时间:2023-03-07 14:55:13
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇材料加工技术范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
复合材料不仅具备了高性能、耐高温等优点,而且由于其结构具有可设计性、长寿命与减重等特征,因而在航空航天领域之中的应用变得愈来愈广泛。复合材料是如今复材零件使用中周期偏长、成本偏高,而且风险也相当大的一道工序。在我国创建复合材料的产业链过程中尚具有比较大的问题。有关配套加工技术还不够成熟,因而在复合材料加工上的技术研究上投入的人、财、物力也具有不足之处,与西方国家先进的材料加工技术研究比较起来尚有比较大的距离。正是由于复合材料加工技术尤其是金属基复合材料加工技术在诸多方面得到了非常多的运用,所以加大材料加工技术的探究,显得极为重要。
一、复合材料加工技术概述
复合材料是一种多相材料。这里所说的多相,主要是指具有两种或以上的化学性能的相关材料。复合材料则是把多相材料通过诸多加工方法进行加工而合成。复合材料具有的两相分别为增强相与基体相。复合材料主要存在两种加工技术,也就是常规加工方法与特种加工方法。常规加工法和金属加工法是一样的,加工手段相对较为简单,而工艺也比较成熟。但是,一旦加工复杂工件之时就会对刀具造成极大的磨损,其加工的质量不够好,且在加工中形成的粉末极易对人体造成极大的影响。后者相对来说比较容易加以监控,而在加工的过程中,切削刀具和被加工的工件接触量非常小以至于为零,这就十分有利于自动化加工。然而,由于复合材料所具有的复杂性,导致特种加工之运用也会遭受限制,因此,一般来说,常规性加工的运用比较多。
二、金属基复合材料加工技术分析
所谓金属基复合材料,主要是指以金属及合金为基础,使用陶瓷颗粒和纤维等为强化材料复合起来的一种高质量的材料。因为这类材料具备了强度比较高、耐热与耐磨、稳定性高等良好的性能,从而让这类材料已经成为诸多实践领域之中最具有吸引力的一类材料。该材料大量运用在航空和军事等诸多领域。在金属基复合材料的生产过程之中,为切实降低材料的生产成本与提升性能,通常是先把该材料制作为铸锭与初级板材之后,再通过二次加工成形以制做出能够直接运用的零件等。由于精密加工技术的不断发展,对精密化、洁净化、精度较高的材料需求量不断增加,精准化与高韧度的金属基复合材料市场份额变得愈来愈大。所以,对这种复合材料的加工技术进行深入研究,对于推动机械加工技术的推广运用具备了十分突出的实际意义。
三、金属基复合材料加工的具体技术手段
一是切削加工技术手段。金属基复合材料加工技术是一种常用的技术手段。通过认识与把握材料切削加工的常见规律,准确选择刀具与切削的用量,这样一来才能确保加工质量以及相当高的成效。使用硬质合金以及高速钢等为主要的切削刀具,探究了碳化硅颗粒提高铝基复合材料之中的碳化硅含量和尺寸等参数对于切削加工性能所造成的影响。有研究证明碳化硅的颗粒尺寸一旦愈大、含量愈多,刀具所产生的磨损度也更加快。碳化硅的颗粒一旦比较粗大,其加工工件的外表也就会相当粗糙,而且随着颗粒含量持续增加而不断增加,复合材料对于刀具造成的磨损也会越大。使用聚晶金刚石刀具,可以对颗粒增强对复合材料的制备性能进行深入研究。在达到某种切削速度之时,材料对于刀具所造成的损耗是最小的,而且工件外表的粗糙度比较好。在运用常见加工设备之时,侧重于刀具结构的改进与创新,这是提升工作效率的更具有可行性的方式。
二是线切割加工技术手段。传统意义上的刀具只适合于加工体粒径比较小而且含量比较少的那些复合材料。当体粒径不断增加而且含量不断增多之后,高速钢与硬质合金等普通刀具的磨损相当快,即便于选择了高硬度刀具加以切削,其使用寿命也难以让使用者满意。因为这一情况,把特种加工法运用到此类材料之中就非常有必要。当前运用电火花线来切割加工颗粒以强化复合材料的研究已经有了大量的报道,而切割的速度以及切割之后的外表粗糙度则是十分重要的加工参数。通过探究电参数对于电火花线进行切割加工,可以对复合材料切割快慢以及外表粗糙度造成一定的影响。使用扫描电镜来分析复合材料线所切割的加工外表的样貌。脉冲的间隔对于外表粗糙度的影响并不是很大,在其达到了某种程度之时,表面上的粗糙度往往不会受到影响。通过选择比较大的峰值电流以及比较短的脉冲宽度,可以对复合材料实施比较理想的电火花线进行切割和加工。这类材料的线切割加工必须要科学地选择电加工的参数,电极间的电压一定要高出间隙以击穿电压,合理地确定电极与工件彼此间所具有的距离,合理地选择电介液绝缘力而且对间隙污染实施合理评估与清除。
三是磨削加工手段。对金属基复合材料实施磨削加工,主要是指运用磨具所具有的切削力,除了工件外表的那些多余层,可以让工件的外表质量能够达到预定要求的一些加工手段。如今,经常见到的金属基复合材料磨削加工手段主要包括了外圆磨削、内圆磨削以及成形面磨削等。这类材料所具有的磨削特点受到了增强相以及其所用的砂轮类型造成的影响,提高材料所具有的磨削方式,而软性金属堵塞砂轮则是砂轮丧失效力的一个重要因素,而磨削加工过程中所出F的主要问题就是砂轮的堵塞、磨削区出现冷却。所以说,在进行实验的条件之下,磨削颗粒增强型的复合材料之中,碳化硅砂轮的表现相当突出,其在磨削力、粗糙度等各个方面均超出了CBN以及金刚石磨料砂轮等材料。利用陶瓷基SiC砂轮以及树脂结合剂金刚石砂轮等对增强型复合材料所实施的磨削证明了SiC砂轮可用于粗磨之中。在粗磨过程中,工件磨削表面上会产生基体金属涂敷等问题,从而切实地降低表面具有的粗糙度。金刚石砂轮十分适合于进行精磨。在精磨过程中,基体材料并无显著的涂敷状况。利用细粒度金刚石砂轮,可以对1um深的磨削区实施材料的延性化磨削,其表面和亚表面并无裂纹或者缺陷出现,能够促进增强相之延性。所以说,磨削是金属基复合材料加工当中极有发展前景的加工方式之一,能实现无损化加工。
四是钻削和振动切削加工手段。碳化硅铝基复合材料的性能有别于普通钢铁材料,一般是使用整体或者涂层金刚石钻头实施孔加工。钻削加工当中出现的刀具磨损以及加工表面质量则是判断其可加工性能的重要指标。对铝合金复合材料刀具所产生的磨损以及表面质量开展试验性研究。在钻削铝合金复合材料的过程之中,钻头磨损如果发生于后刀面,产生磨损的原因则是磨料的磨损。运用扫描电镜可发现钻头后和切削速度方向保持一致的磨损沟,而钻头的横刃与外缘处也存在着磨损。刀具耐用度首推YG8钻头,TiN涂层以及深冷钻头质量较次,而HSS钻头则是最差的。当前,国内外对于金属基复合材料振动切削与加工的研究相对较少。超声振动切削作为特种加工技术手段之一,具备了减小切削力与降低表面粗糙程度、提升加工精度并且延长刀具寿命等特点。通过对铝基复合材料所进行的振动切削开展研究,把振动切削复合材料的所具有的切屑形态、变形系数以及剪切角切削形貌与粗糙度、残余应力等开展对比与研究,可以发现振动切削铝基复合材料具备了降低切屑变形、降低表面损伤程度与粗糙度、加大表面压应力等功能,这样一来就为金属基复合材料实施精密化切削探索出了一条崭新的发展途径。
四、结束语
综上所述,复合材料加工技术均有各自不同的特色,其中金属基复合材料属于具备组分材料难以拥有的全新优质性能的一种先进材料。因为复合材料的制造成本相对来说比较高,所以在其加工的过程之中应当尽可能地提升材料的利用率,切实降低能源所产生的消耗,推动我国清洁材料的生产。目前阶段,应当致力于发展各类二次成形之后的零件不再需要进行加工或少加工即可得到成品的技术,从而不断推动金属基复合材料的精密化、清洁化与高效化生产。
参考文献:
[1]沃丁柱. 复合材料大全[M]. 北京:化学工业出版社,2000.
