时间:2023-03-16 15:25:15
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇机械与电子论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
(一)发展历程
在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。在生产线阶段,机械工程己逐渐发展到流水线生产,实现标准化大批量生产,.这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力舀灵活性较差,难以满足不断变化的市场需求。
在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。
(二)机械电子工程主要特征
机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场,
二、人工智能简述
人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。
初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研究。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。
发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研究就是首要任务。
发展起伏阶段。随着人们对于人工智能的不断深入研究,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研究仅仅是停留于简单映射层面,.对于逻辑思维的研究仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就.
起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。
稳步发展阶段。随着互联网技术的快速发展,对于人工智能研究方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展起到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。
三、机械电子工程与人工智能之间的关系
随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显己经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研究正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。
微电子机械系统所指的就是在大小毫米量级之下,最终形成的可以控制能够运动的微型机电装置是由单元尺寸需要在可控制的微米和纳米之间,是一个整体的系统,把微机构、微传感器,以及微执行器还有信号处理系统等等构成。在不同的国家对于微电子机械系统的称呼有所不同,
2微电子机械系统的发展历程
微机械器件以及微电子机械系统在生产加工的过程中需要对其深加工技术进行研究和重视。在研究中开始逐渐的形成了微电子加工技术和微机械装置加工技术。并随着对技术的细分,开始形成了体微机械技术以及外轮廓表面微机械装置技术,并同时也产生了LIGA机械装置技术以及高标准的LIGA机械装置技术。对其体微机械技术按照实施的目标对象机械能分析,可以得出体硅单晶体为核心构成体并在其物理测量厚度的10到999单位内呈现规则布局分离,为其核心的技术策略单位。并对其技术中存在的腐蚀以及吻合问题进行布局的考虑。对其技术的优势分析得出,其装置的工艺相对不繁琐,但其操控性和调控性数值偏低。在表面微机械装置中,进行相应的IC技术加工,如采用扩散光学和标准尺寸对应光刻以及复膜层叠等技术运用中,其都会对原有的厚度比率进行微调,对其在剥离技术中和进行切割技术的分析[1]。其技术的有点在于对IC技术有相对完整的包容性,但存在的不足点也较为显著,如切割的纵向厚度单位偏低,在电光铸模和缩微成型以及耐温差等方面存在一定的技术局限。LIGA技术在德文X射线进行曝光和电光铸模中有其良好的优越性,其对设备的制取尺寸在1单位内到999单位内。但需要指出LIGA技术处于高成本和高复杂度的技术,并需要采用相对保守的紫外线深度曝光,保障其光刻效果和覆膜效果。而准LIGA技术在对设备加工中可以在最合理控制尺寸中,保障其电路集成后续装置获得合理的配置[2]。因而其技术的优势在微机械技术中可以获得关注度的展现。
2.1自动对焦的三维加工技术
目前自对准的准三维加工技术普遍采用深度的紫外线厚度型进行光度的曝光刻度,并进行胶模的处理,保证其在牺牲层和结构层获得合理的电铸,并利用其两层的金属电铸特带你,获得牺牲层厚度的保障,并进行微结构的自动对准技术保障[3]。
因而CU可以表示为牺牲层,NI为结构层的技术,并在其平面和垂直两方向性获得控制,在其CU和NI中进行电铸处理,使得其种子层和型模层获得两种电铸金属处理,让技术水平在微架构层面获得统一标准化套准对应。在其腐蚀性选择上要对其液体进行考虑,CI属于腐蚀性,NI不属于腐蚀性,并对其微机械机构进行终止惰性反应。其配套技术以及Ic工艺获得最大化的包容,在温度上控制在85摄氏度,获得对结构合理的微机械技术。其深度的单位测定在22,保障其后续的标准对应后其范围空载在49到101内。
准LIGA技术需要在工艺布局考虑中,首先要保障(a)低阻硅片(10-3cm),其热氧化反映在1.5,其厚度在SIO2其需要把定子对衬低的外圆位置进行确定。同时进行首次的光学刻,SIO2腐蚀出进行1.2各坑道处理。形成在转子下部的新支撑点确定。在除去胶缘后,在真空中进行高温处理形成0.3的铜电铸种子层。在第二次光学刻录中,要对尺寸厚光刻胶AZ4620进行转子胶模处理,保障其电光铸在3内进行转子保障。后进行第三次的光刻,在其厚度尺寸中选择光学刻录定子胶模处理,保障其厚度在2.5范围内。形成铜牺牲层的转子和钉子的转化变化,对其空隙中要包容其电铸在1.5钉子范围。在最后一次光刻中,要对其厚胶光学刻录后,对其1.3铜都牺牲层要进行间隙转化的电铸考虑。并用起腐蚀性的液进行HF缓冲液体的处理,通过SIO2合理的释放转化的转子。其微机械技术在应用中可以获得广泛的推崇,静电驱动镍晃动微马达为例,其自对准的准三维加工技术目前在实际应用中哥已经获得镍晃动马达。用电铸Cu作牺牲层,电铸Ni作结构层(定子、转子和轴),得到的转子与定子。各项参数都符合标准。
摘要随着电子技术的发展,相敏轨道电路接收信号处理装置已逐步实現电子化,以电子接收器代替以前的机械式二元二位继电器,彻底解决了原继电器接点卡阻、抗电气化干扰能力不强、返还系数低等问题。目前广泛使用的微电子接收器都是使用单片机来处理信息,对输入信号采用升压方式进行采样处理,虽提高了信号强度,但是不利于防止输入高压损坏接收器;且每个接收器仅采用单一信号处理通道进行信号分析处理,并由其输出信号驱动轨道继电器动作,接收器的安全性、可靠性和抗干扰能力有待提高;另外,现有接收器故障后相关电气参数不能实时监测;前述不足以影响到轨道电路的整体可靠性和可用性。因此,本文提出了一种基于DSP的新型微电子接收器,以提高微电子接收器的可用性、可靠性及安全性。
关键词电子技术;25Hz轨道电路;接收器
1系统原理
1.1接收器冗余结构
图1新型微电子接收器(0.5+0.5方案)的冗余结构图
接收器的冗余结构图,每台接收器同时进行两个轨道区段(区段A和区段B)的轨道电路信号和局部电源信号的处理,相邻两个轨道区段可共用两台接收器,这两台接收器中的任一正常工作,均可正常处理这两个轨道区段信号,并驱动这两个轨道区段的后级轨道继电器动作。如图1所示,相对于目前的接收器冗余方案,新型微电子接收器的冗余方案可使每个轨道区段节省一个接收器,从而降低建设成本。在接收器冗余结构图中,当接收器1和接收器2中的某一个发生故障时,若另一个接收器能够正常工作即可确保轨道区段信号的正常处理;同时可以通过接收器的自检功能发出报警,提醒维护人员及时更换故障接收器,从而提高轨道电路的整体可用性。
1.2接收器二取二原理
接收器系统内部采用独立的双套硬件和双套软件,实现一路信号,两路处理,最终通过安全与门判决,输出判决结果。当无论是接收器哪一套硬件或软件出现问题,两路处理结果不一致时,系统输出判决都是导向安全的结果。且仅当两路信号处理的结果完全一致时,安全与门输出相同结果。
2系统构成
如图2所示,新型接收器核心处理部分采用双DSP芯片构成二取二安全结构。主从DSP同时处理轨道电路信号和局部电源信号,分别输出判决信号;将主从DSP的判决结果进行与运算,如果主从DSP的判决信号不一致,接收器输出信号将保持轨道继电器处在落下状态;只有当主从DSP的判决信号一致且满足轨道区段空闲条件时,接收器才会输出驱动轨道继电器吸起的信号,显示轨道区段处于空闲状态;主从DSP任一故障,接收器均不能输出驱动轨道继电器吸起的信号,从而提高接收器安全性。
新型接收器电路模块包括:局部输入隔离电路、轨道输入防雷电路、输入信号采集电路、数据处理电路(DSP芯片)、安全与门电路、输出控制电路、电源电路、通信电路和显示与告警电路。
输入隔离:采用电流互感器将轨道信号和局部信号与后级信号处理模块进行电磁隔离,隔离变压器采用降压方式,当输入的信号出现大的冲击或干扰时,通过变压器进行衰减,加载在后级信号处理电路上的信号将被衰减,对后级信号处理电路起到防护作用。
轨道输入防雷电路:采取大功率双向瞬态防雷管,实现对输入雷电和浪涌的防护。
输入采集电路:将输入交流信号的负半周信号抬高到零电平以上,满足后级单电源工作运放的输入要求,单电源工作可减小器件功耗。
数据处理电路:把输入的25Hz轨道和局部模拟信号通过芯片自带的A/D模数转换器转换为数字信号,对转换后的数字信号进行分析处理,测出轨道输入的25Hz信号幅值及轨道信号与局部信号的相位差,在主处理器采集从处理器的输出信号和后级输出控制电路的输出信号并经其判断接收器正常后,再由主处理器控制显示告警电路,并由主处理器将相关数据通过接收器的通讯电路送监测分机。
安全与门电路:比较主从DSP输出信号,经安全与门判决二者一致方能向后级输出控制电路送出有效信号。
输出控制电路:采用开关电源方式输出驱动轨道继电器的直流电压信号。
通信电路:采用总线方式,向集中监测分机传送25Hz相敏轨道电路接收器采集到的轨道交流电压值、相位角和接收器的工作状态等信息。
显示与告警电路:显示接收器自身工作状态及接收器所处理轨道区段的占用与空闲状态,显示接收器DC24V工作电源及局部电源的正常或故障状态。
3结束语
新型接收器将实现接收器工作状态和轨道电路电气参数的实时在线监测,提高运营维护效率,降低维护人员劳动强度,同时,根据新型25Hz相敏轨道电路接收器的功能和特点,可减少现有接收器和轨道架的数量,大量地减少室内配线,初步分析可节约建设成本约20%。
微电子毕业论文范文模板(二):微电子控制机电设备在工业中的具体应用论文
摘要:在科学技术快速进步的背景下,工业自动化水平取得了比较明显的提升,在机械制造方面表现的更加明显,基于各种因素的影响,微电子技术得到了相对广泛的应用。基于此,本文详细分析了微电子控制机电设备在工业中的应用,希望能够为实际提供良好的借鉴意义,以供参考。
关键词:微电子;机电设备;工业;应用探讨
信息技术的发展以及先进电子设备的产生催生了机电一体化时代的到来,所谓的机电一体化技术是把电工电子技术、机械技术、信息技术、微电子技术、接口技术、传感器技术、信号变换技术等一系列技术结合,再综合应用于实际的综合技术,现代化自动生产设备可以说为机电一体化的设备。微型计算机在机电一体化系统的作用能够总结成如下三点:第一,直接控制机械工业生产过程;第二,机械工业生产期间加强各物理参数的自动测试,进行测试结果的显示记录,在计算、存储、分析判定并处理测量参数或指标;第三,进行机械生产过程的管理与监督。机电一体化系统里微电子控制机电设备怎样进行适宜计算机选择,怎样设计硬件系统,怎样组织软件开发,怎样对现有计算机系统等进行维护与使用是相当关键的,也是值得探索的
