时间:2023-03-07 14:57:57
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇电力监控系统范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
上文已经对综合网络管理系统的设计要求进行了简单阐述,此处将对电力调度监控系统的网络构架进行分析。对于电力调度监控系统来说,其可靠性十分重要,同时该系统也应当满足稳定性、实时性、开放性的要求。为了保证监控系统的可靠性,可以利用双网、双服务器主备冗余设计,对系统中的前置服务器、历史服务器以及实时服务器则应当使用双倍冗余设计,一旦在系统出现故障时,该系统能够及时自动地进行切换,保证系统能够正常稳定运行。同时双服务器的工作模式是负载分担的工作模式,而不是整租备用、整租切换的工作模式,使用这样功能的系统能够在很大程度上提升系统的处理效率,同时也提升了数据的准确性,在一定程度上降低了工作误差,有利于保证电网可靠运行。
3调度监控系统硬件配置
通常情况下,电力调度监控系统的硬件系统包括前置服务器、历史服务器、实时服务器、磁盘阵列、调度工作站以及维护工作站等,接下来将对系统中的前置服务器以及实时服务器进行介绍。
3.1前置服务器
此设备的主要作用是将其接受到的数据进行预处理,对上传的报文按照规定进行转化,所谓的转化就是将收到的原始报文转译为变电站遥测以及遥信数据的原始值,同时将这些翻译过的数据传送至实时服务器。如果想将这些工作顺利地进行,就必须对硬件提出更高的要求,比如要求计算机对于实时通讯的处理速度应当达到规定标准,与此同时计算机的性能也必须应当能够满足工作需求,对数据的处理速度、处理质量要达到标准。
3.2实时服务器
该设备调度监控系统的数据处理中心部分,其主要作用是记录并存储实时状态数据,前置服务器将数据传送给实时服务器,实时服务器对这些数据进行处理,通过这些数据可以获取变电站遥测、遥信数据的实际值,在固定的时间以及周期将这些数据存入库中,与此同时还要向其他的应用模块或者是系统传送真实可靠的实时数据,对实时服务器的硬件也有一定的要求,最主要的是应当具备较强的计算能力,若想提升调度监控系统的服务质量,就要求计算机的CPU以及内存具备较好的性能,以满足系统的容量扩展。
4电力调度监控系统安全防护
若想提升电力调度监控系统的安全性,就应当结合实际情况以及整体的设计方案对系统的安全管理进行设计,对监控系统安全性的要求包括应当能够有效地预防或者是抵制入侵病毒在系统中的扩散,使系统在遭到病毒入侵后能够快速的恢复,一般可以采用混合平台设计来提升电力调度监控系统的安全性。另外,依据国家对电力二次系统安全防护体系的要求,在提升监控系统安全防护等级时,应当针对不同地区的系统进行相应的安全分区设计,比如设置防火墙、杀毒软件等,努力构建一个安全系数高的电力调度监控系统。
5事项功能
该模块在监控系统中的主要作用在于事项收集以及分发,同时产生事项缓存文件工作。该模块应当能够在保护信号发出警告时,在监控人员监控界面上也出现相应的反应,其作用是收集电网产生的实时事项并传送至相关监控工作人员,收集控制系统产生的实时事项传送至相关监控人员。
中图分类号:TM76 文章编号:1009-2374(2016)33-0034-02 DOI:10.13535/ki.11-4406/n.2016.33.018
1 电气自动化系统网络与通信构成
1.1 站控层网络
对于站控层网络来讲,其在使用过程中通常发挥着两大作用:一是可以当作通信设备来使用,进而把站控层和控制层设备连接起来;二是可以使站控层当作每一个节点得以联系,也使通信功能作用得以发挥。在系统内,出现两个既互相冗余,却又对数据处理发挥作用的服务器,说明服务器在正常运行时,不仅能够通过以太网、站级通信规约等常见的一些途径来实现数据处理工作,还能够与装置进行直接接触,进而完成数据处理工作。此外,若是把数据库与站控层连接在一起,便会使得服务器沦为两个网格的网关,对于该网络来说,使用的便是以速度为优势的以太网。
1.2 间隔层网络
通常,连接间隔层和通信控制层之间的网络,便是间隔层网络,现如今,该网络在应用时,所应用到的网络形式分为LON、CAN、以太网等。通常,测控网络一般都会选择LON网络,对这种网络进行应用时,所选的介质,屏蔽双绞线占得较多。在传输通道相距不远时,一般选择使用五类线作为传输介质,反之,则选择光纤作为传输介质。
1.3 DCS系统接口
因为电厂是将DCS当成主要生产控制系统,以至于在电力监控系统当中,DCS通信可采取两种措施来进行:一是借助站控层转发给工作站,然后再由工作站转发到DCS网卡上,这种方式传递的数据,能够容纳DCS所需的大部分信息,其中通信方式可采取串口或者以太网两种方式;二是将少量对响应速度有需求的信息,借助主控单元与DCS的DPU通信进行传递,其中通信方式一般采取串口方式,但是以太网也可以运用,并可实现数据双向交换。
2 电气自动化系统站控层设备构成
站控层是由电气自动化系统当中的各个主站系统所构成,同时也是电气自动化系统控制管理中心,在系统数据收集、数据处理、数据显示、数据监视及最终的设备控制一系列环节中,发挥着至关重要的作用。站控层应用到的设备包含服务器、工作站等计算机硬件,同时还应用到数据采集与监控等各种专业软件。
2.1 系统服务器
作为电力监控系统报警SOE等实时数据存储与处理的设备,系统服务器在运行过程中,展现出高度灵活、高速、高效等优势,其可以高效、高速完成数据的扫描与处理,且能够将实时数据、重要信息向工程师站、维护人员、操作人员那里进行传输。系统服务器还兼备通信服务器的相关作用,利用站级网络、通信控制层内的主控单元或者是其他相关设备,来完成数据交换的过程,进而使数据可以与网络实施连接,完成数据向主站的传递任务,这一过程的实现也是系统对数据实施处理的关键性工作内容。
2.2 工程师站与操作员站
工程师站通常均是在高分辨率的画质条件下,来实现编辑、操作及维护工作的开展过程。工程师站所给出的全套工具,不仅能够编辑、创建图像、数据与逻辑控制,还可以能通过软件开发及维护,将数据文件在服务器中得以保存下来。同时,还有分散控制系统和运行人员图形交互界面存在,用户在使用时只需要通过对标准操作员站的访问,便实现对组态画面显示、趋势曲线等各项过程的控制。
2.3 转发工作站
电力监控系统在运行时,还可以向DCS等第三方系统完成遥测、电量、计算量的转发,同时还能够与第三方运用不同规约完成对各类信息的实时交换,能够借助串行口通道与网络来实施,另外,系统还可实现多种模拟屏接口功能。
3 电力监控系统通信控制层与间隔层构成
3.1 通信控制层的构成
通信、控制为通信控制层所包含的两大功能,其中通信功能是把间隔层当中的通信接口、通信规约等相关信息,转变为站控层内统一的通信规约,并把较为重要的信息与DCS系统内的DPU信息实施互换,实施互换的信息,包含模拟量与开关量两种信息方式。而对于控制功能来讲,主要是将和厂用电存在关联的控制逻辑,放置在同一层来实现,这时通信控制层会利用通信规约、综合保护测控装置、接口与各类设备来实现各个类型的规约,通过统一转换格式和接口,对站级网络运用统一系统规约的制定,这样站控层网络内系统所产生的数据,其格式均是统计的,进而使得站控层内所有主站软件均可维持稳定。
3.2 间隔层的构成
