时间:2023-03-06 15:55:59
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇抗浮设计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
目前,在抗浮设计上,主要采用抗与放的方法。所谓抗,即是配重抗浮、锚固抗浮;所谓放,即是降水抗浮和设观察井抗浮。具体采用哪一种方法,尚应根据工程的具体情况而定,同时还应着重考虑对工程造价的影响。下面就各种抗浮方式进行探讨并做经济分析比较。
一.抗浮方式的探讨:
1.配重抗浮:小型水池一般不需要配重抗浮,因其池壁相距
较近,再加上底板向外突出部分上部的土重和壁板与土的摩擦力(规范未计入以策安全),抗浮安全系数很容易满足规范要求。
砼的缺点之一是自重大,但事物均有两面性,抗浮时自重越大越有利。配重抗浮一般有三种方法,一是在底板上部设低等级砼压重;二是设较厚的钢筋砼底板;三是在底板下部设低等级砼挂重。一、二种方法的优点是简单可靠,当构筑物的自身重度与浮力相差不大时,应尽量采用配重抗浮,对工程造价的影响小,投产后亦没有管理成本。但构筑物的自身重度与浮力相差较大时,本方法将会增加工程量使土建造价提高,原因是配重部分要扣除浮力,导致配重部分的厚度增大;较大的埋深也将增加挖方量和排水费用,同时也会增大基底压力,引起较大的地基变形。如采用底板上设低等级砼压重的方法,将会使壁板的计算长度H加大,而壁板根部的弯矩值与H是平方关系,这样会使壁板根部的弯矩值增长较快,弯矩值较大时,板厚和配筋也会相应增大;如采用较厚的钢筋砼底板的方法,其工程量与设低等级砼压重相差不多,壁板的弯矩值虽小,但底板的钢筋用量会有些许增加;如采用底板下设砼挂重的方法,壁板的弯矩值小,底板的钢筋用量也不会增加,但底板和挂重部分砼须用钢筋连接,施工比较麻烦,当地下水对钢筋和砼具有侵蚀性时,设砼挂重的方法须谨慎。
2.锚固抗浮:锚固抗浮一般有两种方法:
a)锚杆:锚杆是在底板和其下土层之间的拉杆,当底板下有坚硬土层且深度不大时,设锚杆不失为一种即简便又经济的方法;近年来,在饱和软粘土地基中,也有采用土锚技术的,也有采用短锚加扩大头技术的。锚杆的直径一般为150~180mm。锚杆抗浮有三个问题需要注意,一是受力问题,当构筑物内无水时,锚杆处于受拉状态,当构筑物满水时,锚杆又处于受压状态,锚杆的底端类似于桩端,锚杆在反复拉压状态下的工作性能有待进一步的实验研究;二是施工问题,锚杆的施工需有专门的机械,施工前要进行试验,同时,较细的锚杆在施工时有一定的难度,如何控制钢筋偏移,如何使灌浆饱满、如何避免断杆等都是施工难题,尤其是锚杆较长时,不如配重抗浮来得简便。三是适用性,当地下水对钢筋有侵蚀性时,细锚杆的耐久性问题不易解决,这将在一定程度上限制其适用性。
b)抗拔桩:抗拔桩利用桩侧摩阻力和自身重度来抵抗浮力,桩型可采用灌注桩或预制桩,桩径一般为400mm,也可采用方桩,桩距和桩长应通过计算确定,桩距不宜过大,否则会增加底板厚度,桩端最好能伸入相对较硬的土层。抗拔桩也有拉压受力问题,但其施工较简单,耐久性亦比锚杆容易得到保证。
3.降水抗浮:这是抗浮设计的另一条思路,即不硬抗,而采用放的方法。具体做法是在构筑物底板下设反滤层,在构筑物周围设降水井,降水井和反滤层间用盲沟相连,当构筑物因检修设备而需要放空时,可在降水井内抽水使地下水位降至底板下,从而保证构筑物的稳定。降水抗浮的关键问题是反滤层的设计,当土的颗粒较细时,应采取可靠措施防止土粒随地下水的涨落而进入反滤层,引起反滤层堵塞而失去作用。降水抗浮的优点是工程造价低,因采取了抗浮措施,构筑物的设计可按无地下水时考虑。当地下水位很高且地基土较软时,采取降水抗浮措施可大大降低工程造价。但降水抗浮也有其缺点,第一是可靠性,虽然构筑物在设计使用年限内放空检修的时间很短,但每年也有一二次,如反滤层被堵塞,则水位很难降至底板以下;第二,如果遇到非正常排空,将会发生构筑物上浮事故。当然,在排水工程中,可采取适当的措施,在非正常排空时使地下水自动进入构筑物内,提高构筑物的可靠度。
4.观察井抗浮:和降水抗浮相似,只是不设反滤层,利用地
下水的涨落安排构筑物放空检修的时间。方法也很简单,在构筑物周围设若干观察井,井内标示可放空检修的临界水位线,如在一个时期内地下水位低于临界水位,则可放空检修。应该讲,在地下水位涨落差较大的地区采用本方法,是所有抗浮方法中土建工程造价最低的。其缺点是检修时间不灵活,且有一定的管理成本,非正常排空亦有可能发生上浮事故。
二.经济分析比较:
例:某排水工程终沉池,内径40m,池净高5m,地下水位距池底板顶3.0m。抗浮方法分别为:1.配重抗浮(设较厚的钢筋砼底板);2.抗拔桩抗浮;3.降水抗浮;4.设观察井抗浮。其工程量分别为:
1.配重抗浮:
挖土方:2508m3;3.86×2508=9681元
素砼垫层C10:134m3;145×134=19430
钢筋砼底板C25:2904m3;460×2904=1335840
预应力砼池壁C40:190m3;899×190+40000=210810
2.抗拔桩抗浮:
挖土方:200m3;3.86×200=772
直径400mm沉管灌注桩,长12m:150根;548×1.51×150=123892
素砼垫层C10:134m3;145×134=19430
钢筋砼底板C25:594m3;460×594=273240
预应力砼池壁C40:190m3;899×190+40000=210810
3.降水抗浮:
挖土方:200m3;3.86×200=772
素砼垫层C10:134m3;145×134=19430
钢筋砼底板C25:413m3;501×413=206913
预应力砼池壁C40:190m3;899×190+40000=210810
反滤层:726m3;59.5×726=43197
降水井:4座;1521×4=6084
4.设观察井抗浮:
素砼垫层C10:134m3;145×134=19430
钢筋砼底板C25:413m3;558×413=230454
预应力砼池壁C40:190m3;899×190+40000=210810
观察井:3座;1521×3=4563
其土建工程造价(直接费)分别为:
1.配重抗浮:1575761元
2.抗拔桩抗浮:628144元
3.降水抗浮:487206元
2康复景观
2.1康复景观的概念
康复景观或称康复花园,是近40年来兴起于美国的一类带有康复功能或者治疗功效的景观类型,主要是指与治疗或恢复身体健康有关联的各种类型环境所包围的场所,这类景观以能够实现身体、精神与心灵的协调健康而闻名。
2.2康复景观相比普通景观的特色
普通景观类型可能具备改善环境,优化生态,促进人的公共交流活动等多种功能,而康复性景观自始至终以具有康复作用为先,当康复景观的一般功能与康复功能发生冲突时,优先景观的康复功能。康复性景观的主体服务人群具备特殊性,在养老地产景观设计中植入康复景观设计非常适合老年人生理和心理的特征,除了满足老年人的安全、审美需求以外,还能够让老年人在每天的生活接触中维护身心健康,预防疾病,缓解身体不适。
3康复景观设计在老年地产中的应用
3.1借鉴中国传统养生理论
中国传统养生的门类丰富,各臻其妙,简捷适用,如:针灸、推拿、按摩、食疗食补等,每种养生门类都有其各自的妙处,如帮助老年人坚固牙齿、延缓老年人视力衰退、改善老年人听力,促进老年人镇静安神等功效,老年人都很喜闻乐见。传统的中医养生学综合了阴阳、五行等学说,强调在养生中环境的重要性,遵从天人合一,尊崇自然的原理。康复景观的设计应借鉴中国古典园林在传统养生文化方面的手法,汲取在建筑营造、筑山理水等方面的养生思想,根据中医五行把景观各要素与人的身心联系起来,使养老地产中的康复景观更加符合老年人的文化背景,更好的调节老年人的身心健康。
3.2利用植物的药用价值