课题。
1微电子控制机电设备系统的组成和原理
在某微电子控制机电系统当中,主要是由PLC、管路压力变送器、变频器等多种设备组成的。在控制系统当中,管路压力变送器主要是检测控制辅助冲量、管路水压、蒸发量等三个变量,接着将数据信号向PLC当中传送,并且通过PLC进行分析和计算,将信号发送信号控制器,通过信号控制器来控制水泵运转,在设计系统的過程中需要与实际情况合理的进行结合,并且对变频器的输出频率进行确认,输出频率在整个系统设计过程中具有非常重要的意义,和系统的控制息息相关,在确定系统输出频率是需要综合性的分析和考虑用水量以及扬程参数等。在整个系统当中控制流程的用水量变化,主要是通过压力变送器向PLC传送的通过PLC进行分析和计算,可以有效的调节循环泵的频率,合理的分配能源,让工作的效率提高,起到节约资源的作用。
2微电子控制机电设备在工业中的具体应用
1)可编程序控制器(PLC)的应用。从PLC的角度进行分析,其主要优势在于具有很强的控制能力,而且稳定性较高,机身体积相对较小,可以有效的和其他的配件进行组合。在工业生产的过程中,因为机电设备往往会占据一定的面积,如果想让其厂房中的占比较高,就一定要注意让厂房的空余面积加大,尽量让控制器的数量减少,让机电设备的数量增多,与此同时还需要注意PLC的节能性较高相比,其他的控制系统可以节约资源,让工业生产的成本支出降低,让企业的经济效益增加,由于PLC设备可以有效的和其他设备之间进行组合,可以灵活方便的在厂房当中进行布设,让一机多用。可以实现让厂房的设备结构进一步得到简化,对设备维护中耗费的人力物力进行控制,减少人力输出,可以将人力有效的分配到工业生产当中,让生产资料的利用效率提高。PLC的另一大优势在于可以通过现场总线和生产设备之间
进行连接,有效的监控工业生产,可以动态化的监控生产的全过程,确保在生产过程中,第一时间解决生产时产生的故障,避免由于机械故障而导致生产进度停滞,让设备的维护开支得到控制,PLC的计算速度很快,可以轻松的对生产时的任何变动进行管理和控制,有效的防止由于设备变化控制器无法及时应对而产生的问题,PLC还可以进行相关的升级,伴随当前经济快速发展,就算生产线当中的产品产生了变动,只需要正确的调整,控制程序也可以符合新产品生产的具体需求。
相比于其他编程操作,PLC控制器在编程的过程中较为方便,员工通过短时间的训练就可以熟练的掌握编程的技巧,在实际操作的过程中工作步骤相对较为简单,可以很容易的掌握设备的维修安装以及操作,由于PLC自带程序编辑器只需要工作人员了解梯形语言,就可以对其进行熟练的掌握。对控制器的工作语言进行了解,当出现故障的时候可以及时的调整和处理控制器。
2)变频器调速器的作用。变频器工作状态分作自动与手动两类,手动工作状态即在PLC结束工作后展开的人工操作行为,经电位器调节能对变频器输出频率进行给定。自动工作状态实质是PLC输出信号为变频器输出频率展开控制。和传统调节阀控制方式相比,PLC控制可节电,更好进行水泵磨损控制,在延长设备寿命与实现系统自动化水平提升中发挥了重要作用。
第一,和传统正弦波控制技术相比,因变频器用到了电压空间矢量控制技术,先进性和独特性在性能上得到充分凸显,同时因其特有的低速转矩大、运行稳定性强、谐波成分小等特征,这对我国电网而言输出电压自动调整功能能充分进行优势发挥。第二,变频器具备外部端子、键盘电位器与多功能段子等一系列操作方式,功能完善,可输入多种模拟信号(如电流、电压、频率等效范围检测,转速追踪等);并且变频器可实现摆频运行与程序运行等一系列模式。第三,因变频器全系列元件应用的是西门子产品,有极强的保护性能,可靠稳定,能很好的避免过流、短路、过压等问题,确保本机能正常运行。并且变频器有良好的绝缘耐压性,产品质量好,设定简单等使得其有更强的适用性。
3)电路发挥的作用。在安装PLC和变频器的时候,保证电路的稳定是保障工作的必要。电路在安装过程中,应该采取边安装边测电的方式,这样更能使电流稳定,这同样属于工作期间需引起重视的关键环节。在电路安装完毕之后,不要急着通电,应该先再次检查电路是否安装正确,查看是否有少安装或者多安装的情况。另外,测量一下接触元器件的连接点,这样可以发现一些接触不良的地方,若有漏电情况应该及时对此进行维修。电路在工业中也是起到了很大的作用,在安装电路的时候,一定要小心谨慎,综合考虑多方面因素,不要遗漏一些小问题,有时一些小问题也可能出大错,保证电路的稳定才能更好地协调其他设备的安装稳定。应认真复查电路,查看电路有无正确安装,或存在设备多安装或少安装的现象,同时应认真检测每个接触元器件连接点,明确有无接触不良或短路现象,若发生漏电务必要及时维修与处理。电路调试的具体流程总结如下:
二、工科毕业设计文献查阅、开题报告问题与对策
对于工科本科毕业设计,开题报告是毕业设计研究工作的总纲领,对学生的毕业设计过程起到指导性的作用,阅读大量中外文献是完成毕业设计开题报告的首要工作。对于开题报告工作,最好阅读与该课题相关的国内外文献,明确该课题的研究现状及其研究方向,通过大量阅读,书写文献综述,阐明该课题已经解决的问题和未解决的问题,然后对于未解决的问题进行分类细化,哪些属于国内都没有解决的学术问题,哪些属于国外已经解决而国内没有解决的技术问题。做到心中有数,研究有方向,针对自己的毕业设计课题,提出自己的需要解决的问题及其解决思路、方法等。在此基础上完成开题报告的填写工作。
三、工科毕业设计电子资料问题与对策
工科毕业设计资料主要包括:毕业设计论文、工程图纸以及开题报告等。近年来,毕业设计电子资料逐渐取代纸质资料,方便师生信息交流的同时,也存在一定的问题,亟待完善与改进。
1.毕业设计电子论文格式规范化与对策。毕业设计论文格式规范化也是培养学生严谨、求实的工作能力的重要途径之一。规范化的毕业设计论文可以给美的视觉效果,更好地展现学生毕业设计劳动成果。但在毕业设计指导过程中也发现存在不规范的论文现象。究其原因:一方是在学生对毕业设计规范化的实施意义认识不到位,另一方面就是指导老师没有严格要求或指导不到位,从思想上根本没有重视本次毕业设计格式规范化的重要性。对于此类问题应对学生进行该方面教育工作,使学生从思想上重视毕业工作,切实重视毕业设计格式规范化的重要性。毕业生通过对自己论文格式的规范化处理,也是在锻炼自己、规范自身的行为,逐步形成一种做事情的态度和方法,为走上工作岗位积累一定的工作经验。
2.毕业设计电子工程图问题与对策。对于毕业设计工程图纸,传统的方法,工程图纸在绘图室采用手工绘制,随着计算机技术的发展和学生招生数量的增加,计算机绘制越来越适应目前形式的发展,计算机绘图已经逐步替代手工绘图,电子版的图纸很方便师生交流信息,为柔性化的指导工作建立良好的基础。但电子图纸也存在一定的弊端,如学生通过各种手段寻找往届毕业设计图纸,出现毕业设计工程图纸抄袭现象,同时弱化了传统手工绘图的基本能力。对于此类问题,本科毕业设计图纸可以采用电子图纸与手工图纸同时进行的方法,如对于工科机械类毕业设计题目,在给学生下达毕业设计任务书时,要求学生用计算机绘图同时也得采用手工制图相关的零件图。这样可以减少学生在毕业设计过程中抄袭现象,同时又加强了学生手工绘图的基本能力。同时加强论文重复率和相似性检测工作,要求工科类本科毕业设计重复率不能超过10%,可有效杜绝学生大面积抄袭别人的学位论文,举办科学道德与学风宣讲大会,指导学生树立正确科学研究态度。
四、工科毕业设计过程指导问题与对策
1.团队指导与资源优化。团队具有丰富的学术资源,团队具有集体的智慧,团队具有柔性化的指导优势。因此急需要团队的建立与扩展。团队指导可以将不同的指导老师优质资源共享,实现高效、高质量的毕业设计指导工作,在毕业设计过程中通过优质资源互补原则,借助兄弟院校的试验平台或丰富的理论经验,提高毕业设计的质量。如陕西理工学院可与西安交通大学、西北工业大学、西安理工大学等相距较近的省内高校联合指导学生,也可让学生去兄弟院校进行毕业设计的实验工作,使我校毕业生真正体会到高等教育优质资源共享的精髓,也使得我校毕业生在以后的学习和工作过程中发展速度更快,人际交流与合作能力更强。例如,对于研究增材制造方面的题目,就需要优质资源共享方式,如西安交通大学国家级重点实验室已在增材制造方面取得创造性成就,无论是实验设备,还是实验水平都是国内首屈一指的,甚至在国际上也有一定影响力。所有这一切都是值得我们学习与借鉴的,也可邀请该校的增材制造方面的专家来我校进行学术报告,以激励我校毕业生的求知欲望,拓宽其毕业设计的新思想、新方法。通过资源共享的方式,搭建我校增材制造实验室,为后续的毕业设计学生提供实验的条件和场所。
2.周汇报环节的实施与推进。毕业设计过程中必须严格要求学生,每周定时安排课题组的汇报与总结,让学生以PPT的形式汇报自己的一周内的工作情况,即使没有进展也要汇报工作。达到一种量变到质变的过程。同时检查学生一周的工作情况,及其对课题的研究进展,包括查阅资料、企业调研、实验进展、CAE软件运算进程、国内外学术领域的研究状况以及该研究能否解决实际的问题。及时发现学生毕业设计工作过程中存在的问题,同时便于指导老师有的放矢地安排和指导学生。课题汇报的目的一方面在于检查学生的工作进度,另一方面培养学生交流表达能力。当然汇报不是走形式,对于本次汇报工作表现相对落后的同学,要求提出改进与后续的措施,否则按照学校毕业设计教学文件规定延迟或终止毕业设计进程。
五、工科毕业设计答辩、成果保护问题与对策
毕业设计答辩是指导老师和毕业设计学生辛苦劳动的收获节点,在毕业设计过程中,在老师的指导下,学生不断地发现问题、分析问题以及解决问题,创新能力、自我表达能力得到了锻炼。如何能够更好地锻炼学生的自我表达能力,首先要扎实做好毕业设计过程中的每一个细小环节,做到有备无患,只有在毕业设计工作过程中付出了,才能在毕业设计答辩过程中心中有数,临阵不慌。也可对毕业设计答辩整个过程进行录像,从录像中发现自己存在的问题,及时纠正,以便更好地适应社会大环境,也为学生提供了良好的锻炼自我表达能力的机会。毕业设计答辩结束后,毕业设计学生可以在老师的指导下,对自己的设计思想、方案及其预期的成果以论文、专利等形式进行保护,一方面在肯定师生辛勤劳动的成果,另一方面在夯实该领域的研究基础,推动科学研究健康成长。
一、网络教学发展背景
在这个高科技迅猛发展的信息时代,教育信息化成为一种必然趋势。多年来,学校计算机辅助教学的推广为提高课堂教学效率,促进教师教育观念起了一定的作用,但传统的计算机辅助教学是教师主导传授,学生被动或机械练习。而网络环境教学,是基于多媒体技术的网络技术下的新的学习理论,在这种理论中,学生是知识学习的主动者,外界信息经过教师的组织、引导,学生主动建构进而转变成为自身的知识,这种理论的形成优化了课堂教学模式和结构,使老师和学生共同作用于教学过程,起到协调作用。这种开放性、创新性的教育思想和模式,有利于克服传统教学模式的弊端和固疾。在新形势下研究和探索网络课程的教学,是适应新世纪教育的需要,对全面实施素质教育有着十分重大的意义。
二、网络课程的基本功能结构
众所周知,网络课程的设计应依据建构主义学习理论的思想,以"学习者"为中心;应当对教学活动和学习环境作重点设计,二者缺一不可。由于网络课程在很大程度上依赖于学生的自主学习,所以网络课程的基本功能结构也应按学生自主学习的要点来设计。
学生通过网络可进行一系列的学习活动,如自学、讨论、实践活动、作业提交、考试及网上资源搜索、资料查询等活动。另一方面,学生可以通过网络查询自己的学习记录,从而对学习起到一个督促和自我监督的作用。例如我本学期所带的Flash课程,大部分都是在机房操作教学,本身就利用了局域网的功能。在机房中教师机可以控制学生机以便督促学生学习,而学生在做完例子后可以通过局域网提交作业,这样教师在一台机子就可以及时
检查学生的作业并做好记录。
三、网络课程的基本特点
计算机网络是当今科技发展的结晶,而网络教学也不同于传统的教育教学。网络课程主要有以下几个方面的特点:
1、资源共享性
