文化学术论文汇总十篇

时间:2023-03-10 14:46:30

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇文化学术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

文化学术论文

篇(1)

一、在多样化的数学活动中渗透数学文化

为了更好地在数学教学中渗透数学文化,教师可以开展多样化的数学文化活动,让学生在活动中加深对数学文化的理解,提高数学素养。在教学中,教师可以开展数学技能比赛、数学创意展示活动,让学生在活动中对数学文化有进一步的了解,从中领会数学文化的内涵。比如,教师可以结合“七巧板“”找次品”等活动开展数学游戏。以开展“七巧板”游戏为例,教师可以先讲解七巧板的由来,然后组织学生开展七巧板拼图竞技活动,让学生在操作中探索七巧板的奥妙,发展学生的思维,并在动手活动中将学生引入有趣的数学世界。在玩七巧板游戏时,教师还可以引导学生玩五子棋、魔方等游戏,将这些有策略性的数学游戏活动与数学文化融合起来,有利于学生进一步感受数学的文化价值。再如,在学习分数演变史、加减符号演变史、除号演变史等内容时,教师可以组织学生将“符号的演变史”作为主要内容,同时制作一份小报纸。在制作小报纸的过程中,学生通过各种方式搜集与符号演变史相关的材料,从而对数学符号的由来和历史都有明确的认知,并形成一个完整的知识结构,这样不仅有利于学生掌握数学知识,还能够有效地渗透数学文化。

二、在解决数学问题中渗透数学文化

在数学教学中,解题是一个重要的学习内容,它是对数学知识以及数学方法进行有效运用的过程。因此,教师可以在解题过程中有意识地渗透数学文化,让学生获得正确解题的方法和技能,意识到其中蕴含着的数学文化,在潜移默化中受到数学文化的熏陶。以解答题目“12+14+……+1128”为例,假如用通分的办法计算,过程会非常复杂,计算结果也未必正确。此时,教师可以用图形来表示,这样就能够快速地解决问题了。将一个正方形看作单位“1”,连续对这个正方形进行平分,计算结果用阴影表示。学生在画图时就会发现,用加法运算的话,后面的加数分别是前面加数的一半,计算结果就是在第一个加数的基础上乘以2,然后再减去后一个加数。运用数形相结合的办法进行计算,复杂的问题立刻变得简单,而学生也能够掌握计算规律,更好地把握数学的本质。在这个教学案例中,教师引导学生用图形代替计算,无形中将数学解题技巧及数学思想渗透到解题过程中,使学生轻易找出了解题的办法,培养了学生的数学思维,挖掘了数学知识中蕴含的数学思想。

作者:李伟群 单位:广东省中山市小榄镇菊城小学

篇(2)

《全日制义务教育数学课程标准(实验稿)》在基本理念中充分肯定了数学的文化价值,特别是在“课程实施建议”的“教材编写建议”中指出,教材可以在适当的地方介绍有关的数学背景知识(数学家的故事、数学趣闻与数学史料)。而《普通高中数学课程标准(实验)》则进一步强调:“数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对‘数学文化’的学习要求,设立‘数学史选讲’等专题。”可见,数学文化已逐步从理念走进中小学数学课堂。如何使数学文化真正走进数学课堂,一个比较现实的做法是使之融入到数学学习之中。这不仅要重视数学学科本身的文化价值,还要探讨学生的文化认知特点,对文化、数学、学习三者之间的内在联系做深入的考察。

一、高中学生的文化认知特点

根据维果茨基的“文化发展的一般发生学原理”:儿童的文化发展所有机能出现两次或两个层面,先是社会层面,接着是心理层面。首先它作为心理间的范畴出现在人们之间,然后作为心理内的范畴进入儿童中。[1]可见,从文化的视角剖析数学学习,至少要采用社会学和心理学的观点。

(一)同喻性

一个时代文化环境的形成离不开文化的传递机制。美国人类学家玛格丽特·米德从研究人类社会文化传递的差异出发,将人类的文化变迁划分为三个部分:后喻文化、同喻文化和前喻文化,其中同喻文化是指学习主要发生在同辈人之间,其基本特点是以当代流行的行为模式作为自己的行为准则。今天的高中学生带有同喻文化的特征。

高中学生的同伴影响逐步扩大。我国绝大部分高中学生是独生子女,在家里缺乏可以沟通的兄弟姐妹。而在多数中学,一个班级通常有四五十人之多。家庭和学校之间存在着的差异使他们更倾向于在学校群体生活中表达和交流自己的思想,同龄人的观念、行为对他们产生较大的影响。

中学教师的长辈角色正在淡化。社会的迅猛发展,使教师再也无法通过施加压力来传播旧的文化观念,原来的自上而下的教育模式已失去了部分魅力,许多青年人通过自己摸索和感受萌生了前人未曾有过的想法和期望。特别是高中学生,由于知识的增长及心理的逐渐成熟,开始比较多地从个体存在与发展的角度来思考社会与人生,他们已经不可能也不必完全照搬前辈的经验去刻画自己的人生轨迹。那种后喻文化中说教式的思想教育方式,比以往更不容易为学生所接受。