一般来说,电力监控系统所采用的间隔层装置,通常其构成包含了两个保护测控装置。对于厂家来说,其所制造的测控装置,能够在主控单元的配合下,在电力监控系统中得以集成。在这里,应用到的接口方式存在CAN、以太网等各类形式。另外,还可以利用厂商所给出的管理机,利用站控层当中的通信服务,把它在系统中做到有效接入。
4 电力监控系统方案简介与应用
在电力监控系统方案当中,通常对于中间层通讯管理机来说,均是结合生产工艺来实施配置,另外,所用到的管理间隔层设备,也是结合生产工艺完成组网的。对于通信管理机来说,其能够并列运行,同时有和DCS系统内DPU通信接口相对应的配置,进而能和DPU间完成信息和数据的交换,在通讯管理机当中,都存在冗余配置的与DCS系统中的DPU通信接口,只要任意的通信接口出现问题之后,便能够完成无忧切换。对于主厂房中的汽轮机、锅炉等工艺负荷通信管理机,也会根据电厂工艺流程的不同,来和DCS系统中的DPU按照1∶1比例进行冗余配置。低压电源以及PC-MCC馈线内的通信管理机是根据段来完成冗余配置,而发变阻当中的测控通信管理机则是在单元组的基础上来完成配置的。380V的公用系统通讯管理机是按照工艺流程的差异,与DCS内的DPU进行1∶1冗余配置。
通常,对于单机电力监控系统内的通讯管理机来说,其内设配置有6台锅炉、4台汽机、9台电气、3台500kV的测控部分、2台冷空部分及1台备用设备。而对于站控层后台来说,其存在的配置包含2台服务器、1台操作员站、2台网关服务器。在接线时,对于#1~#10通信管理机的管理机来说,其在运行时,所用到的接线方式为硬接线联合通讯的方法,而对于#11~#21通信管理机所用到的接线方式,便是全通讯方法。在间隔层当中,从任何一个综合保护装置,到通信管理机柜的通用方式,都是借助LON网来连接到一起,同时就500kV升压站通信管理机和空冷来讲,依旧是采取光电转换装置,来把站控层当中的电气通信管理机柜包换的交换机,来对光缆进行连接在一起,同时将500kV的站控层公用通信管理机柜与启动/备用变压器测控交换机来实施连接,继而完成信息共享。对于机组测控柜来说,是借助硬接线或者是变送器,完成开关量与模拟量的直接送入,对于发电机、主变压器等系统内的开关量、温度等相关信息,需要做好采集工作,同时借助以太网把这些信息向#18通信管理机内完成传输。对于柴油机等相关设备来说,要求利用RS485接口,使其与网关柜#20、#21通讯管理机连接在一起。而站控层到通信管理机内,所运用的通信方式,便是借助以太网的方式,来使其连接得以实现。从管理机到DCS系统之间,所用到的数据传输方法,是借助RS485接口来进行传输;对于网关柜向DCS数据的传输过程,则是借助TCP/IP的方式来进行转发。在此需要表明,因为电力监控系统存在的数据流较为庞大,同时对于电气通信管理机柜与网关柜来说,均是利用两个交换机来实施分屏安装,在此情形下,存在任意情况,都可使得数据流量得到有效降低,进而防止因其中任意一个交换机数据量超出,而使通道出现堵塞、服务器出现死机或者系统响应时间太长的
情况。
此外,还需要弄清楚的是,系统对时,为GPS对时主机柜来对站控层服务器实施软对时,然后再向每个主控单元、服务器与保护装置实施下发。这样的话,便可以使得GPS的对时系统有且只使用一种,从而能够保持企业中出现的保护装置、DCS系统、信息子站等各类与其相连接保护装置动作时限的统一性,进而便于对故障展开分析。
5 结语
干扰对通信装置会起到很大的影响,所以对于抗干扰来说,其关键在于完成各类干扰耦合途径的切断,进而避免干扰流入到通信装置当中。因此,运行单位需根据我国电力调度中心所指定的相关文件及相关技术要求,来对接地系统做到检查与完善,进而使得接地与连接较为可靠,使外部干扰的窜入问题得到有效解决,进而使通讯装置得以稳定、可靠地运行下去。
电力监控系统应当运用先进的现场总线技术,来对电力系统中的网、厂及站实施控制,此类控制措施具有十分广阔的应用空间及前景。同时,计算机技术与通信技术的快速发展,会使高参数、大容量的机组进一步增长,也会使得工作人员的素质得到不断提升,更多的自动化控制系统及各系统的通信和联网显得日益重要起来。笔者认为,二次系统安全防护问题将是今后必须考虑和研究的方向之一。
参考文献
[1] 戴秋平.电力监控系统在供配电设计中的应用[J].通 讯世界,2016,(11).
[2] 李传鲁.浅谈电力监控系统在高速公路中的应用[J]. 公路交通科技(应用技术版),2013,(2).
中图分类号:TD611 文献标识码:A 文章编号:1671-7597(2013)11-0000-00
1 概述
工矿企业是我国电力的主要用户,据统计其总用电量约占全国总发电量的70%。工矿供配电系统是电力系统的一个重要组成部分,是联系大型电网和工矿用电设备的桥梁。近年来煤矿现代化程度的不断提高、井下供电距离的增加以及供、配电要求的日益提高,尤其对煤矿井下供、配电系统的稳定性、安全性和不间断性的要求越来越高,以PC和PLC为代表的计算机控制技术已在我国煤炭行业得到广泛应用。目前煤矿井下供电系统中PLC计算机控制使用主要体现在地面中央配电室的微机保护、微电脑控制管理、微机检测等方面,并取得了很好的使用效果。然而,由于煤矿井下供、配电系统不同于井上供电系统,煤矿井下供电设备比较复杂,对供电系统的正常运行影响因素较多,因此对井下供配电系统实行远距离监测、监控就尤为重要了。
煤矿井下变电所提供的服务对象为采煤、通风、掘进、运输、排水、地质勘探等重要生产环节,供电负荷工作场所环境、地质条件复杂,存在瓦斯煤尘积聚、渗漏水以及冒顶事故等事件会使电气控制设备绝缘强度、隔爆、耐爆性能逐渐降低,容易出现漏电及单相接地故障。这类故障若不及时排除,电网各相线会长时间运行在线电压下,长期运行将导致绝缘击穿,甚至发生两相或三相短路故障。发生故障时产生的电弧能量会引起瓦斯、煤尘爆炸,这样就直接危及人身安全和矿井生产系统的安全。由于这类事件的发生几率较小,而且具有随机性和不确定性,传统的监控系统方法不能在线监测现场所有的设备运行状态,不能及时进行故障诊断、提前将故障排除,而是等到设备瘫痪后才进行故障诊断,为此将增加维修的难度和故障诊断的延时性,有可能此设备由于没有及时抢修而报废,设备停止运行将会影响整个生产系统的安全生产工作,而且大部分事故是由于这些潜在的隐患而发生的,因此,更新现代化的监测、监控设备,采用现代化监测、监控手段,对煤矿井下实现集中管理是非常迫切的,也是非常必要的。
2 煤矿电力监控系统的发展现状
2.1 煤矿电力监控系统组成
2.1.1 主要用途
电力监控系统用于煤矿井下各变配电室供电系统和运转设备的监测、监控、远距离控制、在线管理,实现井下供电系统电力参数和运行状态的在线连续监测控制、统计分析、故障查询。电力监控系统能够对井下电气控制设备的运行安全保护、运行事故监测预防、事前报警、事故快速恢复处理、控制参数通过密码口令随时修整,防止供电系统越级跳闸、大面积停电等运行事故的发生和再次扩大,加强供电管理,并可用于煤矿安全生产管理的多个方面,实现煤矿供电系统和生产设备的全面自动化监控。
本系统具有数据采集、远程控制、远程设定、统计分析、数据查询、模拟显示、故障报警、监控管理等功能,多层次的1000M工业以太环网+现场总线组合系统和多种配套的通讯、采集、监控设备,能在同一网络平台上构建多个专业的监控管理系统。
2.1.2 主要功能