稀有金属材料加工技术发展前景
随着社会的快速发展,个各行业也得到迅猛发展,对稀有金属材料的质量和性能也提出了更好的要求,稀有金属材料的种类不断增多,性能不断提高,而且稀有金属材料加工成本也在不断降低。稀有金属材料逐渐向高精度,超细方向上发展。比如,很多应用于航天领域的稀有金属材料已经开始向纳米级发展,而且稀有金属材料的韧性越来越强。稀有金属材料加工技术也在向短流程化方向发展。目前,应用铸造技术加工稀有金属零部件可以提高稀有金属材料的质量,避免材料的浪费,降低稀有金属材料的加工成本。如今,很多工程对于稀有金属材料的需求量都在不断增多,这也是稀有金属材料加工和开发的关键动力。但是,也有部分稀有金属材料没有被重用,这部分稀有金属材料的分析成果就无法真正转变为生产力。如今,深加工技术已经成为稀有金属材料加工技术的创新区域。
现代计算机技术的发展速度不断加快,计算机技术的发展在一定程度上推动了稀有金属材料加工技术的发展。
稀有金属材料加工技术
稀有金属箔材加工技术。稀有金属箔材已经成为工业产业所需的关键材料,工业产业对于稀有金属箔材的质量和精准度要求非常高。西方国家对稀有金属箔材加工技术的应用时间比较长,经验比较丰富,加工水平比较高,我国与西方国家的差距比较大,很多高精度的稀有金属箔材还需要从国外进口。我国必须加大稀有金属材料加工技术的研究水平,缩短与西方国家之间的差距。稀有金属箔材主要应用以下加工技术:一是真空熔炼,二是锻造,三是轧制,四是真空热处理。
稀有金属材料成形加工技术。稀有金属材料成形加工技术具有以下特点:一是生产工序比较少,二是加工效率高,三是成本低,四是材料的利用率比较高。稀有金属材料成形技术有以下几种:一是精密铸造,二是等温锻造,三是超塑性成形,四是扩散连接,五是旋压成形,六是管件塑性推制,七是粉末冶金,八是激光立体成形。稀有金属材料的价格相对较高,对于成形技术的要求也比较高。
随着现代高新技术的发展,现代材料得到了快速的发展,很多新材料新技术应运而生。同时新材料的进步和发展水平也成为衡量国家科技水平的一个标准之一,并在一定程度上促进了各个学科、技术的交叉融合。材料是现代文明三大支柱的基础,能源和信息的发展都离不开材料,也因此材料的发展也越来越引起人们的关注。一种新功能材料的研发,不仅能够带来巨大的经济效益,同时也能够带动相关产业的迅速发展,其对推动工业的发展,促进国防建设的各个领域的发展都至关重要。
1 现代材料加工技术的发展特点
1.1 现代材料加工技术有更为详细的划分
现代材料技术的发展不是单纯的对传统材料加工工艺的改进改性,也不是单纯的提高了生产效率降低生产成本,而是进行了新功能材料的研发,并逐步实现了产业化。当前的材料加工技术包括制备技术、材料的成形与加工技术、对材料的改质与改质技术、对金属材料的防护技术、评价表征技术、对金属材料的模拟仿真技术及检测与监控技术等。
1.2 实现各种加工技术的交叉融合
传统的金属材料的加工过程是在完成了金属锭坯后再进行塑形加工,而后生产出各类金属制品和零件。但是现代的金属材料加工已经实现了材料制备和成形加工技术的一体化、成形加工与改质改性技术的一体化,这都充分说明了当前的材料加工技术已经实现了各类技术的交叉与融合。
1.3 实现了材料的设计与加工的一体化
工业的飞速发展对材料的功能性提出了更高的要求,能够按照实际生产中需要的功能要求来进行材料的设计,从而实现材料的功能设计与加工的一体化,使之进入材料加工的新发展时期。
1.4 实现对材料加工全过程的精准控制
随着电子信息技术的飞速发展,计算机模拟与仿真技术都得到了较大程度的发展,同时也丰富完备了材料的数据库,使其各方面的数据都得到了完善,并以此为基础实现了材料设计、制备、加工等全过程的精准控制,特别是对加工材料的性能、形状和尺寸等。
2 现代材料加工技术的现状
随着合成材料相关技术的发展,特别是材料的合成与复合技术的发展,及电子信息技术和航空航天等尖端材料加工技术的发展,都在很大程度上推进了现代工业的飞速发展。一些功能性新材料的出现,例如精细陶瓷材料、耐高温材料、纳米材料等的研发与产业化推广,都解决了过去很多传统材料不能替代的功能,从而实现了材料性能的飞跃发展。
3 现代材料加工技术的发展趋势
3.1 材料加工技术的发展
(1)材料加工过程的一体化。在对现代材料进行制造需要经历设计、制造、成形及后续加工等过程,在传统的金属材料的加工过程中需要冶炼得到纯金属后将其进行熔炼合金化,再进行铸锭和塑性加工及深度塑性加工最后制造出金属制品。例如,对金属的铸造都实现了连续铸轧工艺从而实现了产品的各种加工性能。
(2)材料加工技术的一体化。当前的材料加工已不再是单纯一个学科的发展,而是各种技术相结合发展的综合性学科,随着计算机模拟与过程仿真技术、信息技术在材料的制备、成形及加工过程中的应用,很好的实现了材料加工过程中的各个环节的精准控制。例如,当前市场对各种材料产品的性能、形状、尺寸有了较高的要求,计算机对铸轧程序及材料的变形进行模拟分析,对材料的规格和尺寸等进行全面的精准控制,达到材料的精密成型和特种塑性加工。
3.2 材料加工的新技术新方法的发展
随着高新技术的飞速发展,对高新材料的功能有了更高的要求,传统的材料加工方法不能满足对新型功能材料的需求,在材料加工研究领域中实现材料加工与制备的一体化是未来发展的一个趋势。
(1)对常规材料加工流程的改进。要想实现对常规材料的节能高效优质加工,实现对材料的精准控制,就必须对传统的材料加工模式进行改革,对生产的流程进行简化和连续化生产,从而提高生产效率。
(2)实现对材料的组织与性能的精准控制。工业技术的发展对材料的性能有了更高的要求,传统的材料不能满足新兴工业发展对材料的需求,要想发展先进的材料成形加工技术,就必须以实现材料组织与性能的精准控制,实现高附加值的材料。
