时间:2023-03-16 15:24:50
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇光通信论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
早在30多年前,自由空间光通信曾掀起了研究的热潮,但当时的器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素却阻碍了它的进一步发展。与此同时,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信在20世纪80年代掀起了热潮,自由空间光通信一度陷入低谷。然而,随着骨干网的基本建成以及最后一公里问题的出现,以及近年来大功率半导体激光器技术、自适应变焦技术、光学天线的设计制作及安装校准技术的发展和成熟,自由空间光通信的研究重新得到重视。
在国外,FSO系统主要在美英等经济和技术发达的国家生产和使用。到目前为止,FSO己被多家电信运营商应用于商业服务网络,比较典型的有Terabeam和Airfiber公司。在悉尼奥运会上,Terabeam公司成功地使用FSO设备进行图像传送,并在西雅图的四季饭店成功地实现了利用FSO设备向客户提供10OMb/s的数据连接。该公司还计划4年内在全美建设100个FSO城市网络。而Airfiber公司则在美国波士顿地区将FSO通信网与光纤网(SONET)通过光节点连接在一起,完成了该地区整个光网络的建设。
目前商用的FSO系统(见图1)通常采用光源直接输出、光电探测器直接耦合的方式,这种系统有以下几点缺点:
(l)半导体激光器出射光束在水平方向和垂直方向的发散角不同,且出射光斑较粗,因此我们需要先将出射光束整形为圆高斯光束再准直扩束后发射,这样发射端的光学系统就较为复杂,体积也会相应增大。
(2)在接收端,光斑经光学天线会聚之后直接送入PD转化为电信号。通常,我们需要提供点到点的,双向的通信系统,这样,FSO系统的每个终端都包括了激光器,探测器,光学系统,电子元器件和其中有源器件所需要的电源。这种系统的体积通常比较大,重量大,成本也比较高。从FSO系统终端的内部结构图中可以看出,完成一个简单的点到点的链路需要6个OE转换单元。随着人们对带宽的需求越来越高,PD的成本也越来越高,6个OE转换单元大大增加了成本闭。
(3)FSO终端设备一般安装于楼顶,如果终端中含有大量的有源设备,会给我们的安装带来了很多不方便。
(4)系统的可扩展性很小。如果用户所需要的带宽增加,那么封装在一起的整个FSO系统终端都需要被新的终端取代,安装新设备的过程需要再次对准,整个升级过程所需要的时间很长,给人们带来巨大的损失。
1.2基于光纤耦合技术的FSO系统
光纤输出、光纤输入的自由空间光通信系统(见图2),激光器输出的高斯光束耦合至光纤再经准直出射,传输一定距离后,光束通过合适的聚焦光学系统聚焦在光纤纤芯上,沿着光纤传输后经PD接收还原信号。这样我们通过在发射和接收端都采用光纤连接的方式,只需要在楼顶放置光学天线系统,而将其他的控制系统通过光纤放置于室内就可以实现点到点的连接,整个系统结构简单,易于安装。
这种新型的FSO系统具有以下优点:①减少了不必要的E一O转换,一条链路现在只需要2个OE接口即可,大大降低了成本。②光学系统较为简单,光纤出射的光束一般为圆高斯光,不需要整形,简化了光学系统,减小了体积,易于安装。③易于升级及维护,当用户的带宽增加时,我们只需要对放置在室内的系统进行升级即可,免去了复杂繁琐的对准过程。④基于光纤耦合的空间光通信系统能够很好的与现有的光纤通信网络结合,利用现有的比较成熟的光纤通信系统中的器件如发射接收模块,EDFA和WDM中所用到的复用器和解复用器。⑤可以与光码分多址复用技术(OCDMA)相结合,构成自由空间OCDMA系统,进一步扩大系统的带宽。
对于一个基于光纤耦合技术的FSO系统而言,以下2个因素必不可少:①体积小,重量轻的光学天线系统一个最佳的光学天线的设计首先必须使尽可能多的光耦合进单模光纤,获得最大的耦合效率;其次要能通过粗跟踪系统测出入射光的角度;另外,必须满足尽可能高的通信速率和稳定性。②性能良好的跟踪系统要使光学接收天线接收到的光能够有效的耦合进纤芯和数值孔径都极小的单模光纤,我们必须为系统加上双向的跟踪系统。
2国内空间光通信系统研究现状和进展
