时间:2023-03-16 15:26:12
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇地球科学论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
1.1 区域地层
区域内出露层主要有上古生界下石炭统希贝库拉斯组、包古图组、太勒古拉组,上第三系上新统昌吉河群,新生界第四系等。希贝库拉斯组主要分布于包古图河东侧希贝库拉斯一带,岩性主要为灰色、青灰色厚层细--粗粒凝灰砂岩与层凝灰岩不均匀互层,夹暗--灰黑色凝灰质粉砂质泥岩、火山灰层凝灰岩及凝灰质角砾岩,在局部地段可见圆砾岩、硅质岩、生物碎屑灰岩及安山玢岩的透镜体夹层。
1.2 区域构造
区域内构造形迹较为发育,主要有南北向构造体系、东西向构造体系、北东--北东东向构造体系、北北西向压扭性断裂等。其中褶皱及断裂构造各个时代均极为发育。
1.3 区域岩浆岩
区内侵入岩较发育,以花岗岩分布最广,超基性岩、闪长岩、与花岗岩有关的中酸性脉岩次之,主要是华力西中期侵入岩。
①西中期第一侵入次科果拉超基性岩体:岩体长2.3km,宽60-200m,最宽处380m。多被第四系覆盖。呈北东50-60方向延伸的岩墙状岩体。与围岩接触面不规则,产状一般为倾向北西或北东,倾角42-89。岩石以斜方辉橄岩为主,二辉橄榄岩、含辉纯橄榄岩次之。岩石均遭受了強烈的蛇纹石化,局部形成了蛇纹岩。同时在岩体边缘还有绿泥石化、碳酸岩化、滑石化等蚀变现象,分异条件较好。但蚀变及矿化均受成矿前次生构造所控制。
②西中期第四次侵入钾质花岗岩:该期侵入岩活动规模大,出露广,主要分布于区域的东南部、西南部。本次侵入的花岗岩体,结晶分异好,一般可划分出中央相带和边缘相带,个别岩体见有过渡相带。
2 区域地球化学特征
1988年,新疆地矿局物化探大队在本区圈出一处综合异常,异常面积120km2,走向呈北东向,异常排序第三,类别属甲类异常。其元素组合为Au、As、Hg、Sb、Cu、Zn、Mo、W、Ti、Pb、Th等11项,其中Au、As元素浓集中心明显。亲铜成矿元素、铁族元素、钨族元素为该异常的主要异常元素。
3 矿区地质
3.1 地层
矿区出露地层为下石炭统包古图组和第四系。包古图组岩性中含砂粘土岩、长石杂砂岩及少量黑色页岩呈互层产出,界线不明显,填图过程中不易区分,故在本次填图时将其按照一个岩性组做划分,硅质岩则单独进行了划分。
3.2 构造
工作区内构造发育,共发现四条大的断裂构造,分别编号F1、F2、F3、F4。断层的确定主要依据区域地质资料中确定的断层位置,结合矿区内的地形,断层位置均为沟谷,且两边沟壁岩石破碎,据此推断出本区四条断层的位置,依据不是很充分,在今后工作中需进一步研究。
F1断层:为区域达尔布特深断裂的中间部分,是工作区内的主干断裂,为一逆断层,断层倾向北西,倾角约55--70,此断裂在地表形成一条宽约百余米的大沟,达尔布特河从中流过。
F2断层:位于工作区中部,走向近东西,为一平移断层,断距约120m,该断层为达尔布特断裂的次一级断层。
F3、F4断层:位于工作区南部,断层性质不明,F3断层走向南东,F4断层走向近南北,均为达尔布特断裂的次一级断层。
3.3 岩浆岩
岩浆岩主要为工作区中部出露一条辉长辉绿岩脉,岩脉沿南西--北东向呈带状断续出露。岩石具强烈蛇纹石化、绿泥石化,经地表拣块样分析,镍品位已接近或超过边界品位。从区域资料上看,该岩置与科果拉超基性岩置重合,在该岩体上曾发现铬铁矿等矿点,本次工作中采集岩石标本进行鉴定,鉴定结果为辉长岩和辉绿岩。
2.地理加权回归及其在土壤和环境科学上的应用前景
3.人居环境科学发展趋势论
4.环境科学专业认识实习教学体系构建与实践
5.全球及中国周边地区资源环境科学数据库构建
6.学术期刊专业化、集群化发展初步探索与实践——以“地球与环境科学信息网(EES)”为例
7.环境科学研究合作网络分析
8.基于人居环境科学视角的历史文化名村整治规划研究——以湖南省张谷英村为例
9.稳定同位素在环境科学研究中的应用进展
10.“人居二”与人居环境科学
11.不同国家基于健康风险的土壤环境基准比较研究与启示
12.关于环境科学基本理论问题的若干思考
