数据进行分析,得到一个数据挖掘模型的过程。一个好的模型没必要与已有数据完全相符,但模型对未来的数据应有较好的预测。需要仔细考察不同的模型以判断哪个模型对所需解决的问题最有用。如决策树模型、聚类模型都是分类模型,它们将一个事件或对象归类。回归是通过具有已知值的变量来预测其它变量的值。时间序列是用变量过去的值来预测未来的值。这一步是数据挖掘的核心环节。建立模型是一个反复进行的过程,它需要不断地改进或更换算法以寻找对目标分析作用最明显的模型,最后得到一个最合理、最适用的模型。

5.模型评估

为了验证模型的有效性、可信性和可用性,从而选择最优的模型,需要对模型进行评估。我们可以将数据中的一部分用于模型评估,来测试模型的准确性,模型是否容易被理解模型的运行速度、输入结果的速度、实现代价、复杂度等。模型的建立和检验是一个反复的过程,通过这个阶段阶段的工作,能使数据以用户能理解的方式出现,直至找到最优或较优的模型。

6.部署和应用

将数据挖掘的知识归档和报告给需要的群体,根据数据挖掘发现的知识采取必要的行动,以及消除与先前知识可能存在的冲突,并将挖掘的知识应用于应用系统。在模型的应用过程中,也需要不断地对模型进行评估和检验,并做出适当的调整,以使模型适应不断变化的环境。

参考文献:

[1]罗纳德.S.史威福特.客户关系管理[M].杨东龙译.北京:中国经济出版社,2002

[2]马刚:客户关系管理[M]大连:东北财经大学出版社,2008

[3]朱美珍:以数据挖掘提升客户关系管理[J].高科技产业技术与创新管理,2006,(27)

篇(6)

由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。

一、数据挖掘概述

(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。

二、数据挖掘的重要性

在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。

三、档案管理的数据挖掘运用

(一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。

四、结语

综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。

作者:于然 单位:扬州市体育局办公室

【参考文献】

篇(7)

1.2代码开发现阶段,JAVA应用中广泛应用着基于开源框架的编程,此时配置的逻辑控制是借助XML配置文件实现的,但现有的JAVA应用为单机版,同时框架的逻辑具有复杂性,开源框架的文档化相对较差。在此情况下,程序员在对框架使用与配置缺少正确性。为了实现上述问题的有效解决,提出了基于应用代码库中的XML配置文件及代码关联结构挖掘的XML配置片段推荐方法,将此方法应用到软件开发中,促进了程序员对配置文件的编辑。上述方法的核心为频繁子树挖掘,通过实验分析可知,该方法具有一定的有效性,特别是在XML配置片段中扮演着重要的角色,因此,它促进了软件的开发。目前,在软件开发构建新系统过程中,程序员需要利用编程框架从而实现编程,此时不仅利于通用性作用的发挥,还利于程序机构的清晰。在框架编程时,开发人员要对编程进行扩展,同时还要构建XML配置文件。框架编程有着一定的优势,但在实际应用过程中仍存在不足,逻辑缺陷极易被应用,在此基础上,程序员对框架的使用缺乏有效性与正确性。在此背景下,配置代码推荐被应用,它具有较强的可用性,分别体现在数据与方法两方面。

1.3回归测试在软件应用开发后,客户将对其进行使用,但使用前与使用过程中,均会出现代码修改的情况,造成此情况的原因为代码缺陷与功能更新。在代码更新后,重新前,要对代码进行测试,此时的测试便是回归测试。它主要是为了验证修改软件,使软件的功能得到有效的发挥。因此,回归测试对于软件来说是重要的,它直接保证着软件的质量[3]。

篇(8)

2数据挖掘技术在网上银行促销活动中的运用

随着商业银行的快速发展,网上银行受到人们的广泛关注。网上银行系统以计算机网络为交易平台,各种新型的促销策略,使网上银行业务得到迅速拓展。但是,和四大行相比,一些商业银行的网上银行业务仍然存在很大的差距。同时,近年来,网上银行市场竞争日益激烈,某些网上银行业务在应用过程中出现了促销成本不断增加,而促销效果不理想的状况,数据挖掘技术在网上银行促销活动中的运用,要积极解决这些问题。

2.1提高营销质量当前,很多银行都逐渐加大了网上银行促销力度,但是促销活动的效果却不明显,单纯的依靠赠送礼品或者各种优惠措施,在很大程度上会提升促销成本,并且难以真正地吸引客户。在网上银行促销活动中应用数据挖掘技术,分析不同促销活动的特点,根据网上银行系统自身的特点和优化,对不同客户进行组合促销,将不同的网上银行业务或者产品联系起来,有针对性地对有意向的客户进行促销,合理安排网上银行促销活动内容和时间,尽量在电子商务交易高峰时段之前,实现网上银行促销活动的目标。

2.2优化客户结构一些商业银行不了解客户的真实需求,在发展潜在客户时,缺乏针对性,网上银行促销活动的交易需求较弱。因此要应用数据挖掘技术挖掘一些隐含的信息,明确哪些客户对网上银行的哪些产品或者业务有需求,挖掘潜在的、有实力的客户,将这些客户作为网上银行促销活动的重点客户。

2.3优化促销活动流程在网上银行促销活动中运用数据挖掘技术,采用运用关联分析,挖掘传统银行渠道重点产品和网上银行系统重点产品的业务数据,挖掘非网络银行系统和网络银行系统业务以及网络银行系统不同业务或者产品之间的关联关系,通过数据挖掘技术寻找符合网上银行系统运营条件的关联关系,探索网上银行系统不同产品和业务之间的依存性或者相似性[2],由此将网上银行系统的某一项业务或者产品作为重点促销产品来拉动其他业务和产品的销售,并且可以将一些业务或者产品组合起来进行有针对性的促销,提高网上银行促销活动效果。另外,挖掘优质、有潜力客户特征,优质客户可以银行提供大量的业务收入和交易量,因此可以通过数据挖掘技术的聚类方法分析银行系统的客户构成,挖掘优质客户的共同特征,为网上银行促销活动提供重要的依据。