基于大众认知,药用植物是指具备强健身体、医治疾病等医疗功效的植物。药用植物在景观中具有营造景色、展示文化内涵和保健康复的作用,人们融入到用药用植物打造的环境中,可以达到恢复身心,保持健康的效果。药用植物的保健、药用价值系统归纳并积极探索药用植物在康复景观设计中的应用,将药用植物有意识地融入康复景观的设计中,将营造一种新型的融艺术、保健、传统文化、科学为一体的养生康复景观。按照药用植物在景观中的不同用途及其自身特征可将药用植物分为以下几类:嗅觉型的药用植物,外疗型的木本植物,内疗型的中草药,综合型的中草药。药用植物在康复景观设计中的运用,能够起到弘扬中草药文化的效果。
3.3注重植物的形态影响
一般来讲老年人的生理上会表现出新陈代谢放缓、抵抗力下降、生理机能下降等特征,老年人对环境的依赖感也会越来越强,研究发现:1)自然型植物景观,舒张压显著降低,心脏速率显著降低,收缩压降低但不显著;2)几何型植物景观,舒张压和收缩压显著降低,而心脏速率略有升高;3)在主观评价中自然型植物景观舒适性较好,观赏后呈现正性情绪状态,植物几何型植物景观促进作用相对较小,不适宜缓解紧张情绪。结果综合表明,不同形态类型的植物景观环境对人生理和心理产生不同影响。
3.4强调参与性、体验性
老年人怀旧、怕孤单、返老还童、喜欢参与式活动,从老年人与自然、老年人与科学知识、老年人与家庭、老年人与邻里四个方面增强康复景观互动性,如:种植劳作活动、家庭亲子活动、科普教育活动、农作物产品交换活动和其他生活互助活动。增强老年人与环境中的晴雨变化、土地更新、植物生长等自然过程的全面体验和互动,增强对社区环境的主人翁意识和认同感,增强老年人对亲自动手改善生活环境主动性和合理的途径,满足老年人的各类心理需求。
3.5公共设施适老化
老年地产的康复景观设计要创造老年人喜爱甚至热爱的环境场所,让老年人喜欢走到室外,体验自然,沐浴阳光,实现轻松愉悦交流的场所。康复景观设计要充分考虑老年人的体能状况,增设户外休憩模块,设计时要充分考虑老年人看护者视线的顺畅,设计尺度上符合残障老人的活动,同时注意考虑四季节气变换对自然条件的改善。考虑到老年人对子女、小孩的亲情交流需求,将老人活动区与儿童活动区临近设置,全程实行无障碍设计。
0.前言
在寸土寸金的今天,开发地下工程已是大势所趋。随着地下工程的增多、加深,地下建筑物的抗浮也越来越得到人们的重视。由于地下水的赋存、补给关系存在很大的不确定性,基岩裂隙水的流动及补给方式更是复杂,大量带有纯地下室的高层建筑、地下车库及下沉式广场的兴建,使得抗浮问题非常突出。主要问题表现在:①正确确定抗浮设防水位成为一个牵涉造价、施工难度的关键问题,②对孔隙水压力的考虑不周全,影响到建筑沉降分析、承载力验算、建筑整体稳定性验算等一系列问题[1]。
目前工程中常用的建筑物抗浮措施有:采用底板设置抗浮锚杆、抗浮桩,压载之类的方法来被动的抵抗水浮力。本文主要介绍一种能利用拟建场区的地理优势,采用盲沟疏导地下水,达到结构自重抗浮的目的,并在青岛多个项目中得到成功运用,根据已竣工项目的成本核算,该工艺能比传统的抗浮锚杆、抗浮桩降低至少50%以上的成本,而且从根本上解决了建筑物的抗浮问题。
1.与传统抗浮工艺的对比
压载抗浮[2]的原理是增加结构的自重,利用结构自重来抗浮。这就要求增加覆土厚度或增加底板厚度,这种做法简便直接,对地下结构的抗浮也很有效。但基础埋深势必会增加,地下水浮力也会相应增加,于是部分所增加的结构自重与增加的水浮力所抵消,所以在抗浮设计时应认真核算。
抗浮桩[1]是利用桩体自重和桩侧摩阻力来提供抗拔力,以起到抗浮的作用,是一种常用的抗浮技术措施,不过抗浮桩大多与主体结构中的柱子相连,使抗浮桩的间距较大,需要很厚的底板才能抵抗抗浮力所产生的附加弯矩和剪力,因此造价很高。
抗浮锚杆[2]是通过锚侧岩土层的摩阻力来实现抗浮的。由于抗浮锚杆采用高压注浆工艺,浆液能更好的渗透到岩体中的孔隙与裂隙中,与抗浮桩相比,锚杆侧摩阻力较桩侧摩阻力大,更有利于抗浮,而且造价低,施工便捷,在工程建设中已迅速推广。
降排截水技术[2]是在条件许可的前提下,采用降水、排水或截水等处理措施直接排除隐患。在地下水丰富、土体渗透系数较大的地区进行深基坑开挖时,为防止降水造成的地面塌陷或临近建筑物沉降而常使用截水措施,如止水帷幕截水法。科技论文。永久性盲沟排水降压法是一种主动抗浮方法,盲沟排水使地下水位一直维持到某一标高,使底板不受或仅受很小的水浮托力,在满足抗浮要求的同时还能适当减少底板厚度。为避免和减少地下水浮力对深基础施工的各阶段带来的不利影响或破坏,降排水或截水方案是常用的技术措施。
本文介绍的就是降排截水技术中的盲沟排水降压法。科技论文。排水盲沟疏导地下水工艺是在地下建筑外墙四周或底板下部,系统的布置永久性的排水盲沟,形成无阻碍的地下水渗流通道,从而有效的减小甚至消除地下水对建筑物的影响。只要能确保盲沟通道内的水能流出,盲沟的标高可随意调低,从而可有效的减小地下水赋存方式不确定所带来的风险。与压载混凝土抵抗浮力的工艺相比,施工难度小、造价低、进度快;与抗浮锚杆、抗浮桩相比,造价低、进度快,并可与土方回填同步施工,不单独占用工期。
2.排水盲沟的使用条件
系统的布置排水盲沟,疏导地下水工艺目前在抗浮工程并未得到广泛的运用,它受到场区地理条件、赋水大小、上部结构及地下室占地面积等限制,需要同时具备以下条件:
1)地层赋水及土体渗透系数不宜太大,较适用于基岩地区及渗透系数较小的粘土、粉质粘土地区。
2)排水盲沟顶标高应在临界水位以下(可满足结构自重抗浮时的水位标高),且场区四周有顺畅、永久的出水口。
3)地下建筑物占地面积不宜过大,占地面积过大水阻势必加大,易造成盲沟堵塞,水流不畅.
4)如建筑物底板标高高于出水口,可在底板下同时增加排水盲沟,结合外墙四周的盲沟可更有效控制地下水。
3.成功案例分析
3.1工程概况
青岛市中心某工程共3个楼座,1#、2#楼为24层高层,3#楼为地上4层的商场,整体下设2层地下室。建筑面积74633m2,基底绝对标高42.8m,其中1#、2#楼采用桩基础形式,3#楼利用天然地基做为持力层。
3.2建筑场地周边环境
整个场区地势呈北高南低。北侧为一条小区规划路,规划路绝对标高55.5m;南侧为已经通车的交通要道,绝对标高48.0m~51.0m,南侧人行道下有一条4.0m*1.8m的永久性泄洪暗渠,暗渠顶标高46.5m。(见标高关系图)
3.3水文地质条件
场区地层揭示主要为:新近回填土、粉质粘土、强度较高的角砾层、风化基岩,其中局部有煌斑岩脉。地下水主要为第四系孔隙潜水,主要赋存于填土及角砾层中。从勘察报告中看,水位呈北高南低状,常见水位标高47.11m~48.65m,勘察建议地下水抗浮水位按51.0m考虑。
结合建筑、结构设计,对水头浮力进行了计算,计算结果为只要地下水位能保持在47.5m以下,即可利用结构自重来解决抗浮问题。
3.4排水盲沟设计要点
3.4.1设计思路
车库开挖未回填前,地下外墙与基坑坡面间会形成一道无侧限的地下水通道,四周的地下水绝大多数会汇集到基坑内。回填后,如回填骨料渗透系数大,依然会形成渗流通道,对建筑物的抗浮极其不利。因此如何有效的截流并保证使用年限是疏水抗浮设计的关键。
a、利用场地高差及基坑大放坡开挖的优势,在地下室墙外侧设置一道永久性疏水盲沟,并与南侧的地下泄洪暗渠相连。
b、阻隔场区环境水的垂直入渗路径,减小地下水及降雨对楼座的影响。疏水盲沟标高以下采用渗透系数小的粘性土分层回填并夯实。
c、为保证在使用年限内,疏水盲沟能保持顺通,每50m设置一沉砂池及检修井。
3.4.2盲沟设计(见疏水盲沟剖面图)
a、布置于地下外墙与坡面之间,盲沟顶绝对标高47.50m,通道尺寸500*500,自北侧中间位置向两侧分流,坡度0.1~0.2%。
b、盲沟采用砖砌,顶部采用预制板覆盖。砖及预制
盖板预留渗水孔,孔径小于1cm。
c、盲沟外侧铺设一道土工膜布,土工膜布外采用粒径
1~2.5cm的级配石子做为反滤层。
d、石子反滤层外再铺设一道土工膜布。
e、疏水盲沟底部采用粘土分层回填并夯实,夯实系数不小于0.94,并铺设厚度不小于100mm的素凝土垫层。出水口设置滤水蓖子,防止碎石流失。