(3)对材料设计、制备、成形及加工的一体化。当前在材料加工技术中最为突出的就是对复合材料的加工,较为有代表性的是喷射成型技术和金属基层状复合材料的加工技术。并随着高新技术材料的不断研发,新的材料加工方法会不断的出现,例如,自蔓延高温合成加工陶瓷复合管材及金属管法制作氧化物超导线材等。
(4)实现材料产业的可持续发展。随着社会经济的迅速发展,人与环境的发展矛盾日益激烈,有限的资源环境很难满足人类日益增长的物质文化需求,因此必须探寻研发新的材料,以满足发展对各种工业发展的需求。一些低耗、节能、可再生、利用率高及可循环使用的材料是未来现代材料的发展趋势,对这些材料的加工方法和技术的研究是新的发展领域,也是发展的必然趋势。
4 结语
现代材料加工技术的发展并不是单纯的对传统加工工艺的改进,而是需要进行新材料的研发,在现代材料中融入科技的元素、现代化的加工工艺及信息化的元素,从而实现现代材料的快速发展。本文分析了现代材料发展的特点和发展现状,并有针对性地对现代材料加工技术的发展趋势进行了展望。
参考文献:
[1]谢建新.材料加工技术的发展现状与展望[J].机械工程学报,2003(10).
[2]丁国平,梁楚华.超硬材料加工技术及其发展趋势[J].机械制造,2007(06).
[3]孙爱芳.材料加工技术的回顾与展望[J].河南机电高等专科学校学报,2006(05).
[4]蒋嵘,吴晨曦.超硬材料加工技术发展现状及趋势[J].佛山陶瓷,2003(12).
激光技术属于新兴的制造技术,具有自身的应用优势和规律,也已经形成了专业的激光理论。激光技术具有以下特点:一是单色性,二是相干性,三是方向性,四是高光强。目前,激光技术已经趋向成熟,但是还需要不断完善和调整,提高国内激光技术水平。
一、激光技术的应用优势
1.效率高。目前,激光切割是应用最为广泛的激光技术,应用于多个领域中。在汽车制造业中,主要应用激光技术切割钣金零件,不仅可以优化汽车零部件结构,还可以提高汽车的基本性能,在一定程度上降低了汽车的油耗。在航天工业中,主要应用激光技术切割铝合金。激光技术的广泛应用在一定程度上推动了工业和制造业的发展。随着激光束质量的快速提高,激光技术也广泛应用于金属材料加工中。激光技术可以切割以下性能的金属材料:一是高硬度,二是高脆性,三是高熔点,这也是传统切割技术所做不到的。激光技术在应用的过程中不会对环境造成污染,而且切割的效率非常高,可以在短时间内完成切割任务,适应性也非常强。
2.无污染。激光技术实际上就是把光斑直接照射到需要切割的物件表面,并通过激光斑和物件之间的相互作用使物件的表面在短时间内熔化。相比于传统的切割技术,激光技术属于新型高能加工技术,应用的过程不会对环境造成污染,减少能源的消耗,降低企业的材料加工成本。比如:3D激光技术主要应用于切割高强度的钢材料,对钢材料的毛边进行精细处理。如果钢材料的强度比较大,就必须使用3D激光技术。在应用激光技术的过程中,低热输入是激光技术的一大应用优势,因为很多材料在遇到高温时性能会发生变化。激光技术在焊接金属材料时不会对材料的外形造成影响,可以达到极高的精准度,而且激光焊接可以缩短焊接的宽度,提高了焊接的美观度。
二、激光技术在金属材料加工工艺中的应用
1.激光切割技术。激光技术使用光斑直接聚焦在金属材料上,并熔化金属材料,同时使用激光束气体把融化掉的金属材料吹走,保证激光束可以沿着设定好的轨迹切割,形成整齐的缝隙。激光切割技术是应用最广泛的激光技术,激光切割材料包括以下几类:一是有机玻璃,二是木板,三是塑料,四是不锈钢,五是碳钢,六是合金钢,七是铝板。在应用激光技术的过程中并不需要使用刀具,激光技术完全在计算机的操控下,可以实现任意形状的切割。激光切割实际上就是应用高功率密度来实现切割任务。在计算机的操控下,激光器通过脉冲放电,并输出激光,产生一定的频率和光束,光束又通^传到聚焦在被切割的金属材料上,进而形成多个光斑。相比于传统的切割技术,激光切割技术具有以下特点:一是切割质量高,二是切割速度快,三是柔性高,四是适应性强。激光切割技术的精准度非常高,精准度控制在0.05mm,速度可以达到每秒切割10米,而且不会受到金属材料硬度的影响。
2.激光焊接技术。激光焊接的特点有以下几个:一是速度快,二是非接触,三是变形小,比较适合连续性的金属材料在线加工。在金属材料加工工艺中应用激光焊接技术可以提高焊接效率,而且无污染。随着加工技术的快速发展,激光焊接技术水平也在不断提高。应用激光焊接技术可以实现曲线焊接,提高车身的灵活性,而且可以根据焊接材料的特殊要求进行焊接。激光焊接技术有以下几种:一是激光与电弧焊接技术,二是等离子弧焊接技术,三是高频感应热源复合焊接技术,四是双激光束焊接技术。不同的激光焊接技术特点不同,技术人员需要结合实际情况选择激光焊接技术,保证激光焊接技术应用的合理性。
3.激光打孔。激光打孔实际上属于比较传统的金属材料加工技术,相比于其他打孔技术而言,激光打孔技术的精准度比较高。激光打孔技术有着悠久的发展历史,激光打孔技术最早应用于钟表制造业,取得了不错的成就。西方国家应用激光打孔技术的时间比较早,经验比较丰富,我国与西方国家存在较大差距,我国激光打孔技术还不完善,还需要不断调整,加大激光打孔技术的研究力度,缩短与西方国家之间的差距,我国也需要结合实际情况合理的借鉴西方国家的先进经验,提高激光打孔技术水平。
4.激光打标。激光打标的应用性也非常强,激光打标实际上就是应用激光来对需要打标的物体进行照射,并合理的利用化学反映,以此来将标识长时间的留在物件表面。目前,激光打标被广泛应用于金属材料加工工艺中,激光打标技术的应用不会对金属材料的性能产生任何影响,这是传统打标技术所做不到的。激光打标技术也在不断完善和调整,提升打标的质量,已经成为国家的关键防伪手段,受到越来越多人的肯定。激光打标技术的应用不会对金属材料本身和性能产生任何破坏。