作为文化的数学正以学生乐于认同的方式被传播。数学具备文化独有的特性:它是延续人类思想的一种工具,是描述世界图式的有力助手,精确的形式化、简洁的符号表征常常被成功地运用到其他科学领域。伴随着科学技术在社会生活领域的不断渗透,学生有更多的机会联系数学。在数学新课程背景下,一些密切联系学生生活的数学知识进入高中教材。网络技术的普及使学生得以快速了解大量知识。不断拓宽的信息通道,活泼平易的呈现方式,使数学有机会向学生展示它人文的一面。

(二)不均衡性

人的认知源于人与大自然、与社会和文化之间的相互作用,其发展又与个体内部的认知因素密切相关。由于学生的大量知识通过学校习得,他们的认知结构在相当程度上取决于学校所传授的知识内容及其形成过程。联系我国目前高中教育的实际情况,学生对“数学文化”的认知存在如下问题。

1.知识结构的不均衡造成学生对“数学”的文化感知产生偏差。学校的学科设置力求体现当代人类知识的主要特征,现代人类知识总体结构中,关于自然科学与技术科学的知识部门已大大超过了人文社会科学。人类6 000余种学科中,属于科技类的知识约占总数的。与之相应,我国普通高中课程虽然设置了政治、历史和地理,但在学校的地位却难以与数学、物理和化学等相比。如果高一阶段有若干可以机动安排的课时,学校更愿意留给数理化等学科。由此造成的一个突出现象是,文、理科学生人数的差距巨大,尤其是经济较为发达的地区,如浙江省的文科学生通常只占同年级人数的左右。人文知识与科学知识的不均衡,使学生文化素养不够全面,对待事物容易就事论事。有不少学生认为数学是确定的,数学问题有且只有一个答案,学校中学到的数学在现实生活中很少有价值。

2.组织结构的不均衡导致学生对“数学”的文化认同出现逆差。人们重视科技教育而忽视人文教育,“不只表现在教育规模、教育结构方面,更表现在课程与教学内容和教学方式方法方面,换句话说,科技文化统治着学校教育,科技知识、理性思维广泛而深入地影响和左右着学校教育教学过程”。[2]造成学生知识结构的组成方式不均衡。在中学界,几乎所有的教师和学生都相当重视数学,但他们对待数学的动机不同,其中不乏出于高考的压力。由此带来的负面影响是:教学中存在着重结果、重应用的现象,忽略数学知识形成和发展的过程,知识的生成是快速的,知识之间连接的链条被机械地焊接,知识的运用中充斥着大量的习题。在“现成的数学与做出来的数学”之间,很难将数学看成是人类的活动。学生数学“学”得越多,对文化的认同反而越少。

二、数学文化在高中数学学习中的表现形态

数学文化与数学学习融合的过程中,文化、数学、学习三者之间的内在关系必以某种形态表现出来,而这些表现形态又将决定我们采取相应的方式。在分析高中学生文化认知特点的基础上,笔者将从数学学习的“文化”特征、文化学习的“数学”课程以及数学文化的“学习”过程三个方面探讨数学文化在数学学习中的表现形态。

(一)群体的活动性

群体与活动是数学文化进入数学教育过程的直接表现。一旦我们以文化的理念开展数学教育,这种表现形态便应运而生。

其一,数学教育的文化观强调学生以活动的方式进行数学学习。

数学作为人们描述客观世界的一种量化模式,它当然是人类文化的一个组成部分。在承认这一“客观性”的基础上,相对于认识主体而言,数学对象终究不是物质世界中的真实存在,而是抽象思维的产物,它是一种人为约定的规则系统。可见,数学的文化观念不仅承认数学在科学技术方面的应用,还强调“人”在数学文化体系形成过程中的能动作用。美国文化学家克罗伯和克拉克洪在文化的界定中指出:“文化体系一方面可以看作是活动的产物,另一方面是进一步活动的决定因素。”这说明人的主观能动性主要表现在活动的参与中,通过活动,使知识学习与精神教化自然地结合起来。并且,数学文化的渗透性具有内在和外显两种方式,其内在方式表现在数学的理性精神对人类思维的深刻渗透力。因而,在数学教育中,教师应当尊重学生的主体地位,通过学生的主动参与,发挥数学在精神领域上的教育功效。

其二,文化意义上的数学教育提倡群体的交流与合作。

文化的概念始终与群体、传统等密切相关。在现代人类文化学的研究中,关于文化的一个较为流行的定义是:“由某种因素(居住地域、民族性、职业等)联系起来的各个群体所特有的行为、观念和态度等。”在现代社会中,数学家显然构成了一个特殊群体──数学共同体,在数学共同体内,每个数学家都必然地作为其中的一员从事自己的研究活动,从而也就必然地处在一定的数学传统之中,个人的数学创造最终必须接受社会的裁决。“只有为相应的社会共同体(即数学共同体)一致接受的数学概念才能真正成为数学的成分。”[3]文化意义上的数学正是关注到了数学与整体性文化环境的关系,数学“不应被等同于知识的简单汇集,而应主要地被看成人类的一种创造性活动,一种以‘数学共同体’为主体,并在一定环境中所从事的活动。”[4]