f、每50m设置一沉砂池和检修井,检修井以不影响室外景观和管网为宜,尽量布置在建筑拐角处。
4.结语
目前,该项目已经封顶,排水盲沟的使用也历经了2个雨季,地下室未出现开裂、隆起等现象,排水盲沟内水流顺畅,未出现淤堵、损坏等情况。采用排水盲沟疏导地下水进行结构抗浮,为该工程节约了近200万的投资。
排水盲沟由于其工程造价低、施工简单并能从根本上解决地下建筑物的抗浮问题而得以成功运用,但由于缺少更多的成功经验及使用的局限性并未得到大的推广。科技论文。因此对该工艺的使用应慎重,要因地制宜,针对具体工程项目,认真分析场区的水文、地质、周边环境,确保抗浮方案合理、有效、经济适用。
【参考文献】
[1]张在明,孙保卫,徐宏声.地下水赋存状态与渗流特征对基础抗浮的影响[J].土木工程学报.2001;34(1):73-78
1 建筑物抗浮失败造成的后果及原因
近年来,因抗浮失败而造成地下工程的破坏在国内多有发生,有的地下室底板隆起,导致底板破坏;有的地下建筑物整体浮起;有的地下室局部翘角,导致梁柱结点处开裂及底板破坏。这些事故均不同程度给建筑物造成永久性缺陷,须进行结构加固方可正常使用。综合分析这些地下结构物各种情况下的浮起,引起浮起的原因主要分为设计原因和施工原因两大类,概括起来有以下几点:
(1)设计对地下室受水浮力作用的机理认识不足,未进行抗浮验算;(2)抗浮计算参数中地下水位取值不当,盲目选用地质钻探资料中的场地地下水位,忽略了可能出现的最高值;(3)抗浮计算失误或抗浮措施不当;(4)对建筑物施工过程中的抗浮未给予足够重视,随意变更结构或停止地下降水等。
2 当前抗浮设计现状
工程设计中的抗浮设计问题,现行国家标准规范《岩土工程勘察规范》(GB50021-2009)、《建筑结构荷载规范》(GB50009-2012)和《全国民用建筑工程设计技术措施》(结构)中仅作了定性的描述,而在国家标准《建筑地基基础设计规范》(GB50007-2011)对简单浮力作用的抗浮设计给出按如下公式计算:
Gk/Nw,k≥Kw
Gk为建筑物自重和压重之和,
Nw,k为浮力作用值,
Kw为抗浮稳定安全系数,一般取1.05,
当计算结果建筑物不能满足抗浮稳定性安全要求时,应采用增加压重或设置抗浮构件(如抗拔桩)等措施。
抗浮设计的关键是浮力作用值的计算,根据阿基米德原理,物体在水中所受浮力大小等于物体排开水的体积,所以地下结构物的浮力作用主要取决于水位的取值,但埋于地基土的地下建筑物所受的浮力作用又不同于浸泡于水中的物体,浮力作用的大小受地基土透水性的影响。目前,在抗浮设计上一些手册、规范、文献中对浮力的计算提出了许多观点,设计单位在设计时也按照各自的理解进行设计,综合来说主流有以下几种:
(1)当地下建筑物埋于不透水层,周边填土为密实的不透水土时,地下结构物仅受水的侧压力,不产生浮力作用。
(2)基坑边填土的摩擦力不作为抗浮计算的一项因素,作为安全储备对待。
(3)地下水最高水位按以下原则确定:①按水文观测资料或历史水位记录,取历史最高水位。②场地有承压水且承压水与潜水有水力联系时,按承压水和潜水的混合最高水位计算。③最高水位不超过地下室顶板面标高。
(4)由于地下水的水压力在垂直方向上并非随深度增加而线性增加,不能简单按静水压力公式计算,根据地基土情况按0-50%进行适当折减。
从这些规范或手册中的规定可以看出,地下水浮力的作用相当复杂,影响因素很多,要准确确定地下水压力的大小很困难。且施工中不确定因素也比较多,如回填土的土质差别、回填的压实程度等均会影响水的浮力大小。因此,浮力的计算要综合考虑多方面因素,估计到将来变化的各种可能性并采取可靠的应对措施。
3 抗浮设计中应考虑的问题
3.1 浮力作用和抗浮力的计算
(1)地下结构物的浮力作用主要取决于水位的取值,正常情况下可按地勘部门提供的抗浮水位即按正常条件下水位变化范围的历史最高水位作为确定基础抗浮设计水位,因周边填土的密实性离散性比较大,地基土透水性的变化不易准确掌握,且紧临地下结构周边回填土因工作面的问题并不易夯填密实,因此,除有可靠的实验依据,地下水对结构物的浮力作用应采用阿基米德原理进行计算,不作折减。
(2)地下结构物抗浮力主要来源于结构物的自重、压重、抗浮构件的抗拔力以及基坑周边回填土与结构物之间的摩擦力等。对于结构物的自重、压重、抗浮构件的抗拔力等均能较准确的进行计算,应作为地下结构物的计算抗浮力。但对于基坑周边回填土与结构物之间的摩擦力,应作安全储备对待。因为正常条件下,地下结构物的浮力作用计算中未对建筑物因所处位置不同可能发生的各种突发因素如暴风雨、排水不畅、地表逸流、或施工不慎等因素造成的地下水位突然升高未充分考虑,可能会由于安全储备不足,造成地下水浮力超过结构物抗浮力使建筑物产生变形等破坏,因此,将基坑周边填土的摩擦力作为安全储备对待,以应对使用正常条件以外的突发因素。
(3)当地下建筑物埋于不透水层,周边填土为密实的不透水土时,一般认为地下结构物仅受水的侧压力,不产生浮力作用。对此种情况应慎重选择,因为建筑物与基坑之间的回填土很难做到无缝隙不透水,当有地下水通过回填土渗入到建筑物底板下时,将产生浮力作用,引起建筑物上浮。
3.2 抗浮力的安全储备
工程抗浮设计一般均是按照正常建设程序考虑,地质条件按照地勘单位提供的地勘报告确定,正常施工条件下,施工单位能严格执行工艺标准和施工质量验收规范并遵守验收程序,建设单位和监理单位均能履职到位。但实际施工过程中,受地质复杂性、施工人员技术水平,责任意识等影响往往出现管理上的偏差,实际工况与设计假定的条件有所偏差,此种情况下,如设计单位过度优化,预留的安全储备过小,则会造成结构局部发生变形,严重的造成整体结构上浮。另一方面,现阶段工程往往由于拆迁等因素影响或整体工程分期施工,对局部工程抗浮条件考虑不足,当后续工程不能及时跟进,不能提供足够的抗浮力可能造成前期工程不能正常使用或降水不能及时停止,增加成本,如业主单位人员疏忽,甚至按经验提前终止降水,也可能造成地下室上浮和结构损坏。
建设单位从经济考虑对设计进行变更,如减小基坑尺寸、缩小基础外挑尺寸、将回填材料私自变更等,取消地下室底板的抗浮回填层等均可能造成抗浮力的不足。
施工单位在施工过程中对基础的施工不认真,抗拔桩设计依据不准确,施工单位未按规定设计施工,基础底板钢筋绑扎不到位,基础梁截面不足,基础底板厚度不足等均可能造成地下室底板地浮力下的抗力不足,造成结构上浮、或防水底板表面开裂或上拱变形过大。
4 施工中应注意的问题
地下结构物上浮须有足够的浮力才能发生,若施工现场持续进行抽水并将地下水位控制在可接受的范围内,则地下室上浮将不可能发生。但地下室结构体施工过程中施工人员警戒心低,可能因疏忽或抽水意外停止,造成地下水位陡然上升而导致上浮,或遇暴雨,短期间雨量过大,排水系统无法排水,致使地表水四处窜流,并沿着地下室外墙及基坑周边到达基础底板面,短期间形成巨大的水浮力而造成结构体上浮,因此施工过程中,应做好基坑周边的排水措施,防止地表水流入基坑内,同时,在基坑内应预留必要的集水坑,设置相应的抽水设备,在遇紧急情况时可以基坑内的积水及时抽出,减小结构物受到的水浮力,第三,还要设置必要的发电设备,防止突况下断电,造成抽水设备不能正常运转。
5 结语
抗浮设计作为工程设计的一项重要内容,尤其对于地下结构空间大,地上层数少和地上层数多但地下为大底盘的的建筑物应作为重点设计,此类建筑最易发生因抗浮力不足而造成的结构物上浮、底板上拱及局部因浮力作用开裂变形破坏等事故,在设计中应对抗浮设计考虑全面,预留足够的抗浮储备。在施工中,施工单位也应重视抗浮措施的施工及施工过程的抗浮,采取有效的降、排水措施,严格按设计及施工规范施工,降水停止时及时观测,发现问题及时处理,基坑回填土应确保回填土类别符合设计要求,回填压实质量满足设计要求,以为结构物提供足够抗浮摩擦力。
参考文献:
[1]《岩土工程勘察规范》(GB50021-2009).
[2]《建筑结构荷载规范》(GB50009-2012).