我国卫星间光通信研究与欧、美、日相比起步较晚。国内开展卫星光通信的单位主要有哈尔滨工业大学(系统模拟和关键技术研究)、清华大学(精密结构终端和小卫星研究)、北京大学(重点研究超窄带滤波技术)和电子科技大学(侧重于APT技术研究)。目前已完成了对国外研究情况的调研分析,进行了星间光通信系统的计算机模拟分析及初步的实验室模拟实验研究,大量的关键技术研究正在进行,与国外相比虽有一定的差距,但近些年来在光通信领域也取得了一些显著的成就。
2002年哈尔滨工业大学成功地研制了国内首套综合功能完善的激光星间链路模拟实验系统,该系统可模拟卫星间激光链路瞄准、捕获、跟踪、通信及其性能指标的测试。所研制的激光星间链路模拟实验系统的综合功能、卫星平台振动对光通信系统性能的影响及对光通信关键单元技术的攻关研究有创新性,其技术水平为国内领先,达到国际先进水平,目前该项研究已进入工程化研究阶段。上海光机所研制出了点对点155M大气激光通信机样机,该所承担的“无线激光通信系统”项目也在2003年1月份通过了验收,该系统具有双向高速传输和自动跟踪功能,其传输速率可达622Mb/s,通信距离可以达到2km,自动跟踪系统的跟踪精度为0.1mrad,响应时间为0.2s。中科院成都光电所于2004年在国内率先推出了10M码率、通信距离300m的点对点国产激光无线通信机商品。桂林激光通信研究所也在2003年正式推出FSO商品,最远通信距离可达8km,速率为10~155M。武汉大学于2006年在国内首先完成42M多业务大气激光通信试验,2007年3月又在国内率先完成全空域FSO自动跟踪伺服系统试验,这为开发机载、星载激光通信系统和地面带自动目标捕获功能的FSO系统创造了条件。另外在光无线通信系统设计、以太网光无线通信、USB接口光无线通信、大气激光传输、大气光通信收发模块和信号复接/分接技术等方面都取得了多项成果。
3自由空间光通信技术的应用与未来发展趋势
自由空间光通信和其他无线通信相比,具有不需要频率许可证、频率宽、成本低廉、保密性好,低误码率、安装快速、抗电磁干扰,组网方便灵活等优点。正是由于这些特点,FSO系统正受到电信运营商越来越多的关注与青睐。对于有线运营商,FSO可以在城域光网之外提供高带宽连接,而其成本只有地下埋设光缆的五分之一,而且不需要等6个月才能拿到施工许可证。对于无线运营商,在昂贵的E1/T1租用线路和带宽较低的微波解决方案之外,FSO在流量回输方面提供了一个经济的替代选择。在目前这个竞争激烈的环境中,FSO无疑为电信运营商以较低的成本加速网络部署,提高“服务速度”并降低网络操作费用提供了可能。而且FSO技术结合了光纤技术的高带宽和无线技术的灵活、快速部署的特性,可以在接入层等近距离高速网的建设中大有用武之地,在目前许多企业和机构都不具备光纤线路,但又需要较高速率(如STM-1或更高)的情况下,FSO不失为一种解决“最后一公里”瓶颈问题的有效途径。
FSO产品目前最高速率可达2.5G,最远可传送4km,在本地网和边缘网等近距离高速网的建设中大有用武之地,主要应用于一些不宜布线或是布线成本高、施工难度大、经市政部门审批困难的地方,如市区高层建筑物之间、公路(铁路)两侧的建筑物之间、不易架桥的河流两岸之间、古建筑、高山、岛屿以及沙漠地带等。另外,FSO设备也可用于移动基站的环路建设、场所比较分散的企业局域网子网之间的连接和应急通信。对于银行、证券、政府机关等需要稳定服务的商业应用来说,FSO产品可以作为预防服务中断的光纤备份设备。
当然,FSO在应用过程中也存在一定的瓶颈,主要是会受到大气状况或物理障碍的影响,比如其光束在传输中极易受大雾等恶劣天气,物理阻隔或建筑物的晃动/地震的影响。在恶劣的天气下,光束传输的距离会下降,从而降低通信的可靠性,严重的甚至会造成通信中断。
尽管存在不少问题,但自由空间光通信的技术优势更为明显,其自身的特点决定了在一定的环境下,它可以最大发挥自身优势,比如可以用于不便铺设光纤的地方和不适宜使用微波的地方;又由于光纤成本过高,用户无法在短期内实现光纤接入,而他们却渴望享受宽带接入带来的便利,结合我国现阶段宽带网络的实际情况——许多企业和机构都不具备光纤线路,但又需要较高速率(如STM-1或更高),FSO不失为一种解决“最后一公里”瓶颈问题的有效途径。FSO系统解决了宽带网络的“最后一公里”的接入,实现了光纤到桌面,完成语音、数据、图像的高速传输,拉动了声讯服务业和互动影视传播,实现了“三网融合”,有利于电子政务、电子商务、远程教育及远程医疗的发展,并产生了巨大的效益,具有广阔的应用领域和市场前景。
参考文献:
[1]ZHUX,KAHNJM.Freespaceopticalcommunicationthroughatmo-sphericturbulencechannels[J].IEEETransactionsonCommunications,2002,50(8):1293-1300.