可见,一个富有生命力的数学知识,蕴涵着一定的“社会性”。教科书上貌似明了的叙述,其实是经过历史荡涤的精华,承载着复杂的文化背景。在学校教育的条件下,教师与学生自然构成了一个“数学学习共同体”,虽然他们未必能发明或创造出新的理论,但面对同一个数学问题,各成员有着不同的行为、观念和态度,这些差异常常在相同的时间聚集于同一个环境。鉴于高中学生文化认知的同喻性,某个学生的见解需要接受共同体的评价才能被承认,教师的教学内容同样需要经过共同体的认同才有可能真正被学生内化。因此,从文化的角度来看,学校中的数学学习实质上是一种微观的数学文化。

由于学生主要通过在教室中获得数学知识,所以,数学文化教育的中心场所应在教室。已有的国内外研究表明,教师和学生所具有的各种与数学教学直接相关的观点、信念等是影响数学教室文化的重要因素,彼此的数学交流与合作是构建教室文化的主体部分。近几年来,现代教育学正将这种相互交换想法的学习(即互惠性学习reciprocal learning)当做未来学习的模式,作为建构新的教室文化的指标。

(二)系统的开放性

群体的活动显然可以贴切地表现数学学习的“文化”特性,但这些活动始终在“数学”范畴内展开。我们有必要探究高中数学课程的特点。

从文化传承上看,高中数学课程具有组织构成的开放性,主要表现为它与社会生活及现代数学的动态联系。作为人类文化的一个子系统,数学并不是一个完全封闭的系统,外部力量对于数学发展也起着决定性作用。例如,二次世界大战就曾促进了系统分析、博弈论、运筹学和信息论等学科的研究。虽然高中数学课程有别于一般意义上的数学,出于教育的目的对数学知识进行了重新整合,但这种“教育加工”仍然要尽量地展示数学科学的原貌,以达到文化传承的目的。我们可以看到现代数学的一些分支等正逐步地进入高中教材。虽然外部力量对基础教育阶段的中学数学课程没有如此巨大的影响,但它们表明了数学的广泛应用价值,从而为高中数学课程结构的开放性给出了有力的证明。例如,教材中的有限与无限、随机与确定、结构与算法等都与现代科学技术有联系,而数列、线性规划等直接地涉及学生的社会生活。

从文化传播上看,高中数学课程具有观念整合的开放性,通过课程的活化促进文化增殖。数学课程中内容的选择、编写乃至实践,不可避免地受到各种社会、文化与观念等要素的影响,从而在传播的过程中产生文化的扩展和延伸。课程作为文化传播的一种手段,并不是简单地复制,更主要的是通过文化增殖起到一种强烈的活化作用。在中学阶段,虽然各位教师面对的是同一本教材,但教师总是要根据具体教学过程的需要进行具体的再加工,而这种加工的过程又必然会溶进每个教师特有的个性因素,渗透着教师本人的世界观,体现他的精神面貌并以此对学习者产生影响。同时,由于学生个体素质的多样性,即使是由同一位教师传递并且传递的文化实质完全相同,对每个学习者来说,文化信息的接受也存在着差异。[3]

从文化传递上看,高中数学课程具有整体效能的开放性,通过系统属性的联合作用,发挥出“整体大于部分和”的功效。在高中数学课程内部,各子系统既保持着纵向的知识序,又维系着横向的方法序。例如,从指数函数到对数函数,三角函数到反三角函数,这些知识被有序地排列着,它们之间借助反函数融为一体,利用数形结合的方法,生动地刻画出函数的性质。在其外部,高中数学课程以工具性学科的地位与其他中学“友邻”课程形成协同关系。“数学课程向‘友邻’课程提供知识和智能方面的储备工具,又从‘友邻’课程那里获得需求信息、实证材料、强化运用数学智能的场所。”[5]例如,函数与物理的势能、立体几何与化学的分子结构、排列组合与生物的基因分析、对称与语文的对偶等。

文化与课程的关系表明,高中数学课程是一个开放的文化体系。作为中学数学教师,要在教学中体现数学的文化价值,要对“数学”有正确的认识,那就是:是整体的数学,而不是分散、孤立的各个分支;是广泛应用的数学,而不仅是象牙塔里的严密体系;是与其他科学密切联系的数学,而不是纯而又纯的抽象理念。

(三)知识的默会性

对群体活动与数学课程的考察,有助于我们把握数学文化表现形态的总体脉络,但数学文化必须通过学习才能被学生领悟。由于文化由外显的和内隐的行为模式构成,作为文化的数学与作为科学的数学在学习过程中也有所不同。

科学的数学追求完全确定的知识、精确的运算与严密的推理,追求用简单且抽象的语言来描述客观世界的规律。在客观主义知识观、科学观的支配下,人们过多地强调知识的客观性、非个体性、完全的明确性等等,出现了“人的隐退”现象。

其实,知识并不是孤立的、静态的、纯形式逻辑的,而是常常与人休戚相关的。“自然科学与人文科学一样,充满着人性因素,科学实质上是一种人性化的科学。”[6]在国际哲学界以创立意会认知理论(Tacit Knowing)而闻名的英国物理化学家和哲学家波兰尼从“我们所知道的要比我们所能言传的多”出发,把人类的知识分为明言知识与默会知识。明言知识指以书面、图表和数学公式加以表述的知识,默会知识是指未被表述的、我们知道但难以言传的知识,例如,我们在做某事的行动中所拥有的知识。波兰尼认为:“在非言传的‘意会’认知层面,科学与人文是相通的。”[7]