学生通过网络可以共享资源,其中包括硬件的共享和软件的共享。网上资源丰富多彩、图文并茂,学习者在链接或教师指导下,可轻松自如地在知识的海洋中翱翔。取之不尽、用之不竭的信息资源,神奇的网络环境,对学生创造思维的培养,对实现教学过程紧要关系的转变,对促进从应试教育向素质教育转化都将产生重大的影响。
2、虚拟性
网上教育的时空不限性给教学活动带来虚拟性,现在虚拟教育已经成为人们津津乐道的话题。虚拟教育可分为校内模式和校外模式,校内模式指在校园网上开发的各种教育应用,校外模式指网上远程教育。可以把校内模式与校外模式有机结合起来,成为一个新型教育系统。
3、实时交互性
网络教学最大特点是它的实时交互性,实时交互性是指在网络上的各个终端可以即时实施回答。交互的方式有师生之间和学生之间。通过课件还可以有效地获得图文并茂的教育信息,师生之间的交互可以得到教师的指导,学生之间的交互可以进行协作学习,这种双向交互活动不仅使学生通过视、听手段获取教学信息,而且还可以激发学生对此的兴趣。
4、协同创作性
通过网络进行学习,学习者可以利用适当的软件工具支持协同创作。现在许多网络教育平台带有群件系统的功能,能够支持一个学习群体方便地进行通讯交流、工作空间共享、应用软件共享和协同创作。
四、网络课程的教学模式
利用网络技术来进行教学。按照通讯角度来讲,有同步教学和异步教学;按照学习者的组织形式来看,可以有个别化学习、小组学习;按照课程材料媒体种类来看,有多种媒体参与的混合形式或者仅利用web媒体的单一形式。应用Web来进行教学的网络课程的教学模式,这里简述4种:
1、信息传递式:信息传递式是指利用Web教学大纲、课程内容、讲座笔记及作业细节和百科全书,加上在线信息资源的超链接,学生可以在没有和教师或者其他同学交流下完成学习任务。这种模式是目前网络课程比较普遍的方式。
2、合作学习模式:合作学习模式主要强调的是学生之间的交流活动。它体现的使学生之间的合作学习。它通过创设支持式环境,使得班级学生成员之间可进行提问、解答和资源共享等合作活动。3、辅助学习式:这种课程模式的特点是教师辅助学习者的学习,采用Email、电子论坛或计算机视频会议来提供指导等服务。辅助学习模式还可以确定参数来建立多用户对话环境。
4、内容生成式:内容生成式指的是学生自主寻找、建立、组织具体知识领域的内容,实现信息资源的同化、交互和综合。具体的活动是学生设计开发网页,通过网络资源和链接按照自己的方式将信息内容呈现。这种模式中,学生是信息资源内容的重要来源。
五、网络课程的发展趋势
网络课程因其自身灵活的特点使得它在继续教育、素质教育及职业教育方面都将有很大的优势。虽然有人认为网络课程不能有效地刺激学生去学习,但是不断增长的学生需求和网络所提供的更多的学习机会是网络课程的优势所在。我认为基于Web的网络课程在将来的发展有以下几个趋势:
第一,资源渐趋丰富,课程种类更齐全
据统计,美国目前已有450多所大学建立了网上虚拟学校,开设了200多个专业,学生数量达10多万人。将来的网上课程门类齐全,有自主学习课程、成人教育课程、学科教育课程等;提供的服务形式也越来越多样,学生可以网上快速地检索出自己所需要的课程节目信息或学习资料。
第二,以课堂教学为基础转向以学习活动为中心的课程设计。
以课堂教学为基础的课程强调课程的内容设计,而以Web为基础的教学不应是传统课程内容的照搬。今后网络课程的设计应是结合Web的具体特点,以Email答疑、电子论坛、计算机视频会议等学习活动为中心的设计。
第三,以Web的低级应用设计转向Web高级应用的设计。
随着Web技术和教学设计理论的发展,网络课程的开发必将从Web的低级应用阶段转向Web高级应用。目前出现了一些网络课程工具平台,这种平台的设计使基于Web的课程在制作、管理和应用上都迈进了一个新的台阶,Web必然将应用于课程教学。
我们即将面临的是一个网络无处不在的时代,开展网络教学是大势所趋。学校应充分发挥其特有的文化和情感氛围,注重教学的优化设计,寻求课堂教学和网络教学的最佳结合点,优质高效地培养能够适应时代要求的新型人才。
参考文献:
[1]《基于Web的远程教学和我国的发展对策》,《电化教育研究》1998年第2期。
[2]《中国电化教育》,张舒予,1999.9。
人类社会迈入新的世纪,全球展开了信息技术革命,并且正以前所未有的方式对社会变革的方向起着决定作用。随着信息化的深入,信息的数量以惊人的速度急剧地爆炸性增加。论文参考网。除了广播、电视、书籍、报纸等各种传统的信息传播媒介之外,又出现了国际互联网、无线上网、手机上网等新的信息传递手段,使信息获取变得更加多样复杂,同样使农业信息获取的渠道增多。面对“信息爆炸”的时代,如何快速高效的进行网络中的农业信息获取成了农业信息工作的首要任务。
在新的环境下,作为农业信息从业人员,应掌握更多的从当前网络中获取农业信息的手段,下面从六个方面说明如何在当前网络中进行农业信息获取。
1、使用专业的农业信息搜索引擎,是农业信息化发展的方向。
要在海量信息中找到所需农业信息,就必须用到专业级的搜索引擎。我国目前现状,农业信息的获取还很困难,特别是急需农业科技信息和市场信息的企业、部门、农户,他们通过综合搜索引擎,并不能迅速找到自己想要的信息。据不完全统计,在农业领域现有各种网站近十万多个,涉及农、林、牧、渔、水利、气象、农垦、乡镇企业及其它农业部门。在这些海量的信息中,如何搜索一个准确的农业信息是农业人员非常关注的问题。因此,针对于中文农业网络资源研发专业化的搜索引擎,实现农业信息的精确搜索是农业信息搜索引擎发展方向。
在专业农业搜索引擎方面,有些网站已经走在前列:
世界范围:(1)农业冲浪(agrisurf.com)。世界上最大的农业专业搜索引擎,提供分类检索和关键词检索,提供大约20 000多个农业相关网站和95个国家与地区的有效链接。
(2) Ceres Online
ceresgroup.com/col/
专门提供农业信息。其搜索功能连接到了农业产业的其它专业人员。日历数据库列出了几百个即将到来的农业活动,气象图提供了世界各地天气情况以及热点信息。论文参考网。
(3)AgEconSearch
agecon.lib.umn.edu/
AgEcon搜索收集,索引包括诸如农业,食品供应,自然资源经济学,环境经济学,农产品贸易及广义的农业经济领域的学术研究全文。
国内相关搜索引擎:
(1)农搜sdd.net.cn/
农搜农业专业搜索引擎的研发得到了中国农业科学院“杰出人才工程”经费的资助。
(2)搜农sounong.net/
中国搜农是在国家科技支撑计划项目和现代农村信息化关键技术研究与示范项目资助下取得的一项重大创新成果,也是第一个面向我国农业企业、农民大户、农业专业技术协会以及广大农业科技人员提供农业通用搜索与农产品供求、农业实用技术、政策新闻等专题的搜索服务。
(3)so.ag365.com/365农业搜索
(4)chinanong.com/华农在线-中国农业信息搜索引擎
(5)086ny.com/soso/超农网农业搜索
(6)3nss.com/Portal/Default.aspx三农搜索网
2、除了农业搜索引擎外,网络中农业信息获取还要有相应的专业智能浏览器。
使用专门开发的面向农业信息获取方面的智能浏览器,可以借助智能浏览器的功能,方便快捷地进行快速搜索、精确搜索,过滤无关信息,提取农业信息,为广大农民用户方便快捷地获取农业信息提供服务。
3、使用在线农业专家系统。
农业专家系统是运用人工智能的专家系统技术,汇集农业领域知识、模型和专家经验等,采用合宜的知识表示技术和推理策略,以信息网络为载体,为农业生产管理者提供咨询服务。传统的农业专家系统在现今的网络条件下变的不适用。现在农业专家系统的发展方向为:在线农业专家系统及实时智能专家系统。
目前国内许多专家系统已经上线并且在使用过程中起到了良好效果。
(1)esa.org.cn/index.asp
广西智能农业信息网,提供作物类、瓜果类、蔬菜类、畜牧类、兽医类和水产类等六类十九种在线专家系统。
(2)nbnky.gov.cn:4000
宁波农经网农业专家系统,提供了蔬菜病虫害专家系统、河蟹养殖专家系统、家兔养殖专家系统、海水养殖系列专家系统、网箱养鱼专家系统等二十八种在线专家系统。
(3)hebaic.com.cn/index.do?templet=er_zjxt
河北农业技术推广网、河北农业智能信息网专家系统,提供金丝小枣栽培专家系统、养牛管理专家系统、无公害番茄专家系统等三十余种在线专家系统。
(4)zjxt.hzagro.com/
农业专家系统.net,杭州市科技局、杭州市农办主办提供了水果干果、蔬菜种植、花卉苗木、中药材、水产养殖、畜禽养殖等类七十余种在线农业专家系统。
(5)202.107.249.147/
丽水市农业专家知识系统,提供了花卉苗木、食用菌、笋竹、蔬菜、水产、中药材、其它等十类八十五种在线农业专家系统。
4、进行农业信息智能分析。
农业信息智能分析是应用智能化技术代替传统方法进行农业信息分析的新的研究领域。它主要是围绕农业生产、农产品市场、农业经营管理、农业科技中的分析对象, 进行智能化地信息自动采集、存储、管理、计算、判别等的过程,可模仿、代替专家,解决农业中波动分析、风险识别、早期预测、效果评价等诸多问题。目前农业智能分析技术在我国已投入实际使用。
(1)农业部的“农作物遥感监测系统”,通过采用遥感和地理信息系统手段,及时动态地监测农作物生长状况,解决了依赖实地调查、手工记录、数据上报等传统信息获取方式的不足。针对数据和信息源不足、渠道不畅等问题,农业系统开展了“农产品市场监测预警系统”的开发与应用,定期对粮、油、果、菜、畜产品等主要农产品的生产、需求、进出口、市场行情,进行动态监测、分析,为政府部门、生产者和经营者提供了决策参考。
(2)中国农科院智能化农业预警技术与系统重点开放实验室,构建了全国农产品供求平衡分析预测模型体系框架,开展了12种主要农产品的市场供求分析预测。利用网络抓取技术、数据挖掘技术,已经能从海量的信息中获取市场波动的隐性信息。论文参考网。并建立了主要农产品供求信息库,能对12种主要农产品的市场行情进行趋势分析与展望。
5、使用专业农业网站、专业农业论坛、专业农业交流圈。
传统的专业农业网站及专业农业论坛仍然是广大农民互联网上获取农业信息的主要渠道。另外基于新兴的WEB2.0技术组建的专业农业交流圈能大大增强访问者之间的互动也迅速发展,大有前途。
国内专业农业网站及农业论坛:
(1)202.127.45.50/
中华人民共和国农业部,中国农业信息网。
(2)zgny.com.cn/
中国农业网,农业企业的商务信息平台。
(3)chinabreed.com/
中国养殖网,最大畜牧行业门户网站,提供养殖、饲料、养猪、养鸡、养牛、 养羊、家禽、兽药、特种养殖及畜牧机械相关信息。
(4)aweb.com.cn/
农博网,国家农村信息服务示范项目,以“服务农业,E化农业”的宗旨,为涉农人群提供农业资讯、农产品电子商务、农业论坛以及农业人才服务。
(5)12582.com/
农信通农村信息网,涉农生活服务移动互联网平台,提供最新农业信息,化肥、饲料、农机等价格行情,农民工招聘、就业信息;食品、水果、蔬菜等农产品交易信息,是城乡互动、乡村旅游、农家乐的综合展示窗口。
(6)feedtrade.com.cn/
中国饲料行业信息网,为饲料生产加工、饲料原料贸易、饲料添加剂及畜牧养殖企业提供全面的新闻、行情、价格和分析预测等信息资讯服务。
(7)yuanlin.com/
中国园林网,提供园林绿化苗木资讯,园林绿化景观,园林绿化苗木工程,园林绿化设计 ,等方面信息,为相关园林绿化苗圃企业提供商铺,是园林绿化,苗木园艺的专业园林绿化门户。
(8)bbs.aweb.com.cn/
中国三农论坛,博览天下农事,关注农村、关心农业、关爱农民。
6、除了以上信息资源外,专题讨论组、电子论坛等也可以方便地为相同科学领域的农业专家提供交流空间,这也是当前网络获取农业信息资源的重要方式之一。
参考文献:
[1]《不同搜索引擎在农业领域的应用效果对比》,刘艳华、徐勇。《农业网络信息》2009年08期.
[2]《互联网上农业信息资源的整合、利用与管理研究》,严方。《华中农业大学》,硕士论文.