1)数据采集记录。采集监测供电监测点的三相电压、三相电流、有功功率、无功功率、视在功率、最大需量、用电量、功率因数、频率、零序电压、零序电流、对地绝缘电阻等运行参数;采集记录过流、过压、过载、欠压、断相、堵转、接地等故障参数;故障事件触发高速故障数据录波。
2)运行监控管理。实时模拟显示全矿和各变电所供电系统的供电状态、设备状态、供电参数、运行曲线、故障类型、故障参数。监控分析供电系统运行参数,提示系统状态变化情况,根据供电系统运行状况给出监控建议。
监控变压器的负载运行情况,显示变压器负载运行曲线,日、月时段最大负荷,给出增减负载的建议数值。故障事件分类主动上传报警,故障数据显示,故障参数记录,报警事件统计管理。远程调整设定供电系统额定运行参数、保护整定值、报警值。统计记录供电系统运行情况、操作记录,停送电时间、分类故障情况。故障录波数据和图形曲线远程调用,智能分析。变电所局域供电情况现场显示,停电、故障、操作声光报警提示。
3)远程操作控制。地面远程控制高、低压供电开关的供电、停电、闭锁操作。
可进行单台、多台、编组、联动、预置操作。有操作前检验和操作预警提示。设定操作程序和操作条件,实现自动程控操作和联动操作。
监控显示操作过程,提示操作程序,反馈操作结果,防止误操作。自动记录操作过程、操作结果、操作人员、操作任务单。按照操作要求和目的给出操作程序,自动选择停送电操作路线和设备。现场有远程操作闭锁切换功能。
4)用电计量管理。统计显示全矿、单位、用电点的班、日、月、年和任选时段的用电量数据和电量变化曲线,自动生成各种分类报表,分类、分时查询用电量历史数据和曲线。自动统计峰谷分时电量,计算分时电费,分时时段可用户设置。分类统计用电量数据,并生成报表和用电构成图。
按设定要求对用电单位和用电点进行用电考核,生成考核报表。
5)设备监控保护。对变电所、通风机、水泵、绞车、压风机、胶带机等重要设备可构成独立监测系统,监测各种运转参数、状态,设置多参数阈值报警和综合故障保护,实现集中、自动、远程等多种方式的操作控制。
6)设备信息查询。可随时查询被监控设备的基本技术特征资料,设备和电缆的基本参数可在界面上浮动显示;可查询被监控设备的保护整定值,报警设定值,监控通讯设定参数;可查询被监控设备的检修纪录,试验纪录,故障纪录,包机责任人;可对监控系统进行自检,报告自检情况,发现监控系统故障,并列出故障点信息;配有供电计算程序,可进行电缆、变压器、过流整定值、短路整定值的计算。
7)安全联网监控。实现安全监控和供电系统的联动,可提供与安全监控系统软件接口,授权安全监测系统控制操作供电设备,并可接入安全监控系统监测设备,实现瓦斯、通风等安全参数监测和瓦斯、风电闭锁、超限断电功能于供电系统控制的联动。
针对以上问题和现状,本课题提出了利用计算机检测和可编程技术研制了一套适用于全矿井的高、低压配电系统的集中监控系统。该远距离供电系统控制的研究和实施,可实现井下中央变电所、采区变电所的集中管理和无人值守,对于提高供电系统的稳定性和经济运行指标,促进采区供、配电系统管理的科学化、现代化、高效化,有着非常重要的现实意义。
电力监控系统以计算机、通讯传输设备、测控单元为基本工具,为变配电系统的实时数据采集、开关状态检测及远程控制提供了基础平台,它可以和检测、控制设备构成任意复杂的监控系统,在变配电监控中发挥了核心作用,可以帮助企业消除供电安全隐患、降低运作成本,提高生产效率,加快变配电过程中异常的反应速度,能够及时调整控制参数,达到运行安全高效的目的。加强供电安全管理,并可用于煤矿安全生产管理的多个方面,实现煤矿供电系统和生产设备的全面自动化远距离监测监控。
参考文献
[1]赵慧艳,等.漳村煤矿矿井电力调度系统应[J].煤,2008(10).
Abstract: with the development of society and progress, pay attention to in the design of power supply electric power monitoring and control system for the role in real life is of great significance. This paper mainly introduces the design for distribution in the electric power monitoring and control system of the role of relevant content.
Keywords: power supply; Design; Power; Monitoring; System; Function;
中图分类号:TM7文献标识码: A 文章编号:
引言
随着我国科技水平的不断发展和进步,我国生产力也在不断提高,与此同时,要满足居民和企业用电低成本、高效率的要求,以往的供配电设计是明显无法达到社会对于电力需求的水平。为尽可能的满足企业之间的运作需求,减少不必要的人力物力损失、提高各个领域的效率,节约能源,供电企业对电力系统的运行和管理需要越来越谨慎和严格,电力监控系统也逐渐成为供配电设计中不可或缺的重要组成部分。
一、电力监控系统概述
(一)电力监控系统的定义
电力监控系统以计算机、通讯设备、测控单元为基本工具,为变配电系统的实时数据采集、开关状态检测及远程控制提供了基础平台,它可以和检测、控制设备构成任意复杂的监控系统,在变配电监控中发挥了核心作用,可以帮助企业消除孤岛、降低运作成本,提高生产效率,加快变配电过程中异常的反应速度。
电网智能化,现有电力网络中设备的运行状态是由设备本身的工作指令来实现的,而与电网运行状态无关,此为被动配电网络:当设备的运行不仅由本身的工作指令来实现还要由配电网络在自我诊断后,再根据电网能力,负荷重要性,发出设备运行指令,按负荷重要性等级顺序控制运行时为主动配电网络。正常工作状态,首先要使系统工作合理,负荷分配合理,充分地消峰填谷:充分利用变压器的过负荷能力:充分地采用各种技术措施节能。发生电力故障状态,智能系统经过监测、分析、判断,确保一级负荷供电,有效的控制二、三级负荷。
(二)电力监控系统特点
系统软、硬件全部模块化,硬件全部智能化。软、硬件设计选择工业级标准,可靠性非常高。整个系统的ICU(智能控制终端)、RTU(远程智能通讯控制器)全部由16位微机组成,这样的集散型监控系统,速度快,实时性好,同机种通讯可靠:ICU自带CPU,采集周期短,实时性强,系统冗余度高,通讯帧数少,可大大减少通讯误码率:各系统都是独立工作,互不干扰,实现了控制的硬件系统模块化,采片j总线方式可节省缆线和工程费用:各子系统实现了模块化,进一步提高整个系统的安全及可靠性:系统可带电插拔,维护、检修更加方便。
二、电力监控系统功能分析
1、数据采集与处理功能
在数据采集方面主要包括开关量、模拟量采集和电能计量采集三个方面。这其中,隔离开关状态、运行报警信号、断路器状态以及断电保护动作等信号信息,都是电力监控系统需要采集的数据信息;而供配电的电压、电流以及功率、频率等信息数据的采集,都是电力监控系统采集的模拟量;同时,利用机械式的电能表对无功电能以及有功电能的信息采集,就是电能计量,另一方面,对信息数据的记录与存储、分析,有助于电力监控系统及时有效的采取处理措施,在方便用户查询数据信息的同时,还能有效快捷的解决供配电过程中出现的突发状况。
2、记录功能