13.国家自然科学基金委环境科学资助状况分析
14.地理信息系统技术及其在环境科学中的应用
15.镉同位素技术在环境科学研究中的应用进展
16.GIS在环境科学中的应用
17.人工神经网络方法在环境科学领域应用进展
18.中国环境科学研究热点及其演化——基于文献计量学方法的量化分析
19.镉同位素体系及其在地球科学和环境科学中的应用
20.地质统计学在环境科学领域的应用进展
21.人居环境科学的探索
22.论环境管理思想与环境科学的协同演进
23.贝叶斯最大熵地统计学方法及其在土壤和环境科学上的应用
24.环境科学应用型实践教学体系的探索
25.基于重庆本地碳成分谱的PM2.5碳组分来源分析
26.人居环境科学的发展特点与规律——基于中国知网的文献计量分析
27.中国科学院资源环境科学领域发展态势文献计量分析
28.国际地球科学与资源环境科学发展战略分析
29.我国环境科学学科半衰期分析
30.环境科学与工程专业实践教学环节的探讨
31.环境损害评估:国际制度及对中国的启示
32.土壤环境基准/标准研究需要解决的基础性问题
33.单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用
34.环境科学本科专业人才培养模式探讨
35.山地人居环境科学研究引论
36.广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价
37.中国农田土壤重金属富集状况及其空间分布研究
38.环境科学与工程实验教学中创新能力培养方式的探索
39.基于SOA的环境科学数据共享平台设计与实践
40.中学化学教师环境科学素质调查研究
41.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究
42.综合性大学环境科学与工程学科实践教学体系建设
43.论环境科学与工程创新型人才的培养途径
44.丹江口水库迁建区土壤重金属分布及污染评价
45.EOS-MODIS在环境科学中的应用与研究进展
46.环境科学专业课程体系建设与教学质量监控
47.地方理论——迈向“人-地”居住环境科学体系建构研究的广义思考
48.农业院校环境科学专业学科群建设及课程体系设置
49.我国挥发性有机物定义和控制指标的探讨
50.地理信息系统在环境科学领域的开发与应用
51.地理信息系统技术在环境科学中的应用
52.浑河上游(清原段)水环境中重金属时空分布及污染评价
53.长三角地区秸秆燃烧排放因子与颗粒物成分谱研究
54.以创新人才培养为导向 创建天津市环境科学与工程实验教学示范中心
55.人居环境科学视域下的川西林盘聚落保护与发展研究
56.环境科学专业复合型人才创新培养模式的探索和实践
57.滇池表层沉积物氮污染特征及其潜在矿化能力
58.环境问题的由来、过程机制、我国现状和环境科学发展趋势
59.环境科学专业教学体系改革及发展模式探讨
60.高等学校环境科学专业化学课程体系建设、改革与实践
61.太湖表层沉积物重金属赋存形态分析及污染特征
62.环境科学专业课程体系和教学方法改革
63.2006~2009年我国超大城市霾天气特征及影响因子分析
64.环境科学专业核心知识单元与核心课程设置实践
65.环境科学领域学术论文中常用数理统计方法的正确使用问题
66.论环境科学专业的特色建设
67.人居环境科学理论指导下的村庄整治规划初探
68.环境科学专业人才培养与专业课程体系建设研究
69.绿色校园建筑节能设计——以复旦大学江湾校区新建环境科学楼为例
70.环境科学专业课程体系研究
71.“环境科学概论”教学内容与教学方法研究
72.清华大学环境工程系的建立——环境科学在中国体制化的案例研究
73.高校环境科学专业就业分析及培养模式探析
74.太原市采暖季PM2.5中元素特征及重金属健康风险评价
75.普通高校环境科学专业英语教学中语言应用能力的培养
76.多重分形理论在环境科学领域的研究进展
77.空间信息统计学在环境科学领域的应用进展
78.乡村人居环境:人居环境科学研究的新领域
79.吴良镛人居环境科学及其方法论
80.资源环境科学多维信息平台研究
81.论图书剔旧的标准——以环境科学类图书为例