探索性的演绎法是理论物理学的重要方法。在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于应用那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生时代已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个问题已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以学习的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求自然界的普遍原理。
爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验研究的个别结果面前总是无能为力。
爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是分析方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。([1],pp.109~110)
相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接影响。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。 参见文献[3],p.196)。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。
在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——电子论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学发展的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有历史的价值。
二、采用探索性的演绎法是科学发展的必然趋势
从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。
在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的” 。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设'——应当是任何健全的自然科学的基础。”([1],p.309)
但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在现展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”([1],p.115),他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”([1],p. 262)
三、爱因斯坦大胆运用探索性的演绎法的直接动因
只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个方法论原则从理论上加以论述。可是,早在创立狭义相对论时,他就在研究中大胆运用这一科学方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想影响,其二是当时的物理学现状使得他不能不那样做。
在联邦工业大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉规律”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《自然哲学的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。
爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”([2],p.127)玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的发展已使原理凌驾于经验材料之上。
彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和分析后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”
彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。
彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。
《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,……都是一些自由选择的约定,……([1],p.6)
一开始,爱因斯坦也对洛伦兹的电子论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”([1],p.23)从此时起,爱因斯坦就断然决定用探索性的演绎法来解决问题。
四、爱因斯坦的探索性的演绎法的特色
作为科学推理的演绎法,可以说是源远流长了。早在古希腊时代,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的内容。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。
第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”([1],pp.6,315)。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”([1],p.372)
第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定” ([1],pp.407,471)的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”([1],p,102)
为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、 “思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”([1],pp. 262~263)
关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”([1],p.298)
第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答([1],pp.10~11)。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但应用起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。
爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则([1],pp.12、501)。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。
在爱因斯坦创立狭义相对论和广义相对论的过程中,充分地体现了探索性的演绎法的这三个特色。前面我们已简单地涉及到这一点,这里我们只谈谈爱因斯坦从“内在的完备”这一标准的角度是如何对自己理论进行评价的。1906年,当德国实验物理学家宣称,他在1905年完成的关于高速电子(β射线)质量和速度关系的数据支持亚伯拉罕和布赫尔的“刚性球”电子论,而同洛伦兹-爱因斯坦的理论(电子在运动方向的直径会随速度的增加而收缩)不相容,彭加勒立即发生了动摇,认为相对性原理不再具有我们先前赋予它的那种重要的价值。洛伦兹表现得更是十分悲观,他在1906年3月8日致彭加勒的信中说:“不幸的是,我的电子扁缩假设同考夫曼的新结果发生了矛盾,因此我必须放弃它,我已到了山穷水尽的地步。在我看来,似乎不可能建立起一种要求平移对电学和光学现象完全不产生影响的理论。” ([2],p.334)爱因斯坦的态度则截然相反,他对自己的理论的“内在的完备”抱有信心。他在1907年发表的长篇论文中指出:考大曼的实验结果同狭义相对论的“这种系统的偏离,究竟是由于没有考虑到的误差,还是由于相对论的基础不符合事实,这个问题只有在有了多方面的观测资料以后,才能足够可靠地解决。”他认为“刚性球”电子论在“颇大程度上是由于偶然碰巧与实验结果相符,因为它们关于运动电子质量的基本假设不是从总结了大量现象的理论体系得出来的。” 正由于狭义相对论的理论前提的简单性大,它涉及的事物的种类多,它的应用范围广,它给人的印象深,所以爱因斯坦才对自己的理论坚信不疑,要知道当时还没有确凿的实验事实证实这种具有思辨性的理论。谈到广义相对论的“内在的完备”,爱因斯坦说:“这理论主要吸引人的地方在于逻辑上的完整性。从它推出的许多结论中,只要有一个被证明是错误的,它就必须被抛弃,要对它进行修改而不摧毁其整个结构,那似乎是不可能的。”([1],p.113)他甚至说过这样的话:当1919年的日蚀观测证明了他关于光线弯曲的推论时,他一点也不惊奇。要是这件事没有发生,他倒会是非常惊讶的。
探索性的演绎法是爱因斯坦的主导哲学思想——唯物论的唯理论——的一个重要组成部分。可贵的是,爱因斯坦在这里并没有排斥或漠视经验归纳法在科学中的地位。一方面,他认为纯粹思维可以把握实在;另一方面,又认为从来也没有一种理论是靠纯粹思辨发现的,他对构造性的理论也给予了较高的评价。爱因斯坦敢于正视矛盾的两极,在唯理论和经验论之间保持了一种微妙的、恰如其分的平衡,这正是他的高明之处。他提出的探索性的演绎法,只是强调“要大胆思辨,不要经验堆积”罢了,这是理论科学在20世纪发展的必然趋势,爱因斯坦则是率先表达了这一时代要求。
参考文献
《爱因斯坦文集》第一卷,许良英等编译,商务印书馆,1978年第1版,第75~76页。
Arthur I.Miller,Albert Einstein's Specisl Theory of Relativity:Emergence(1905) and Early Interpretation, (1905~1911),Adison-Wesley Pubiishing Company,Inc., 1981, p.196.
H.S.塞耶编:《牛顿自然哲学著作选》,上海人民出版社,1971年第1版,第6页。
AbstractDiscussestherequirementsformonitoringandmanagementofthescopesfromboilerhousesforheating,steam-waterandwater-waterheatexchangers,smallscaleheatingnetworkstolargescaledistrictheating,therelatedhardwareconfigurationandtheapproachestorealisetherequiredfunctions.
Keywordscomputercontrol,heating,boiler
5.1供暖热水锅炉房内监测与控制的主要目的应为:
·提高系统的安全性,保证系统能够正常运行;
·全面监测并记录各运行参数,降低运行人员工作量,提高管理水平;
·对燃烧过程和热水循环过程进行有效的控制调节,提高锅炉效率,节省运行能耗,并减少大气污染。
对于热水锅炉,可将被监测控制对象分为燃烧系统和水系统两部分分别进行讨论。整个计算机监测控制管理系统可按图5-1形式由若干台现场控制机(DCU)和一台中央管理机构成。各DCU分别对燃烧系统、水系统进行监测控制,中央管理机则显示并记录这两个系统的在线状态参数,根据供热状态况确定锅炉、循环泵的开启台数,设定供水温度及循环流量,协调各台DCU完成各监测控制管理功能。
5.1.1燃烧系统监测与控制
图5-1锅炉房计算机的监控系统
对于链条式热水锅炉,燃烧过程的控制主要是根据对产热量的要求控制链条速度及进煤挡板高度,根据炉膛内燃烧状况及排烟的含氧量及炉膛内的负压度控制鼓风机、引风机的风量,从而既根据供暖的要求产生热量,又获得较高的燃烧效率。为此需要监测的参数有:
·排烟温度:一般使用铜电阻或热电偶来测量;再配之以相应的温度变送器,即可产生4~20mA或0~10mA的电流信号,通过DCU的模拟量输入通道AI即接入计算机。
·排烟含氧量:目前较多采用氧化锆传感器,可以对0.1%~21%范围内的高温气体的含氧量实现较精确的测量,其输出通过变送器后亦可转换为4~20mA或0~10mA电流信号。
·空气预热器出口热风温度:同上述测温方法。