三、结语
目前,激光技术已经广泛应用于金属材料加工工艺中,属于新型高能加工技术,效率高,操作简单,而且无污染。其种类也在不断增多,激光技术使用光斑直接聚焦在金属材料上,并熔化金属材料,保证激光束可以沿着设定好的轨迹切割。应用激光焊接技术可以实现曲线焊接,提高车身的灵活性。激光打孔技术的精准度比较高,但是我国的激光打孔技术还需要不断调整和完善,缩短与西方国家之间的差距。激光打标实际上就是应用激光来对需要打标的物体进行照射,将标识长时间的留在物件表面。不同的激光技术具有不同的特点,技术人员需要结合金属材料的特点和实际需求来选择激光技术,保证激光技术应用的合理性。要提高我国的激光技术水平,相关部门还必须加大激光技术的研究和分析力度,合理借鉴西方国家的先进经验,发展前景十分广阔。
参考文献:
中图分类号:TB31文献标识码: A
引言
激光加工是一种新兴的先进制造技术,具有自己的特色与规律,经过多年的积淀形成了激光加工理论和各种激光加工工艺参数。激光与普通光相比具有单色、相干性、方向性和高光强,同样激光加工设备也涉及到众多学科因而决定了它的高科技性和高收益率。纵观国际和国内激光应用场情况经过多年来的研究开发和完善,当代的激光器和激光加工技术与设备已相当成熟形成系列激光加工工艺。
1、激光加工的基本特征
激光既具有时间控制性,又具有空间控制性,使其能够满足自动化加工的要求。因此,激光加工系统可以与计算机数控技术交相呼应,生成便捷、优质、高效的自动化加工设备,进而实现加工工业的低成本、高效率、高利润。总体而言,激光加工技术具有以下几项基本特征:
①工艺集成性好。一方面,同一台机床可同时具备多种加工工艺,如切割、焊接、打孔、表面处理等;另一方面,同一台机床可同时实现多种工艺同步进行或者不同工艺分步进行的效果。
②加工效率高。与其它加工工艺相比,激光加工工艺可以极大地提高加工效率。例如,激光切割效率是一般切割的15倍;激光焊接效率是传统焊接的25倍;激光打孔效率是机械打孔的40000多倍。
③加工质量好。激光加工大多采用非接触式加工方式,而且能量密度高,为加工质量提供了可靠的保障。
④适应性强。激光加工可适用于各种材料,如高强度材料、高熔点材料、高硬度材料等等。同时,激光加工既可适用于大气环境,也可适用于真空环境,体现了其适应性强的特点。
⑤经济效益高。提高经济效益,是激光加工最显著的特征。以激光打孔为例,它能比一般打孔技术节省25%~75%的直接费用和50%~75%的间接费用。
2、激光技术优势分析
2.1、加工速度快,效率高
激光切割是当前各国应用最多的激光加工技术,在国外许多领域,例如,汽车制造业和机床制造业都采用激光切割进行钣金零部件的加工。在航天工业中,铝合金用激光焊接的成功应用是飞机制造业的一次技术大革命。在汽车工业中,激光加工技术优化了汽车结构,提高了汽车性能,降低了耗油量。激光精加工和微加工不但促进了工业的发展,也为制造行业提供了有利条件。随着大功率激光器光束质量的不断提高+激光切割的加工对象范围之广,几乎包括了所有的金属和非金属材料。例如,可以利用激光对高硬度、高脆性、高熔点的材料,进行形状复杂的三维立体零件切割,这也正是激光切割的优势所在。由于激光加工技术的高效率、无污染、高精度、热影响区小,因此在工业中得到广泛应用。另外,激光切割的优点还包括设置时间短,对不同工件和外形具有很好的适应性。
2.2、精准率高,无污染
激光焊接激光焊接是将光斑非常细小高强度的激光照射到工件表面,通过激光与物质的相互作用,使作用区域内的母材局部快速熔化、汽化,实现焊接。与传统的加工热源相比,激光具有高亮度性、高方向性、高单色性和高相干性等特点,因此,激光加工是一种新型的高能束流加工技术,对提高产品质量和劳动生产率,实现生产的自动化和无污染,以及减少材料消耗等起到愈来愈重要的作用。例如,3D激光切割技术是加工高强钢最经济的技术。激光切割适合高强钢加工毛边过程。对于这种加工,3D激光切割尤其适合这种已经成型的金属薄板。如果钢的强度达到1500MPa,就只能采用激光切割技术才能实现,没有其他更经济的方法可以选择。另外,对于激光切割而言,低热输入是激光切割中一个非常重要的特点,因为一些合金的高强特性会由于热效应而导致性能降低。激光能焊接以前由于不可视原因而无法焊接的部位(例如,车顶侧板和后挡板的结合)。激光焊接同样是一种变形很小的高质量焊接,能够达到很高的精度。另外,激光焊接相比电阻点焊能够减小焊缝宽度,这再一次降低了重量和燃油消耗。
3、激光技术在金属材料加工工艺中的应用
3.1、激光切割技术
近年来,激光切割技术的应用十分广泛,据相关技术研究分析表明,激光切割技术占激光加工技术的近70%。激光切割机主要由激光器、机床主体和控制系统三大部分组成,常用于激光切割的有CO2激光器和YAG激光器,其特点是切割精度高。根据切割要求不同,激光光源的功率从5W到90KW不等,切割钣金工件所采用的激光光源功率一般是在100W到1500W之间。当切口宽度要求在0.15mm至0.2mm之间时,激光光源的输出功率应该小于1500W,此时激光光源的振荡模式为单模振荡,切割面也会相对比较平整;当切口宽度在1mm左右时,激光光源的输出功率应选择大于1500KW,此时激光光源的振荡模式为多模振荡,切割面会留下少许污物。当在使用激光技术切割厚板时,则需要采用空气、氧气、氮气等辅助气体来配合完成,氮气是一种惰性气体,用它来辅助切割,能够有效避免切面发生氧化;在对厚度较大的板进行切割的时候,使用氧气作为辅助气体,能够加快切割的速度。
激光切割工艺中可使用CAD技术结合CAM技术来提供加工工件所需要的工艺参数和加工信息,高效、连续地完成自动化切割和生产。激光切割不需要大量更换模具,工艺参数变更简单,可广泛应用于各种高硬度、高熔点、硬质、脆性、粘性、柔性材料及薄壁管件的切割,而且还具有切缝窄、速度快、热变形小、切口平整的优良特性。