既然这种默会知识藏于内心,无法用明确的规则来表达,那么该怎样学习传授呢?波兰尼指出:“通过了解同样活动的全过程,我们才能了解另一个人的内心东西。”基于高中学生的文化认知特点和数学学习的实际情况,我们可以通过以下方式突出数学知识中的“人性”。

1.客观对象“数学化”。弗赖登塔尔曾言:“我们的教育应当为青年人创造机会,让他们通过自己的活动来获得文化遗产。”对学生而言,“学一个活动的最好方法是做。”[8]通过“做”数学,“学生和学生之间的相互作用真实地反映了在数学课堂中形成的文化:具体的教师、具体的学生以及正在形成的具体的‘数学化’。”

2.数学解题“拟人化”。从文化的角度审视数学解题过程,它是策略创造与逻辑材料、技巧性与程式化的有机结合,是一个有序结构的统一体,它与数学的特征相一致,隐含着数学家的思维方式,从而使解题超越了数学思维活动本身的范围,进一步延伸到文化道德、思想修养的素质范畴。G·波利亚的《怎样解题》中包含了程序化的解题系统、启发式的过程分析、开放型的念头诱发及探索性的问题转换等,字里行间不时地涌现出诸如“如果你有一个念头,你是够幸运的了”“好的题目和某种蘑菇有点相似,它们都成串生长”“呆头呆脑地干等着某个念头的降临”这些平和的话语,使读者不知不觉间置身其中,一些解题外的感受也油然而生。优秀学生对解题感兴趣,更多时候像在做游戏,说明数学习题中蕴涵着很多人性化的品质──题中寻趣,在于换个角度看问题。

参考文献

[1]莱斯利·P·斯特弗,杰里·盖尔.教育中的建构主义[M].上海:华东师范大学出版社,2002.120.

[2]刘振天,杨雅文.当代知识发展的不平衡与教育的战略选择[J].现代大学教育,2001,(4):15.

[3]孙小礼,邓东皋.数学与文化[M].北京:北京大学出版社,1990.149.

[4]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2001.5.

[5]张永春.数学课程论[M].南宁:广西教育出版社,1996.184.

篇(3)

二、培养通透的数学教学文化感悟,让学生体验其美

数学是理性思维和想象的结合,其本身就是一种美的体现,体现在对称性、简洁性等诸多方面。如在研究三角形、函数时,会更加关注等腰三角形、二次函数的轴对称性,这体现了轴对称的美;在研究四边形时,会更加关注平行四边形的中心对称性,这体现了中心对称之美;对于最完美的图形———圆来说,我们则更加关注垂径定理……这种对称之美让学生感受到学数学不再是抽象的、枯燥的,而是一种美的享受和体验。数学的简洁美最直接地表现在数学符号上,它是全世界的通用语言,每个人都能从简单的表达式中读出其确切的含义。比如一些常见的数学符号及公式定理:圆周率π,三角函数sin,三角形的面积公式S=12ah,勾股定理a2+b2=c2等。这些符号公式言简意赅,学生可以从简洁的符号语言中明白其中的道理,体验到数学的简洁之美。数学之美包罗万象,不同的问题从不同的角度体现出一定的数学之美。比如列方程解决问题,要从复杂的问题中抽象出一个简单的等式,这既有抽象之美,又有简洁之美,还有逻辑之美。教师应着重引导学生去体验和感受这些美。

三、孕育严谨的数学教学文化精神,让学生改革其新

数学教学文化具有理性思考、客观认知、不断追求的精神,而这种精神的孕育就是在课堂上、在师生双边的教学活动中。在教学《三角形的内角和》一课时,笔者先设计了“量一量”这个环节:让学生利用量角器测量一个三角形的三个内角度数。通过测量学生发现,三角形三个内角之和大致在180°左右,这使得学生初步认识到三角形的内角和可能是一个定值,但是还难以达成一致。笔者接着让学生进行“拼一拼”:将三角形的三个内角按照顺序拼在一起。学生经过“拼一拼”就会发现三个内角组成一个平角,这使得学生在活动中巩固了对“三角形内角和为180°”的认识。但这样同样具有局限性,于是,笔者顺势引导学生进行推理证明:过一个顶点做对边的平行线,利用内错角互补的原理,将另外两个内角等量转换出来,使得三个内角成为一个平角。“拼一拼”“量一量”的教学环节目的是让学生初步感受到三角形的内角和为180°,同时也让学生对此操作的局限性有一定的认识:操作的粗糙性,测量和拼图总会存在一定的误差,严密性不足;操作的特殊性,测量和拼出某一个三角形的内角和180°这一结论难以推至其他三角形,普遍性不足。因此,适时恰当的推理证明可以有效提高学生的数学学习积极性,培养学生的改革创新的精神及思维的严谨性,并使这些逐步内化为学生的能力和习惯。

篇(4)