·炉膛、对流受热面进出口、省煤器出口、空气预热器出口、除尘器出口烟气压力:测点可根据具体要求增减,一般采用膜盒式或波纹管式微压差传感器,再通过相应的变送器变为4~20mA或0~10mA电流信号,接入DCU的AI通道。
·一次风、二次风风压,空气预热器前后压差:测量方法同上。
·挡煤板高度测量:通过专门的机械装置将其转换为电阻信号,再变成标准电流信号,送入DCU的AI通道。
·供水温度及产热量:由水系统的DCU测出后通过通讯系统送来。
燃烧系统需要控制调节的装置为:
·炉排速度:由可控硅调压,改变直流电机转速
·挡煤板高度:控制电机正反转,通过机械装置带动挡板运动
·鼓风机风量:调鼓风机各风室风阀或通过变频器调风机转速
·引风机风量:调引风机风阀或通过变频器高风机转速
为了监测上述调节装置是否正常动作,还应配置适当的手段测试上述调节装置的实际状态。炉排速度和挡煤板高度可通过适当的机械机构结合霍尔元件等位置探测传感器来实现,风机风量的调节则可以通过风阀的阀位反馈信号或变频器的频率输出信号得到。
燃烧过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。
·事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行。停止鼓风机,引风机。DCU接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。
启停控制:启动点火一般都是人工手动进行,但对于间歇运行的锅炉,封火暂停机和再次启动的过程则可以由DCU控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。
正常运行调节:正常运行时的调节主要是使锅炉出口水温度维持在要求的设定值,同时达到高燃烧效率,低排烟温度,并使炉膛内保持负压。这时作为参照的测量参数有炉膛内的温度分布、压力分布、排烟含水量氧量等。锅炉的给煤量可以通过炉排速度和挡煤板高度(即煤层厚度)确定,鼓风机则可以根据空气预热器进出口空气的压差判断其相对的变化,此时可以调整控制量有炉排速度、煤层厚度(调整挡煤矿板高度)、鼓风机转速、各风室风阀、引风机转速或风阀。上述各调节手段与各可参照的测量参数都不是单一的对应关系,因此很难用如PID算法之类的简单控制调节算法。目前,控制调节效果较好的大都采用"模糊控制"方法或"规则控制"法,都是根据大量的人工调节运行经验而总结出的调节运行方法。
当燃烧充分时,锅炉的出力主要取决于燃煤量,因此锅炉出口水温的控制主要靠炉排速度及煤层厚度来调节,煤层厚度与煤种有很大关系,炉膛内燃烧状况可以通过炉膛内温度分布及煤层风阻来确定。燃烧充分时炉膛内中部温度最高,炉排尾部距挡渣器前煤已燃尽,温度降低。鼓风机则应根据进煤量的增减而增减送风量,同时通过观测排烟的含氧量最终确定风量是否适宜。引风机则可根据炉膛内负压状态决定运行状态,维持炉内微负压,从而既保证煤的充分燃烧,又不会使烟气和火焰外溢。根据如上分析,可采用如下调节规则:
每h一次,根据炉膛内温度分布调整煤层厚度及炉排速度,最高温度点后移,则将炉排速度降低5%,同时将挡煤板提高5%,当最高温度点前移时,则将炉排速度提高5%,同时将挡煤板降低5%。
每2h一次:若出水温度高于设定值2℃以上,则将炉排速度降低5%,若出水温度低于设定值2℃以上,则将炉排速度加大5%,加大和减小炉排速度的同时,还要相应地将鼓风机转速开大或减小。当采用风阀调整鼓风量时,则调阀,观察空气预热器前后压差使此压差增大或减少10%。
每15min一次:若排烟含氧量高于高定值,则适当减少鼓风同风量(降低转速或关小风阀),若低于高定值,则增加鼓风机风量。
每15min一次:若炉膛负压值偏小(或变为正压),加大引风机转速或开大风阀,若负压值偏大,则降低引风机风量。
以上调节规则中,所谓"合理的炉膛温度分布"取决于锅炉形式及测温传感器安装位置,需通过具体运行实测分析后,给出"合理","最高温度前移","最高温度后移"的判据,然后将其再写入DCU控制逻辑中。同样,排烟含氧量的设定值,含氧量出现偏差时对鼓风机风量的修正等参数也需要在锅炉试运行后,根据实际情况摸索,逐步确定。当然这几个修正量参数也可以在运行过程中通过所谓"自学习"的方法得到,在这里不做过多的讨论。
5.1.2锅炉房水系统的监测控制
锅炉房水系统的计算机监测控制系统的主要任务是保证系统的安全性;对运行参数进行计量和统计;根据要求调整运行工况。
·安全性保证:保证主循环泵的正常运行和补水泵的及时补水,使锅炉中循环水不会中断,也不会由于欠压缺水而放空。这是锅炉房安全运行的最主要的保证。
·计量和统计:测定供回水温度和循环水量,以得到实际的供热量;测定补水流量,以得到累计补水量。供热量及补水量是考查锅炉房运行效果的主要参数。
·运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖负荷的变化,节省运行电费。
图5-2为由2台热水锅炉、4台循环水泵构成的锅炉房水系统示意图。图中还给出建议的测量元件和控制元件。
2台锅炉的热水出口均安装测温点,从而可了解锅炉出力状况。为了了解每台锅炉的流量,最好在每台锅炉入口或出口安装流量计,一般可采用涡街式流量计。涡街式流量计投资较高,可以按照图5-2那样在锅炉入口调节阀后面安装压力传感器,根据测出的压力p3,p4与锅炉出口压力p1之压差,也可以间接得到2台锅炉间的流量比例。2台锅炉入口分别安装电动调节阀来调整流量,可以使在2台锅炉都运行时,流量分配基本一致,而当低负荷工况下1台锅炉停止或封火,循环水泵运行台数也减少时,自动调节流量分配,使运行的锅炉通过总流量的90%以上,封火的锅炉仅通过总流量的5%~10%,仅维持其不至于过热。
图5-2锅炉房水系统原理及其测控点
温度传感器t3,t4,t5和流量传感器F1一起构成对热量的计量。用户侧供暖热量为,GF1cp(t3-t4),其中GF1为用流量F1测出的流量。锅炉提供的热量则为GF1cp(t3-t5),二者之差是用于加热补水所需要的热量。长期记录此热量并经常对其作统计分析,与煤耗量比较,既可检查锅炉效率的变化,及时发现锅炉可能出现的问题,与外温变化情况相比较,则又可以了解管网系统的变化及供热系统的变化,从而为科学地管理供暖系统的运行提供依据。
泵1~4为主循环泵。压力传感器p1,p2则观测网路的供回水压力。安装4台泵时的一般视负荷变化情况同时运行2台或3台水泵,留1台或2台备用。用DCU控制和管理这些循环水泵时,如前几讲所述,不仅要能够控制各台泵的启停,同时还应通过测量主接触器的辅助触点状态测出每台泵的开停状态。这样,当发现某台泵由于故障而突然停止运行时,DCU即可立即启动备用泵,避免出现因循环泵故障而使锅炉中循环水停止流动的事故。流量传感器F1也是观察循环水是否正常的重要手段。当外网由于某种原因关闭,尽管循环水泵运行,但流量可以为零或非常小,此时也应立即报警,通过计算机使锅炉自动停止,同时由运行值班人员立即手动开启锅炉的旁通阀V4,恢复锅炉内的水循环。
泵5,6与压力测量装置p2,流量测量装置F2及旁通阀V3构成补水定压系统,当p2压力降低时,开启一台补水泵向系统中补水,待p2升至设定的压力值时,停止补水。为防止管网系统中压力波动太大,当未设膨胀水箱时,还可设置旁通阀V3来维持压力的稳定。长期使一台补水泵运行,通过调整阀门V3来维持压力p2不变。补水泵5,6也是互为备用,因此DCU要测出每台泵的实际启停状态,当发现运行的泵突然停止或需要启动的泵不能启动时,立即启动另一台泵,防止系统因缺水而放空。流量计F2用来计算累计的补水量,它可以是涡街流量计,也可以采用通常的冷水水表,或有电信号输出的水表。
5.1.3锅炉房的中央管理机
如图5-1所示,可采用一台中央管理计算机与各台DCU连接,协调整个锅炉房及热网的运行调节与管理。中央机主要工作任务为:
·通过图形方式显示燃烧系统、水系统及外网系统的运行参数,记录和显示这些参数的长期变化过程,统计分析耗热量、补水量、外温及供回水温度的变化。
·根据外温变化情况,预测负荷的变化,从而确定供热参数,即循环水量及泵的开启台数、供水温度、锅炉运行台数。将这些决定通知相应的DCU产生相应原操作或修改相应的设定值。负荷的预测可以根据测出的以往24h的平均外温w来确定:
(5-1)
式中为Q0设计负荷,t0为设计状态下的室外温度,Q为预测出的负荷。考虑到建筑物和管网系统的热惯性,采用时间序列的方法来预测实际需要的负荷,可能要更准确些。
式(5-1)中的负荷尽管每h计算一次,但由于是取前24h的平均外温,因此它随时间变化很缓慢。每hQ的变化ΔQ仅为:
(5-2)
其中tw,τ-tw,τ-24为两天间同一时刻温度之差,一般不会超过5℃,因此ΔQ的变化总是小于Q的1%,所以不会引起系统的频繁调节。
根据预测的负荷可以确定锅炉的开启台数Nb:Nb≥Q/q0,其中q0为每台锅炉的最大出力。由此还可确定循环水泵的开启台数。
要求的总循环量G=max(Q/(Δt·cp)Cmin),其中Gmin为不产生垂直失调时要求的最小系统流量,Δt为设定的供回水温差。由于多台泵并联时,总流量并非与开启台数成正比,因此可预先在计算机中预置一个开启台数成正比,因此可预先在计算机中预置一个开启台数与流量的关系对应表,由此可求出要求的运行台数。
·分析判断系统出现的故障并报警。锅炉及锅炉房可能出现的故障及由计算机进行判断的方法为:
--水冷壁管或对流管爆管事故此时补水量迅速增加,炉膛内温度迅速下降,排烟温度下降,炉膛内温度迅速下降,排烟温度下降,炉膛内压力迅速由负压变为正压。
--水侧升温汽化事故此时锅炉热水出口温度迅速提高,接近达到或超过出口压力对应的饱和温度。
--锅炉内压力超压事故测出水侧压力突然升高,超过允许的工作压力;
--管网漏水严重测了水侧压力降低,补水量增大;
--锅炉内水系统循环不良测出总循环水量GF1减少很多,压差p3-p1或p4-p1加大;
--除污器堵塞测出总循环水量GF1减少,当阀门V1、V2全开时压差p3-p2、p4-p2仍偏小,说明压力传感器p2的测点至循环水泵入口间的除污器的堵塞。
--炉排故障测出的炉排运动速度与设定值有较大差别;
--引风机、鼓风机、水泵故障相应的主接触器跳闸,或所测出的空气压差或水循环流量与风机、水泵的设计状况有较大出入。
利用计算机根据上述规则及实测运行参数不断进行分析判断,即可及时发现上述事故或故障,并立即采取报警和停炉等相应的措施,从而防止事故的进一步扩大或故障转化为事故,提高运行管理的安全性。
5.2蒸汽-水和水-水换热站的监测与控制
对于利用大型集中锅炉房或热电厂作为热源,通过换热站向小区供热的系统来说,换热站的作用就同上一节的供暖锅炉房一样,只是用热交换器代替了热水锅炉。
图5-3为蒸汽-水换热站的流程及相应的测控制元件。水侧与图5-2一样,控制泵5、6及阀V2根据p2的压力值补水和定压;启停泵1~4来调整循环水量;由t2,t3及流量测量装置F1来确定实际的供热量。与锅炉房不同的是增加了换热器、凝水泵的控制以及蒸汽的计量。
图5-3蒸汽-水换热站的测量与控制
蒸汽计量可以通过测量蒸汽温度t1、压力p3和流量F3实现,F3可以选取用涡街流量计测量,它测出的为体积流量,通过t1和p3由水蒸气性质表可查出相应状态下水蒸气的比体积ρ,从而由体积流量换算出质量流量。为了能由t和p查出比体积,要求水蒸气为过热蒸汽。为此将减压调节阀移至测量元件的前面,如图5-3中所示,这样即使输送来的蒸汽为饱和蒸汽,经调节阀等焓减压后,也可成为过热蒸汽。
实际上还可以通过测量凝水量来确定蒸汽流量。如果凝水箱中两个液位传感器L1、L2灵敏度较高,则可在L2输出无水信号后,停止凝水排水泵,当L2再次输出有水信号时,计算机开始计时,直到L1发出有水信号时,计时停止,同时启动凝水泵开始排水。从L2输出有水信号至L1开始输出有水信号间的流量可以用重量法准确标定出,从而即可通过DCU对这两个水位计的输出信号得到一段时间内的蒸汽平均质量流量,代替流量计F3,并获得更精确的测量。当然此处要求液位传感器L1、L2具有较高灵敏度。一般如浮球式等机械式液位传感器误差较大,而应采取如电容式等非直接接触的电子类液位传感器。
加热量由蒸汽侧调节阀V1控制。此时V1实际上是控制进入换热器的蒸汽压力,从而决定了冷凝温度,也就确定了传热量。为改善换热器的调节特性,可以根据要求的加热量或出口水温确定进入加热器的蒸汽压力的设定值。调整阀门V1使出口蒸汽压力p3达到这一设定值。与直接根据出口水温调整阀门的方式相比,这种串级调节的方式可获得更好的调节效果。
供水温度t3的设定值,循环泵的开启台数或要求的循环水量的确定,可以同上一节一样,根据前24h的外温平均值查算供热曲线得到要求的供热量,并算出要求的循环水量。供水温度的设定值t3,set可由调整后测出的循环水量G、要求的热量Q及实测回水温度t2确定:
t3,set=t2+Q/(cp·G)
随着供水温度t3的改变,t2也会缓慢变化,从而使要求的供水温度同时相应地改变,以保证供出的热量与要求的热量设定值一致。