记录功能包括时间顺序的记录和故障记录两方面。其中,时间顺序记录模式,可以有效的记录供配电各个程序中的数据输出和输入信息状态,当然这需要监控系统的采集数据库有足够大的内存空间,当远方集中控制主站或后台监控系统通信中断时,还能确保事件信息、数据不会丢失;故障记录是指对故障动作前后,对与故障相关的电压和电流量等信息数据的记录,这种信息的记录,省去了费力去查找故障点的时间,同时,根据保存的数据,还能有效的采取应对措施。
3、监视功能
监视功能包括对电能质量的监视以及安全监视。电能质量问题主要包括电力设备故障、频率的动态扰动和静态偏差以及人为对电流、电压的误操作行为;安全监视指的是在电力监控系统在运行的过程中,对采集的电压、电流等模拟量,以及自控装置的运行状况,进行不间断的监视,以便在发生供配电故障时,能及时发出报警信号。
4、远程操作功能
在允许电动操作的前提下,操作人员可利用计算机对隔离开关和断路器进行分、合闸操作。比如说在供电过程中,操作断路器时,可远程控制自动重合闸;根据采集到的实时的信息,还可以实现自动隔离开关与断路器间的闭锁操作。这种监控功能,可以通过对采集数据的分析,在故障发生之前,为操作人员提供足够的思考应对措施的时间。
三、供配电设计中电力监控系统的应用
(一)网络设计
电力监控系统中的网络系统能够及时的对数据进行传输,并迅速传递操作指令,是实现电力监控系统各项功能的基础。
对于小型电力监控系统来说,系统中监控设备相对较少,而且大多集中分布,此时,可以将所有设备全部接在一条现场总线上,通过转换器来实现与主机的传递。
对于较大的电力监控系统而言,系统中设备较多,并且分布也相对比较分散,这时,可以先把每个设备就地与总线连接,之后在把各条总线全部接入网关。
对于特大型电力监控系统,它具有很多分属系统,这时,为了确保系统的稳定运作,可以在各个分属系统中分别设置分属主机,每台分属主机负责本系统的监视和控制,同时,总中心主机可以对各个分属主机的数据信息进行分析,从而了解整个系统的运作状态。
(二)监控系统设计
在监控系统的设计中,要充分考虑客户的实际需求,以及电力系统的实际结构、电力系统的实际载荷能力等因素,进而合理的选择监控设备,这既有利于减少系统运作的成本,同时也有利于系统功能的实现。
电力监控系统的设计方案要符合各项基本要求,例如,在电力监控系统中,必须要满足对主中压进线回路的监控要求、对低压进线回路的监控要求,以及对重要出线回路的监控要求。
在电力监控系统当中,监控要求主要有以下几个方面。1.远程观测。要求系统能够准确的对电流、电压、有功功率、无功功率、有功电能、无功电能、视在功率、功率因数、频率、谐波畸变率等信息进行检测。2.远程通信。要求系统能够及时的传递设备运作状态以及故障信息。3.远程控制。要求系统能够远程控制设备的开启和关闭。4.报警。要求系统能够通过设定,对各种信息进行报警。5.显示。要求系统能够就地显示出各部分运作信息。
四、供配电设计中应用电力监控系统的意义
综上所述,电力监控系统具有网络通信、电子绘图、数据编辑、身份校验、故障报警、数据存储记录等功能, 使得工作人员在实际工作中更加方便,可以通过人机操作界面, 直接了解到电力系统的运行状态,并能迅速传递出操作指令。而且,由于监控设备对数据的传递都是通过网络传输来实现,因此,不同的电力监控系统可以设计不同的组网方式,确保数据信息能够迅速、精准的进行传输。另一方面,在供配电设计中运用电力监控系统,应该根据实际情况选择监控设备。一般的电力监控系统通常都采用具有远程通信、远程观测以及远程控制等功能的设备,而一些高端电力监控系统则需要选择功能更加齐全的智能设备。
在商务楼、写字楼等场所设置电力监控系统,可以实现对楼内高低压配电回路的实时监控,有利于电能管理。另一方面,电力监控系统不仅能够准确的表示出回路的用电状况,它还具备网络通讯等功能,能够与计算机、串口服务器等设备进行组合,及时的显示楼内各个配电回路的运作状态,当楼内电力系统的负载越标时,电力监控系统能够迅速报警,发出语音提示。另外,电力监控系统还能够生成报表、曲线图等统计信息,便于有关人员分析楼内各部分的用电状况,使楼内的用电活动更加安全,从而保证楼内人员的生命安全,提高办公人员的工作效率。
结束语
电力事业是我国国民经济的支柱产业,它的发展和进步关系着我国综合国力的提升,关系着人们生活、生产中的各个环节,而电力监控系统是保证电力事业稳定收益的有力保障,对电力事业的蓬勃发展具有深远影响。在以后的日子里,我国的电力事业势必会更加发达,电力监控系统也将更加完善,电力事业仍会不断促进我国的国民生活水平,推动我国社会主义现代化事业的伟大进程,为我国在世界之林中的长久生存保驾护航。
参考文献
[1]高士宏.电力监控系统在供配电设计中的应用[J].科技风.2011(21):115.
为了提高效率、降低损耗以及运营成本,供电企业已经认识到了配电设计的重要性,并提出了很高的设计标准。由于电力监控系统能搞提高电网运行效率,降低营运成本,因此,电力监控系统是供配电设计中的一个重要组成部分。
1、供配电设计中发展电力监控系统的必要性
大型建筑的很多大型计算机系统、空调控制系统对电力的可靠性、稳定性要求都很高很高。为了满足这种要求,工程师们在电力监控系统设计方法做了很多的努力,但是仍然不能满足这些大型系统的要求。
一直以来,供配电设计中都没有实现真正意义上的电力监控。传统的配电系统中,通常情况下,都是通过配置模拟电流表或者电压表监视回路的运行状态, 但是,各个回路之间不能进行互动通讯。与此同时, 数据的记录方法也是人工的,回路的开关也都是由工作人员手动操作,这大大降低了工作效率,浪费了人力资源,并且不能实施监控、发现、控制电力系统。因此,统一管理和监控高低压配电设备,建立智能化电力监控系统平台, 是提高电网运行效率的必然要求。
2、电力监控系统简介
电力监控管理系统包括: 现场监控层、通信网络层和系统管理层三个部分。
2.1现场监控层
集中式现场监控层包括: 配置在各低压配电柜内的网络电力仪表、现场监控装置、10kV微机综保装置、变压器温控器以及直流屏控制器等。
监控中心硬件设备包括矩阵控制主机、电脑监视器、控制键盘、电视墙、打印机以及UPS,现场监控层采用的软件都是专用软件,这些软件能够完成整个系统指挥、调度、授权、集中录像、图像查询、检索以及分控用户授权分组、分区监控及图像历史资料调看等功能。
2.2通信网络层
通信网络层由现场总线通信网络和以太网通信网络构成。现场总线通信网络是监控层中个设备之间的同学网络,常用的是通信接口为RS485, 支持Modbus-RTU协议的现场总线;以太网通信网络是现场总线与监控计算机进行通信的通信网络,其主要的设备包括串口联网服务器、以太网交换机等。
2.3系统管理层
系统管理层中控室内的电力监控管理计算机与其设备、网络通信设备构成。
3、电力监控系统的特点
3.1先进性
由于电力系统采用了先进的算法,提高了整个电网的运行速度,采用带宽较低的网络,节省了网络费用。同时画面也非常的清楚,清晰度很高。
3.2灵活性
本文中所谈论的电力监控系统具有灵活性,能够灵活地升级, 还能浏览网络。通过网络连接,可以实现多人同时监控,还能够进行远程交流,传输各种形式的信息。此外,用户还可以根据实际需要,设计合适的参数。
3.3保密性
电力监控系统的保密性能非常好,独有的IP地址,不同地址的使用者能够获得不同的信息,对于不同等级的客户,设定不同的权限,用户若想要使用系统,必须验证权限和密码。
4、电力监控系统在供配电设计中的作用
4.1数据采集与处理