3.2、激光打孔
激光打孔是激光技术材料加工中应用最早的激光技术,激光对板料进行打孔,一般采用的是脉冲激光,能量密度高,效率高。瑞士某公司利用固体激光器给飞机涡轮叶片进行打孔,可以加工直径从20μm到80m的微孔,它的直径与深度比可达1:80.另外利用激光在一些脆性材料如陶瓷上加工一些微小的异型孔,直径可以达到0.001mm,这是普通的机械加工完成不了的。
3.3、激光焊接
依据服务对象和使用器件的不同,激光焊接主要包括两种类型的机制,一种是深熔焊,主要应用于机械制造行业;另一种是传导焊,主要应用于电子电气行业。
从目前的发展态势看,激光焊接技术不断渗透到汽车行业,为行业发展提供了必要的技术支撑。具体而言,这种应用主要体现在以下两个方面:首先,传动件焊接。当前,激光焊接技术可满足汽车传动系统中70%的零件的焊接需求。与其它焊接技术相比,激光焊接不仅可以提高零件的使用寿命,而且可以降低零件的使用成本,体现出其独特的应用价值。其次,焊接组合件。简单地说,焊接组合件就是将分散的平板工件焊接成体、冲压成形。通过焊接组合件,既可以减少工件数量,也可以提高部件性能,还可以减轻车体重量,进而优化汽车的整体性能。以雅阁汽车为例,它的车门是由1.4mm的钢板和0.7mm的薄板拼焊冲压而成,降低了40%的车门重量。
此外,激光焊接技术凭借其坚固性强的特点,还广泛应用于刀具、刃具、量具制造行业。例如,我国圆锯片的年产量超过1000万片,不仅满足了建筑行业对高质量锯片的迫切需求,而且保障了国外锯片市场的有效供给。
3.4、激光表面热处理
激光表面热处理主要表现在两个方面:一是激光表面硬化。在激光表面硬化的作用下,马氏体的量会不断增加,进而导致零部件疲劳强度和耐磨性能的不断提高。同样是AISIl045型钢,在未经处理以前,钢的硬度仅为HRC35,而质量损耗却高达418mg。而在同等条件下,激光表面硬化会增加HRC20的硬度,同时降低304mg的能耗。可见,激光表面硬化会极大地提高物件硬度,降低物件质量损耗。现如今,激光表面硬化已不同程度地应用于汽车锭杆、凸轮轴、曲轴、缸套等物件的制造。从实际效果看,它不仅提高了物件的使用寿命,而且降低了物件的制造成本。二是激光熔覆与合金化。激光熔覆与合金化是以提升熔点的方式来增强加工材料的抗蚀性和耐磨性。该处理主要应用于熔点较低的材料。通过处理,使材料生成高熔点合金层,进而实现提升材料性能的目的。尽管激光熔覆与合金化有所区别,如涂层化学成分的变化趋向,但两者相辅相成,都是现实中不可或缺激光表面热处理方式。当前,激光熔覆与合金化主要应用于气门、阀门、齿轮齿面、铸铁模具等工件制造,为工件质量提供了着实的保障。
结束语
激光加工技术产品具有优质、高效、节能的优点,激光加工技术已逐渐使用到钣金工艺生产中,但激光技术的全面推广仍受技术理论和加工设备等因素的制约,许多方面的应用还有待进一步深入。
参考文献
DOI:10.16640/ki.37-1222/t.2016.21.038
0 前言
现今来看,在科学技术不断发展的过程中,金属复合材料逐渐得到了广泛的应用,相对于普通金属,复合材料具有较大的优势,现今已经成为各个领域中的重要材料。并且在进行金属复合材料零件的加工与制作中,涉及到较多的成型加工技术,为了保证技术材料的质量,那么必须要采取有效措施,不断提升成型加工技术的质量。
1 新型金属材料
新型金属材料的种类比较多,其范围主要是属于合金的范围中,对于金属材料来说,主要的特点就是具有较强的延展性,同时新型金属材料的化学性能十分活泼,并且技术材料上也具有较强的光泽以及色彩[1]。目前来看,记忆合金、高温合金以及非晶态合金等材料是社会应用最为广泛的金属材料。焊接性是金属材料的一个加工特性,焊接性也是金属材料加工最为基本的一个加工特性。对于新型金属材料来说,焊接性很强,这样在进行焊接的过程中要充分保证其乜有裂缝以及气孔等,这样将会促进金属材料具有较高的焊接性,保证其导热性。其次,锻压性则是新型金属材料的另外一个特性,这也是金属成型一个重要的关键因素,金属具有的锻压性将会促进金属材料塑性的提升,从而来不断提升其性能。同时加工条件也是影响金属锻压性的性质。最后就是金属加工的锻造性,其中主要是包含了收缩性、流动性以及敏感性等特性。新型金属材料属于合金,熔点元素较高,这样将会直接导致金属流动性降低,以此来保证材料的成型加工。
2 新型金属材料成型加工技术
2.1 粉末冶金技术
粉末冶金技术是金属加工成型最早的技术,该技术能够有效进行复合材料的制造,同时具有能够对金属基复合材料中的晶须增强功能等,该方式具有较为广泛的成型加工技术[2]。粉末冶金技术主要适用于一些尺寸较小,以及形状较为粗糙的精密零件,同时粉末冶金技术的零件制造形状不是很复杂,在成型中,能够结合实际需求量来不断提升金属含量,并且在制作中其较为精密,组织也十分细密,这是其主要优势所在,并且工作效率也较高。
2.2 铸造成型技术
在进行铸造成型技术中,主要是利用有效的检验工作,这是目前来看较为成熟的铸造技术,在进行铸造过程中有效保证其设计满足基本要求。对于该方式来说具有较强的性能,主要是应用于复合材料零件的生产以及制造中,目前来看制造与加工技术逐渐趋于复杂,但是这样也将直接导致铸造成型发的之后滞后性也十分明显。另外,相关的参数以及工艺方法必须要经过不断的改革与创新,流动性的不断提升,这样将会保证溶体的粘度中的颗粒不断提升增加。并且高温度会导致材料出现化学变化。所以在进行加工中,可以采用熔模铸造、压铸以及金属型铸造等方式来避免出现以上几种情况。
2.3 机械加工铸造法