对于一次网为热水的水-水换热站,原则上可以按照完全相同的方式进行,如图5-4。取消二次供水侧的流量计F1,仅测量高温热水侧的流量F3,再通过即可和到二次侧的循环水量,一般高温水温差大,流量小,因此将流量计装在高温侧可降低成本。测量高温水侧供回水压力p3、p4可了解高温侧水网的压力分布状况,以指导高温侧水网的调节。
图5-4水-水换热站的测量与控制
调整电动阀门V1改变高温水进入换热器的流量,即可改变换热量。可以按照前述方法确定二次侧供水温设定值,由V1按此设定值进行调节。在实际工程中,高温水网侧的主要问题是水力失调,由于各支路通过干管彼此相连,一个热力站的调整往往会导致邻近热力站流量的变化。另外,高温水侧管网总的循环水量也很难与各换热站所要求的流量变化相匹配,于是往往造成外温降低时各换热站都将高温侧水阀V1开大,试图增大流量,结果距热源近的换热站流量得到满足,而距热源远的换热站流量反而减少,造成系统严重的区域失调。解决这种问题的方法就是采用全网的集中控制,由管理整个高温水网的中央控制管理计算机统一指定各热力站调节阀V1的阀位或流量,各换热站的DCU则仅是接收通过通讯网送来的关于调整阀门V1的命令,并按此命令进行相应的调整。高温水侧面管网的集中控制调节。将在一下节中详细介绍。
5.3小区热网的监测与调节
小区热网指供暖锅炉房或换热站至各供暖建筑间的管网的监测调节。小区热网的主要问题也是冷热不均,有些建筑或建筑某部分流量偏大,室内过热,而另一些建筑或建筑的另一部分却由于流量不足而偏冷。这样,计算机系统的中心任务就是掌握小区各建筑物的实际供暖状况,并帮助维护人员解决冷热不均问题。
测量各户室温是对供暖效果最直接的观测,但实际系统中尤其是对住宅来说,很难在各房间安装温度传感器。比较现实的方法就是测量回水温度,根据各支路回水温度的差别,就可以估计出各支路所负责建筑平均室温的差别。如果各支路回水温度调整到相同值,就意味着各支路所带散热器的平均温度彼此相同,因此可以认为室温也基本相同。一般住宅的回水温度测点可选在建筑热入口中的回水管上。对于大型建筑,可选在设备夹层中几个主要支路的回水干管上。
要解决冷热不均问题就需要对系统的流量分配进行调整,在各支路上都安装由计算机进行自动调节的电动调节阀成本会很高,同时一旦各支路流量调节均匀,在无局部的特殊变化时,系统应保持冷热均匀的状态,不需要经常调整。因此可以在各支路上安装手动调节阀,通过计算机监测和指导与人工手动调节相配合的方法实现小区供暖系统的调节和管理。为便于人工手动调节,希望各支路的调节阀有较准确的开度指示。目前国内推广建研院空调所等几个单位研究开发流量调配阀,有准确的阀位指示,阀位可锁定,并提供较准确的阀位-阻力特性曲线,采用这种阀门将更易于计算机指导下的人工调节。
根据上述讨论,计算机系统要测出各支路的回水温度,并将其统一送到供暖小区的中央管理计算机中进行显示、记录和分析。测出这些回水温度的方法有如下两种方式:
集中十余个回水温度测点设置1台DCU。此DCU仅需要温度测量输入通道。再通过专门铺设的局部网或通过调制解调器经过电话线与小区的中央管理联接。当这十几个温度相互距离较远时,温度传感器至DCU之间的电缆的铺设有时就有较大困难,温度信号的长线传输亦会有一些干扰等影响。这种方式仅在建筑物较集中、每一组联至一台DCU的测温点相距不太远时适用。
采用内部装有单片机的智能式温度传感器,可以连接通讯网通讯或通过调制解调器搭用电话线连至中央管理计算机。这样,可以在距测点最近的楼道墙壁上挂上一台带有调制解调器的温度变送器,通过一根电缆接至回水管上的温度传感器,再通过一根电缆搭接邻近电话线。目前这类设备每套价格可在1000~1500元人民币之间。如果每1000~3000m2建筑安装一个回水温度测点,则平均每m2供暖建筑投资在0.50~1元间。
小区的中央管理计算机采集到各点的回水温度后,可在屏幕上通过图形方式显示,使运行管理人员对当时的供热状况一目了然。还可根据各支路间回水温度的差别计算各支路阀门需要的调整量。对于一般的带有阀位指示的调节阀,这种分析只能采用某种基于经验的规则判断法,下面为其一例:
找出温度最高的10%支路的平均温度max,温度最低的10%支路和的平均温度min,全网平均回水温度。
若max-min<3℃,不需要再做调节。
若max->2℃,将温度最高的10%支路阀门都关小,与相比温度每高1℃关小3%5~%;
若max-<-2℃,将温度最低的10%支路阀门都开大,与相比温度每高1℃开大3%~5%;
根据上面的分析结果,计算机显示并打印出需要调节的支路及其调节量。运行管理人员根据计算机的输出结果到现场进行手动调节。在供暖初期每3天左右进行一次这种调节。一般经过6~8次即可使一个小区基本实现均匀供热。
采用流量调配阀时可以使调节效率更高,效果更好。此时需要将现场各流量调配阀的实际开度、流量调配阀的开度-阻力特性性能曲线及小区管网的连接关系图输入中央管理计算机,有专门的算法可以根据调整阀门后回水温度的变化情况识别出管网的阻力特性及热用户的热力特性,从而可较准确地给出各流量调本阀需要调整的开度[4],每次调整后,调整人员需将实际上各调节阀的调整程度输入计算机。计算机进而计算了下一次需要的调整量,像这样一次高速可间隔2~5d。模拟分析与实验结果表明,一般只要进行3~4次调节,即可使各支路的回水温度调整到相互间差值都在3℃以内,实现较好的均匀供热[8]。
目前,许多供热公司和有关管理部门开始提出装设热量计,以按照实际供热量收供暖费,各种采用单片计算机的热量计相应出台。这种热量计多是由一台转子式流量计和两台温度传感器配一台单片计算机构成。转子式流量计每流过一个单元流量即发出一个脉冲,由单片机测出此脉冲,得到流量,再乘以当时测出的供回水温差,即可行到相应的热量,由单片要对此热量值进行累计和其它统计分析就成为热量计。目前的单片机稍加扩充就可以具有通讯功能,通过调制解调器将它与电话线连接,就能实现热量计与小区供暖的中央管理机通讯。这样,不但各用户的用热量能够及时在中央管理机中反映,各用户的回水温度状况还能随时送到中央管理计算机中,从而可以对网的不平衡发问进行分析,给出热网的调节方案。这样,将热量计、通讯网与小区中央管理计算机三者结合,就可以全面实施小区热网的热量计量、统计与管理、运行调节分析三部分功能,较好地解决小区热网的运行、管理与调节。
5.4热电联产的集中供热网的计算机监控管理
热电联产的集中供热网可以分成两部分:热源至各热力站间的一次网,热力站至各用户建筑的二次网。后者的控制调节已在前几节讨论,本节讨论热源至各热力站间的一次网的监控管理。
一次网有蒸汽网和热水网两种形式,对于蒸汽网,各热力站为前面讨论过的蒸汽-热水换热站,一次网的管理主要是各热力站蒸汽用量的准确计量,这在前面也已讨论。下面主要研究热水网的监测控制调节。
若忽略热网本身的惯性,则系统各时刻和热力站换热量之和总是等于热源供出的总热量,此外各热力站一次网循环水量之和又总是等于热源循环泵的流量,不论是冷凝式、抽汽式还是背压式热电厂,其输出到热网的热量都不是完全由各热力站的调节决定,而是由热电厂本身的调节来决定,取决于进入蒸汽-水换热器的蒸汽量。由于热电厂控制调节输出热量时很难准确了解各热力站对热量的需求,同时还要兼顾发电的要求,不能完全根据各热力站需要的热量调整,于是热源供出的热量就很难与各热力站实际需求的热量之和一致,这样,就导致控制调节上的一些矛盾。
为简单起见,假设热电厂向蒸汽-水加热器送入固定的蒸汽量Q0,如图5-5,若此热量大于各热力站需要的热量,则各热力站二次侧调节纷纷关小。以减小流量。由此使总流量相应减少,导致供回水温差加大。如果电厂维持蒸汽量Q0不变则各热力站调节阀的关小并不能使总热量减少,而只是根据网的特性及各热力站调节特性的不同,有的热力产流量减少的多,使得供热量有所减少;有的热力站流量减少的幅度小,则供热量反而电动阀加。同样,如果Q0小于各热力站需要的总热量时,各热力站的调节阀纷纷开大,使流量增加,由此导致供回水温差减小。热力站1,2可能由于热量增大的幅度大于水温降低的幅度,供热量的需求得以满足,但由于流量增大,泵的压力降低,干管压降又减小,导致3,4的资用压头大幅度下降,阀门开大后,流量也增加不多,甚至还要下降,这样,供热量反而减少。由此可见在这种情况下各热力站对一次侧阀门的调节实际是对各热力站之间的热量分配比例的调节,而不是对热量的调节,如果各热力站都是这样独立地根据自己小区的供热需求进行调节,而热电厂又不做相应的配合,则整个热网不可能调整控制好。实际上热电厂也会进行一些相应的调节,例如发现t供升高时会减少蒸汽量,t供降低时会增加蒸汽量,但Q0总是不可能时刻与各热力站总的需求量一致,上述矛盾是永远存在的。
图5-5热电厂与各热力站之间的平衡
因此,就不宜对各个热力站按照第5.1、5.2节中的讨论的,根据外温独立调节。既然各热力站一次侧阀门的调节只解决热量的分配比例,那么对它们的调节亦应该根据对热量的分配比例来调节。一种方式是如果认为供热量应与供热面积成正比,则测出每个热力站的瞬时供热量,根据各热力站的供热面积,计算每个热力站的单位面积q。对q偏大的热力站关小调节阀,对q偏小的则开大调节阀,这样不断修正,直至各热力站的q相同为止。再一种方式则是认为各散热器内的平均温度相同,房间的供热效果就相同。由于散热器的平均温度等于二次侧的供回水平均温度,因此可以各热力站二次侧供回水平均温度调整成一致目标,统一确定热力站二次侧供回水平均温度的设定值,根据此设定值与实测供回水平均温度确定开大或关小一次侧调节阀。按照这一思路,对各热力站的调节以达到热量的平均分配为目的,以实现均匀供热。热电厂再根据外温变化,统一对总的供热量进行调整,以保证供热效果并且不浪费热量。由于整个热网所供应的建筑物效果并不浪费热量。由于整个热网所供应的建筑物均处在同一外温下,因此,一旦系统调整均匀,对各热和站调节阀的调整很少,热源的总的供热以数随外温改变,各热力站的调节阀则不需要随外温而变化,只当小区二次系统发生一些变化时才需要进行相应的调节。
要实现这种调节方式,就必须对全网各热力站的调节阀实行集中统一的控制调节。可以在每个热力站设一台DCU现场控制机,测量一、二次侧的水温、压力、流量及二次侧循环泵状态,并可控制一次侧电动调节阀。通过通讯网将各热力站连至中央管理计算机。由于热力站分布范围很大,通讯距离较过远,这时的通讯可通过调制解调器搭用电话线,也可以随着供热干管同时埋设通讯电缆,使用双绞线按照电流环方式通讯。中央管理机不断采集各热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度的设定值与和各热力站实测值的比较,直接命令各热力站DCU开大/关小电动调节阀。各热力站二次侧回水温度的变化是一惯性很大且缓慢的过程,因此应采有0.5~1h以上的时间步长进行调节,以防止振荡。
除对热网工况进行高速外,计算机控制系统还应为保证系统的安全运行做出贡献。当热力站采用直连的方式,不使用热交换器时,最常见的事故就是管道内超压导致散热器胀裂,DCU可直接监视用户的供回水管压力,发现超压立即关闭供水阀,起到保护作用。无论直连还是间连网,另一类严重的事故就是一次网漏水。严重的管道漏水如不能及时发现并切断和修复,将严重影响供热系统和热电厂的运行。根据各热力站DCU监测的一次网供回水压力分布,还可以从其中的突然变化判断漏水事故及其位置,这对提高热网的安全运行有十分重要的意义,这类系统压力分析与事故判断的工作应属于中央管理机的工作内容。
5.5参考文献
1温丽,锅炉供暖运行技术与管理,北京:清华大学出版社,1995。
2陆耀庆主编,实用供热空调设计手册,北京:中国建筑工业出版社,1993。
3李祚启,集中供热管理微机自控优化系统,建设电子论文选编,北京:中国建筑工业出版社,1994。
4江亿,集中供热网控制调节策略探讨,区域供热,1997,(2)。
5江亿,城市集中供热网的计算机控制和管理,区域供热,1995(5)。
AbstractDiscussestherequirementsformonitoringandmanagementofthescopesfromboilerhousesforheating,steam-waterandwater-waterheatexchangers,smallscaleheatingnetworkstolargescaledistrictheating,therelatedhardwareconfigurationandtheapproachestorealisetherequiredfunctions.
Keywordscomputercontrol,heating,boiler
5.1供暖热水锅炉房内监测与控制的主要目的应为:
·提高系统的安全性,保证系统能够正常运行;
·全面监测并记录各运行参数,降低运行人员工作量,提高管理水平;
·对燃烧过程和热水循环过程进行有效的控制调节,提高锅炉效率,节省运行能耗,并减少大气污染。