82.机动车尾气排放VOCs源成分谱及其大气反应活性
83.环境科学与工程类本科专业就业分析及培养模式探讨
84.吴良镛:人居环境科学 以人为本的普世哲学
85.红外光谱技术在环境科学中的应用与展望
86.环境科学类专业研究性实验教学平台
87.2013年夏季典型光化学污染过程中长三角典型城市O_3来源识别
88.分子印迹技术在环境科学领域中的应用
89.关于环境科学研究主体、任务及本科专业人才培养方案重构的思考
90.环境科学专业实验课程体系改革与高级应用型人才培养实践研究
91.基于国际视野构建高等学校环境科学专业创新课程群——以陕西师范大学为例
92.基于本体元模型的环境科学知识库研究与构建
93.2011年春季沙尘天气影响下上海大气颗粒物及其化学组分的变化特征
94.大气细颗粒物(PM2.5)在环境科学中的研究简述
95.分子环境科学与亚稳平衡吸附理论研究进展
96.环境科学专业基础化学课程改革与实践
97.嘉陵江流域人居环境建设研究
2.学术期刊科目分类
社会科学、哲学、经济学、法学、教育学、文学、历史学、自然科学、理学、工学、农学、医学等。
3.中国期刊方阵
“中国期刊方阵”的基本框架分为4个层面,形成宝塔形结构。第一个层面为“双效”期刊。以全国现有8135种期刊为基数,按10%—15%的比例选取社会效益、经济效益好的1000余种期刊,作为“中国期刊方阵”的基础。通过各省(区、市)和中央部委评比推荐产生。第二个层面为“双百”期刊。即通过每两年一届评比产生的百种重点社科期刊、百种重点科技期刊。每届进入全国“双百”重点期刊数量控制在200种左右。第三个层面为“双奖”期刊。是全国“双百”重点期刊基础上评选出的国家期刊奖、国家期刊奖提名奖的期刊。此类期刊约100种左右。第四个层面为“双高”期刊,即高知名度、高学术水平的期刊。此类期刊约50种左右。建设“中国期刊方阵”的运作步骤采取分级负责的形式,各省的“双效”期刊由省级新闻出版管理部门按照规定比例推荐,入选期刊必须是省、部级以上优秀期刊,或有希望成为优秀期刊者。“双奖”和“双百”期刊通过评选产生。“双高”期刊由新闻出版总署、科技部确定,入选期刊均为国内知名品牌期刊。根据新闻出版总署“建设‘中国期刊方阵’工作方案”的通知精神,由科技部负责组织的科技期刊的推荐评选工作已经结束。科技部于日前公布了评选结果,共评出716种科技期刊进入“中国期刊方阵”,高校期刊入选113种。其中,高知名度、高学术水平期刊(双高期刊)40种,高校占7种;国家期刊奖、国家期刊提名奖期刊(双奖期刊)58种,高校占3种;百种重点社科期刊、百种重点科技期刊(双百期刊)122种,高校占18种;社会效益、经济效益好的期刊(双效期刊)496种,高校占85种。《河海大学学报(自然科学版)》入选“双效期刊”。
4.学术期刊基本知识(SCI、SSCI)
目前,在国际科学界,如何正确评价基础科学研究成果已引起越来越广泛的关注。而被SCI、SSCI收录的科技论文的多寡则被看作衡量一个国家的基础科学研究水平、科技实力和科技论文水平高低的重要评价指标。那么,究竟什么是SCI和SSCI呢?我们根据所掌握的资料,简介如下:
5.SCI简介
《科学引文索引》(ScienceCitationIndex,简称SCI)是美国科学情报研究所(ISI)出版的一种世界著名的期刊文献检索工具,也是当前世界自然科学领域基础理论学科方面的重要期刊文摘索引数据库。SCI是目前国际上三大检索系统中最著名的一种,其中以生命科学及医学、化学、物理所占比例最大,收录范围是当年国际上的重要期刊,尤其是它的引文索引表现出独特的科学参考价值,能反映自然科学研究的学术水平,在学术界占有重要地位。SCI创建于1961年,其创始人为美国科学情报研究所所长EugeneGarfield(1925-09-15)。它主要收录文献的作者、题目、源期刊、摘要、关键词,不仅可以从文献引证的角度评估文章的学术价值,还可以迅速方便地组建研究课题的参考文献网络。利用它,可以检索数学、物理学、化学、天文学、生物学、医学、农业科学以及计算机科学、材料科学等学科方面自1945年以来重要的学术成果信息。SCI还被国内外学术界当做制定学科发展规划和进行学术排名的重要依据。