二、充分将数学文化和小学数学教材有机结合

在小学数学课本中,为了能够让小学生提高对数学的兴趣,其中往往会增设部分与数学有关的趣闻等内容。小学数学教师利用一个奇妙的故事首先吸引学生的好奇心,再一步步引导学生进入数学世界,在知识的海洋中探索知识。这不仅提高了学生的数学兴趣,还锻炼了学生的思维能力。在小学数学教学中蕴含着许多的数学历史,以数学历史为主线可以让学生零散的知识点联系起来。在整个数学教学过程中,归纳、类比等都是较为常见的数学方法。教师在进行课前备课时,要充分理解教材编纂的用意,要运用最恰当的数学方法培养小学生良好的数学文化素养。例如,在苏教版小学数学教材中《认识万以内的数》中就增设了算盘的相关内容,介绍了算盘是我国古代劳动人民发明的一种计算工具,在2600多年以前我国人民就利用算盘进行记数和计算,并且陆续传入日本、朝鲜等国家,这不仅加深了小学生对数学文化的认识,还潜在地提升了小学生的民族自豪感。又如,教师在讲《数一数》过程中,可以利用图片来激发小学生的学习兴趣。教师拿出一张动物园的图片,让学生进行归纳,图片中有多少种小动物,都有哪些种类的小动物,让小学生发言,在发言的过程中对回答得又快又准确的小朋友进行及时的表扬。在结束课堂教学进行总结时,教师告诉学生在进行数数时,可以从左往右数,也可以从右往左、从上到下或从下到上数,这样在数数的过程中就不会有遗漏了。整个课堂小学生不仅认识了各种小动物,还初步培养了学生的观察能力和学习数学的意识。

三、利用丰富的教学活动展现数学文化

对于小学生来说,增设丰富的教学活动能够较好地调动他们的课堂积极性,提高他们对数学的兴趣。教师通过了解小学生的兴趣爱好,发现小学生的兴趣导向,可以有针对性地开展教学活动,从而顺利进行数学教学。各种数学小游戏、数学趣闻故事、智力游戏和竞赛都是小学生感兴趣的活动。这些教学活动的开设都要结合小学生的身心特点,必须具有较大的吸引力,能够让学生在积极参与的过程中学习到数学知识,完成教学任务。如在苏教版第三单元《分一分》中,教师可以准备一些七巧板等,通过比赛的形式看哪位小朋友能够最快、最好地将不同形状的七巧板进行分类,通过分类的小游戏让学生认识到如何有规律地进行分类。又如小学数学教师播放《拍手儿歌》让学生认识前、后、左、右,然后提问“你前后左右的同学都是谁”,在这个过程中不仅能够保证教学任务的完成,还培养了小学生合作意识。

四、考试内容中融入数学文化

在考试内容中融入数学文化不仅能够较好地反馈学生数学知识的掌握程度,也能够进一步升华小学生对数学文化的理解。在考试内容设计的过程中,要摒弃传统的对数学知识点的考查,更多的是促进学生在思维能力方面的提升,帮助学生利用数学知识解决实际生活中的问题。在设计考试内容时,教师应该充分考虑将数学文化融入其中。比如在试卷中设计这样一道题:“小明帮助妈妈去买菜,白菜每斤2元4角,妈妈要求小明买两斤,小明应该付多少钱?”这种贴近生活的考试题目一方面可以反映出学生对知识的掌握程度,另一方面又培养了学生的生活能力。

篇(5)

2武术文化在学校教育中的价值

武术文化在学校教育中的价值主要从武术文化对学生的道德修养、意志品质和民族精神这三个方面体现出来。

2.1对学生道德修养的培养

中华民族传统文化博大精深,儒家作为中国传统文化的代表,对武术文化的传承和发展起到很大的促进作用。武术文化作为传统文化的一部分,受儒家学说的影响,把个人的道德修养放在很高的地位。我国以“礼仪之邦”著称于世,在几千年的发展过程中,中华民族以厚德载物、自强不息、尊师重道、谦虚礼让、勤劳节俭、重义轻利、重信守诺、积极进取等美德为历代习武之人遵守和传承。为此,在学校教育中,教师在传授武术技术的同时,重视用传统武德教育学生,提高学生的个人修养,对学生进行爱国主义教育,提高学生的民族自尊心和自信心,有利于学生自信、自立、自强品德的形成。

2.2对学生意志品质的培养

日趋激烈的竞争,带来了巨大的压力,由于学校教育自身存在的不足,不能及时的教会学生如何调节压力直面竞争。我国的家庭中,独生子女越来越多,从小娇生惯养,导致他们受挫能力差,心理素质差,面对竞争和压力容易逃避。在学校教育的过程中,通过对武术套路的学习不仅能增强学生的体质,发展学生的协调性、灵敏性和柔韧性,而且在学习武术的过程中能磨练学生的意志,使学生学会吃苦耐劳,不惧辛苦。教师在教授学生武术文化的过程中,应多给学生讲解古代侠义人士在面对苦难时所受的屈辱和痛苦,让学生明白面对逆境要学会百折不饶,面对竞争和压力时要保持良好的心态,从这些历史人物身上学会如何做人如何解决困难,通过对武术和武术文化的学习,有利于提升学生的意志品质,学会助人为乐,尊重对手,严于律己、宽以待人,形成良好的意志品质。