目前随着国民经济的发展,各地均出现了体量大、投资多、标准高的高层建筑,有时为了功能的需要和解决高层主体与裙房间的沉降差异。钢筋混凝土的收缩变形以及混凝土的温度应力等问题,往往在现浇混凝土结构中,引入后浇带的施工,是最近几年结构设计和施工中的一项新生事物。为了做好现浇混凝土结构的后浇带施工,笔者着从后浇带的形式,正确理解后浇带的途径及设计要点、施工要点几个方面进行简要阐述。
一、形式分类及特点。
1、平直型:其特点是施工时模板安装与拆除较方便,常作为事故性处理方法或应用于厚度较薄的工程中,值得注意的是渗水线路短,后浇带的界面结合质量不好保证。
2、阶梯型:其特点是支模简单,拆除容易,抗渗线路长。混凝土结合面垂直于水压方向。界面结合质量容易保证,抗渗性好,后期施工容易。
3、企口型:其特点是混凝土结合面也垂直于水压方向,界面结合较好,抗渗线路延长。但这种后浇带形式支模较费工,浇筑时有不易密实的死角,而且拆模清理困难,成型后还应保护边角,稍有疏忽就影响后期施工质量。
4、V字型:其特点是抗渗线路延长,界面结合较好。但也存在支模、拆模较费工的问题,成型后应注意保护边角。
后浇带具体形式选择,应视具体工程结构形式而定。
二、正确理解后浇带的用处及设计特点。
所谓后浇带是指在现浇整体钢筋混凝土结构中,只在施工期间留存的临时带型缝起到消化沉降与收缩变形以及防水的作用。根据工程需要,保留一定时间后,再用混凝土浇筑密实成连续整体的结构,后浇带的位置应视工程具体结构形状而定。应选择于受力和变形较小的部位,尽量避开地下水。后浇带的用途不尽相同,例如:
1、为解决高层建筑主楼与裙房间的沉降差而设置的后浇带,应明确按“沉降后浇带”进行设计。
2、为防止混凝土因温度变化拉裂而设置的后浇带,应明确按“温度后浇带”进行设计‘
3、为防止混凝土凝结收缩开裂而设置的后浇带,应明确按“收缩后浇带”进行设计。
4、为防止结构因温度变化和混凝土收缩开裂而设置的后浇带,应明确按“伸缩后浇带”进行设计。论文参考,后浇带施工。。
不同类型的后浇带其配筋特点各有不同,对于伸缩后浇带可采用直通加弯的形式,以消除混凝土因温度胀缩、干缩等引起的变形影响,待后期后浇带施工时可直接浇筑;对于沉降后浇带一般采用搭接方法或先采用搭接方式留出焊接位置,待结构沉降稳定以后,进行后浇带施工时再焊接施工的方法,将沉降变形影响降低到最小程度。另外还应在后浇带处附加长度500~600mm、φ12~φ16间距500mm的钢筋。后期采用焊接连接,同一截面的钢筋焊接连接率不得大于50%。
三、施工要点
1、后浇带的保护,基础底板的后浇带留设后,应采取保护措施,防止垃圾杂物掉入。保护措施可采用木盖板覆盖在基础底板的上皮钢筋上,盖板两边应比后浇带各宽500mm以上;地下室外墙竖向后浇带可采用混凝土预制板保护。楼面后浇带两侧的梁底模及梁板支撑不得拆除。
2、后浇带的保护时间,应按设计要求确定,当设计无要求时,应不小于40天,在不影响施工进度的情况下,应保留60天。
3、浇筑结构混凝土时,后浇带的模板上应设一层钢丝网,后浇带施工时,钢丝网不必拆除。后浇带封闭前。必须仔细将整个混凝土表面的浮浆剔除,并凿成毛面,彻底清除后浇带中的垃圾及杂物并隔夜浇水湿润,满涂一道2-3mm厚的掺5%107胶(水泥重)的1:1水泥稀浆,确保后浇带与先浇捣的混凝土连接良好。
4、地下室底板和外墙后浇带的止水处理,要按设计要求及相应的施工验收规范进行。论文参考,后浇带施工。。后浇带的封闭材料应采用比先浇捣的结构混凝土设计强度等级提高一级的补偿收缩混凝土浇筑振捣密实并保持小于14天的保温保湿养护。
5、后浇带混凝土中使用的微膨胀剂,必须具有出厂合格证及产品技术资料,并符合相应技术标准和设计要求,使用前必须进行复试合格后方可使用。
6、后浇带混凝土中使用的微膨胀剂和外加剂的品种,应根据工程性质和现场施工条件选择,并事先通过试验确定掺入量。(UEA一般为水泥重量的10%-12%)起其称量应由专人负责,允许误差一般为掺入量的±2%。
7、混凝土应搅拌均匀,否则会产生局部过大或过小的膨胀影响混凝土质量。所以应对掺微量膨胀剂的混凝土搅拌时间适当延长。
8、后浇带的混凝土要拌制成低流动性混凝土,混凝土的塌落度控制在40mm以内,尽量降低水灰比以保证混凝土的膨胀率和混凝土强度不受损失。
9、后浇带混凝土应振捣密实,与先浇捣的混凝土连接牢固,受力后不应出现裂缝。论文参考,后浇带施工。。后浇带混凝土如有抗渗要求还应按规范规定制作抗渗试块。
10、在后浇带混凝土施工前,后浇带附近一定范围内不应允许施工堆放材料,限制施工荷载,并做后浇带两侧的临时支护。防止在拆除模板过程中,由于支撑松动,移位等造成结构开裂。
11、因后浇带的收缩补偿,混凝土的浇筑时间与结构混凝土浇筑时间的间隔均较长,一般的在2-3个月以上,个别需要6个月或更长时间,为防止后浇带内的钢筋锈蚀,在结构层混凝土浇筑完成后及时清理模板内的浮浆杂物的同时,可用掺5%107胶(水泥重)的1:1水泥稀浆用刷子在裸露的钢筋表面上满涂一道以防止钢筋在这段时间内锈蚀。
四、结束语
中图分类号:TV554文献标识码:A
Abstract: the needle beam steel mould trolley is a kind of special car designed for circular tunnel in whole section once pouring concrete. It is lining tunnel whole section bottom, side, top a molding equipment, formwork, formwork executed by the hydraulic cylinder, so that the tunnel concrete lining progress fast, good quality, low cost, concrete surface appearance.
Keywords: needle beam steel mould trolley component construction application.
1.工程慨况
主体工程为有压引水隧洞工程,隧洞断面为圆形,成洞洞径均为D=5.4m。隧洞总长3229m。综合坡度6.57‰。隧洞为钢筋混凝土全断面衬砌,且每隔12m设一道环向施工缝。Ⅲ类围岩混凝土衬砌厚度为50cm,Ⅳ类围岩混凝土衬砌厚度为60cm,Ⅴ类围岩混凝土衬砌厚度为70cm。
根据本工程引水隧洞结构、长度以及引水隧洞施工环境、施工进度等要求,并参考以往隧洞工程衬砌混凝土施工资料,隧洞混凝土衬砌采用针梁式钢模台车一次浇筑成型。针梁式钢模台车设计长度为12m,设计直径为5.40m。拖式混凝土泵输送混凝土入仓一次浇筑成设计断面。混凝土衬砌成型度和表面光洁度均达到设计要求。
2.针梁式钢模台车组成
针梁式液压钢模台车主要由模板总成、针梁总成、梁框总成、水平和垂直对中调整机构、卷扬牵引机构、抗浮装置、液压系统、电气系统等组成。针梁式钢模台车组成见图1-1、1-2。针梁式钢模台车各部位材质见表1-1。
2.1模板总成
它用于隧洞的成形,隧洞的形状和尺寸主要靠它来制约。考虑到混凝土对模板的压缩作用,模板半径较理论半径大10mm。模板间用螺栓联接,每组模板由顶模、左边模、右边模、底模四块组成。底模两边分别用铰耳销轴连接左、右侧模板。顶模的一边与右侧模板用铰耳销轴连接,另一边与左侧模板用螺栓和销轴联接,当顶模油缸收缩时,顶模与左侧模板脱开,形成400-500mm的间隙,左、右侧模板就可在侧模油缸的作用下与浇筑面脱开,完成顶模和左右侧模板的收缩。在组合钢模板上开有40个450mm×600mm的窗口,以供进料、人员进出及检查之用。在顶模上设有3个混凝土尾管注入口,以便拆去混凝土导管时不致使仓内混凝土外流,并可借助于混凝土泵的力量,保证隧洞顶拱的混凝土浇密实。
图1-1针梁式钢模台车横断面结构示意图
图1-2针梁式钢模台车纵断面结构示意图
表 针梁式钢模台车各部位名称的材料组成
2.2针梁总成