[2]蒋丽娟.无线光通信技术及其应用[C].全国第十二次光纤通信学术会议论文集.2004,10.
[3]张英海,霍泽人,王宏锋等.自由空间光通信的现状与发展趋势[J].中国数据通信,2004,6,(12).
[4]程莉.自由空间光通信技术[J].现代电子技术,2004,27,(5).
不同像差单独作用时
先来考查倾斜、离焦、彗差及像散这4种像差对系统可靠性的影响。把表1的数据代入(13)式,并对倾斜、离焦、彗差及像散的像差进行归一化处理,即令W1x,W20,W31,W22分别除以λ,以此作为自变量,依次把(9)~(12)式代入(13)式进行运算,并对所得误码率进行以10为底的对数变换,得到图1和表2所示的像差与误码率关系。
图1横坐标表示归一化的像差系数,纵坐标是取对数后的误码率。从图看到,对于星间相干光通信接收系统其可靠性容易受各种像差的影响。从图1两坐标轴的起点和表2第1列数据可以看到,在表1设定的参数下,在没有像差的影响的情况下,系统最小误码率接近10-8;当有像差时,从图中4条曲线并比较表格第2~5行的数据,可以看到,接收系统的误码率随着像差的增加而递增,其中倾斜像差对接收系统误码率的影响最大,离焦和彗差相当,而像散的影响最小。若以εBER≤10-6为标准,系统能承受的最大倾斜像差W1x仅为0.2λ,最大离焦W20及彗差W31大约为0.32λ,最大像散W22不超过0.41λ。可能的原因是:系统一旦有倾斜像差,信号光束将完全偏离焦点,它与本振光束所形成的有效混频区域锐减,从而混频效率急降,使误码率快速攀升。离焦像差将使信号光束的聚焦光斑沿光轴在焦点前后变动,从而改变焦点处的光斑质量,影响它与本振光斑在焦点处的混频效果,使误码率上升;与倾斜像差导致的混频面积减少相比,这种信号光束聚焦特性的劣变是温和的,所以离焦像差对系统可靠性的影响比倾斜像差小。另外,考虑到接收光学系统已经进行过高阶像差的优化设计,且采取了抗扰动措施,所以彗差与像散的影响将更小,这也从侧面说明优化设计后的系统无需考虑更高阶像差的影响。
像差间的相互校正
根据文献[7],倾斜像差与彗差之间、离焦与像散之间具有部分校正效应,接下来将进行比较分析。此时把(11)式改写成(14)式,而(12)式改写成(15)式。把(14),(15)式分别代入(13)式,并采用归一化像差系数,令W31/λ和W22/λ分别取:0.00,0.25,0.50,0.75,1.00,得到图2,3和表3,4所示结果。
图2表示倾斜像差与彗差之间的校正效果。以εBER≤10-6为标准,当倾斜像差W1x/λ=0,从纵坐标轴上看,彗差W31/λ=0.50时,系统的误码率接近10-4,已超出标准2个数量级;当W31/λ=1.00时,误码率更是接近10-2。所以,若对彗差不进行校正,随着其数值的增大,误码率呈指数增长。但是,从图2也可看到,对于归一化的彗差W31/λ,可以通过调整归一化的倾斜像差W1x/λ来部分校正,从而降低系统误码率,提升系统可靠性。譬如,同样是W31/λ=0.50,但只要调整W1x,使W1x/λ大致在-0.34~-0.24之间,则可以维持误码率εBER≤10-6。不仅如此,从图2来看,即便W31/λ=1.00,只要W1x/λ大致在-0.44~-0.66之间,误码率依然可以小于等于10-6,而此时若不进行校正,误码率已接近10-2。因此,当W31/λ≤1.00时,为了保证系统误码率εBER≤10-6,通过调整W1x,倾斜像差与彗差之间能实现部分相互校正。
表3给出了通过调整倾斜来校正彗差而提升系统误码性能的效果。观察第4~7行,单独看每行时,发现随着归一化倾斜像差系数-W1x/λ绝对值的递增,误码率会经历变小、稳定、再变大的过程,这正是倾斜对彗差校正的体现,且对于不同取值的彗差,有相应的最佳倾斜调整参数,譬如当W31/λ=0.25时,令-W1x/λ=0.16,系统误码率由补偿前的10-6.7降低至最小值10-7.7,系统误码性能提升一个数量级;而比较第4、5、6、7行的数据,可以看到,随着彗差的增大,倾斜对其校正效果越来越弱。
回顾(8)与(14)式,可以发现,彗差W31ρ3cosθ(其中W31=W131H)与x方向性的倾斜W1xρcosθ具有相似性。对于相同的θ,若令ρ取1,则彗差由W31决定,而倾斜由W1x决定,因此,只要两者取值相反,便能相互抵消,从而提高混频效率,降低误码率。对于W1yρcosθ有相同的结论。
一、光通信传输网络四种不同技术的比较分析
1.业务承载能力
(1)OTN技术
采用基于TDM体制的复用技术,每路信号占用在时间上固定的比特位组,信道通过位置进行标识,有独特的帧结构,可区分不同等级速率,并能在同一网络中综合不同的网络传输协议,对实时性业务及非实时性业务都能提供相应承载,实现了从窄带到宽带的综合业务传输。
传输设备可以直接提供工业标准的通信协议接口,而不需借助接入设备。