对于热水锅炉,可将被监测控制对象分为燃烧系统和水系统两部分分别进行讨论。整个计算机监测控制管理系统可按图5-1形式由若干台现场控制机(DCU)和一台中央管理机构成。各DCU分别对燃烧系统、水系统进行监测控制,中央管理机则显示并记录这两个系统的在线状态参数,根据供热状态况确定锅炉、循环泵的开启台数,设定供水温度及循环流量,协调各台DCU完成各监测控制管理功能。
5.1.1燃烧系统监测与控制
图5-1锅炉房计算机的监控系统
对于链条式热水锅炉,燃烧过程的控制主要是根据对产热量的要求控制链条速度及进煤挡板高度,根据炉膛内燃烧状况及排烟的含氧量及炉膛内的负压度控制鼓风机、引风机的风量,从而既根据供暖的要求产生热量,又获得较高的燃烧效率。为此需要监测的参数有:
·排烟温度:一般使用铜电阻或热电偶来测量;再配之以相应的温度变送器,即可产生4~20mA或0~10mA的电流信号,通过DCU的模拟量输入通道AI即接入计算机。
·排烟含氧量:目前较多采用氧化锆传感器,可以对0.1%~21%范围内的高温气体的含氧量实现较精确的测量,其输出通过变送器后亦可转换为4~20mA或0~10mA电流信号。
·空气预热器出口热风温度:同上述测温方法。
·炉膛、对流受热面进出口、省煤器出口、空气预热器出口、除尘器出口烟气压力:测点可根据具体要求增减,一般采用膜盒式或波纹管式微压差传感器,再通过相应的变送器变为4~20mA或0~10mA电流信号,接入DCU的AI通道。
·一次风、二次风风压,空气预热器前后压差:测量方法同上。
·挡煤板高度测量:通过专门的机械装置将其转换为电阻信号,再变成标准电流信号,送入DCU的AI通道。
·供水温度及产热量:由水系统的DCU测出后通过通讯系统送来。
燃烧系统需要控制调节的装置为:
·炉排速度:由可控硅调压,改变直流电机转速
·挡煤板高度:控制电机正反转,通过机械装置带动挡板运动
·鼓风机风量:调鼓风机各风室风阀或通过变频器调风机转速
·引风机风量:调引风机风阀或通过变频器高风机转速
为了监测上述调节装置是否正常动作,还应配置适当的手段测试上述调节装置的实际状态。炉排速度和挡煤板高度可通过适当的机械机构结合霍尔元件等位置探测传感器来实现,风机风量的调节则可以通过风阀的阀位反馈信号或变频器的频率输出信号得到。
燃烧过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。
·事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行。停止鼓风机,引风机。DCU接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。
启停控制:启动点火一般都是人工手动进行,但对于间歇运行的锅炉,封火暂停机和再次启动的过程则可以由DCU控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。
正常运行调节:正常运行时的调节主要是使锅炉出口水温度维持在要求的设定值,同时达到高燃烧效率,低排烟温度,并使炉膛内保持负压。这时作为参照的测量参数有炉膛内的温度分布、压力分布、排烟含水量氧量等。锅炉的给煤量可以通过炉排速度和挡煤板高度(即煤层厚度)确定,鼓风机则可以根据空气预热器进出口空气的压差判断其相对的变化,此时可以调整控制量有炉排速度、煤层厚度(调整挡煤矿板高度)、鼓风机转速、各风室风阀、引风机转速或风阀。上述各调节手段与各可参照的测量参数都不是单一的对应关系,因此很难用如PID算法之类的简单控制调节算法。目前,控制调节效果较好的大都采用"模糊控制"方法或"规则控制"法,都是根据大量的人工调节运行经验而总结出的调节运行方法。
当燃烧充分时,锅炉的出力主要取决于燃煤量,因此锅炉出口水温的控制主要靠炉排速度及煤层厚度来调节,煤层厚度与煤种有很大关系,炉膛内燃烧状况可以通过炉膛内温度分布及煤层风阻来确定。燃烧充分时炉膛内中部温度最高,炉排尾部距挡渣器前煤已燃尽,温度降低。鼓风机则应根据进煤量的增减而增减送风量,同时通过观测排烟的含氧量最终确定风量是否适宜。引风机则可根据炉膛内负压状态决定运行状态,维持炉内微负压,从而既保证煤的充分燃烧,又不会使烟气和火焰外溢。根据如上分析,可采用如下调节规则:
每h一次,根据炉膛内温度分布调整煤层厚度及炉排速度,最高温度点后移,则将炉排速度降低5%,同时将挡煤板提高5%,当最高温度点前移时,则将炉排速度提高5%,同时将挡煤板降低5%。
每2h一次:若出水温度高于设定值2℃以上,则将炉排速度降低5%,若出水温度低于设定值2℃以上,则将炉排速度加大5%,加大和减小炉排速度的同时,还要相应地将鼓风机转速开大或减小。当采用风阀调整鼓风量时,则调阀,观察空气预热器前后压差使此压差增大或减少10%。
每15min一次:若排烟含氧量高于高定值,则适当减少鼓风同风量(降低转速或关小风阀),若低于高定值,则增加鼓风机风量。
每15min一次:若炉膛负压值偏小(或变为正压),加大引风机转速或开大风阀,若负压值偏大,则降低引风机风量。
以上调节规则中,所谓"合理的炉膛温度分布"取决于锅炉形式及测温传感器安装位置,需通过具体运行实测分析后,给出"合理","最高温度前移","最高温度后移"的判据,然后将其再写入DCU控制逻辑中。同样,排烟含氧量的设定值,含氧量出现偏差时对鼓风机风量的修正等参数也需要在锅炉试运行后,根据实际情况摸索,逐步确定。当然这几个修正量参数也可以在运行过程中通过所谓"自学习"的方法得到,在这里不做过多的讨论。
5.1.2锅炉房水系统的监测控制
锅炉房水系统的计算机监测控制系统的主要任务是保证系统的安全性;对运行参数进行计量和统计;根据要求调整运行工况。
·安全性保证:保证主循环泵的正常运行和补水泵的及时补水,使锅炉中循环水不会中断,也不会由于欠压缺水而放空。这是锅炉房安全运行的最主要的保证。
·计量和统计:测定供回水温度和循环水量,以得到实际的供热量;测定补水流量,以得到累计补水量。供热量及补水量是考查锅炉房运行效果的主要参数。
·运行工况调整:根据要求改变循环水泵运行台数或改变循环水泵转速,调整循环流量,以适应供暖负荷的变化,节省运行电费。
图5-2为由2台热水锅炉、4台循环水泵构成的锅炉房水系统示意图。图中还给出建议的测量元件和控制元件。
2台锅炉的热水出口均安装测温点,从而可了解锅炉出力状况。为了了解每台锅炉的流量,最好在每台锅炉入口或出口安装流量计,一般可采用涡街式流量计。涡街式流量计投资较高,可以按照图5-2那样在锅炉入口调节阀后面安装压力传感器,根据测出的压力p3,p4与锅炉出口压力p1之压差,也可以间接得到2台锅炉间的流量比例。2台锅炉入口分别安装电动调节阀来调整流量,可以使在2台锅炉都运行时,流量分配基本一致,而当低负荷工况下1台锅炉停止或封火,循环水泵运行台数也减少时,自动调节流量分配,使运行的锅炉通过总流量的90%以上,封火的锅炉仅通过总流量的5%~10%,仅维持其不至于过热。
图5-2锅炉房水系统原理及其测控点
温度传感器t3,t4,t5和流量传感器F1一起构成对热量的计量。用户侧供暖热量为,GF1cp(t3-t4),其中GF1为用流量F1测出的流量。锅炉提供的热量则为GF1cp(t3-t5),二者之差是用于加热补水所需要的热量。长期记录此热量并经常对其作统计分析,与煤耗量比较,既可检查锅炉效率的变化,及时发现锅炉可能出现的问题,与外温变化情况相比较,则又可以了解管网系统的变化及供热系统的变化,从而为科学地管理供暖系统的运行提供依据。
泵1~4为主循环泵。压力传感器p1,p2则观测网路的供回水压力。安装4台泵时的一般视负荷变化情况同时运行2台或3台水泵,留1台或2台备用。用DCU控制和管理这些循环水泵时,如前几讲所述,不仅要能够控制各台泵的启停,同时还应通过测量主接触器的辅助触点状态测出每台泵的开停状态。这样,当发现某台泵由于故障而突然停止运行时,DCU即可立即启动备用泵,避免出现因循环泵故障而使锅炉中循环水停止流动的事故。流量传感器F1也是观察循环水是否正常的重要手段。当外网由于某种原因关闭,尽管循环水泵运行,但流量可以为零或非常小,此时也应立即报警,通过计算机使锅炉自动停止,同时由运行值班人员立即手动开启锅炉的旁通阀V4,恢复锅炉内的水循环。
泵5,6与压力测量装置p2,流量测量装置F2及旁通阀V3构成补水定压系统,当p2压力降低时,开启一台补水泵向系统中补水,待p2升至设定的压力值时,停止补水。为防止管网系统中压力波动太大,当未设膨胀水箱时,还可设置旁通阀V3来维持压力的稳定。长期使一台补水泵运行,通过调整阀门V3来维持压力p2不变。补水泵5,6也是互为备用,因此DCU要测出每台泵的实际启停状态,当发现运行的泵突然停止或需要启动的泵不能启动时,立即启动另一台泵,防止系统因缺水而放空。流量计F2用来计算累计的补水量,它可以是涡街流量计,也可以采用通常的冷水水表,或有电信号输出的水表。
5.1.3锅炉房的中央管理机
如图5-1所示,可采用一台中央管理计算机与各台DCU连接,协调整个锅炉房及热网的运行调节与管理。中央机主要工作任务为:
·通过图形方式显示燃烧系统、水系统及外网系统的运行参数,记录和显示这些参数的长期变化过程,统计分析耗热量、补水量、外温及供回水温度的变化。
·根据外温变化情况,预测负荷的变化,从而确定供热参数,即循环水量及泵的开启台数、供水温度、锅炉运行台数。将这些决定通知相应的DCU产生相应原操作或修改相应的设定值。负荷的预测可以根据测出的以往24h的平均外温w来确定:
(5-1)
式中为Q0设计负荷,t0为设计状态下的室外温度,Q为预测出的负荷。考虑到建筑物和管网系统的热惯性,采用时间序列的方法来预测实际需要的负荷,可能要更准确些。
式(5-1)中的负荷尽管每h计算一次,但由于是取前24h的平均外温,因此它随时间变化很缓慢。每hQ的变化ΔQ仅为:
(5-2)
其中tw,τ-tw,τ-24为两天间同一时刻温度之差,一般不会超过5℃,因此ΔQ的变化总是小于Q的1%,所以不会引起系统的频繁调节。
根据预测的负荷可以确定锅炉的开启台数Nb:Nb≥Q/q0,其中q0为每台锅炉的最大出力。由此还可确定循环水泵的开启台数。
要求的总循环量G=max(Q/(Δt·cp)Cmin),其中Gmin为不产生垂直失调时要求的最小系统流量,Δt为设定的供回水温差。由于多台泵并联时,总流量并非与开启台数成正比,因此可预先在计算机中预置一个开启台数成正比,因此可预先在计算机中预置一个开启台数与流量的关系对应表,由此可求出要求的运行台数。
·分析判断系统出现的故障并报警。锅炉及锅炉房可能出现的故障及由计算机进行判断的方法为:
--水冷壁管或对流管爆管事故此时补水量迅速增加,炉膛内温度迅速下降,排烟温度下降,炉膛内温度迅速下降,排烟温度下降,炉膛内压力迅速由负压变为正压。
--水侧升温汽化事故此时锅炉热水出口温度迅速提高,接近达到或超过出口压力对应的饱和温度。
--锅炉内压力超压事故测出水侧压力突然升高,超过允许的工作压力;
--管网漏水严重测了水侧压力降低,补水量增大;
--锅炉内水系统循环不良测出总循环水量GF1减少很多,压差p3-p1或p4-p1加大;
--除污器堵塞测出总循环水量GF1减少,当阀门V1、V2全开时压差p3-p2、p4-p2仍偏小,说明压力传感器p2的测点至循环水泵入口间的除污器的堵塞。
--炉排故障测出的炉排运动速度与设定值有较大差别;
--引风机、鼓风机、水泵故障相应的主接触器跳闸,或所测出的空气压差或水循环流量与风机、水泵的设计状况有较大出入。
利用计算机根据上述规则及实测运行参数不断进行分析判断,即可及时发现上述事故或故障,并立即采取报警和停炉等相应的措施,从而防止事故的进一步扩大或故障转化为事故,提高运行管理的安全性。
5.2蒸汽-水和水-水换热站的监测与控制
对于利用大型集中锅炉房或热电厂作为热源,通过换热站向小区供热的系统来说,换热站的作用就同上一节的供暖锅炉房一样,只是用热交换器代替了热水锅炉。
图5-3为蒸汽-水换热站的流程及相应的测控制元件。水侧与图5-2一样,控制泵5、6及阀V2根据p2的压力值补水和定压;启停泵1~4来调整循环水量;由t2,t3及流量测量装置F1来确定实际的供热量。与锅炉房不同的是增加了换热器、凝水泵的控制以及蒸汽的计量。
图5-3蒸汽-水换热站的测量与控制
蒸汽计量可以通过测量蒸汽温度t1、压力p3和流量F3实现,F3可以选取用涡街流量计测量,它测出的为体积流量,通过t1和p3由水蒸气性质表可查出相应状态下水蒸气的比体积ρ,从而由体积流量换算出质量流量。为了能由t和p查出比体积,要求水蒸气为过热蒸汽。为此将减压调节阀移至测量元件的前面,如图5-3中所示,这样即使输送来的蒸汽为饱和蒸汽,经调节阀等焓减压后,也可成为过热蒸汽。
实际上还可以通过测量凝水量来确定蒸汽流量。如果凝水箱中两个液位传感器L1、L2灵敏度较高,则可在L2输出无水信号后,停止凝水排水泵,当L2再次输出有水信号时,计算机开始计时,直到L1发出有水信号时,计时停止,同时启动凝水泵开始排水。从L2输出有水信号至L1开始输出有水信号间的流量可以用重量法准确标定出,从而即可通过DCU对这两个水位计的输出信号得到一段时间内的蒸汽平均质量流量,代替流量计F3,并获得更精确的测量。当然此处要求液位传感器L1、L2具有较高灵敏度。一般如浮球式等机械式液位传感器误差较大,而应采取如电容式等非直接接触的电子类液位传感器。