它是钢模的受力支撑平台和台车行走的轨道。针梁总成为装配式桁架组合结构。针梁上、下焊接有四条方钢轨道。
2.3梁框总成
它的下部与底模用螺栓联接,构成一个门框式构架,在框架上、下部安装有行走轮系,针梁从门框内穿过,框架上都是安装边模、顶模伸缩油缸的支承面。梁框门架是通过各支承千斤和油缸与模板连接。门架与底模上的横梁构成框架结构。
2.4 底座
前、后底座分别安装在针梁的两端,是针梁的受力支点,衬砌时台车的全部重量都落在两个底座上,每个底座上安装两个液压竖向油缸。
2.5 端头堵板
为了解决钢模两端的封堵问题,设计了端头堵板,它是由堵头角铁、钢模拱板及封头木板组成,用螺栓联接。
2.6 抗浮装置
由于是一次性浇筑,当浇筑速度过快时,钢模将受到混凝土产生的浮力,为了不使钢模在浮力作用下向上移动,在钢模两端安装四个抗浮千斤顶制约上浮力的作用,在前后抗浮架上安装四个侧向千斤顶,使针梁和钢模不产生侧向位移。抗浮架有2套,分别安装在模板的前后部,并与门架连接,抗浮架下面安装有滚轮,因此,抗浮架随模板在针梁上移动,抗浮架上安装有竖向抗浮千斤和水平抗浮千斤,在浇筑时防止错台和克服混凝土的涨力。
2.7 行走机构
行走机构是由支座和多个滚轮等零件组成,共有四套行走架安装在门架内针梁的上下方, 因此针梁可在行走架的滚轮上移动,支座由槽钢构成,滚轮是铸钢件,滚轮设计成带轮边的结构,使针梁或模板移动时不会左右摆动。
2.8水平和垂直对中调整机构
平移机构安装在针梁下面前、后底座上,前、后底座上各安装有2个竖向油缸与针梁连接,竖向油缸的伸缩可使针梁上升和下降,以便模板垂直方向的对中调整,从而完成底模的脱模和立模,最大脱模行程为390mm;前、后底座上各安装有1个水平油缸,利用其左、右移动来调整模板中心线与隧洞中心线相吻合,左右移动行程为125mm。
2.9卷扬牵引机构
由摆线针轮减速器驱动双卷筒作同步旋转,钢模和针梁通过钢丝绳的牵引作相对运动z即固定针梁移动钢模或固定钢模移动针梁。卷扬牵引机构安装在针梁的后端,卷扬机有两个钢丝绳卷筒,两个卷筒之间用链条连接,两个卷筒上的钢丝绳分别与门架前后端连接,从而带动针梁和模板作相对运动,完成台车的移动。
2.10液压系统
台车立模、拆模、定位找正工序都是靠液压油缸的伸缩来完成。液压系统由3个顶模油缸、6个侧模油缸、4个竖向油缸、2个水平油缸和两套泵站组成。3个顶模油缸、 6个边模油缸每边3个作立顶模、侧模用;4个底座竖向油缸支撑针梁,是钢模移动和浇筑混凝土的受力支点,底模与混凝土脱离也是靠它的顶推作用来完成。液压系统由一台电机作动力,每个油缸均由单向节流阀控制速度。
2.11电气系统
主要对液压系统油泵电机的开关和卷扬机电机的正、反运转进行控制,它采用380V三相四线制供电,最大供电能力100kw,它供给油泵电机、卷扬机电机、变频机组、附着式振动器、照明和电焊机用电等。针梁两端为混凝土输送泵预留有电源开关。
3.针梁式钢模台车施工特点及工艺流程
3.1针梁式钢模台车隧洞混凝土施工工艺流程
测量放线清渣、冲洗基岩钢筋安装针梁式钢模台车就位、档头模板及止水安装混凝土浇筑混凝土养护
3.2针梁式钢模台车施工特点
针梁式钢模台车在洞内需衬砌混凝土的位置组装,所有部件用汽车运输到组装洞段,在引水洞顶拱上钻设起吊辅助锚杆,使用8t、25t汽车吊、手动葫芦辅助,组装完成。从组装到正式投入使用共需15天。下一段混凝土浇筑只需一个班的时间即可就位安装好,进行混凝土浇筑。
混凝土衬砌分段长度12m,混凝土衬砌要求钢筋安装绑扎工序超前,针梁式钢模台车从就位、调整到混凝土浇筑、待凝、脱模共3~5d为一个循环。直线段钢筋混凝土衬砌月达到6~10个循环,每月衬砌72~120m。
4.全断面针梁式钢模台车的优点
4.1施工进度快
在引水隧洞混凝土衬砌施工中,只要各工序、设备配套合理、正常,针梁式钢模台车直线段衬砌混凝土,单段循环可控制在3~5天,月进尺可达72m-120m。相对于散装钢模拱架衬砌水工隧洞混凝土,可提高工效30%~42%。
4.2质量好
利用针梁式钢模台车衬砌水工隧洞混凝土,隧洞断面尺寸标准、表面光滑,段与段之间接合好。
4.3成本低
相对于钢模台车,利用针梁式钢模台车、穿行钢模台车衬砌水工隧洞混凝土,可降低成本30%。相对于散装钢模花拱架,可降低成本45%。
5.结束语
针梁式钢模台车在全园隧洞工程混凝土衬砌施工中得到了成功的应用,施工质量良好、混凝土外形美观、进度快、机械化程度高、节约资源。该施工技术的运用,将改变水工隧洞混凝土衬砌的传统施工工艺和施工方法。
作者姓名:张婷,女,1971年10月出生,
每个刊物的字数都是不一样的,要是发省级刊物的话一般字数在2000字到3000字之间不等,一般多数在2500字左右
河南中级职称论文
轨道交通的轨道施工应用
摘 要:通过轨道的特征来介绍轨道 交通的施工流程及操作要点。
关键词:轨道交通;梯形轨道
1 前言
根据城市轨道交通的不断 发展,各大城市已进入到城市建设的,因为城市轨道交通关键在于城市居民区、商业区等繁华地段,因而需要满足可靠性高、成本低、维修少、振动低、噪音低、抗振性能高等,普通整体道床已经无法满足需求。
梯形轨枕轨道系统是由PC制纵梁和钢管制的横向联接杆构成的,形似扶梯,因此称之为梯形轨道,它是纵向轨枕的一种,具有既能够发挥轨枕本来的特性,大幅度提高荷载的分散能力,又可补充钢轨本身的刚性和质量的性能特点,可以说是轨枕的一种革新形式。
据统计,铁道的维护管理成本占总营运费的1/3,越是高速对轨道的整备条件的要求越高,梯形轨道系统通过改造车辆,轨道结构相互作用系统的动力特性,能够达到减少20%~30%的维护管理成本,这对促进经营改善起到很大作用。同时,车辆轨道结构相互作用系统动力特性的改善,能明显地减轻车辆轨道系统的冲击轮重。因此,在维护管理及环境问题的解决上有很大作用。
2 工法特点
梯子形轨道施工整体道床一次性成型,简化施工工艺,提高施工效率,每工日施工进度达到50m~75m。梯子形轨道施工后梯形轨枕能有效浮置,对其减振降噪性能有保障。
3 工艺原理
梯子形轨道施工采用“散铺法”施工工艺,施工前根据设计的轨道高度对梁面实际高程进行复核,当梁面高程不能满足轨道设计高度要求时,需要对桥面进行凿除处理。然后进行基底凿毛、清理工作,按照整体道床施工工艺进行铺轨基标测设,并用墨线在桥面上标记出轨道中心线、道床边线等,绑扎L形支座钢筋,然后吊装梯形轨枕就位,粘贴泡沫板,上扣件及钢轨,利用支承架调整轨道状态,再支设支座模板,检查轨道状态符合设计及规范要求后,利用混凝土输送泵进行支座混凝土一次性浇注,养生待混凝土强度满足要求后拆除模板,人工清除泡沫,从而形成浮置状态梯子形轨道,梯子形轨道施工断面。
4 施工操作要点
4.1 梁面高程、预埋筋的检查及梁面凿毛处理
在梯子形轨枕就位前完成梁面高程复核、预埋筋的位置和高度检查工作,若不符合要求要及时进行处理。梁面高程不能超过设计值2cm,对预埋钢筋高度、数量、位置也进行全面检查,对歪斜的钢筋要进行调直、锈蚀钢筋要进行除锈处理。为加强支座混凝土与桥面混凝土的有效结合,防止通车运营后支座混凝土在长期振动过程中与桥面剥离,对L形支座范围内桥面进行凿毛处理,凿毛点位间距为30~50m m,凿深5~10m m,凿毛后用高压水或高压风将基底面冲洗干净。
4.2 基线测设、放线
铺轨基标及加密基标的测设与普通高架道床相同,控制基标在直线地段每120m 设置一个;曲线地段每50m 设置一个;曲线起止点、缓圆点、圆缓点处各设置一个;加密基标在直线上每隔6m、曲线上每隔5m 设置一个;水准点间距宜为100m,标桩应与道床同级混凝土埋设牢固。另外根据梯形轨枕设计图纸利用墨线将L底座及轨枕位置标记在梁面上,梯形轨枕的编号、轨枕面标高也标记在对应位置处。
4.3 L形支座钢筋绑扎
支座钢筋采用基地集中下料,现场绑扎的施工形式,钢筋加工后集中存放,并将钢筋分类编号、做上明显标记,确保上料运输过程中钢筋种类不混乱。现场按图纸要求进行支座钢筋的绑扎,钢筋交接点用铁丝捆牢,钢筋铺设顺序为:底层、中间层、面层、板块端部,最后绑扎特殊部分加固钢筋,钢筋绑扎过程中严格按图纸要求设置好预埋管线。