各种通信业务应用可直接接入OTN,无需接入设备,可以支持语音。图像信号的多点广播,采用数字图像压缩(M-JPEG和H.264)和图像矩阵交换技术。
OTN设备简单、组网灵活、集中维护方便,国内外地铁工程中应用广泛,其不足是设备独家生产,售后服务对原设备厂商依赖大,兼容性差,与非OTN网络连接能力较弱。
(2)ATM技术
ATM虽然可以承载实时性业务中的时分复用业务,但每一个节点的延时都要大于SDH传输制式,特别是故障时系统切换时间较SDH传输制式长(有时甚至以秒计),所以ATM技术一般不用于时分复用业务的承载。另外,ATM没有低速率接口,需增加接入设备,设备价格高且协议复杂。对于视频业务,由于其具有很高的突发度,而ATM恰恰能够很好地支持具有突发性的可变比特率业务,并且其固有的设计已经充分考虑了业务QOS(服务质量)问题,因此可以实现承载。
然而对于非实时性业务的传输,ATM存在带宽利用率较低的问题,且没有音频等低速接口,需设接入设备。
(3)SDH及基于SDH的多业务传送平台(MSTP)
SDH是最适合实时性业务中时分复用业务的承载技术,但无法解决实时性业务中视频信号和实时性业务及非实时性业务中以太网的传输问题。SDH接口种类单一,仅具有PDH系列标准接口(E1/E3/STM-le)。传输窄带业务(话音、数据、宽带音频)时,需增加接入设备(PCMD/l设备);无直接的视频和LAN接口,需外部增加视频CODEC和Ethernet路由器;对Ethernet业务,一般只提供ZMb/s的传输带宽,存在性能瓶颈;对广播音频业务,仅提供3kHz的传输带宽,难以满足高保真的广播效果;一般只提供点对点的通信信道,难以满足大量共线式通信信道的要求。
同时SDH只能向用户提供固定速率的信道,不能动态分配带宽,不能进行统计复用,对总线型宽带数据业务及图像业务的支持困难。
MSTP克服了SDH设备中的一些不足,随着技术不断的发展成熟,越来越适合各种通业务的承载,但仍需增加接入设备。
(4)RPR
对于实时性时分复用业务,RPR技术虽然定义了协议,但需在实际中得到进一步验证。
对于数据业务,RPR具备绝对的优势,可根据用户需求分配带宽,支持空间复用技术和统计复用技术,在网络正常运营的情况下,可使带宽利用率相对SDH网络提高3-4倍。RPR还可对数据业务进行优化,有效支持IP的突发特性。
对于有实时性要求的数据业务,RPR可以提供不同等级的服务和基于不同等级业务的环保护功能来保障数据业务的实时性,在保障实时性方面和故障倒换时间(16ms-50ms)上可与SDH技术媲美,而在带宽利用率上比SDH传输数据业务大大提高。特别是它对视频业务的承载,目前数据视频监控市场的主流设备提供商,都将其系统构建在基于IP的MPEGZ编码和压缩技术,以及基于IP的视频数据存储、检索和访问控制技术上,这些系统所采用的摄像头基本上都可以直接提供MPEGZ编码及以太网数据端口,因此,由RPR技术来承载视频监控系统,用户数据能继续保持以太网帧格式,省略复杂的映射过程,并对用户分组进行严格的服务质量等级分类;并能提供严格的延时和抖动保障机制,视频图像清晰、画面流畅,完全达到高速铁路/公路监控图像的要求。但业务接口同SDH、MSTP、ATM、IP一样,必须借助于接入设备来提供低速数据接口。
2.带宽利用率
OTN:开销<2%,带宽利用率较高。
ATM:开销约为12.8%,带宽利用率低。
SDH:开销占3.7%,但由于其需预留保护带宽,带宽利用率较低。
RPR:开销占3.7%,同时采用统计空间复用技术,使带宽利用率大大提高。
3.环网保护能力、可靠性
OTN:采用双环设计网络,具有自愈保护功能,并且保护倒换时间小于50ms。
ATM:主要进行VC保护。
SDH及MSTP的网络:具有强大的保护恢复能力,并且保护倒换时间小于50ms。
RPR:网络具有强大的保护恢复能力,并且保护倒换时间小于50ms。
4.成熟度及发展前景
OTN:国内轨道交通领域已得到较多运用,但油田和长输管线比较少,作为西门子的专利技术比较成熟,在专网需求方面能够予以专属研发和更新,发展速度较快。
ATM:技术、设备复杂,随着IP技术的发展,IP质量保证问题的解决,对ATM技术应用带来较大冲击,其发展前景不好。
SDH及MSTP:SDH技术很成熟,有着广泛的应用基础;MSTP是在SDH基础上发展起来的,目前还在不断完善,功能越来越强。
RPR:目前还未得到较大规模的应用,需在实践中进行验证,但其技术先进,发展前景好。
二、光通信传输网络在油气田和长输管线上的应用
通过上述对比可以看出,四种技术各有优劣,应用在油气田和长输管道上,应综合考虑工程实际,合理优化,选择适合油气田和长输管道传输技术发展方向的技术或技术组合,极大地提高效率,降低成本。
(一)复用技术
光传输系统中,要提高光纤带宽的利用率,必须依靠多信道系统。常用的复用方式有:时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、空分复用(SDM)和码分复用(CDM)。目前的光通信领域中,WDM技术比较成熟,它能几十倍上百倍地提高传输容量。