加热量由蒸汽侧调节阀V1控制。此时V1实际上是控制进入换热器的蒸汽压力,从而决定了冷凝温度,也就确定了传热量。为改善换热器的调节特性,可以根据要求的加热量或出口水温确定进入加热器的蒸汽压力的设定值。调整阀门V1使出口蒸汽压力p3达到这一设定值。与直接根据出口水温调整阀门的方式相比,这种串级调节的方式可获得更好的调节效果。
供水温度t3的设定值,循环泵的开启台数或要求的循环水量的确定,可以同上一节一样,根据前24h的外温平均值查算供热曲线得到要求的供热量,并算出要求的循环水量。供水温度的设定值t3,set可由调整后测出的循环水量G、要求的热量Q及实测回水温度t2确定:
t3,set=t2+Q/(cp·G)
随着供水温度t3的改变,t2也会缓慢变化,从而使要求的供水温度同时相应地改变,以保证供出的热量与要求的热量设定值一致。
对于一次网为热水的水-水换热站,原则上可以按照完全相同的方式进行,如图5-4。取消二次供水侧的流量计F1,仅测量高温热水侧的流量F3,再通过即可和到二次侧的循环水量,一般高温水温差大,流量小,因此将流量计装在高温侧可降低成本。测量高温水侧供回水压力p3、p4可了解高温侧水网的压力分布状况,以指导高温侧水网的调节。
图5-4水-水换热站的测量与控制
调整电动阀门V1改变高温水进入换热器的流量,即可改变换热量。可以按照前述方法确定二次侧供水温设定值,由V1按此设定值进行调节。在实际工程中,高温水网侧的主要问题是水力失调,由于各支路通过干管彼此相连,一个热力站的调整往往会导致邻近热力站流量的变化。另外,高温水侧管网总的循环水量也很难与各换热站所要求的流量变化相匹配,于是往往造成外温降低时各换热站都将高温侧水阀V1开大,试图增大流量,结果距热源近的换热站流量得到满足,而距热源远的换热站流量反而减少,造成系统严重的区域失调。解决这种问题的方法就是采用全网的集中控制,由管理整个高温水网的中央控制管理计算机统一指定各热力站调节阀V1的阀位或流量,各换热站的DCU则仅是接收通过通讯网送来的关于调整阀门V1的命令,并按此命令进行相应的调整。高温水侧面管网的集中控制调节。将在一下节中详细介绍。
5.3小区热网的监测与调节
小区热网指供暖锅炉房或换热站至各供暖建筑间的管网的监测调节。小区热网的主要问题也是冷热不均,有些建筑或建筑某部分流量偏大,室内过热,而另一些建筑或建筑的另一部分却由于流量不足而偏冷。这样,计算机系统的中心任务就是掌握小区各建筑物的实际供暖状况,并帮助维护人员解决冷热不均问题。
测量各户室温是对供暖效果最直接的观测,但实际系统中尤其是对住宅来说,很难在各房间安装温度传感器。比较现实的方法就是测量回水温度,根据各支路回水温度的差别,就可以估计出各支路所负责建筑平均室温的差别。如果各支路回水温度调整到相同值,就意味着各支路所带散热器的平均温度彼此相同,因此可以认为室温也基本相同。一般住宅的回水温度测点可选在建筑热入口中的回水管上。对于大型建筑,可选在设备夹层中几个主要支路的回水干管上。
要解决冷热不均问题就需要对系统的流量分配进行调整,在各支路上都安装由计算机进行自动调节的电动调节阀成本会很高,同时一旦各支路流量调节均匀,在无局部的特殊变化时,系统应保持冷热均匀的状态,不需要经常调整。因此可以在各支路上安装手动调节阀,通过计算机监测和指导与人工手动调节相配合的方法实现小区供暖系统的调节和管理。为便于人工手动调节,希望各支路的调节阀有较准确的开度指示。目前国内推广建研院空调所等几个单位研究开发流量调配阀,有准确的阀位指示,阀位可锁定,并提供较准确的阀位-阻力特性曲线,采用这种阀门将更易于计算机指导下的人工调节。
根据上述讨论,计算机系统要测出各支路的回水温度,并将其统一送到供暖小区的中央管理计算机中进行显示、记录和分析。测出这些回水温度的方法有如下两种方式:
集中十余个回水温度测点设置1台DCU。此DCU仅需要温度测量输入通道。再通过专门铺设的局部网或通过调制解调器经过电话线与小区的中央管理联接。当这十几个温度相互距离较远时,温度传感器至DCU之间的电缆的铺设有时就有较大困难,温度信号的长线传输亦会有一些干扰等影响。这种方式仅在建筑物较集中、每一组联至一台DCU的测温点相距不太远时适用。
采用内部装有单片机的智能式温度传感器,可以连接通讯网通讯或通过调制解调器搭用电话线连至中央管理计算机。这样,可以在距测点最近的楼道墙壁上挂上一台带有调制解调器的温度变送器,通过一根电缆接至回水管上的温度传感器,再通过一根电缆搭接邻近电话线。目前这类设备每套价格可在1000~1500元人民币之间。如果每1000~3000m2建筑安装一个回水温度测点,则平均每m2供暖建筑投资在0.50~1元间。
小区的中央管理计算机采集到各点的回水温度后,可在屏幕上通过图形方式显示,使运行管理人员对当时的供热状况一目了然。还可根据各支路间回水温度的差别计算各支路阀门需要的调整量。对于一般的带有阀位指示的调节阀,这种分析只能采用某种基于经验的规则判断法,下面为其一例:
找出温度最高的10%支路的平均温度max,温度最低的10%支路和的平均温度min,全网平均回水温度。
若max-min<3℃,不需要再做调节。
若max->2℃,将温度最高的10%支路阀门都关小,与相比温度每高1℃关小3%5~%;
若max-<-2℃,将温度最低的10%支路阀门都开大,与相比温度每高1℃开大3%~5%;
根据上面的分析结果,计算机显示并打印出需要调节的支路及其调节量。运行管理人员根据计算机的输出结果到现场进行手动调节。在供暖初期每3天左右进行一次这种调节。一般经过6~8次即可使一个小区基本实现均匀供热。
采用流量调配阀时可以使调节效率更高,效果更好。此时需要将现场各流量调配阀的实际开度、流量调配阀的开度-阻力特性性能曲线及小区管网的连接关系图输入中央管理计算机,有专门的算法可以根据调整阀门后回水温度的变化情况识别出管网的阻力特性及热用户的热力特性,从而可较准确地给出各流量调本阀需要调整的开度[4],每次调整后,调整人员需将实际上各调节阀的调整程度输入计算机。计算机进而计算了下一次需要的调整量,像这样一次高速可间隔2~5d。模拟分析与实验结果表明,一般只要进行3~4次调节,即可使各支路的回水温度调整到相互间差值都在3℃以内,实现较好的均匀供热[8]。
目前,许多供热公司和有关管理部门开始提出装设热量计,以按照实际供热量收供暖费,各种采用单片计算机的热量计相应出台。这种热量计多是由一台转子式流量计和两台温度传感器配一台单片计算机构成。转子式流量计每流过一个单元流量即发出一个脉冲,由单片机测出此脉冲,得到流量,再乘以当时测出的供回水温差,即可行到相应的热量,由单片要对此热量值进行累计和其它统计分析就成为热量计。目前的单片机稍加扩充就可以具有通讯功能,通过调制解调器将它与电话线连接,就能实现热量计与小区供暖的中央管理机通讯。这样,不但各用户的用热量能够及时在中央管理机中反映,各用户的回水温度状况还能随时送到中央管理计算机中,从而可以对网的不平衡发问进行分析,给出热网的调节方案。这样,将热量计、通讯网与小区中央管理计算机三者结合,就可以全面实施小区热网的热量计量、统计与管理、运行调节分析三部分功能,较好地解决小区热网的运行、管理与调节。
5.4热电联产的集中供热网的计算机监控管理
热电联产的集中供热网可以分成两部分:热源至各热力站间的一次网,热力站至各用户建筑的二次网。后者的控制调节已在前几节讨论,本节讨论热源至各热力站间的一次网的监控管理。
一次网有蒸汽网和热水网两种形式,对于蒸汽网,各热力站为前面讨论过的蒸汽-热水换热站,一次网的管理主要是各热力站蒸汽用量的准确计量,这在前面也已讨论。下面主要研究热水网的监测控制调节。
若忽略热网本身的惯性,则系统各时刻和热力站换热量之和总是等于热源供出的总热量,此外各热力站一次网循环水量之和又总是等于热源循环泵的流量,不论是冷凝式、抽汽式还是背压式热电厂,其输出到热网的热量都不是完全由各热力站的调节决定,而是由热电厂本身的调节来决定,取决于进入蒸汽-水换热器的蒸汽量。由于热电厂控制调节输出热量时很难准确了解各热力站对热量的需求,同时还要兼顾发电的要求,不能完全根据各热力站需要的热量调整,于是热源供出的热量就很难与各热力站实际需求的热量之和一致,这样,就导致控制调节上的一些矛盾。
为简单起见,假设热电厂向蒸汽-水加热器送入固定的蒸汽量Q0,如图5-5,若此热量大于各热力站需要的热量,则各热力站二次侧调节纷纷关小。以减小流量。由此使总流量相应减少,导致供回水温差加大。如果电厂维持蒸汽量Q0不变则各热力站调节阀的关小并不能使总热量减少,而只是根据网的特性及各热力站调节特性的不同,有的热力产流量减少的多,使得供热量有所减少;有的热力站流量减少的幅度小,则供热量反而电动阀加。同样,如果Q0小于各热力站需要的总热量时,各热力站的调节阀纷纷开大,使流量增加,由此导致供回水温差减小。热力站1,2可能由于热量增大的幅度大于水温降低的幅度,供热量的需求得以满足,但由于流量增大,泵的压力降低,干管压降又减小,导致3,4的资用压头大幅度下降,阀门开大后,流量也增加不多,甚至还要下降,这样,供热量反而减少。由此可见在这种情况下各热力站对一次侧阀门的调节实际是对各热力站之间的热量分配比例的调节,而不是对热量的调节,如果各热力站都是这样独立地根据自己小区的供热需求进行调节,而热电厂又不做相应的配合,则整个热网不可能调整控制好。实际上热电厂也会进行一些相应的调节,例如发现t供升高时会减少蒸汽量,t供降低时会增加蒸汽量,但Q0总是不可能时刻与各热力站总的需求量一致,上述矛盾是永远存在的。
图5-5热电厂与各热力站之间的平衡
因此,就不宜对各个热力站按照第5.1、5.2节中的讨论的,根据外温独立调节。既然各热力站一次侧阀门的调节只解决热量的分配比例,那么对它们的调节亦应该根据对热量的分配比例来调节。一种方式是如果认为供热量应与供热面积成正比,则测出每个热力站的瞬时供热量,根据各热力站的供热面积,计算每个热力站的单位面积q。对q偏大的热力站关小调节阀,对q偏小的则开大调节阀,这样不断修正,直至各热力站的q相同为止。再一种方式则是认为各散热器内的平均温度相同,房间的供热效果就相同。由于散热器的平均温度等于二次侧的供回水平均温度,因此可以各热力站二次侧供回水平均温度调整成一致目标,统一确定热力站二次侧供回水平均温度的设定值,根据此设定值与实测供回水平均温度确定开大或关小一次侧调节阀。按照这一思路,对各热力站的调节以达到热量的平均分配为目的,以实现均匀供热。热电厂再根据外温变化,统一对总的供热量进行调整,以保证供热效果并且不浪费热量。由于整个热网所供应的建筑物效果并不浪费热量。由于整个热网所供应的建筑物均处在同一外温下,因此,一旦系统调整均匀,对各热和站调节阀的调整很少,热源的总的供热以数随外温改变,各热力站的调节阀则不需要随外温而变化,只当小区二次系统发生一些变化时才需要进行相应的调节。
要实现这种调节方式,就必须对全网各热力站的调节阀实行集中统一的控制调节。可以在每个热力站设一台DCU现场控制机,测量一、二次侧的水温、压力、流量及二次侧循环泵状态,并可控制一次侧电动调节阀。通过通讯网将各热力站连至中央管理计算机。由于热力站分布范围很大,通讯距离较过远,这时的通讯可通过调制解调器搭用电话线,也可以随着供热干管同时埋设通讯电缆,使用双绞线按照电流环方式通讯。中央管理机不断采集各热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度、压力、流量,定期计算热力站发送来的实测温度的设定值与和各热力站实测值的比较,直接命令各热力站DCU开大/关小电动调节阀。各热力站二次侧回水温度的变化是一惯性很大且缓慢的过程,因此应采有0.5~1h以上的时间步长进行调节,以防止振荡。
除对热网工况进行高速外,计算机控制系统还应为保证系统的安全运行做出贡献。当热力站采用直连的方式,不使用热交换器时,最常见的事故就是管道内超压导致散热器胀裂,DCU可直接监视用户的供回水管压力,发现超压立即关闭供水阀,起到保护作用。无论直连还是间连网,另一类严重的事故就是一次网漏水。严重的管道漏水如不能及时发现并切断和修复,将严重影响供热系统和热电厂的运行。根据各热力站DCU监测的一次网供回水压力分布,还可以从其中的突然变化判断漏水事故及其位置,这对提高热网的安全运行有十分重要的意义,这类系统压力分析与事故判断的工作应属于中央管理机的工作内容。
5.5参考文献
1温丽,锅炉供暖运行技术与管理,北京:清华大学出版社,1995。
2陆耀庆主编,实用供热空调设计手册,北京:中国建筑工业出版社,1993。
3李祚启,集中供热管理微机自控优化系统,建设电子论文选编,北京:中国建筑工业出版社,1994。
4江亿,集中供热网控制调节策略探讨,区域供热,1997,(2)。
5江亿,城市集中供热网的计算机控制和管理,区域供热,1995(5)。