供配电设计电力监控的前提就是数据采集,数据采集是整个系统工作的基础,不能进行数据采集就无法继续后面的工作,完成对供配电系统的监控。电力监控系统的数据采集是由系统底层的仪表完成,数据采集完成后,会在本地显示出来。供配电设计中,需要采集的数据是一些远程设备的运行状态数据,例如三相电流I、三相电压U、电度W等。
4.2人机交互
电力监控系统能够提供简单、友好的用户界面。界面的语言为全中文,方面用户操作,同时还会随时更新界面显示。此外,运行参数和配电系统状态都能够通过CAD图形显示出来。
4.3事件顺序记录
事件顺序记录主要是记录断路器合闸及分闸、保护动作的顺序等。为了确保能够存储这些事件顺序,必须要留出足够的存储空间,这样才能保证在系统出现意外故障时,能通过查阅时间顺序避免不必要的损失。
4.4用户权限管理
为了确保电力监控系统的安全、稳定,同时保密系统中的数据信息,电力系统中可以根据不同工作人员的工作性质以及不同用户的特点设定不同的权限。此外,在电力系统中,为了便于用户修改账户信息,有用户登录、修改密码和注销等选项。
4.5远程报表查询
电力系统能够筛选出对用户有用的数据,并对这些数据进行一定的组合,采用统计方法进行处理,最后根据用户的需求,设计报表样式,将系统中的数据生成报表的形式。
4.6数据库建立与查询
电力监控系统能够将采集到的数据进行处理,并将处理后的数据建立一个数据库,将用户需要的数据存入这个数据库中,用户可以根据自己的需求,在数据库中查阅相应的信息数据,并打印这些数据。
4.7安全监视
电力监控系统会设定一个额定值,设定监测到的值不能超过这些值,电力监控系统随时监控系统检测到的电压和电流,并将这些值与系统设定的额定值相比较,如果检查值超过额定值,系统将会进行报警,如果没有超过,则继续检测。此外,电力监控系统还会监视自控装置和保护装置的运行状态,确保其运行状态是否正常。
5、结论
电力监控系统具有通信网络层、系统管理层、现场监控层三个部分,其特点有先进性、保密性、稳定性和灵活性。电力监控系统在供配电设计中有数据采集处理、人机交互、记录数据顺序等众多功能。因此,企业在供配电设计时,要根据实际情况采用合适的监控设备,以确保电力监控系统能发挥其作用,达到监控需求。
参考文献:
目前,近年来港区生产规模的不断扩大、占地范围越来越广,变电所设置越来越多。随着网络的发展,利用现场通讯技术设置远方或就地监控系统,使运行值班人员不用到设备现场也能了解设备运行情况,从而实现港口电力设备的管理的自动化。
1.工程概况
本文所设计的码头工程位于柬埔寨西哈努克港市,本工程设有两座变电所,其间隔距离2公里。其中主变容量5188KVA,10KV分段母线方式供电,进出线终期规模为12路。主要供电设备有10KV门座起重机、10KV皮带机等重要负荷。为帮助业主实时的监控主控制室的设备运行情况、主变、断路器等的运行状态,提高工作效率,减少现场维护的工作量。我们设计了一套电力监控系统(又称变电所综合自动化系统)
2.设计原则
电力监控系统的设计原则如下:
(1)整个系统采用分层分布、开放式结构。
(2)采用先进可靠的设备,能适用变电所环境,可长期连续运行和短期运行。
(3)采用先进完善的计算机监控系统软件。
3.设计依据
本系统方案设计遵循“功能齐备,
实用可靠,扩展性好,投资合理”的原则,完全符合中华人民共和国公安部有关条例和规范,包括不限于:
《电力装置的继电保护和自动装置设计规范》(GB50062-);《电力装置的电气测量仪表装置设计规范》(GBJ63-);《10kV及以下变电所设计规范》(GB50053-94);《智能建筑设计标准》(GB50045-95);《民用建筑电气设计规范》 ( JGJ/T16-92);《电信线路遭受强电线路危险影响的容许值》(GB6830-86);《通信光缆的一般要求》(GB/T7427-87);《信息技术互连国际标准》(ISO/IEC11801-95);
4.系统结构
本工程电力监控系统中控室设置 1#变电站,位置在陆域与引桥相接处的转运站1楼。其中设置一台监控主机对整个码头区域的高低压柜内电力运行数据进行集中监控。在码头上的2#变电所设置分控室,利用一台工控机将低压柜内电力监控仪表的数据收集起来,通过一根8芯单模光缆传输到中控室。最终构成一个完整的电力监控系统。拓扑图如图1。
整个电力监控系统采用基于现场总线的分层分布、开放式可配置结构,整个变电所在物理上分为2层:变电所控制层和变电所一次设备间隔层。
变电所控制层计算机监控系统(以下称上位机系统)由PIV866/250M/80G工控机和激光打印机构成。上位机系统主要用于变电所综合自动化系统的组态、维护;变电所运行的监视、操作、信息管理及优化控制;全所的事件事故记录,事故报警,画面显示;报表打印及开关等设备的远方操作控制。
变电所一次设备间隔层由南京南瑞继保的数字式保护测控单元及装置等智能微机组成。各单元采用现场总线CAN网络通讯。就地保护测控单元由各高、低柜、直流屏内电力监控装置构成,他们可完成对各自对象的数据采集、继电保护和自动控制。
5.电力监控系统主要功能5.1 计算机监控后台系统
变电所控制层的功能包括安全监督、操作控制及报表打印等,人机界面采用最新开放式图形软件技术和中英文语言环境。系统具有通过键盘和鼠标选择画面的功能。具体功能如下:
(1)实时数据采集及处理。
通过间隔层智能设备进行实时数据的采集和处理。实时信息包括:模拟量、开关量等信号。
监控系统通过数据采集及处理,产生各种实时数据,供数据库更新。系统应形成分布式的数据库结构,在就地控制单元中保留本地处理的各种实时数据。帮助运行人员对变电所设备的运行进行全面监视与综合管理并作必要的预处理,存于实时数据库,供计算机系统实现控制功能时使用。
(2)控制功能。
对全所变配电系统,港区用电系统的实时运行参数和设备运行状态以召唤方式进行实时监控。当发生事故时自动弹出事故画面,当进行设备操作时自动弹出相应的操作控制画面和过程监视画面。运行人员可通过操作控制菜单,选择控制对象和操作性质,最后系统提示确认。通过计算机监控系统操作控制的变电所设备主要有断路器、隔离开关投切操作,直流系统的操作控制。
为防止误操作,在任何控制方式下都必须采用分步操作:选择、校核、执行,并设置操作员和线路代码口令。比如对变电所一次设备进行操作时,系统退出监视画面并根据全所当前的运行状态以及隔离开关和接地刀闸的闭锁条件,判断该设备在当前是否允许操作并给出相应的标志。若操作不允许,则提示其闭锁原因,防止人为的误操作发生。具有操作权限等级管理,当输入正确操作和监护口令才有权进行控制操作。
(3)事件记录、报警处理。
当变电所或重要设备发生故障和运行人员对变电所设备以及断路器的投切等设备进行各项操作时,计算机监控系统立即响应并处理,将追忆数据保存于计算机中作为历史数据,并记录事故发生的日期、时间、设备名称及内容等。显示并打印报警信息,发出语音报警信号。
报警信息包括:报警接点的状态改变,保护与监控设备的运行工况异常,趋势报警等。
5.2 保护控制单元
(1)配电变压器的监控。
干式变压器已配置有温控装置,采用通讯数据传输方式将变压器的三相线圈温度,超温报警、超温跳闸信号,冷却风机运行及故障信号,温控装置电源故障信号等接入监控系统。监控系统应能对变压器的运行状况进行实时监测。
(2)直流系统的监控。