4.4 梯形轨枕吊装、架设、调整
梯形轨枕吊装前,将WJ- 2 型扣件的橡胶垫板、铁垫板按要求安装在轨枕上。用起吊设备将梯形轨枕吊装至梁面对应位置上方,在梯形轨枕的凸形挡台吊装孔位置安装支架,移动轨枕使其基本就位,而后放置在梁面上。梯子形轨枕吊装时,其起吊点位四点,位置设在梯子形轨枕两端的连接钢管端部。轨枕就位后,可在梯形轨枕两端部的表面适当位置处,用红油漆做标记作为轨枕调整参照点,用千斤顶或专门工具调整轨枕的平面位置和高低,当达到要求后,将轨枕固定。
4.5 粘贴泡沫板
梯子形轨枕主要依靠减振垫及缓冲垫满足减振降噪作用,为保证施工完毕后的梯子形轨枕能与L形支座有效浮离,最大程度发挥梯子形轨道的减振降噪作用,在梯子形轨枕就位前,在梯子形轨枕底部(减振垫范围外) 用厚30mm 的泡沫板满贴,在梯子形轨枕外侧面(缓冲垫范围外) 用15mm 泡沫板满贴,泡沫板的粘贴效果直接影响到梯子形轨枕的减振效果,为保证泡沫板有效粘贴并防止施工过程中脱落,采用胶水先将泡沫板粘贴在轨枕上,然后再利用胶带进行绑扎加固,在浇筑混凝土前全面进行检查,防止泡沫板破碎和脱落。另外在粘贴泡沫板的时候注意泡沫板边缘与轨枕边缘平齐,粘贴的顺序是先粘贴底部的泡沫板,然后粘贴侧面的侧面的泡沫板。
4.6 钢轨及扣件安装
放置橡胶垫板I,将钢轨拨入铁垫板的承轨槽内。扣件组装时,钢轨内侧采用10号轨距垫,外侧采用8号轨距垫,安装弹条,按扣件扭矩要求拧紧T形螺栓。
4.7 轨道几何状态调整
钢轨及扣件安装完毕后,按照 《地下铁道工程施工及验收规范》要求对轨道几何状态进行测量和精调,注意不得使用轨枕支撑架的丝杠调整,使用千斤顶或其他专用工具进行调整,调整到位后将轨枕固定。
4.8立模板,浇筑混凝土
待钢轨精调完毕后,用高压水或高压风清洁梁面,立L形底座模板,进行混凝土的浇筑与养护,按《铁路混凝土与砌体工程施工规范》执行,另需注意以下事项:
从L 形底座的侧模上方浇筑。先浇筑 L 形底座水平部分,再浇筑垂直部分。浇筑时间间隔等要求按规范执行,并不得导致水平部分混凝土变形。
L形底座混凝土浇筑时,防止混凝土与梯形轨枕的减振垫之间出现空隙。
混凝土终凝后,及时松开扣件及接头夹板,以防止钢轨胀缩对混凝土造成损坏。混凝土浇注质量直接影响到梯子形轨道的减振效果及轨道状态,如果混凝土浇注振捣不密实,则梯子形轨枕减振垫与混凝土间出现空隙,直接影响到梯子形轨道的减振效果及轨道状态。
4.9 清除泡沫板
支座混凝土达到设计强度后,人工将轨枕底部及外侧面的泡沫板清除,从而使梯子形轨道依靠减振垫和缓冲垫浮置在L形支座之上。
5 结语
随着城市 经济和生活的 发展,人们观念的更新,我国的地铁建设也面临着新的发展。地铁车站内部装饰装修和城市综合开发将密切结合是必然的趋势。当然,要根据当时当地的具体情况和条件来确定其适当的规模。同时,创造出良好的地下环境和更具特色的 中国地铁车站建筑,将是我国建筑师为之奋斗的任务之一。
参考 文献:
[1] 铁道标准设计,北京地铁梯形轨道工程试验段考察报告.2006.
看了“河南中级职称论文字数”的人还看:
1.2017年中级职称论文字数
2.工程类中级职称论文字数要求
随着我国经济的迅猛发展,现今的高层建筑日益增多,在城市工程建设中出现了非常多的地下室和地下车库。将高层建筑的设备用房、地下消防水池和汽车停车位等等设置在地下室,不仅能够充分地发挥地下室的作用,而且又满足了基础埋深的要求,同时地下停车场还可以用作人防地下室,以满足战时需要。因此,在高层建筑的设计中,如何合理地设计地下室的结构这个问题显得异常重要,现简要地探讨地下室在结构设计中常见的几个难点问题。
一、高层民用建筑地下室结构设计难点
由于在高层民用建筑地下室结构设计过程中存在诸多难点,比如不能有效确定地下室结构设计的嵌固部位,不能有效设计地下室结构设计的抗震等级等都是设计中存在的要点。因此,这就需要在进行高层民用建筑地下室结构设计中,应不断加强对于上部嵌固的抗震能力的重视, 严格遵守地下室结构设计中的要求,合理设计好剪切的刚度比,这样才能有效确保高层民用建筑地下室结构的质量。具体分析如下。
(一)合理确定上部结构的嵌固部位
上部结构嵌固部位的合理选取,在高层民用建筑地下室结构设计中的计算模型占有重要位置。而地下室的设计本身由墙、桩本身和承台本身、 柱等都具有重要作用, 都需要进行承载力的计算。部结构的嵌固部位主要指结构预期塑性铰出现的位置,它能直接限制构件在两个水平方向的转动位移,即平动位移和扭转位移,在这个过程中能够将地震作用传递到上部结构。上部结构嵌固部位的选取,具体包括以下几点要求。
1、加强对于上部嵌固的抗震能力的重视。由于上部嵌固部分主要是地下室顶板位置,而地下室一层的抗震等级会根据上部结构的实际情况进行测定,这就要求加强对于上部嵌固的抗震能力的重视。 首先地下一层的抗震等级不应低于上部结构的抗震等级。其次由于地下室顶板的厚度,对承受荷载有着极其重要的作用,其中,包括地下室顶板所承受的侧向荷载和垂直荷载,这就要求在顶板进行开洞过程中应尽量减少或避免开洞,如果必须要进行
开洞时,要适当减少洞口的面积大小,同时还要适当加强洞口周边的构造,从而避免或减少因刚度突变或强度降低,影响结构的竖向侧力构件的连续,导致地下室不适宜作为上部结构的嵌固端。
2、严格遵守地下室结构设计中的要求。依据JGJ3-2010《高规》,在地下室结构设计中,对于地下室顶板的厚度有着一定要求,其厚度应超过160mm,而上部嵌固部位的地下室的楼板需达到180mm,地下室防水规范要求如果作为车库顶板接触地下水需要板厚增加为250mm;为了保证地下室做为嵌固端,配筋率要求达到0.25%并且双层双向布置,混凝土强度也不应小于C30.
(二)确定地下室结构设计的抗震等级
针对高层建筑的大底盘,且地下室上有许多塔楼,同时每一个塔楼之间都是相互独立的,当高层地下室作为上部塔楼的嵌固端时,地下室的抗震等级应与上部结构相同,地下室一层以下的抗震等级可逐层降低,但不应小于四级。
二、高层民用建筑的地下室结构设计的施工条件的影响
业主关注着高层民用建筑地下室的经济效益,而高层民用建筑的地下室结构设计的施工条件对于整个工程的工期和质量有着重要影响。从而要求设计技术人员进行高层民用建筑地下室结构设计时,要多加考虑施工条件的影响。通常情况下,应从以下几个角度考虑。
首先,合理节省施工工期提高经济效益。由于施工工期在整个高层民用建筑过程中占有重要地位,而工期的长短将直接影响着业主及施工单位的经济效益。对于施工单位来说,缩短施工工期可以节省人员工资、固定资产折旧等建筑安装工程费用。一方面,对于业主方来说,缩短工程施工工期,有利于提前还清贷款,降低工程项目的投资成本。另一方面,受传统设计材料限制,地下室这种以大体积混凝土为主的结构施工周期过长,施工时遇到问题也较多,而目前越来越多的工程采用了新技术新材料,加快了施工周期,虽然增加了投资成本,但是节省了人工费用,模板费用等。
其次,结合高层民用建筑的地下室结构设计的施工条件,优化设计结构。高层民用建筑的地下室结构设计的初步设计阶段,主要确定结构形式、主要构件尺寸及主要结构材料等。由于高层民用建筑的地下室结构初步设计阶段对整个工程的结构造价影响约占70%。因此设计人员就要选择符合当地施工资源的结构材料,采用符合当地工业、经济情况的施工技术,这样才能控制好工程的可行性和经济性。
三、高层建筑地下室结构设计的常见问题和措施
通常情况下,高层民用建筑地下室结构设计的常见问题主要体现在防水底板的设计,顶板的设计,外墙的设计、荷载的设计和抗浮和抗渗的设计等多个方面,而高层民用建筑地下室结构设计要求又是整个高层民用建筑中的关键部分,因此,在对高层民用建筑地下室结构进行设计的过程中,要严格按照建筑设计行业的相关规范制度,严格要求,全面统筹考量,确保高层民用建筑地下室结构的设计质量,具体分析如下:
(一)顶板的设计
根据建筑结构设计的相关标准,对于地下室顶板作为上部结构的嵌固端时, 地下室的顶板上不易开洞, 而对于顶板的厚度要求,要大于180mm,同时在配筋方面的要求也有严格控制,需采用双层双向配筋的方式,按照合理的配筋率进行设计【3】。