(二)宽带放大器技术
掺饵光纤放大器(EDFA)是WDM技术实用化的关键,它具有对偏振不敏感、无串扰、噪声接近量子噪声极限等优点。但是普通的EDFA放大带宽较窄,约有35nm(1530~1565nm),这就限制了能容纳的波长信道数。进一步提高传输容量、增大光放大器带宽的方法有:(1)掺饵氟化物光纤放大器(EDFFA),它可实现75nm的放大带宽;(2)碲化物光纤放大器,它可实现76nm的放大带宽;(3)控制掺饵光纤放大器与普通的EDFA组合起来,可放大带宽约80nm;(4)拉曼光纤放大器(RFA),它可在任何波长处提供增益,将拉曼放大器与EDFA结合起来,可放大带宽大于100nm。
(三)色散补偿技术
对高速信道来说,在1550nm波段约18ps(mmokm)的色散将导致脉冲展宽而引起误码,限制高速信号长距离传输。对采用常规光纤的10Gbit/s系统来说,色散限制仅仅为50km。因此,长距离传输中必须采用色散补偿技术。
(四)孤子WDM传输技术
超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。孤子还有抗干扰能力强、能抑制极化模色散等优点。色散管理和孤子技术的结合,凸出了以往孤子只在长距离传输上具有的优势,继而向高速、宽带、长距离方向发展。
(五)光纤接入技术
随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。光纤接入中极有优势的PON技术早就出现了,它可与多种技术相结合,例如ATM、SDH、以太网等,分别产生APON、GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路。但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FITH方案。GPON对电路交换性的业务支持最有优势,又可充分利用现有的SDH,但是技术比较复杂,成本偏高。EPON继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。所谓EPON就是把全部数据装在以太网帧内传送的网络技术。现今95%的局域网都使用以太网,所以选择以太网技术应用于对IP数据最佳的接入网是很合乎逻辑的,并且原有的以太网只限于局域网,而且MAC技术是点对点的连接,在和光传输技术相结合后的EPON不再只限于局域网,还可扩展到城域网,甚至广域网,EPON众多的MAC技术是点对多点的连接。另外光纤到户也采用EPON技术。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。
(一)光纤到户
现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。据报道,1997年日本NTT公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增。美国在2002年前后的12个月中,FTTH的安装数量增加了200%以上。在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。
(二)全光网络
传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。
二、光纤通信技术的趋势及展望
目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。
(一)向超高速系统的发展
目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。
(二)向超大容量WDM系统的演进
采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。
(三)实现光联网
上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。
由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。
(四)开发新代的光纤
传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。
(五)IPoverSDH与IpoverOptical
以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。
(六)解决全网瓶颈的手段一光接入网
近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。
参考文献:
[1]赵兴富,现代光纤通信技术的发展与趋势.电力系统通信[J].2005(11):27-28.