篇(9)

二、最小二乘法拟合直线

最小二乘法是一种数学优化技术。它以某一社会、经济或自然现象为对象,寻找一拟合曲线,以满足给定对象系统的一组观测数据。通常要求选择的拟合曲线会使各观测数据到拟合曲线的误差的平方和最小。

本文研究销售企业(如商场)异常客户的性质。设一段时期内客户的累计消费金额为y,对应的消费时期为x。假定测得客户的n个数据(x1,y1),…,(xn,yn),则在XOY平面上可以得到n个实验点:Pi(xi,yi)(i=1,…n),这种图形称为“散点图”(如图1,图2)。在利用最小二乘法进行分析时,各种非线性关系的拟合曲线均可线性化,因此此处选择直线y=ax+b作为拟合直线,寻求x与y之间近似线性关系时的经验公式。其中a为直线的斜率,b为直线在y轴上的截距。

如果Pi(i=1,…n)全部位于同一条直线上,则可认为变量之间的关系为y=ax+b,但一般情况下不会如此。记估计值=axi+b,则各实验点与拟合直线之间的误差为εi=-yi=(axi+b)-yi,它反映了用直线y=ax+b来描述(xi,yi)时,估计值与观测值yi之间的偏差大小。则有:

要求偏差越小越好。但由于εi可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度,这就是最小二乘原则。于是问题归结为根据这一要求来确定y=ax+b中的a和b,使得最小。因为F(a,b)是关于a、b的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,F取最小值时,有:

于是得到了符合最小二乘原则的相应解:

三、基于斜率的异常客户挖掘算法

1.问题描述

本文的目的是研究某一消费时期内,异常客户的消费倾向。取异常客户一年内各月份的累计消费金额为参考,记录的数据如下(表1,表2)。根据其散点图(图1,图2)可以看出,客户的累计消费金额随时间都呈上升趋势,所以难以观察出该客户是否对商场保持持久的忠诚度,是否有转向竞争对手的可能。基于斜率的异常客户挖掘算法正是要解决识别客户性质这一问题。

2.算法描述

算法:Outlier_Analysis。根据输出的a值来判断异常客户的性质:积极的或消极的。

输入:客户数据,即参考点,由有序点对(xi,yi)表示;参考点的个数n。

输出:a(直线的斜率),b(直线在y轴上的截距)。

方法:

(1)初始化a、b。

(2)对客户的n个观测数据(即n个记录点)进行相关数据计算:

(3)ifa<0then

客户购买金额呈减少趋势,为消极客户

else

篇(10)

1.2模糊集理论的应用要点该方法通过模糊集合与模糊推理两种方法,其研究测试的对象是各类不确定性因素,属于传统集合理论的创新。模糊集理论在设备状态监测和故障诊断中的应用,主要包含了两个方面。一方面,是在相关数据概念的形成时,采用不准确和较为模糊的语言变量,根据人们习惯,对设备状态的变化及变量变化状态进行描述。具有较强的直观性,且相关人员在接受该类概念时,也可以更方便的理解接受;另一方面,该方法通过提炼模糊性规则,在建模时模糊化,使得机械设备的控制、预测以及故障诊断等过程拥有更为广阔的空间。

1.3基于实例分析的方案优化及调整该种方法拥有较为简单的思路,在对设备未来运行情况进行预测时,系统会匹配与设备目前情况相似的实际案例,并从以往的解决方法中选出最佳的解决方案,再结合设备实际情况进行相应调整。此类方法的应用范围较广,且得到的计算结果也相对准确,但同时也具有一定缺陷,即无法全面整合以往设备数据及解决规律,缺乏充足的继承性。该方法进行故障诊断的基本理念是,在选红枣解决方法的过程中,利用历史诊断方法成功案例为奠基,进行全面的推理工作,并采用类比和联想法,较为全面的对故障进行诊断。

1.4多种数据挖掘法的联合应用除上述几种数据挖掘技术外,实际工作中还涵盖了以传统数据统计为基础的统计分析方法、人工神经网络元技术、等多种方法,考虑到每一种方法或多或少具有局限性,故为了有效提高各类方法的应用效果,可以将各类方法进行配合使用,代表性的算法组合类型如表1所示。

以遗传算法和模糊集理论的配合采用为例。由于模糊算法,主要是利用了最大隶属原理和阀值原理,故可以按照不同故障的发生原因以及故障征兆的相互联系,在综合考虑的基础上对机械设备故障的可能原因进行全面分析。而该方法在运用的过程中,会对各类故障征兆进行约简化从而得到较为普遍的规律,但是所得到的规律也可能存在不可靠问题。故在实际应用模糊集理论的同时,配合采用遗传算法,通过对模糊集理论所得到的结论及规则进行全面优化,使得诊断的结果更为准确与高效。上述案例方法在涡轮机故障诊断过程中进行应用时,可先建立完善的涡轮机故障集,在此基础上采用模糊集理论对涡轮机故障进行诊断,配合遗传算法对涡轮机故障规律进行优化,使得最终故障诊断结果更为准确。除遗传算法与模糊集理论课进行配合使用外,其他各类方法也可以根据设备实际情况进行搭配,使得最终诊断结果更为准确有效。

上一篇: 初中校长工作 下一篇: 医学研究生教育论文
相关精选
相关期刊