对于该方式来说,主要是利用铣、车以及钻等方式来进行金属复合材料的加工,并且在进行精加工铝基复合材料中主要是利用金刚石道具来进行成型加工。首先就是要利用铣削的方式,其中材料主要是含有15%~20%的粘结剂,局金刚石刀具以及端面铣刀,要利用切削液来进行冷去,提升铣削的颗粒。之后要利用车削的方式,同时能够结合乳化液进行有效的冷却处理。选择刀具要科学,选择硬质合金刀具。最后要利用钻削的方式,同时能利用外切削液进行有效的冷却处理[3]。
2.4 电切割技术
对于该技术来说,主要是在进行成型加工的过程中要充分结合零件的形状的负极来进行几何切割形状的选择,这样在进行材料的切割中利用正极溶剂的基本方式来进行材料的切割。在零件成型之后的残屑,对其的清洗来说则是可以利用零件以及负极之间的间隙进行清洗,传统的方式主要是放电方式,但是这种方式具有较大的缺陷,电切割技术的优势较为明显,能够在介电流中侵入移动的电极线,并且可以有效运用液体的压力进行全面的冲刷,以及利用局部的高温来对零件进行成型加工。利用电切割法进行成型加工中,对于一些非导体的复合材料则是可以根据放电的效果差来进行一定的影响。主要是由于切割速度慢以及切口粗糙等问题引起,这样就不能采用传统的切割参数。
2.5 焊接技术方式
焊接技术是成型加工中的重要方式,同时也是应用最为常见的方式之一,主要是应用于金属以及复合材料成型的构建中。焊接熔池的流动性以及粘度都会出现一些变化,这样将会在很大程度上提升增加物的影响,另外在进行成型加工中,对于金属化学反应,主要是发生在基体金属以及增强物之间,这将会对焊接的速度造成较大的影响。对其的解决主要是对其中的部件进行有效的轴对称旋转,之后就是熔化焊的基本方式。
2.6 模锻塑性成型法
对于该方式来说,主要是在镁基复合材料以及铝基础复合材料中进行有效的应用,这样成型发中主要是涉及到超速成型、模锻以及挤压等几种方式。该方式生产出的零件性能较强,并且零件的组织较为精密。但是在实际应用中还是要注意,要保证挤压温度的适应性,适当提升温度,能够提升金属材料的塑性。并且模具表面进行涂层或使用剂来改善摩擦条件,降低材料成型的困难性,提升生产的效率。
3 结语
现今科学技术不断发展,新型金属材料不断发展,其成型加工技术越加受到人们的重视度,因此必须要采用有效措施,加大研发力度,从而来开发有效的方式来提升金属材料成型加工的质量。
参考文献:
[1]张文华.材料成型与控制工程模具制造技术分析初探[J].黑龙江科技信息,2015(15):40-41.
近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。
一、高分子材料成型加工技术发展概况
近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。
据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现今高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。
目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 转贴于
(二)以动态反应加工设备为基础的新材料制备新技术
1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。
3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
三、高分子材料成型加工技术的发展趋势
近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。
综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。
参考文献:
[1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999.
近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极(大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。
据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。
二、现今高分子材料成型加工技术的创新研究
(一)聚合物动态反应加工技术及设备
聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。
目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。
(二)以动态反应加工设备为基础的新材料制备新技术
1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。
2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。
3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。
1 概述
随着科学技术的发展,新型的金属材料在现代化工业中得到了全面的推广与应用,与普通金属材料相比,新型金属材料具有更为优异的性能与质量,已经成为很多领域中重要的工程材料,尤其是在能源开发、零部件制作、交通运输机械轻量化等方面[1]。在采用新型金属材料作为工程材料时,涉及到很多繁复的成型加工技术与工作,在现代化工业飞速发展的今天,如何不断发展与完善新型金属材料的成型加工技术,更好地发挥新型金属材料的特性,已经成为各领域中材料工程师们的研究重心。
2 新型金属材料及其加工特性