直流系统要求提供RS485接口用数据通讯方式将各开关状态,各直流电压、电流量,各故障报警信号等接入电力监控系统。电力监控系统应能对直流系统的运行状况进行实时监测。
(3)电容器的监控。
电容器柜均配置电容器自动投切装置,提供RS485接口,电容器测控采用IEC60870-5-103规约,要求能将其信息接入监控系统。监控系统应能对电容器的投切及运行状况进行实时监测。
(4)主控单元。
变电所要求配置主控单元,主控单元组屏安装,主控单元的具体要求具有良好的开放性,支持国内国际标准的通信协议,同时能完成规约处理和转换。至少应支持以下规约:IEC60870-5-101、102、103、104、DNP3.0、CDT、SC1801、Modbus、DL/T645、SEL、SPA-BUS、COURIER等。采用嵌入式实时多任务操作系统,软件和硬件应模块化,并具有可扩充性。
6.结束语
在本设计中,由于变电所只有两座,系统的优越性还没有得到充分体现,但是在一些有多个甚至十几个变电所的大型港区,该系统的优越性则十分明显;只需要一次投资,即可节省了后期大量的人力物力的投入。总之电力监控系统,促进了无人值班变电所的实现,并可以利用远动技术使电网调度迅速而可靠,不失为一种值得大规模运用的现代能源管理方式。
参考文献:
中图分类号:TU85 文献标识码:A 文章编号:1671—7597(2012)0510143-02
出于对有效控制运营成本、降低损失以及进一步提升效率的考虑,供电企业对配电设计予以了高度关注,并提出较高的设计标准。作为供配电设计中极为关键的一项内容,电力监控系统在控制电力运营成本,维持电网管理效率等方面发挥着不容忽视的重要作用。
1 电力监控系统基本功能
1)采集数据,主要是采集模拟量、开关量以及电能计量等。其中,模拟量采集方式有直流采样以及交流采样两种,前者主要是利用变送器将交流电压及电流信号转换为直流信号,便于A/D转换器输入;后者则利用互感器将输入到A/D转换器的信号转换为交流电压及电流信号;开关量主要包括断路器状态、接地刀闸状态、隔离开关状态、运行报警信号、断电保护动作信号以及同期监测信号等;电能计量主要指的是采集有功电能以及无功电能。电力监控系统在采集电能方面比较常用的方式主要有软件计算法以及电能脉冲计量法两种。2)记录事件顺序,主要内容包括记录断路器合闸及分闸记录以及保护动作的顺序等。需要保证拥有足够的内存空间,以便对事件顺序记录进行存储,防止在后台监控系统或远程控制主战通信出现故障的情况下事件信息遗失问题的出现。3)记录故障,主要是对继电保护动作前后和故障相关的电流量及母线电压进行记录。4)远程操作。借助计算机,操作人员可以操控断路器及隔离开关的分闸及合闸,为了避免由于计算机故障导致被控设备无法控问题的发生,需要设计人工分闸及合闸控制。5)安全性监控。系统运行中,监控系统要对电流及电压等模拟量进行严密监控,一旦发现越限情况,要在及时发出警报,并将越限时间及越限值记录下来;同时还要负责对保护装置和自控装置的工作状态进行监控。6)相关数据的处理,主要包括对相关数据进行分析、记录、保存,为用户进行信息查询提供便利,同时还要制作相应的报表。7)监视电能质量。所谓电能质量问题主要是指造成电力设备出现故障或者误操作的电流、电压或者是频率的静态偏差以及动态扰动等,比较常见的有电压有效值改变,电压出现波动、暂降或者是暂时中断等。
2 电力监控系统设计方案
设备层智能化是指通过居民小区智能化传感器来对各种物理信息及参数进行搜集,并向特定电量信号进行转变,来供电网系统加以辨认。同时,进一步向数字信号转化来方便计算机的相关处理。执行器经历了通信线路的传输和交换,不仅可以完成中心计算机指令向电信号的转化,也可完成与命令相对应的动作。设备层中所应用的技术为分布式控制技术,在居民小区进行独立控制器的分别安装,所安装的控制器在维持自身工作独立性的同时,又同计算机和其他控制器间维持着相应的联系,而设备层智能化也正是通过这样既独立又彼此联系的控制器来实现的。
管理层是通过监控计算机实施人机交换,来实现对设备运行状况的实时检查。同时,还可通过对系统运行参数的修改,来对设备运行状态进行改变。管理层中所应用的技术为集成技术,其通过网络通信及计算机技术来将居民小区内配电设备智能化子系统有效地融合在一起。利用信息共享与信息交换来协调各子系统间的运行状态。
电力监控系统主要包括系统管理层、通信接口层以及现场监控层。
2.1 监控组态软件基本功能
所谓监控组态软件,指的是以数据监控及采集为主要内容,拥有组态功能,可以生成目标应用系统的软件。对于操作人员而言,通过监控组态软件,可以十分便捷的取得现场数据,发出命令,进而实现实时监控。
电力监控组态软件的基本功能包括以下几方面:1)绘图,例如位图、按钮、滑动条、元图、标签或时钟等;2)编辑,即可以实现粘贴、复制、剪切或者是删除画图对象,此外还可以进行旋转、移动、对齐或者是翻转等操作;3)验证身份,即在启动以及退出程序时进行用户登录和退出;对用户所进行的诸如文件的修改或删除、数据读写等操作进行权限验证,防止出现非法操作的情况;4)曲线显示,也就是对实时曲线以及历史曲线进行显示,为用户及时了解数据信息提供便利;5)生成报表,也就是在汇总相关信息的基础上按照既定格式进行打印或保存;6)OPC接口,主要是为上级系统和电力监控系统间开展数据交换提供便利。7)报警,主要涉及报警服务器的确定、警报显示方式、报警数据源以及动态报警信号确认等。
2.2 网络方案
电力监控系统分散控制以及集中管理功能的实现主要依托于现场总线技术,并将总线上充当网络节点的智能设备组建成网络系统。网络方案设计对确保电力系统监控功能的有效实现具有重要意义。
方案一:如果现场智能监控设备数量不多,并且较为集中,对于这种系统可以通过一条总线将所有的智能设备连接起来,利用接口转换器实现与监控主机之间的数据交换。
方案二:如果现场智能监控设备的数量较多,并且分散分布,首先依照就近原则在就地现场总线连接现场智能监控设备,之后再将主线连接到网关。
方案三:如果系统涉及到数个子变电站,规模较大,处于确保系统稳定性的考虑,需要针对各个子站分别设置监控主机,主要任务是对本站中的现场只能监控设备进行管理,负责站内数据运算,此外还要对信息进行筛选,确保发送到监控中心主机的都是必要信息。在得到监控中心主机授权的前提下,可以对子站监控主机进行查询或控制,这样,系统效率及可靠性将会有很大程度的提升。
2.3 现场智能监控设备功能
对于供配电电力监控系统而言,各个现场智能监控设备都是独立存在的,主要任务是收集并传输相关数据,按照监控主机的指示执行具体的操作,除此之外,还可以对开关设备的工作状态、相关参数以及设备故障等相关信息进行实时显示。现场只能监控设备的独立性主要体现在其运行并不依赖于监控网络,也不受其影响,换句话说,即使是监控网络出现传输故障,现场监控设备依旧可以正常的进行收集数据以及对相关信息予以动态显示,其相关功能并不会受到任何影响。
当前市场上有很多种类型的智能监控设备可供选择。电力监控系统的功能以及系统的经济成本在一定程度上取决于现场监控设备。因此,在电力监控系统方案设计过程中,要从用户的实际需求出发,同时对电力网络结构以及负荷级别等相关因素予以全面考虑,在此基础上确定最适宜的智能监控设备。
2.4 监控系统要求
DOI:10.16640/ki.37-1222/t.2016.23.136
0 引言