2.3对学生民族精神的培养

同志在党的十六大报告中指出:“民族精神是一个民族赖以生存和发展的精神支柱,一个民族没有振奋的精神和高尚的品格,不可能自立于世界民族之林。在几千年的历史发展过程中,中华民族形成了以爱国主义为核心的团结统一,爱好和平,勤劳勇敢,自强不息的伟大民族精神。”一个民族的民族精神“重在弘扬、重在培育”,但在弘扬和培育民族精神的过程中尤其要处理好继承和创新的关系。继承是前提,创新才是根本,是弘扬和培育民族精神的永恒动力。中华民族精神是与时俱进的精神,是历史性和时代性的统一,继承与创新的统一。它始终是发展的、前进的。中华民族精神内涵丰富多彩,在这种民族精神的指引下出现了一批具有先进思想并顽强奋斗的杰出人物,他们高扬时代精神为实现伟大的中国梦而不断探索。武术文化继承了中华民族传统文化的精髓,凝聚了以爱国主义为核心的中华民族精神。在学校教育过程中,向学生讲述民族精神中的历史人物和典故,对学生进行民族精神教育,提高学生的素养,有利于传承民族文化和民族精神。

3学校教育传承武术文化的构想

3.1建立健全武术文化教学体系,转变教学思路和教学理念

任何一种文化的传承和发展都离不开教育,武术文化的传承和发展同样如此。武术文化真正要传承发扬光大,必须把武术和武术文化纳入到正规的教育体系中。当今武术文化发展暂时处于落后状态,究其原因主要是因为学校教学思路和教育理念的落后。我们必须以积极的心态面对现实,要不断的更新自己的教育观念、知识体系以进行及时补充和更新,并对原有知识进行整合,还需要调整自己原有的教学思路和方法,使自己的教学节奏和教学模式适应新的教育形式。不能再用单一、枯燥的教学模式让学生机械的学习套路,而忽略武术的技击性。在课堂中,教师应多讲武术的技击原理,攻防方法,使学生在学习武术的过程中不仅身体素质得到锻炼,还能传承武术文化。

3.2营造良好的校园文化氛围

利用学校广播、黑板报、橱窗、文化广场、食堂等公共场合作为媒介,对武术文化进行广泛的宣传,有利于在全校范围内形成良好的校园武术文化氛围,有利于武术文化在校园的传播。通过多媒体让学生观看武侠电影,用广播宣传武术赛事介绍武术文化的历史,用艺术节进行武术套路表演和宣传,开展与武术有关的知识问答。学校运动会、课余体育活动、体育文化节、体育训练队、班级体育活动和各种体育竞赛等这些活动的开展,都可以让学生在校园中充分了解武术和武术文化。其中,武术协会作为武术爱好者互相学习和交流的地方,在营造良好的校园武术文化氛围上发挥了很大的作用。武术协会定期进行武术训练和武术表演,可以普及武术文化知识,传授武术技术,使武术在学生尤其是对武术有兴趣的学生群体中得以不断传播和发展。学校组织学生参加全国性质的武术比赛,不仅可以得到学习和提高,而且能加强武术运动在学校体育中的地位,促进武术在学校教育中的发展。

篇(6)

(二)教师应该因材施教在文化创意产业发展得背景下,教师对于学生的美术学教学的引导方式是多重多样的,但是最重要的是,教师要善于因材施教,对于不同的学生实行对其最有效的教学方案,教师要注重培养学生的对于美术学的创新能力和审美能力,定期检察学生的美术作品,认真分析他们存在的问题,然后认真监督他们认识自己的不足,并且加以修改,尽量确定学生正确的学习方向,重点培养学生的正确的审美能力和优秀的创新能力和以及实践能力,对其作品进行点评,并且根据学生的具体情况制定适合学生发展的学习方式。此外,教师应该加强与学生的沟通交流,及时了解学生的学习情况,了解他们在学习过程中出现的问题和困惑,积极的帮助学生去解决这些问题,把自己当做学生的知心朋友,能够完全走进学生的内心世界,了解他们,理解他们,然后根据他们的具体情况,掌握他们性格以及兴趣和风格,从而引导每个学生走自己的风格路线,积极创新,让每一个学生都能够创造出属于自己的,有创意的美术风格。每个学生都有自己的性格和行事方式,教师应该尽量让自己的教学方式灵活,保证每个学生都可以自由发展自己的个性,从而更加有效的学习美术,提升自己的创新思维。

(三)培养学生对于美术学基础课程的兴趣美术学基础课程是一个学生学好美术的根本,所以教师一定要努力提升学生对美术学基础课程的兴趣。首先,教师应该让自己的课堂活跃起来,美术学基础课程不一定要上的那么枯燥,教师可以让学生在课堂上积极讨论发挥自己的观点和见解,这样不仅能提升学生的学习兴趣,而且能够培养学生形成正确的价值观。或者教师也可以通过野外写生的方式来上美术学的基础课程,这样,学生既可以享受到学习的乐趣,还可以高效学习。

篇(7)