金属材料是由金属元素或金属元素为主所构成的具有金属特性的材料。金属材料通常具有较好的延展性。新型金属材料都属于合金,其种类较多,性能与质量较普通金属材料都有很大的突破,目前在市场上广泛使用的新型金属材料有高温合金、形状记忆合金、非晶态合金等。新型金属材料的二次成型加工过程通常包括焊接、挤压、铸造、超塑成型等等复杂的加工技术。新型金属材料的加工特性如下[2]:
2.1 铸造性
新型金属材料都属于合金,因此其熔点一般比较高,导致金属材料的流动性较低,收缩性较低,便于新型金属材料的锻造与二次成型加工。
2.2 锻压性
锻压性是新型金属材料的基本特性之一,该特性可以提高新型金属材料的可塑性,时成型加工的金属材料能够具有更高的性能优势。
2.3 焊接性
原始金属材料通常需要经过焊接后二次成型再进行后续的工程应用,因此新型金属材料成型加工的基础特性就是焊接性,其需要有良好的焊接性与高导热性能,才能在成型加工过程中保证材料不会产生气孔与裂缝等。
3 新型金属材料成型加工的原则
新型金属材料通过会在工程施工、机械设备、航空航天等方面广泛使用,一般具有良好的耐磨性与较高的硬度,以满足各类工程建设与机械化生产的质量需求。但是新型金属材料的这一特性也给其在成型加工方面增加了一定程度的困难,例如金属材料的硬度较高会导致其在普通的锻造环境下很难发生变形,使得很难将其塑造成一定形状或尺寸的工业零部件[3]。不同的金属材料具有不同的特性,市场对金属材料成型加工后的质量与性能也有不同的要求,因此通常会根据金属材料不同的特性采取不同的成型加工技术。例如,某些特殊的金属材料只有通过纤维性增强才能实现其二次成型加工。因此在实际对新型金属材料进行成型加工时,需要针对材料的特性采取相应的技术手段,切实推进新型金属材料成型加工工作的开展。新型金属材料的二次成型加工过程是一个非常复杂且细致的过程,其涉及的技术通常包括焊接、挤压、铸造、超塑成型等等复杂的加工技术,在实际的成型加工工作流中,一旦由于操作人员的操作不当而出现即使是小型的失误,都会给加工的金属成品带来无法磨灭的负面影响。例如,在铸造工艺中,如果没有对铸型的尺寸、大小等参数进行详细周密的把控,会导致成型加工之后的金属成品不符合零部件要求的质量与规格,不仅会给加工单位带来极大的成本损耗,还会影响工程的施工进度或机械设备的制造进度,延长施工或制造周期。因此,在对新型金属材料进行成型加工之前,加工人员需要对金属材料的物理与化学特性进行透彻的分析与掌握,才能够具体问题具体分析、因地制宜地针对不同的金属材料进行成型加工。
4 新型金属材料成型加工技术
4.1 粉末冶金技术
粉末冶金技术是以金属粉末为原料,通过不断的烧结与塑形,形成金属材料、新型金属复合材料等的工业技术。粉末冶金技术是早期使用最为广泛的新型金属材料成型加工技术,在增强晶须的功能等方面具有独特的优势。现阶段,粉末冶金技术主要应用于制造小尺寸且形状粗糙、不复杂的精密零部件,其通过不断地对金属粉末进行烧结与塑形,可以精密控制并提高金属材料中的金属含量,因此在小型零部件制作中拥有广泛的市场前景[4]。
4.2 电切割技术
电切割技术是通过在介电流中插入移动的电极线,然后利用局部的高温对金属材料进行几何形状切割,这样的方式也可以充分高效地利用冲洗液体的压力对零部件与负极之间的间隙进行冲刷,因此较传统的放电方式具有一定的优势。在采用电切割法进行新型金属材料的成型加工时,通常会由于放电效果较差等原因导新型金属符合材料的切割速度变慢,从而产生切割的切口不光滑等问题。
4.3 铸造成型技术
铸造成型技术是将液态的金属浇注到与零件尺寸、形状相匹配的铸型中,待液态的金属冷却凝固之后,将固态的金属材料取出,即可获得与铸型形状一致的毛坯或零件。在铸造成型技术的应用过程中,铸型的有效性检验是非常重要的环节,其形状、尺寸等质量的把控直接关系到零部件的质量与性能。
4.4 焊接技术
原始金属材料通常需要经过焊接后二次成型再进行后续的工程应用,焊接技术是在高温或者高压的环境下,采用焊接材料,例如焊条或者焊丝,将多个待焊接的金属材料连接成一个整体技术,该技术被广泛应用于航天航空、机械制造等领域。需要注意的是,在新型金属材料的焊接过程中,在金属与增强物二者之间常常会发生化学反应,会影响焊接的速度,在遇到这一问题时,通常可以对金属或者增强物进行轴对称旋转,然后将焊接接头置于高温下,使其达到熔化状态[5]。
4.5 模锻塑型技术
对于一些硬性较大的新型金属材料,一般的锻造环境无法使其加工塑形,以钛合金、镁合金等为例,这些金属材料由于锻造温度范围窄,可塑性较差,因此在变形时会产生极大的抗力,很难将其塑造成一定形状或尺寸的工业零部件,为了解决这一问题,模锻塑型技术应运而生。模锻塑型技术包含超速成型、模锻与挤压等方法,在对金属材料进行挤压时需要保持甚至提高锻造环境的温度,以提高金属材料的可塑性,同时需要在模具的表面涂上剂,降低模具表面的摩擦力,从而进一步降低模锻塑型的难度。通过模锻塑型技术进行金属材料的成型加工,可以使得生产出来的零部件具有较高的质量与性能,其组织也更为严密,已经成榻鹗舨牧铣尚图庸ぶ惺褂米钗普遍的技术手段。
5 结束语
与普通金属材料相比,新型金属材料具有更高的铸造性、高铸压性、良好的焊接性与高导热性等性能优势,已经成为很多领域中非常重要的工程材料。本文对现有的金属材料成型加工技术进行了详细的阐述,如粉末冶金技术、电切割技术、模锻塑型技术等,并对这些技术中的问题与关键技术点进行分析,对发展与完善新型金属材料的成型加工技术具有重要的促进作用。
参考文献
[1]李兰军.浅谈新型金属材料成型加工技术[J].科技视界,2015(15):286+291.
[2]张利民.新型金属材料成型加工技术研究[J].科技资讯,2012(16):113-114.
[3]薛宇.新型金属材料成型加工技术分析[J].才智,2012(27):37.