2光孤子通信
在光纤通信系统中,由于光纤存在损耗和色散,从而使传输容量和距离在很大程度上都受到了限制。光孤子通信的出现极其有效的解决了光纤色散问题。所谓光孤子通信是在光纤长距离传输中,用光孤子超短光脉冲做信息载波,信号的波形和速率始终保持不变,并且可以到近零误码率信息传递的通信方式。
3光纤通信技术的发展趋势
3.1超大容量、超长距离传输技术
WDM虽然能极大地改善光纤传输系统的频带利用率,但是随着通信需求的距离不断加大,就需要一门更好的技术来支持超长距离传输,因此就有了DWDM(密集波分复用技术)及OTDM(光时分复用技术)和WDM(波分复用技术)相结合的产生。这种结合技术的优势在于极大的提升光通信系统的传输速率和传输带宽。依靠WDM(波分复用技术)和OTDM(光时分复用技术)来提高光纤通信系统的传输带宽的效果是一定的,因此可以把多个光时分复用信号进行波分复用,从而提高系统的传输带宽。RZ(归零)编码的占空比在光纤通信中对光纤的PDM(偏振模色散)和非线性适应能力很强,此外RZ编码信号的占空比在超高速系统中很小,这对色散的要求也降低了,所以一般超大容量的通信系统都采用RZ编码传输。
3.2全光网络(AONAllOpticalNetwork)
全光网是指信号在网络中传输和交换的过程中始终以光的形式存在,只在出入网络时才进行电/光和光/电的变换。由于在传输的整个过程中都没有电的处理,所以极大的提高了网络资源的利用率,通信网干线总容量的进一步提高。全光网络不能独立在通信系统中存在,它必须要结合因特网、移动通信网等通信技术,因此光网络必将向着服务多元化和资源配置的方向发展。全光网络网络结构十分的简洁,组网也十分的灵活可变,可在不附加任何的交换处理设备的情况下随意添加新的节点。全光网络不仅能提供超大带宽、极高处理速率和极低误码率,而且也具有良好的透明性、兼容性、可靠性、开放性和可扩展性。从光纤通信的发展趋势来看,未来信息网络的核心将是建立一个一光交换技术为主的光网络层,消除电光瓶颈也是未来光通信发展的必然趋势。
2遥泵系统中拉曼效应的基本原理
同纤遥泵同时还利用了光纤的拉曼效应对信号光进行放大。拉曼效应是在光纤中传输高功率信号时发生的非线性效应(受激拉曼散射),泵浦光子的能量产生了一个与信号光同频率的光子和一个声子,高功率信号的一部分能量经拉曼效应传递给信号光,实现对信号光的放大[3]。拉曼增益强度与泵浦光强和泵浦光与信号光的频率差有很大关系,差值为13THz时,这种增益达到极点。因此,要放大1530~1605nm的工作波长,最佳泵浦源波长在1420~1500nm波段,遥泵的泵浦光波长为1480nm,产生的拉曼效应能够对信号光进行放大[3]。光纤中的受激拉曼增益谱如图4。EDFA泵浦光的波长一般为980和1480nm,其中1480nm波长的泵浦光具有更高的泵浦效率。遥泵系统中的RGU距离泵浦源较远(一般在50~100km),考虑到980nm波长的光在光纤中衰减较大,而1480nm波长的泵浦光具有更高的效率,因此一般选用1480nm波长的泵浦光。在单波系统中,远端RGU一般采用同向泵浦的方式。同向泵浦示意图参见图3。
3遥泵系统在电力系统超长距离传输中的应用
在埃塞俄比亚复兴大坝输变电工程中,由Gerd水电站至Dedesa变电站的光缆长度约为363km,采用G.655D光纤(康宁的Leaf大有效面积光纤)。由于光缆长度过长,整个系统的衰耗很大,必须在系统中采用遥泵放大技术。整个系统由光放大器、预放大器、EFEC、CoRFA(前向拉曼放大器)和遥泵等放大器件组成。超长距离无中继传输遥泵放大方案配置如图5所示。全段光纤的参数如下:光纤衰减系数为0.20dB/km,光缆衰减为72.6dB,固定接头衰减系数为0.01dB/km,固定接头衰减为3.63dB,活动连接器衰耗为1dB,光通道代价为2dB,光缆衰减富余度为5dB,总衰减为84.23dB,光纤色散系数为4.5ps/(nm•km),总色散为1633.5ps/nm,光放大器发送功率为17dBm,SBS+前向喇曼等效增益为8dB,加预放后接收灵敏度为-38dBm,后向拉曼等效增益为6dB,EFEC功率增益为8dB,遥泵功率增益为9dB,功率电平富余度为1.77dBm。