二、中世纪宗教语境中的绘画

中世纪处于古典文明的结束与复兴之间,中世纪艺术属于基督教艺术,这时的艺术,开始了从“哲学情怀”到“宗教情思”的过渡的大语境。此时艺术变得崇高、神圣,它不注重客观世界的真实描写,而往往以夸张、变形等手法表现精神世界。中世纪审美观发生了变化,艺术品不再模仿现实社会,而是注重表现基督教的威严和神秘。在人物塑造上,人体一般直立,张开双手,但是还是有罗马艺术的影子。新兴资产阶级力图复兴古典文化,在造型艺术方面,以写实传真为首务,开创了基于科学理论的表现技法,如人体解剖和透视法等。汉魏对图宣讲的传统在佛教传播中,将佛教主题与中土的手卷画形式有机结合;正如先秦许多绘画是为讲述而存在的,这些画卷也是为演讲者而创作。佛教艺术家的任务是在纸、绢上描绘佛教人物的神变,变文的讲解者在讲唱时即以此作为一种图解(在这些画卷上一般还有简要的文字提纲),按图讲说。图绘再次成为口头叙事的一个重要辅助手段。

三、现代绘画中与文学语境的同步发展

纵观世界艺术史,文学语境与绘画语境始终在同步发展。高明的画家往往能够在意境中把握事物独特的艺术特征和表现自己深刻而独到的人生感悟。这种意境是画家自身修为的体现,受画家的文学艺术修养的制约。文学艺术修养是难以琢磨的,它来源于艺术家心灵对世界和人生的独到感受。绘画中的文学性主要表现在这样两个方面:

篇(8)

二、如何在信息化条件下进行小学数学教学

工欲善其事必先利其器,教师若想充分利用信息化的成果,必然努力提升自己的计算机操作能力,熟悉常用数学软件,了解最新信息产业动态,将科学成果以最快的速度应用于日常生活。

(一)设备教学

如今,多媒体教学在各校已较为普遍,教学实践因此获益颇多。多媒体教学为原本“死气沉沉”的课堂增添了几分激情与活力,更关键的是,课堂效率大大提高,学生学习小学数学的热情更加高涨。例如,在中学数学教材中讲立体几何这一部分,很多学生空间想象能力极差,学习起来甚是吃力,不能够对涉及立体几何的知识有相对明晰的把握,而立体几何对于教师来说,由于没有合适的足够的模型,讲解的难度也比较大,尤其是个别题目的讲解。从前教学的棘手难题,如今有了多媒体的帮助,可以说是迎刃而解。无论遇到何种题目,3D模型均可以做到,学生也在一次次的演示中,逐步建立起空间想象能力。这种教学方法能够使学生在学习的过程中,紧密联系日常生活,使学生在生活中感受到数学知识的重要性,同时有利于学生理论联系实际,激发学习兴趣。

(二)在线教学

现如今,各种网络教学网站充斥互联网。虽然水平参差不齐,但是,巨大的市场潜力无疑证明了潜在的趋势性。网络教学以其自由度高,不受时间与空间的限制,以及不必担心口音、语速问题而导致的听课效果欠佳等显著优势而受到广泛关注。数学教师有专业优势,有丰厚的经验完全可以建立专门的教学网站,网站内容主要涵盖两个方面:1.课堂内容的提炼升华,课后习题的补充及详细讲解,以便于学生预习及复习。2.课堂知识的拓展,上传名师教学视频,补充学习背景资料。比如,定理研究中的小故事,数学家的逸闻趣事等等,加深对课堂知识的了解,增加学生对数学的学习兴趣。更为关键的是,通过在线网络学习可以增强学生许多在课堂不能获取的能力,现略举几例:(1)利用网络获取知识的能力,培养学生独立解决问题的习惯,教会其解决问题的方法。(2)利用电脑构建数学模型,解决数学问题的能力,可以设置专栏教给学生如何用专业的软件构建数学模型。(3)创造性思维,勤于钻研。通过数学家的逸闻趣事,潜移默化培养学生发现问题解决问题的能力。

(三)课堂教学

数学本身就是一门逻辑性和理论性非常强的科目,学生在学习的过程呈现出“死气沉沉”的局面,不仅会影响学生学习的情绪,还直接影响着数学教学质量。倘若我们能够充分利用多媒体的音、像、动画,增加课堂教学的冲击力,甚至营造一种独特的教学氛围,那么学生必然改变对数学的传统看法。只要能够扭转学生的观念问题,那么他们就能从根本上喜欢数学,爱上数学,那样他们学习数学才能逐渐有了自己的方法,养成好的习惯,最终提高数学成绩。

篇(9)

二、图形教学中的渗透

“图形与几何”是小学阶段重要的学习内容。无论从认识各种图形的特征到探究面积、体积的计算,无处不体现化归的思想方法。尤其在探索面积的计算公式时,渗透化归思想方法是极好的机会。在图形面积计算方法的学习上,北师大教材是分三次安排的:第一次安排在三下学习长方形、正方形的面积计算;第二次安排在五上学习平行四边形、三角形和梯形的面积计算;第三次安排在六上学习圆的面积计算。我们知道长方形面积的计算是平面图形面积计算的起始课,是以后学习平行四边形、三角形、梯形及圆等平面图形面积的基础,而平行四边形面积计算又是学生探究图形面积计算方法的节点,在这个节点上,化归思想方法得到很大体现。所以在探究平行四边形面积计算方法的教学中,引导学生从已有的知识和经验出发,通过数、剪、拼等一系列操作活动把平行四边形转化为我们已知的长方形或正方形,从而很容易的得出平行四边形面积的计算方法。教学中,要通过追问:你是怎样把一个平行四边形拼成了一个长方形?怎么剪的?为什么要拼成一个长方形?什么变了、什么没变?从而使学生明白:沿着平行四边形的任意一条高剪开都可以拼成一个长方形,拼成的长方形和原来的平行四边形相比,形状虽然变了,但面积没变。这样就可以化新为旧、化未知为已知。有了这部分化归方法的渗透,后面的三角形、梯形、圆面积计算方法的探究过程就会水到渠成。从而让学生真正体会到数学学习的成就感,享受数学探究的乐趣。