中图分类号:TB332 文献标识码:A 文章编号:1674-098X(2017)05(a)-0071-02
在现阶段我国的社会生产生活里,对于纤维增强复合材料的加工需求不断变得更高、更个性化,其被投入使用的范围也在不断普及,想要得到更好的加工成果,技术的完善和更新是当前的必要条件。
1 碳纤维增强复合材料的机械加工技术发展背景
碳纤维增强复合材料是一类结构复杂又难以加工的材料,因为其本身的不均匀性与结合强度过小等特性,碳纤维增强复合材料在进行具体加工的时候常会产生各种不足。而且,在对碳纤维增强复合材料进行加工的时候,产生的摩擦力极易将刀具磨损或磨钝,进而在被磨损的刀具作用下增加材料的加工缺陷,从而为相关工厂和企业造成很多麻烦。现阶段,中国相关加工技术才刚刚开始投入使用,所以,在日常的运作中要不断地对技术进行完善,进而减小和消除加工缺陷[1]。
2 碳纤维增强复合材料的铣削加工技术
(1)铣削加工试验。碳纤维增强复合材料经过铣削加工技术后,其效果会对产品的耐腐蚀性和抗磨性等造成直接影响,除此之外还在一定程度上受所要投入生产过程中所用的刀具、各种参数等作用影响。
(2)从所用刀具和各种参数的数据方面来说,被加工材料的质量会随着相关条件的变化而发生规律性变化,加工后的成品材料体表光滑程度受具体参数影响,具体规律表现为:进行切削的速率越快,加工材料的缺陷越小,进行切削的力度越大,加工材料的缺陷也随之变小。对硬度较高的合金类刀具进行操作时,切削速度切记不可以太高,速度过高极易导致刀具与材料的接触面温度急速升高,进而对刀具造成磨损,可以将切削的具体速度设置为40~80 m/min,每一个齿轮的进给量设置在0.04 mm/z(齿)最为合适。同时,怎样对合适的加工刀具进行有效的选取也相当重要,对于刀具的选取需要以技术人员的反复试验为基础,根据加工环境不同而从不同角度考虑其条件。一般对碳纤维增强复合材料进行削切技术都会采用干切削的方法,在这一过程中,会产生极高的热量,进而对刀具产生严重的磨损现象。部分技术人员选用在气冷的环境下进行相关实验,并且发现,这样能够很大程度上减轻对刀具的损坏,并且所加工材料的加工质量也有所提升。
(3)从碳纤维切削角度方面来讲,这一角度对于材料切削的效果也存在着重要的影响。经过技术人员的反复试验得出,角度一旦超过45°,材料的削切效果不好,而角度正好在45°的r候,材料的加工效果最为美观,当夹角的角度在直角与平角之间变换的时候,材料一般都会产生一些毛刺类的瑕疵。所以,在进行具体加工过程中,一定要注意选用角度,在最优的角度下进行切削,以保证产品的加工质量。
(4)铣削刀具的选用。由于对碳纤维增强复合材料进行切削的过程中会产生极高的热量,对刀具会造成相应的磨损,进而无法进行有效、全面的切削。所以,在对其进行加工的过程中,所选用的加工刀具要在具备高耐磨、高硬度和低磨损的基础上,保证刀具切点的高锋利度,以使对加工材料进行快速无误的切削工作过程中,有效地避免或减轻毛刺等相关瑕疵的产生。现阶段,各企业对于碳纤维增强复合型材料的铣削刀具一般都是硬度较高的合金类刀具,其表面大多被添加低压化学气相沉积的金刚石元素、立方氮化硼元素以及聚晶金刚石等元素。经技术人员大量研究后,研发了针对碳纤维增强复合材料切削工作的使用刀具,被叫做左右交错多齿铣刀,这种刀具本身被设计具有合适的宽度以及厚度,有效地减轻毛刺、撕裂等瑕疵的形成,被当前广大技术人员认为是性能最高的切削刀具[2]。
(5)铣削力。一个科学、准确的铣削专用模型能够对相关铣削力进行全面的预测,进而获得精准的相关参数,进一步对碳纤维增强复合材料的加工质量进行全方位的提高。技术人员以如何全面提高相关材料的加工质量而运用不同方法进行了试验。
第一,反复建立模型法。这种方法的意思就是依据以往的研究经验,并在此基础上反复进行试验,再建立相应模型。这种方法本身具有一定程度的实用意义,可是前提是需要相关技术人员进行反复、大量的针对性试验,然而如果加工条件在中途发生任何变化,那么之前试验获得的计算公式就无法再使用,并且还要重新建立试验。针对这一问题,有专家利用多元线性回归的方法,研究出关于CFRP高速铣铣削力所对应的具体经验计算公式,而且利用方差进行了反复的检验,最后结果表明铣削力的经验公式具有较高的可靠性和科学性。基于对公式准确性的疑问,部分学者共同进行了大量球头刀铣削C/C复合材料的具体试验,而且针对试验所得数据信息建立了较大切深和较小切深环境内的铣削力经验公式,最后确定公式误差约在10%以内。
第二,解析法。这种方法的操作原理是将进行铣削加工操作的过程中所发现的物理机理进行了记录,并依据记录建立模型,进而对相对应的铣削力进行预测和分析,可是由于在这一过程中要不断进行假设,无法对最后的精准度进行有效的把握。
第三,有限元法。这种方法使通过利用网络信息技术,对材料加工过程中的各个环节进行虚拟化的模拟实验,这样就在很大意义上对试验所需耗费的各种材料进行有效的节约。相关专家利用有限元法构建了碳纤维增强复合材料的正交切削对应的模型,并针对其材料的各种性能,提出了其在平面应变的环境下,均质各向异性的具有弹性材料的结构细化模型,同时还建立了适用于切削过程中的接触类模型,最后通过反复、大量的试验,所得数据验证了该模型的准确性。现阶段我国技术人员刚开始进行针对碳纤维增强复合材料的有限元法的研究分析,相关数据以及报道都很少,所以,由于各方面研究还不太成熟,有限元法的仿真技术想要实现与具体加工工作,还对如何建立精准的模型和切削分离准则等很多方面进行反复和大量的试验以及研究。
3 碳纤维增强复合材料的机械钻孔技术
(1)超声振动钻孔技术。这种技术是将机械加工术与超声波加工术有效融合后而生成的技术,它是以传统的切削机床的运作原理为基础,并在加工切削刀具面上进行超声振动,从而完成其辅助。利用这种技术,可以有效地减小刀具表面的摩擦受损程度,进而使加工成果减轻毛刺和撕裂等瑕疵的产生,除此之外利用这种方法,还可以有效地延长刀具的使用时效,并在气冷的环境下进行具体操作,效果更佳。利用超声的辅助削切作用不仅对加工结果的质量进行提高,还在很大程度上控制了对刀具的损伤。因为超声振动钻孔技术与传统的持续削切方式不同,这种技术是通过断续性的切削同时,不断进行排屑工作,这就可以减轻温度过热的现象,减小对道具的以及材料的损耗,从而减小工作成本和提高加工水平[3]。
(2)螺旋铣孔技术。这种技术属于新兴的技术,其原理是在刀具运转的过程中围绕铣孔的中轴线旋转并不断靠近轴线而产生的螺旋形轨道。这种技术在降低热量、排屑和散热等很多方面上具有一定的优势,而且可以运用同一把刀具通过调节,实现不同条件和材料规格的加工要求,有效地降低了运作成本,可是目前这种技术还在刚刚开始研发的阶段,具体的应用条件还不成熟。最近不断有相关技术人员参与到螺旋铣孔技术的研发工作中,通^反复试验所得经验,构建了规范且比例精准的预测模型,使这种技术实际应用中有效地提升了对碳纤维增强复合型材料的加工质量。这种螺旋铣孔技术在相对较大的直径条件下制孔,其本身具备很高的技术优势,可以在轻易地减轻轴心力的同时,降低摩擦,减轻刀具损伤,并对材料的加工质量进行全面提升。可是这种技术目前对于较小单位直径条件下的孔进行加工还存在一定的难度,需要相关技术人员的持续探究。
4 结语
由此可见,现阶段在我国的社会生产生活里,对于纤维增强复合材料的加工需求不断变得更高、更个性化,其被投入使用的范围也在不断普及,想要得到更好的加工成果,技术的完善和更新是当前的必要条件。所以,还需要相关技术人员的不懈努力,加大实验与研究力度,使先进技术有效地发挥其功能,最终获得完美的加工产品。
参考文献