该遥泵系统采用同纤遥泵的工作方式。RPU发送的泵浦光功率为30.5dBm(波长为1480nm),RGU的有效输入泵浦功率为9~10dBm,考虑一定的余量,要求最终到达RGU的泵浦功率约为12dBm。波长为1480nm的泵浦光在G.655D光纤中的衰减系数约为0.24dB/km(含光纤熔接头损耗),因此RGU距RPU泵浦源的最佳距离L=(30.5-12)/0.24=77.08km。即需在距变电站约77km处,选择一个交通方便、便于维护的输电线路铁塔,将RGU安装在该铁塔上。我们将上述理论计算结果输入OTA(光传输系统分析)软件进行验算得知,当RGU距后端泵浦源的距离为77km时,前置放大器输出信号的OSNR(光信噪比)为13.85dB,符合系统设计要求。由OTA软件计算出的RGU距后端泵浦源的最优距离为89km,EDF的最佳长度约为27.8m,泵浦源功率为1000mW,前置放大器输出信号的理论OS-NR为15.97dB。
二、矿山通信的制约因素
矿山通信企业的特点主要是设备更新速度慢、建设时间长等。由于每个时期的通信设备都一起运行,所以会有信息孤岛现象的问题存在。且其内部系统有不少不同来源的信息。例如矿山系统和外部环境间有信息流动和交换的现象,其中包括矿产品销售、人力供应、电力供应等。这类信息相互制约、相互影响。矿山井下施工建设中,由于井下结构复杂、空间狭小、接收不到信号等因素,急需先进的矿山通信技术,以便在施工过程中能准确、及时的传输信息,为优化方案提供参考的依据。
三、光纤通信与矿山通信系统建设的实际应用
(一)矿区网络连接系统中的应用
光纤的高宽带、低成本等特点能满足矿山信息传输日益增长的需求[2]。国家已经制定了光缆使用的相关标准,很多矿山企业也投入生产使用。目前一些普通光缆线、架空地线复合光缆以及阻燃光缆等都被矿山企业利用,以连接各矿山建筑设施和采矿点。这类光缆的使用大大提高了施工的便捷性和线路的稳定性,同时还能有效节约施工建设的成本。因为增加光纤芯数并对光纤价格的影响不大,所以在需要光纤芯数的基础上再适当预留一点,以免日后需要时能及时提供,以满足业务多样性的需求。由于光纤通信技术具有一致性传输系统介质的特点,所以,现代矿山通信系统的建设中,可以将光纤以太网作为介质,其传输距离远,损耗低,承载力强,其接入方法即介质转换,光纤两端都是光猫,从光猫出来有的需要接入光端转换设备,把光纤带的光信号转换成网线携带的数字信号,有些光猫集成的转换功能,可以直接转换输出数字信号。利用光纤线路构建一个矿山骨干通信网,再加入无线设备和该通信网配合使用,为矿区提供无线设备或有线光缆的双重信息传输和接收口。图2矿业光纤以太网结构模型例如,某矿业根据矿区的实际情况,经过建设和相关系统的整合,建立了光纤以太网,该组网可以全面覆盖整个矿区的建筑。其中工业环网的整个线路连接选用变电所、两个大车间以及办公楼,矿区的地表到井下被全部覆盖;其分支线路覆盖了所有生活区域。光缆可以传输人员定位、电力调度、视频监测、环境监测、有线电视等业务数据,实现一条光缆线的多种业务同时使用,既节约施工费用又节约工程建设的成本。关于该矿山企业的光纤以太网的构建结构见图2。将光纤通信技术运用到矿山企业工程中,建设完整的光纤骨干网,为各种业务传输信息数据,以解决数据传输过程中的链路问题。
(二)矿区电力中的应用
当前,矿山电力系统中很多自动化设备只应用于漏电保护、防爆开关和配电网等相关功能,它们之间没有互相连接的网络系统,都是单独运行的状态。矿井复杂的内部结构对供电系统的工程量提出更高要求,配电供电服务系统以及变电所建设的主要目的是保障开挖采掘运输的过程是畅通的。但在实际井下挖掘作业时,由于井下复杂的地质条件,供电系统经常会出现故障,一旦失去电力服务,井下的挖掘工作就没有办法进行,这将严重影响施工进度,从而降低矿井开采的生产量。利用特种光纤技术能有效改善井下的供电现状,在矿山供电系统中应用复合电线可以为井下施工的机械设备提供源源不断的稳定电力,保证这些设备的正常操作和运行,利用光纤技术建立完整的网络系统,合理使用和分配电力资源,确保矿山施工区域供电的稳定性。