目前,SCI的出版形式包括印刷版期刊和光盘版及联机数据库,现在还发行了互联网上Web版数据库。经过四十多年的发展完善,已从开始时单一的印刷型发展成为功能强大的电子化、集成化、网络化的大型多学科、综合性检索系统。目前,SCI涵盖学科超过100个,主要涉及农业、生物及环境科学;工程技术及应用科学;医学与生命科学;物理及化学;行为科学。SCI将来源期刊数量划分为SCI和SCI-E。SCI指来源刊为3500多种的SCI印刷版和SCI光盘版(SCICompactDiscEdition,简称SCICDE),SCI-E(SCIExpanded)是SCI的扩展库,收录了6650余种来源期刊,可通过国际联机或因特网进行检索。ISI通过它严格的选刊标准和评估程序挑选刊源,而且每年略有增减,从而做到其收录的文献能全面覆盖全世界最重要、最有影响力的研究成果。所谓最有影响力的研究成果,是指报道这些成果的文献大量地被其它文献引用。即通过先期的文献被当前文献的引用,来说明文献之间的相关性及先前文献对当前文献的影响力。SCI以《期刊目次》(CurrentContent,简称CC)作为数据源,目前,自然科学数据库有五千多种期刊,其中生命科学辑收录1350种;工程与计算机技术辑收录1030种;临床医学辑收990种;农业、生物环境科学辑收录950种;物理、化学和地球科学辑收录900种期刊。各种版本收录范围不尽相同。这其中,含有全世界出版的数、理、化、农、林、医、生命科学、天文、地理、环境、材料、工程技术等自然科学各学科的核心期刊约4500种;扩展版收录期刊6650余种。SCI每年收集论文数达六七十万条。
6.SCI索引形式
SCI主要摘录科技期刊和专利。被选用的期刊上所刊载的每篇文献,包括论文(无代号)、摘要(A)、评论(B)、编辑部文章(E)、通讯(L)、会议资料(M)、专利(P)、评论和书目(R)都逐一加以摘录。尤其把每篇文献后所附的参考文献一一认真著录,并按照一定格式编排起来。在论文索引方面,它是以来源索引为基础,另配有四种引证索引(即作者引证索引、专利引证索引、主副事物引证索引及机构引证索引)。SCI的索引方式有4种。引文索引(CitationIndex)按第一作者的英文字母顺序排列,用于检索作者发表的论文;期刊源索引(SourceIndex)按每篇论文的完整文题排列,用于检索论文主要内容;主题词索引(PermutermSubjectIndex)通过标题词汇或主题词查找某学科、某专业方向涉及文献,光盘版已通过SCI'sKeyWordsPlus追溯出现在论文所引参考文献中的单词、词组与短句,扩充了印刷版的容量;机构索引(CorporateIndex)按地域、字母顺序排列,检索每篇论文的所属机构,或某机构用于统计所发表的论文,也可用光盘版与在线版方便地查找此索引。
7.SSCI简介
Abstract: By the visit to some American schools,the observation on science classrooms and a comparative study on the Chinese and American educational system, we find sone big differences in school science education between two the countries, that is the differences of ideas and system of science education, classroom teaching methods of science, science curriculum and teaching resources, science teaching materials and its usage. Knowing and understanding these differences will be helpful for the popularixation and development of basic science education and the improvement of science teaching quality.