现代社会对电力的需求逐渐增加,对供配电设计也提出了更高的要求,而电力企业的实际经营成本在持续增加,电力监控系统在供配电设计中的应用成为了人们开始关注的焦点问题,电力监控系统对于供电效率的提升以及降低电能损失都是非常有帮助的,能够实现供配电设计过程管理力度的增强,增加电力企业的经济效益,使我国的电力事业获得更加健康、稳定的发展。
1 电力控制系统的基本功能
事件顺序记录这一功能主要有保护动作顺序记录与断路器合闸、分闸记录的内容,这要求电力监控系统要具备充足的内存进行相关数据信息的储备[1]。在产生问题的时候才能及时、有效的保证电力监控系统中的故障等信息是完整的。另一个是数据采集功能,主要包含三方面的内容,其一是对开关量进行采集,电力监控系统运行中需要对隔离开关状态、断电保护动作信号等进行信息的采集。其二是对模拟量进行采集,电力监控系统中需要有电流、频率功等需要采集的模拟量。其三是电能计量,指的是对有功及无功电能进行采集,这种方法效率更高,可以更加精准、及时的采集相关电网信息。
最后是远程操作功能,主要是操作者通过电脑对隔离开关及断路器实行分、合闸的管理,这样电流的控制过程会更加智能,要特别注意计算机系统发生故障造成的电网系统的瘫痪,所以,设计人员需要具备远程操作理念,保留人工分、合闸的功能,这样才能对供配电线路进行更加有效的管理。
2 电力控制系统的应用特点
电力监控系统中应用的芯片属于高频信号优化芯片,这种芯片具有较强的稳定性,可以通过一定的渠道对所有的信息类型进行传递,在传递过程中还可以实现对外界干扰信号的自动屏蔽,避免对信息数据产生不良干扰。另外,电力监控系统是依靠互联网信息技术而发挥其功能的,主要的工具也是计算机软件,因此,电力监控系统如果缺乏灵活性,就会逐渐遭到淘汰,电力监控系统的优势也就得不到正常发挥了,对供配电设计的监督也就无从实现了。电力监控系统要想具备符合要求的工作效率,就要能够对配电数据进行有效压缩,使画量更好,因此,监控系统就要实现算法的升级,比如MPEG-4压缩技术,它所应用的电力监控系统占有资源量是非常小的,这就为信息的运行增加了空间,提升了信息运行的最终效果,这一技术的应用既可以对静态设备进行监控,还能展示设备监控的动态效果。
3 电力监控系统在供配电设计中的应用
3.1 采集、处理数据,实现人机交互
采集、处理数据是电力监控系统的基础工作内容,是供配电设计的前提,供配电系统的监控主要就是根据相关数据的采集处理开展的,要对数据的采集及处理工作加强重视[2]。电力监控系统是利用仪表对数据实行采集的,数据在本地仪表上显示出来,数据包含的内容主要是远程设备的实际运行状况。比如三相电流、电压等的运行状况。数据采集完成还要经过处理,即数据信息分析及记录、存储,处理结束要存储到数据库里,为用户以后的查询与输出提供方便。
电力监控系统中的人机交互,主要就是利用监控系统产生高质量的界面,将其中的阅读语言设置为中文,为用户的顺利阅读提供便利,同时还能对界面进行统一的操作,这样能减少过程中的失误,界面设置中能够与网络连接,实现数据的及时更新,并且用户可以享受不同操作界面的服务,界面上的信息主要是供配电系统的状态,比如,供配电实时运行情况、内容等。设备的运行形式级具体的方式都可以在界面中显示出来,用户能更全面、清晰的了解供配电设备的状态,为用户带来了非常大的便利,用户与供配电操作关系更加密切,实现的监督及管理效果也更加显著。
3.2 提高供配电信息采集效率与权限管理
电力监控系统的应用可以明显提高供配电系统信息采集的效率,电力监控系统的功能除了进行供配电的监督及控制外,还可以进行各类信息的采集与处理, 电力监控系统采集的数据信息是全面的[3]。显示的信息是以监控系统作为背景的,供配电系统可以对及时收集来的信息进行快速的分析与应用,确保信息的准确性与及时性,也能够让用户对信息有更高的信任。
对系统进行权限的设置能够保证其处于一个比较严格管理的环境之中,为供配电设计工作的安全性提供保障,电力监控系统对供配电设计实行权限上的管控,并且能够对数据信息完成加密处理,保护信息的隐私性。一方面,电力监控能够实现信息权限上的分级,从而进行分层管理,这样不同层次的用户对信息的特殊需求就可以得到统一的满足了,对那些高级权限的信息能实现安全保护,有效防止了关键信息的泄露。另外,利用监控系统实现后台操作,为供配电人员进行信息的整改提供了便利。
4 结束语
电力监控系统得到广泛应用,对于我国供配电设计和运行的安全性来说有着突出的作用,应用电力监控系统的情况下,供配电设计及其他配电工作都可以获得科学、有效的监督,这样供配电设计及运行过程就能够对差错进行及时的管理了,在发现错误后,电力监控系统可以发挥自身功能对其进行合适的处理,同时及时的上报给相关管理者,使得供配电设计中的事故处理效率更高了,而事故造成的损失则会大大减少。
参考文献:
随着中国经济的快速发展,科技和生产力的不断提高,电力监控系统作为供配电设计中不可或缺的重要组成部分,我们应加快对电力监控系统的研究,发扬创新精神,快速提高电力监控系统的效率、减低运营成本,使电力监控系统更好的发挥作用。
一、电力监控系统概述
(一)电力监控系统的定义
电力监控系统以计算机、通讯设备、测控单元为基本工具,为变配电系统的实时数据采集、开关状态检测及远程控制提供了基础平台,它可以和检测、控制设备构成任意复杂的监控系统,在变配电监控中发挥了核心作用,可以帮助企业消除孤岛、降低运作成本,提高生产效率,加快变配电过程中异常的反应速度。
电网智能化,现有电力网络中设备的运行状态是由设备本身的工作指令来实现的,而与电网运行状态无关,此为被动配电网络:当设备的运行不仅由本身的工作指令来实现还要由配电网络在自我诊断后,再根据电网能力,负荷重要性,发出设备运行指令,按负荷重要性等级顺序控制运行时为主动配电网络。正常工作状态,首先要使系统工作合理,负荷分配合理,充分地消峰填谷:充分利用变压器的过负荷能力:充分地采用各种技术措施节能。发生电力故障状态,智能系统经过监测。分析、判断、确保一级负荷,有效的控制二、三级负荷。
(二)电力监控系统特点
系统软、硬件全部模块化,硬件全部智能化。软、硬件设计选择工业级标准,可靠性非常高。整个系统的ICU(智能控制终端)、RTU(远程智能通讯控制器)全部由16位微机组成,这样的集散型监控系统,速度快,实时性好,同机种通讯可靠:ICU自带CPU,采集周期短,实时性强,系统冗余度高,通讯帧数少,可大大减少通讯误码率:各系统都是独立工作,互不干扰,实现了控制的硬件系统模块化,采片j总线方式可节省缆线和工程费用:各子系统实现了模块化,进一步提高整个系统的安全及町靠性:系统可带电插拔,维护、检修更加方便。
二、电力监控系统的基本功能
电力监控系统允分运用现代电子技术、计算机技术、网络技术、控制技术及现场总线技术的最新发展,实现变配电系统的集中监控管理和分散数据采集,通过遥铡、遥信、遥控、遥调及电能质量监视、历史数据分析等高级功能,使用户的电力系统透明化,是一套提高电力系统安全性、可靠性和经济性的智能化系统。电力监控系统具有以下几个基本功能.
(一)事件顺序记录
事件顺序记录包括断路器合闸/分闸记录和保护动作顺序记录。微机保护或监控系统采集环节必须有足够的内存,能够存放足够数量和足够长时间段的事件顺序记录,确保当后台监控系统或远方集中控制主战通信中断时,不丢失事件信息。
(二)故障记录
故障记录是记录继电保护动作前后与故障有关的电流量和母线电压等。记录时间一般考虑保护起动前2个电压周期和保护起动后lO个电压周期以及保护动作和重合闸等全过程的情况.