(二)外墙的设计
由于高层民用建筑的地下室结构的外墙设计有严格要求,这要求外墙不仅防水,防渗漏,还要起到挡土墙作用,这就要求外墙设计中不仅要考虑挡土作用,还要从裂缝来考虑抗渗防水,这样才能正确的对裂缝宽度进行合理计算。
(三)荷载的设计
对于荷载的设计要求,根据建筑需要,特别是消防车通道的荷载考虑及折减,这需要结构人员精确考虑地下室顶板荷载,特别在高层地下室车库项目中尤为突出,这关乎地下室整体结构安全及经济效应。
(四)抗浮和抗渗的设计
由于地下水位的变幅和地面种植浇灌水的影响,在进行地下室设计的过程中要全面考虑抗浮和抗渗因素,一旦抗浮和抗渗设计没有得到良好的进行,将会直接影响到高层民用建筑的质量。
1、抗浮设计
抗浮设计主要分为局部抗浮和整体抗浮两种,结合若干抗浮桩与抗浮锚杆的实际工程经验发现,目前地下室抗浮设计主要面临着地下水浮力计算理论不成熟、地勘报告不精准等问题。
2、抗渗设计
在进行地下室的设计过程中,还应考虑地下水位变幅和施工技术等方面的因素所造成的抗渗问题,建筑结构抗渗问题直接威胁高层民用建筑的使用寿命。因此,在设计过程中,要对影响抗渗的因素做一个全面考量 。设计时可采用外加膨胀剂、设置伸缩后浇带、加入合成纤维等方法予以控制。
四、结语
综上所述,高层民用建筑的地下室结构设计是一项工作量巨大的且难度较大的工程,为了更好的满足人们对于高层民用建筑的地下室的需求,这就要求在设计过程中,要严格遵守建筑设计行业的相关规范制度,以加强高层民用建筑的地下室结构质量为首要任务,同时全面统筹和考量设计过程中影响地下室结构的因素,有效解决设计过程中遇到的问题,从而确保高层民用建筑的质量。
参考文献:
一、引言
目前,国内外对优化布桩问题尚没有共同的认识,在工程设计中也没有统一的计算方法,尤其是针对抗拔桩或者兼有抗拔与抗压桩共同存在的桩筏基础的优化布桩。因此,关于桩筏基础的变形特性、筏板内力、桩顶反力分布和筏板的变形也是急待解决的一个重要课题。对抗拔桩筏基础而言,其变形分为平均上浮变形和差异上浮变形,而由于差异上浮变形会引起上部结构的次应力甚至会造成破坏,因而更加为人们所注意。
对于抗拔群桩桩筏基础的优化设计,在有关桩筏基础设计与计算方法的研究中,关于抗拔桩筏基础非均匀优化布桩方式的探讨,尚不多见。因此,如何将基础的平均变形(沉降与上浮)控制在可接受的水平,最大限度地减小差异沉降,使基础在承载熊力和变形两方面均满足规范设计要求,是一个值得探讨而又具有重大现实意义的问题。
二、本文研究内容
本文利用PKPM的JCCAD模块的抗拔群桩桩筏基础的有限元分析方法,对单建式地下车库承受竖向抗荷载进行计算与分析,讨论与分析下述几个问题,并且提出以极小化筏板差异变形为目标函数的抗拔桩筏基础优化设计方法:
(1)在筏板的相对刚度和桩间距保持不变时,地下水位变化时,等间距均匀布桩桩筏基础的沉降特性、桩顶反力的分布、筏板内力与变形的变化特征等;
(2)分别抽去等间距均匀布桩桩筏基础的某些特定范围桩或者加密某些特定范围桩,比较分析二者对基础平均变形、差异变形及筏板内力的影响;
(3)对桩的优化布置方式进行讨论,比较桩数相同时,等间距均匀布桩和非均匀布桩对基础平均变形、差异变形和筏板内力的影响及其随筏板相对刚度的变化特征。
(4)由此,得出一种能够减小差异变形的抗拔桩筏基础的优化设计方法。
三、优化原理及目标
1.优化原理
优化设计的数学模型一般是由设计变量、目标函数和约束条件三个要素构成:
(1)结构优化设计中要求解的对象就是参与结构优化设计的参数,这些对象称为设计变量。在抗拔桩筏基础的优化设计中,对于桩基,一般选择桩长、桩径、桩间距和桩数作为设计变量,有时,甚至选择桩的布置方式作为设计变量,也即选择桩的最佳布置方案。
(2)本文所提到的抗拔桩基优化设计的目的是在满足各种约束条件的前提下,尽可能使基础造价最低。由于通常筏板厚度是根据工程经验确定,而桩长,和桩径是根据特定的地质条件决定。为此,本文将针对抗拔群桩基础的布桩方式进行优化,以总桩数的最小化作为优化的目标函数。
(3)优化设计中,边界约束条件是必需的,有了这些边界约束条件,优化设计才会具有实际工程意义。对于抗拔桩筏基础而言,约束条件分为三个方面:一是强度约束,即保证所设计的基础有足够的承载力;二是变形约束,即保证所设计的基础不产生过量的变形和差异变形;三是构造约束,按现行规范和施工经验确定。强度约束一般通过确定桩数、桩长、桩径等上下限来体现;变形约束主要通过允许变形量和筏板最小厚度来反映;构造约束可用桩间距、边桩距周边净距等表示。
2.优化目标
本文主要通过抗拔群桩基础的有限元分析方法,对抗拔群桩基础的布桩方式进行优化,以期在减小筏板弯距,减少差异变形的优化目标下,提出抗拔群桩桩筏基础优化布桩的方案。针对实际工程中,地下水位可能变化的幅度较大,本文中假设了两种最高最低地下水位,即考虑最高水位和最低水位两种工况下而得出的优化设计方法。将采用PKPM的弹性地基梁板模型(WINKLER模型)有限元分析方法对抗拔群桩基础的布桩形式进行优化设计。
四、优化分析
1.桩筏基础模型
(1)基本尺寸
柱距:9mX9m,筏板厚度700mm,桩型500mmx500mm方桩。
图4-1均匀布桩模型平面图 图4-2优化布桩模型平面图
(2)参数选取:
桩身竖向刚度:Kn=4.0xl03kN/m,桩身弯曲刚度:Km=1.0xl03kN/m,桩底土的压缩模量:Es=10MPa,土体内聚力:c=0.5x104Pa,内摩擦角:Ф=140
(3)荷载选取:
最高水位上浮力:50kN/m2,最低水位上浮力:10kN/m2,筏板自重:17.0kN/m2,柱底力详图4-3。
图4-3柱底反力图
2.不同布桩型式的桩筏基础特性分析
(1)筏板的变形特性
对单建式地下车库,抗拔群桩基础的变形分为平均上浮和差异上浮,平均上浮过大,虽然不一定引起上部结构的破坏,但会影响建筑物的正常使用;差异上浮过大,则会造成上部结构的损坏,影响建筑物的安全。基础的平均上浮和差异上浮受到众多因素的影响,在此,本文只讨论布桩方式这个因素的影响。
由上图可知,当单建式地下车库处于最高水位的时候,出现上浮变形的状态;而在最低水位时,出现沉降变形的状态。对比两种不同的布桩型式下的变形可知,优化后的筏板变形曲线的等值线变化幅度趋缓。即在柱底密布桩的优化方式所产生的差异变形比均匀布桩时小许多;但由于总桩数的减少,因此平均变形(上浮或沉降)比优化前略大一点。基于以上特点,又提出了同时沿周边区域布桩方式,这样对减少基础平均变形的效果较好。
(2)筏板弯距
筏板是桩筏基础中的一个重要组成部分,筏板内力尤其是筏板的弯矩及其分布情况是桩筏基础设计的重要参数。
由上图可见,在桩筏基础处于抗浮或抗压状态下,柱位置下的筏板弯距产生了较大幅度的突变。这是由于柱底反力作用于筏板,而在此集中力作用扩散角范围内,并没有相应的桩反力与之平衡。因此,需要靠筏板来传递和调解未平衡的内力,由此形成了筏板的弯距突变。相比于均匀布桩,在优化布桩的方案下,筏板的弯距有一定程度的减少。这是由于柱底反力作用范围内,设置了相应的桩反力与之平衡,靠筏板传递弯距来平衡的作用减少,同时筏板配筋量也可以相应减少。筏板弯距比均匀布桩情况下的明显趋于平缓。
四、总结
综上,优化方法综合了以上两点,在柱底密布桩,沿筏板周边稀布桩的方式,即减少了差异变形,又使平均变形控制在一个可接受的范围内。优化布桩使得筏板弯距变化幅度减少,且总桩数也相应的减少了8%~10%,从经性和合理性的角度,在基础的平均沉降满足规范设计要求、单桩的承载力及桩自身强度足够的情况下,此优化方案应是可取的。本文经过对比分析提出了能够适用于实际工程,符合经济性,合理性的地下车库群桩优化设计方案,为工程设计人员提供了优化设计的依据。
参考文献:
[1]张燕平,张宝印.高层建筑桩筏基础桩顶反力及沉降特性的分析与研究.西安建筑科技大学硕士学位论文.2002:19-20。
[2]阳吉宝,赵锡宏,高层建筑桩筏(钧基础的优化设计,计算力学学报,1997年,第14卷,第2期.