同时,还可以在一定程度上节省建设供电系统的成本,在电力系统运行的过程中,也能有效缩减成本,从而有效提高矿山企业工程建设的整体经济效益。在完成网络系统的建设基础上,再采用以太网络技术,构建更加完善的网络监测系统。除此之外,光纤技术还可以结合多媒体显像技术,对井内的实际运行状况进行实时监控,在很大程度上提高了矿井开采的工作效率。工作人员通过监测系统可以充分掌握矿井内部的实际施工情况。如果井下有设备故障等问题,监测系统可以及时准确地反映故障的实际情况和具置,并第一时间切断故障发生的局部电源,同时发出警报,提示工作人员,以便在第一时间实施具体可行的解决措施,并在最快时间内恢复井内供电,将故障带来的影响和损失降到最低。
2光纤通信技术的发展趋势
2.1将朝着超高速系统发展随着现代科技的飞速发展,光纤通信技术已经拥有了更快的传输速度,为了最大限度的满足社会发展的需求,光纤通信技术必然会朝着超高速系统的方向发展。推动光纤通信技术传输速度的提升能够给我们带来下面两个优势:一方面是光纤通信技术朝着超高速系统发展会极大的提高新业务的传输容量;另一方面是随着光纤通信技术传输速度的提升能够确保多媒体和宽带等不同技术功能的更好实现。另外,全光传输距离的增加也能够在一定程度上增加光纤传输容量。所以,超高速系统应该是未来光纤通信技术的主要发展方向。
2.2将朝着更大的容量发展光纤通信技术的发展要求其拥有更大的容量,现阶段,光纤通信应用的带宽只有百分之一,剩余的99%的带宽无法充分的利用起来。所以为了避免光纤带宽的浪费,我们必须要尽快的开发光纤通信容量。随着现代科学技术的发展,光纤通信技术具备的传输容量越来越大,在未来的几年之内将其容量扩充到目前的几十甚至几百倍也不是没有可能性的。
2光纤通信课程理论教学
针对同学们反映本课程中难懂的理论知识、课前我补充了一些基础知识.比如光波导理论、高等数学、光电子技术、电磁学等知识在该课程中要用到的重要理论.列出一些参考书目供学有余力的同学选读,比如杨祥林编著的《光纤通信系统》,北京邮电大学出版社出版的顾畹仪编著《光纤通信系统》教材.我们采用多种方法分析一些抽象概念,逐步阐述.例如,光纤传输的波动理论是光纤通信理论中的一个重要内容,通常采用的方法就是波动方程和电磁场表达式求解,其过程繁杂,同学们很难将推导出的理论结果和实际上的物理意义对应.因此在该部分的教学中采用先引入并重点讲解波导、导波等概念的方法,然后解释传输模式,不同的模式对应不同的传播角,产生不同的离散模式是由于光波在芯区和包层分界面上发生反射时产生相位移动引起的,在理解概念的基础上,再运用特征方程理论推导出结论.充分利用多媒体的优势,多媒体PPT教学与传统教学模式相结合,以便提高教学质量.结合该学科的实际,作者制作了适合实际情况的PPT课件,课件的教学效果良好,比如在讲解数字光纤通信系统组成的时候,结合PPT课件图,直观、形象生动的看出了系统由光发射机、光纤光缆、中继器与光接收机等基本单元组成.此外还包括一些互连与光信号处理器件,如光纤连接器、隔离器、调制器、滤波器、光开关及路由器、分插复用器ADM等.
3光纤通信实训教学环节
本课程的实训环节除了安排常规的8个实验,模拟信号电—光、光—电转换传输实验、数字信号电—光、光—电转换传输实验、光发送、接收模块实验、光纤无源器件特性测试实验、数字光发送接口指标测试实验、光纤传输特性测量实验波分复用(WDM)光纤通信系统实验等.另外,笔者引入了OpticSimu仿真实训软件,该软件恰好可以克服以上硬件实验平台的不足,可以方便地配置各种光纤通信系统和网络,形象地得到仿真实验结果,配置各种光纤通信系统和光网络,仿真其传输性能,方便、形象地获得系统和网络中各点的光谱、波形、眼图、光信噪比和接收灵敏度.软件界面如图2所示.图3是利用原子功能器件搭建的光分插复用器(OADM)和光交叉连接(OXC)结构.运用OADM和OXC,构建WDM光网络,并对其进行传输性能仿真,为光网络的设计和规划提供参考.