(三)远程操作
操作人员可通过计算机对断路器和隔离开关(如果允许电动操作)进行分、合闸操作。为防止计算机系统故障时无法操作被控设备,在设计时应保留人工直接分、合闸手段。断路器操作应有闭锁功能。操作闭锁包括的内容有断路器操作时应闭锁自动重合闸、就地操作和远方操作互相闭锁,避免互相干扰、根据实时信
息自动实现断路器与隔离开关间的闭锁操作,无论就地操作或远程操作都应有防误操作的闭锁措施,必须有对象校核、操作性质和命令执行三步,以保证操作的正确性。
(四)安全监视
监控系统在运行过程中,对采集的电流、电压等模拟量要不断进行越限监视,如发生越限,立刻发出报警信号,同时记录和显示越限时间和越限值。另外,还需监视保护装置及自控装置工作是否正常等。
(五)数据处理
数据处理包括对数据的分析及记录存储,方便用户查询,并能以报表的形式输出。
(六)电能质量监视
导致电力设备故障或误操作的电压、电流或频率的静态偏差和动态扰动统称为电能质量问题。具体表现为:电压、频率有效值的变化;电压波动和闪变、电压暂降、短时中断和三相电压不平衡、谐波;暂态和瞬态过电压以及这些参数变化的幅度。近年来,国家针对此了一批电能质量标准。目前,已制订颁布的电能质量系列国家标准有:GB/T 15543--1995《三相电压允许不平衡度》、GB/T 15945--1995《电力系统频率允许偏差》、GB 12325--2003《供电电压允许偏差》、GB 12326--2000((电压允许波动和闪变》、GB/T 14549--1993((公用电网谐波》和GB/T18481q00l《暂时过电压和瞬态过电压》。
三、电力监控组态软件的基本功能
监控组态软件是指具有组态功能,面向数据监控和数据采集,能生成目标应用系统的应用软件。通过监控组态软件的使用,可以使操作人员方便、直观地获取现场的实时数据,并适时地下达控制指令,达到实时监控的目的。电力监控组态软件具备以下基本功能:
(一)绘图功能
包括绘制位图、元图、按钮、编辑框、滑动条、标签、时钟、ActiveX控件、OLE文档等。各种对象均具有隐藏/显示、操作级别、图层等属性。
具有对画图对象的拷贝、粘贴、剪切、删除、撤销等功能,能对对象进行旋转、翻转、移动、对齐等操作。
(三)身份校验功能
在程序启动和退出时分别进行用户的登录和退出;用户在监控组态程序中的某些操作(如修改文件、删除文件、读/写数据、连接服务器等)需要进行权限的校验,防止某些用户进行非法操作。
(四)实时/历史曲线功能
显示实时曲线和历史曲线,使用户更加方便地了解现场数据的变化情况。
(五)报表功能
将指定的各种数据信息进行汇总,按预定格式输出到打印机或保存为文件,报表格式组态灵活,操作方便。
(六)OPC接口功能
电力监控系统作为变电站自动化、楼宇自控等系统的子系统,应提供OPC接口,使上级系统能够方便地通过OPC接口与电力监控系统进行数据交换,读/写OPC数据项。
(七)报警功能
中图分类号: U672.7+4 文献标识码: A
近年来,随着计算机技术和网络技术的飞速发展,人们越来越关注供电系统的稳定性和安全性。利用电力系统进行信息的采集,使用电力监控综合管理整个电力系统都成为了可能。为了进一步完善电力监控系统,我国不断加大经济投入,培养优秀人才,引进新技术,对电力的良好运行奠定了基础。
电力监控系统的结构与功能
电力监控系统的结构
电力监控系统是一个复杂多样的程序,它一般是由信息控制系统、现场控制系统和问题处理系统三方面共同构成的。这三部分构成了一个整体,共同发挥作用,全方位的监控电力系统的运行。
信息监控系统是电力系统构建中必不可少的一部分,由于电力监控系统在运行过程中现场端和PLC系统的主控端距离较远,因此,信息监控系统就成为了这个中转站。目前,系统的通信网络主要是以智能设备为主,负责各个网络的通信,从机则是由智能变送器、可编程控制器、现场控制单元构成的,用来传输数据。
PLC可编程结构、传感器、执行装置等一系列设备共同构成了现场控制系统的子系统,用于执行命令程序,采集现场信息,并进行实时监控。同时,它还可以通过传感器对数字、开关量等信息进行处理,从而获取电力系统现场使用的具体情况。
顾名思义,问题处理系统就是用来处理连接过程中所遇到的困难的。简单来说,就是在接收到现场控制子系统传过来的各种信号之后,把它们转化为声、光、电或者图像,为工作人员提供信息的指导。具体来说,就是通过报警系统、显示屏、模拟屏等设备的运行,帮助工作人员对电力系统运行信息进行及时有效的处理。
电力监控系统的功能
由电力监控系统的构成可以得知其最主要的功能体现为现场监控、信息采集、事件处理和系统控制。监控系统可以通过结构的协调运行,对电力系统现场的设备进行动态的监控,并了解运行的参数。然后,系统会对各种数据信息进行采集整理,从而进行判断分析,制定具体的操作指令。最后,系统管理者通过对子系统的控制,使其执行一系列功能,进而推动电力系统的平稳运行。
另外,电力部门的工作人员可以结合系统运行的具体参数,分析系统功率,并结合实际情况定期进行调节。在功率因数变动时,还可以对系统功率进行手动调节。同时,相关工作者还能够借助计算机等设施,记录电力系统实时运行的情况、故障状况、操作、变更等数据,从而形成有效的信息报表。
电力监控系统的设备
电力监控系统的监控级设备
电力监控系统的控制级设备主要是以工业控制计算机系统为主。该系统主要是由处理器、接口部分、信号传输、传感器等共同构成的,并通过计算机进行实时控制与监测。
由于工业控制计算机具有结构扩充性好、电压适应范围大、抗恶劣环境能力强等特点,所以电力监控系统的控制级多采用此类计算机。它可以通过信息接口将主机和其他设备相连接,将现场信号数据传送至控制级、监控级,形成一个整体的传输网,最后实现信息资源的共享。
电力监控系统的控制级设备
电力监控系统的控制级设备是由可编程控制器、智能仪表和通讯介质共同组建而成的。可编程控制器大多采用功能强、通用、快速的PLC系统,能够满足用户对速度和效能的要求。该系统主要包括电源模块、中央处理器、信号模块、通信模块和功能模块。它大多数采用的是光纤或者双绞线作为通信媒介,而其智能仪表是集遥控、遥信、遥测于一体的电力监控装置。
电力监控系统的通信网络
电力监控系统一般采用“同等形式”或“主从形式”的基本通信网络系统形式。主机负责网络设备间的通信指挥,并与从设备之间依靠主站的独立访问实现数据的传输,当传送对象确定后,主站再将信息传输至既定的从站。不过,一旦主机发生故障的时候,整个系统极有可能陷入瘫痪。
电力监控系统的发展应用
OPC技术在电力监控系统中的发展应用
OPC技术之所以能够应用于电力监控系统,主要是因为其建立了客户服务器机制,是连接上位人机界面软件与监控设备通讯的纽带。随着国家电网的建设与改造,电力监控系统发挥着越来越重要的作用。OPC标准为工业的发展带来了巨大的利益,目前,它已经成为了国家的工业标准。此外,OPC技术带来的利益还不仅仅如此,它还可以更好地应用于电力整体运行中,为电力监控系统的发展做贡献。
配电综合监控装置在电力监控系统中的发展应用
随着我国电力工业的迅猛发展,人们对电力的需求量越来越大,对供电质量的要求也越来越高,在电力供应系统中应用配电综合监控装置就显得尤为重要。运用现代化的配电装置,可以进行实时监测与控制,可以为用电方提供更加便利的技术支持。此外,配电综合监控设备在电力监控系统中还发挥着巨大的作用。第一,可以合理配置电力资源,有效的提供原始数据。第二,提高了电力资源的配置效率,从而保证更好的为客户服务。第三,利用监控装置进行远程通信,加快推动了远程抄表的普及。第四,把管理软件与监控装置系统结合使用,可以强化计量装置的工况监视,防止窃电行为的发生。
GPRS技术在电力监控系统中的发展应用
GPRS,即全球定位系统。把GPRS全球移动通信系统应用于电力监控系统,主要是为了提升系统通信工作的准确性与及时性,提高效率,并帮助系统监控部门获得事故发生地的准确位置、地理情形、图像信息等情况。为电力系统的管理人员及时快速的开展工作提供保障,降低电力系统由于故障造成的损失。GPRS在电力监控系统中的应用,主要是通过其数据终端的传输、监控端、集中器、BTS传输系统、GPRS与Internet的传输网络系统共同构成的。
监控终端主要是由信息采集、通讯、控制几个模块共同组成的,通过传感器对信号进行采集,并以串行接口与集中器进行连接。集中器则主要用于对监控终端的信息进行集中整合,并把它传输给监控中心。数据传输主要借助路由器,将GPRS与网络进行连接,进行数据传输。
故障转移技术在电力监控系统中的发展应用
当主机发生故障的时候,最理想的处理办法就是将服务器进行转移,从而使服务系统能够继续平稳的运行。而电力监控系统中大多设有数据库服务器,在大型电站中充当着重要的角色。因此,应该最大限度的保证其服务运行的连续性和可靠性,进行故障的转移,从而保证电力监控系统的运行。
结束语
总之,电力监控系统是一种智能化、单元化、网络化的综合体系,以电力监控系统软件、智能配电仪表和计算机通信网络为基础。依托先进的技术手段,保证工作人员在现场的任何位置都能够接收到信息,提高了工作效率。随着经济科技的飞速发展,电力监控系统以较少的投资取得了极大的效益,在未来的发展中必然会发挥更加显著的作用。
参考文献
[1]刘毅.电力监控系统改造和应用[J].科技与企业,2013(4):239-239,242.
[2]毕昌松.对电力监控系统的探讨[J].大科技,2013(2):58-59.