中图分类号: TU97 文献标识码: A 文章编号:
1 基础设计要点
任何建筑物基础设计前必须掌握足够的资料,这些资料包括两大部分: 一部分是地质资料,另一部分是有关上部结构资料。对这些资料的要求可根据需要而有所区别。对于高层建筑一般要求更详细的资料,在分析地质资料时应注意对地基类型进行判别并考虑可能发生的问题,要研究土层的分布,查明地下水及地面水的活动规律,调查拟建建筑物周围及地下的情况,在分析上部结构时应特别注意建筑物的重要性、建筑物体型的复杂程度和结构类型及其传力体系。任何一个成功的基础工程都必须能满足以下各项稳定性及变形要求:
1) 埋深应足以防止基础底面下的物质向侧面挤出,对单独基础及筏形基础尤为重要。
2) 埋深应在冻融及植物生长引起的季节性体积变化区以下。
3) 体系在抗倾覆、转动、滑动或防止土破坏( 抗剪强度破坏) 方面必须是安全的。
4) 体系对土中的有害物质所引起的锈蚀或腐蚀方面必须是安全的,在利用垃圾堆筑地时,这点尤为重要。
5) 体系应足以对付以后在场地或施工几何尺寸方面出现的某些变化,并在万一出现重大变化时能便于变更。
6) 从设置方法的角度看,基础应是经济的。
7) 地基总沉降量及沉降差应为基础构件和上部结构构件所容许。
8) 基础及其施工应符合环境保护标准的要求。
2 基础的选型
基础结构的形式很多。设计时应选择能适应上部结构使用、满足地基基础设计两项基本要求以及技术上合理的基础结构方案。作为整体结构之一的基础,其不可替代的功能决定了基础设计除需满足强度和上部结构的其他要求之外,还应满足上部结构对基础结构的强度、刚度和耐久性要求。合理选择基础形式是结构设计很重要的阶段,天然地基上的筏形基础比较经济,宜优先采用,另外依据地质勘察情况还可采用箱基、桩基或采取复合地基形式。基础是否发生倾斜是高层建筑是否安全的关键因素。高层建筑由于质心高、荷载大,对基础底面一般难免有偏心,故在沉降过程中,建筑物总重量对基础底面形心将产生新的倾覆力矩增量,而此倾覆力矩增量又产生新的倾斜增量,倾斜可能随之增长,直至地基变形稳定为止。因此,为减少基础产生倾斜,应尽量使结构竖向荷载重心与基础平面形心相重合,当偏心难以避免时,应对其偏心距加以限制。《高层建筑混凝土结构技术规程》中规定,在地基土比较均匀的条件下,箱形基础、筏形基础的基础平面形心宜与上部结构竖向永久荷载重心重合。当不能重合时,偏心距 e 宜符合式( 1) 要求:e ≤ 0. 1W / A ( 1)式中 W―――与偏心距方向一致的基础底面边缘抵抗距,m3;A―――基础底面积,m2。
3 基础的埋深
高层建筑基础必须有足够的埋置深度,这主要是考虑了以下几方面的因素:
1) 增大基础埋深可保证高层建筑在水平荷载( 风和地震荷载) 作用下的地基稳定性,减少建筑的整体倾斜,防止倾覆和滑移,利用土的侧限形成嵌固条件,保证高层建筑的稳定。
2) 由于基础增大埋深,可使地基的附加压力减小,且地基承载力的深度修正也加大,则可以提高地基的设计承载力,减少基础的沉降量。
3) 增大基础埋深,可使地下室外墙与土体之间的摩擦力和被动土压力增大,从而限制了基础在水平荷载作用下的摆动,使基础底面上反力分布趋于平缓。
4) 地震作用下结构的动力效应与基础埋置深度关系较大,增大埋深,可使阻尼增大,结构的地震反应减小,而且土质越软,埋置深度越大,地震反应减小的越多。因此增大埋深有利于建筑物抗震。实测表明,有地下室的建筑地震反应可降低 20% ~30%。在确定基础埋深时,应结合建筑物的高度、体型并综合考虑地质条件及使用功能等条件的影响。基础埋深需满足如下规定:
1) 天然及复合地基,宜取1H/15( H 为房屋总高度) 。
2) 桩基础不计桩长,宜取1H/18。
3) 基础的埋深对房屋造价、施工技术措施、工期以及保证房屋正常使用等都有很大的影响。基础埋置太深,会增加房屋的造价; 而埋置太浅,通常又不能保证房屋的稳定性。因此,基础设计时应根据相关规范及实际情况选择一个合理的埋置深度。当基础直接搁置在基岩上时,在满足地基承载力、稳定性要求及其他要求的前提下,基础埋深可适当放松。当地基可能产生滑移时,应采取有效的抗滑移措施。
4) 箱型基础的埋深还应考虑抗浮设计水位的影响。
4 高层建筑基础常用类型的选取及比较
1) 筏型基础。筏基是目前高层建筑中常见的一种基础形式。其选取条件如下: ①当基础持力层无法满足上部结构的容许变形及地基容许承载力要求时,采用筏基可以增大其基底面积从而提高基础承载力、减小基底变形; ②高层建筑在水平荷载( 如: 风荷载、地震荷载等) 的作用下,采取筏基可以提高整体结构的刚度和稳定。
2) 桩基础。桩基础是目前高层建筑中另一种常见的基础形式。其选取条件如下: ①当浅表土层地基承载力无法满足上部结构承载力要求,而符合承载力要求的持力层土层在较深处时,宜采用桩基; ②天然地基承载力和变形不能满足要求的高重建筑物,或者天然地基承载力基本满足要求、但沉降量过大,需利用桩基础减少其沉降的影响,或在使用上、生产上对沉降量要求比较严格的高层建筑物。
3) 柱下独基。独立基础主要适用于小高层框架结构,当地基承载力较大,地基土性质分布均匀,柱间倾斜变形较小时采用。同时为增强整体结构及基础的刚度和稳定性,在纵横方向设置连系梁,连系梁按偏拉、压构件进行计算。
其他基础形式如箱形基础、十字交叉钢筋混凝土条形基础、桩筏基础等,可根据各种影响因素的具体情况,合理地进行选择。
5 基础设计的注意事项
随着经济的发展高层建筑的数量及其形式的多样化、复杂化也随之增长,这势必给高层建筑基础设计带来若干问题和困难,以下为基础设计中常见的几个问题。
1) 不重视地基基础的设计等级。 《地基规范》3. 0. 1条规定,根据地基复杂程度、建筑物规模和功能特征等条件,将地基基础的设计统一分为三个等级。而在 3. 0. 2 条规定,根据高层建筑地基基础的设计等级同时考虑地基变形( 在长期荷载作用下) 对上部结构的影响,地基基础设计
须满足如下要求: ①所有建筑物的地基承载力设计须满足要求; ②属于甲、乙级设计等级的建筑,应进行地基变形验算; ③属于丙级的建筑有 《地基规范》规定的 5 种情况
之一时,应作变形验算。
2) 抗浮设计时不区分实际情况即进行抗浮验算: ①抗浮验算时上部结构永久荷载须乘以分项系数,分项系数可根据 《荷载规范》或当地地区标准取值,验算建筑物抗浮能力应满足:建筑物永久荷载水浮力≥1. 0,其中,永久荷载取标准值,永久荷载与水浮力的分项系数按 《荷载规范》或参照 《北京细则》取值。②当结构基础设计需要采取抗浮措施时,应按工程具体情况区别对待。当高层建筑主体基础与裙房地下结构空间连成整体,均采用桩基,可采取抗拔桩来解决抗浮问题; 当主体与裙房地下结构空间未连成整体,采用天然地基会产生沉降差,则抗浮常采取配重( 配重材料通常采用素混凝土,重度大于等于 30kN/m3钢渣混凝土或砂石料) 的方法。
3) 设置地下室对基础设计与整体结构的影响不了解。①高层建筑设置地下室除了能增加建筑物的使用空间功能( 如作停车库、设备机房等) 外,还会对地基基础和地面以上的整体结构的受力性能有很大的贡献。地下室深基坑的开挖,对天然地基或复合地基的基础能起到很大的卸载和补偿作用,从而减少了地基的附加压力,增强了地基承载力的计算值。②地下室周边后期夯实的回填土对埋深较大的地下室外圈混凝土墙施加了被动土压力的同时,还对外圈挡土墙产生摩阻力,使基础的稳定性得以增强。同时使基础板底反力平缓分布。根据结构设计经验,通常将地下室埋置深度不小于高层建筑总高度的 1/11~1/9时,可不考虑由于偏压引起的整体倾覆问题。所以,对于高层建筑的基础设计,必须加强对地下室周边回填土的质量要求和控制,土回填越密实,抗剪强度越高,提供的被动土压力也就越大,对基础的稳定越有保证。
结语:
随着高层建筑在我国的日益普遍,高层建筑基础作为高层建筑结构体系中的重要组成部分必然受到设计人员的重视。论文就高层建筑基础设计的重要性和基础设计前的准备内容、基础选型、基础埋深及常见基础类型的适用条件进行简单的分析介绍,并对基础设计过程中容易误解和忽视的内容进行介绍、总结,避免设计人员在基础设计过程中出现类似问题。
参考文献:
[1] 莫海鸿,杨小平. 基础工程 [M]. 北京: 中国建筑工业出版社,2003.
[2] JGJ3 -2002,高层建筑混凝土结构技术规程 [S].
[3] 张荐林. 中小高层建筑基础设计探讨 [J]. 甘肃科技,2002,( 3) .
[4] GB 50007 -2002,建筑地基基础设计规范 [S].
[5] 孙利辉. 高层建筑基础的设计选型与应用 [J]. 价值工程,2011,( 03) .