篇(10)

我想这个不好搞也许是数学教育搞错了,数学教育喜欢深挖,直到把人挖得精疲力竭为止。其实数学不是那么可怕,只是我们把有意思的部分选择性忽略罢了。

我一直想一件事情,就是把生活数字化,这其实是可能的,但是我没有掌握。本身我们生活的世界就是一个数学世界,只是很多东西我们尚未数字化而已。比如我们的收入和支出,比如我们的家庭用具,再比如我们做选择考虑的利益取向。这些都可以用数学去描述。我有时想起来觉得这个事情很有意思,只是常常又觉得无从下手,因为不是所有的数字都会在行为的当下立马呈现出来,也不是呈现出来就都很重要,而且你必须要主动去记下来,可是这又极其的麻烦,时间长了确实可以做出很漂亮的表,但是又觉得得不偿失。不过我们生活在数学世界的一个佐证是,计算机的世界就是由1和0两个数字构建起来的虚拟空间。

而实际上数学家是发现了很多有意思的数学存在的,比如黄金分割数以及迷宫、魔方,等。在发现这些东西的时候,数学家一点也没有感觉到枯燥乏味,而是充满发现一个未知领域的兴奋。

我认为数学除了可以分为代数、几何、拓扑、混沌、罗曼几何、集合、概率、虚数、三角几何、数论……这些数不胜数的而且无穷尽的分类之外,还可以用新的分类,便于建立对数学的兴趣。

那就是:运算系统、对应法则系统、数的系统、逻辑系统。

运算法则系统就是加、减、乘、除。这是最基本的系统,和逻辑没有关系,只有对错之分。但是掌握运算法则系统很简单,只要你知道加减乘除就可以,而实际上在做题时算错很少是直接由运算系统没有掌握引起的,就像5乘以5很少有人会算错,错是错在逻辑没有理清楚。

逻辑系统包括:同一律、排中律、矛盾律、充足理由律,四条基本逻辑规律。其实还不是如此简单,因为具体运算是数字的相互作用,不是概念的相互作用。其实逻辑系统包括在数学分类之中,比如三角函数的逻辑系统、虚数的逻辑系统、微积分的逻辑系统、数论逻辑系统、混沌逻辑系统……每个系统都是封闭的,有各自的逻辑起作用。很多时候说做错题了,其实重要原因就是逻辑系统没有掌握好,那么逻辑系统有没有掌握好的标准是什么呢?那就是对应法则。

我觉得一个人掌握数学的高低最根本的就是他能掌握多少对应法则,以及其相互关系。比如:一次函数、二次函数、三角函数……,每个函数都有类似的结构,但是其演化出来的对应法则随着参数的变化是无数多个的,比如最基本的y=ax+b,光是a就有无数种可能,每个可能都是一条对应法则。

这样,当看到数学成绩很悲催的时候不要觉得是马虎造成的,马虎是运算系统掌握出了错,比如5乘以5得数算成26,一般出错是因为逻辑含糊导致紧张才出现运算问题,因为基本运算在小学4年级基本就没问题了。

数学对于现代生活的重要性不是体现在运算上,而是理解上。确实,你不需要计算那么复杂的微积分,但是当你看到股票涨跌的时候,是通过数轴上的曲线领悟的,而且不光是看到表面还要看到曲线背后的本质,是什么因素影响着曲线变化?当然,各种分析可能纷繁复杂,多数是无效信息,你还得必须自己分辨出哪些信息是有用的,哪些信息是无用的,甚至自己判断信息推断结果,也就是每个因素对股票影响的权重是不一样的。那么你能说数学毫无用处吗?当然不是。

还是拿股票曲线为例,很多人热衷于神秘主义,但是有限,其中最显著的是波动理论,确实股票是很像水波,但是你如果看到的不是波纹而是风,甚至不是风而是地震,那么波动就不是那么可怕的了。

股票曲线的规律确实很有意思,最少它绝不可能是一个自变量决定的,因此精确预测非常困难,数学中你得到一个确定的结果需要所有其他未知数确定,只要有一个未确定,那么这条曲线就是一条平滑和连续的曲线,而股票呈现的绝不是平滑和连续的曲线,可见其未知数是很多的,哪能精确计算呢?所以看表面不如看其背后的参与者,涨跌、买卖、庄家和散户、政策和现状……这些才是股票规律的决定因素。

除了股票,你能看到的图表真是太多了,如果不学一点数学是不可能的。不说那些统计数据,就说做生意想做大也必须要有数学敏感。所以现实中的数学不是你能掌握多少条对应法则,而是你需要理解多少现实背后的本质,这些本质影响着你能不能抓住重要的,而不是为那些不重要的东西搞得垂头丧气。

上一篇: 职称论文农业 下一篇: 数学专业论文
相关精选
相关期刊