Key words: science education ; China and the US; basic education in China and the USA
一、科学教育观念及其体制上的差异
近几年,虽然科学教育的观念在我国随着新一轮基础教育课程改革开始流行起来,但由于长期实行分科教学,人们的意识里缺少整体的科学教育的观念。有些人认为,只有现在小学和初中设立的综合科学课才算是科学教育,这种认识在我国几乎是一个普遍的误解。
美国从19世纪开始,科学就成为中小学课程的重要组成部分。20世纪初期以来,小学和初中(或中间学校)大都采用综合科学课程,高中虽分生物、物理、化学和地球科学等学科,但也有一些主题是跨学科的,因此人们的意识里都具有科学教育的观念。进步教育运动时期,美国初中和高中一年级普遍开设“普通科学”(general science)课,内容涉及学生日常生活中常见的科技现象及其原理。该门课程尤其重视科学方法的训练,目的是使中学生受到基本的科学教育。[1]为推进普通科学的教学,美国早在1916年就创办了世界上第一个科学教育学术期刊《普通科学教育》(现更名为《科学教育》)。20世纪50年代末期至60年代是美国科学教育课程现代化时期,当时流行的学科结构课程理论倡导分科教学,反对综合科学教育,但分科的科学课程仍然保留了一些跨学科的性质。例如,生物学统合了动物学、植物学和生理学;物质科学在很大程度上整合了物理与化学;生命科学则在更高的程度上整合了生物学、环境科学与生态学。20世纪70年代以后,美国科学教育改革的钟摆再次偏向综合科学课程,一些高中在9年级或10年级开设综合科学(integrated science),至今亦然。综合科学反映了当代科技发展的跨学科性,体现了科学本质的一个重要方面,因为无论是物质科学(理、化等)还是生命科学,都要强调科学素质、科学探究及科学技术与社会的联系。美国1996年颁布的《国家科学教育标准》,从幼儿园到高中13年义务教育期间,科学教育的内容标准涉及生命科学、物质科学和地球科学等不同学科,是把科学教育当做一个整体来对待。
美国中小学每个学校建立一个科学组(science department)。尽管美国高中的科学教学一般也是分科的,但是物理、化学、生物、地球科学等学科的教师都在同一个科学组里,其教研活动和教师专业发展活动也都在一起进行。2006年3月20—22日,笔者有幸参加了美国科学促进协会(AAAS)“2061计划”举办的“使用科学素养导航图”的科学教育工作者专业发展工作坊(workshop)。在除我之外的45名学员中,有3名大学科学教育副教授,17名中小学科学教师,其余的人或者是科学课程开发人员和教科书作者,或者是学区的科学教育协调人员,或者是科学测验(考试)的编制人员。这些来自各州、身份各异的科学教育工作者聚集一堂,进行为期3天的研讨《科学素养导航图》(2001年出版)的专业发展活动。这里,既没有不同学科的分野,也不存在大学科学教育教授与中小学科学教师的分别,大家在研讨中从彼此不同的视角和经验中相互学习,取长补短。
同样,在大学教育学院里,从培养学前与小学教师(这个阶段美国没有专门的科学教育专业)到培养中学各阶段的科学教师,全部由课程与教学系(或教师教育系)负责。如我所访问的威斯康星—麦迪逊大学教育学院,其课程与教学系既培养学前和小学的教师,也培养中学科学教师。不仅如此,科学教师的在职教育和专业发展同样由大学教育学院承担。美国许多州的教育法规定,在职教师每5年必须在大学教育学院修满6个学分的课程(即两门3个学分的课程),以保证他们的知识更新和专业发展。美国科学教师教育的高起点和一体化为科学教育改革的成功提供了必要的师资保障。
美国科学教育在教学体制和科学教师培养上这种制度安排,是与其科学教育观念一致的。从20世纪60年代开始,美国科学教育开始从整体上考虑中小学科学课程与教学的统一性问题。无论是小学和初中(或中间学校)的综合课程还是高中的分科课程,虽然内容有别,但都具有内在的统一性和连贯性,即都注重科学素质、科学探究、科学本质、科学的思维方式、科学与技术及社会的关系。
二、科学课堂教学方式上的差异
在美国中小学科学课堂里听课,给我印象最为深刻的是美国科学课堂的教学方式。概括地说,美国中小学科学教学的总体特征是强调师生之间及学生相互之间的合作—探究,这与我国科学课堂注重科学知识的传授形成了巨大差异。长期以来,我国中小学科学教学基本上是传统的授受式教学方式,教师注重备教材和面向全班讲解,强调按部就班地学习和通过做习题反复训练;学生则主要是听教师讲解,注重个人领悟和记忆,缺乏学生之间的互动、合作与交流。新课程改革虽然强调学习方式的变革,倡导探究、合作与互动的教学方式,但短期内传统的教学方式恐怕难以从根本上有所改变。
美国无论在幼儿园、小学的科学课堂上,还是在中学科学课堂上,小组合作—探究学习是普遍采用的教学方式。我所参观和听课的学校中,只有一所教会学校的科学教学方式显得比较传统,即基本上仍是教师讲授、学生静听,其他学校普遍采用小组合作—探究的学习方式。
2006年2、3月间,笔者每星期到麦迪逊市林肯小学听半天科学课。这是一所规模比较大的3—5年级小学,有20个教学班。担任所有科学课教学的专任教师是年轻的、具有科学教育硕士学位的克莱尔·瑟坤(Clare Sequin)女士。在她的科学课堂上,学生4人一组,围着一个长方形实验桌而坐。上课时大部分时间用在动手做的探究、实验活动上。比如,2006年2月1日上午听的两节科学课,第一节是4年级学生科学课,有20名学生。学习的课题是关于力学方面的内容。每个小组的桌上都有一个小天平,一边放着两小片圆形磁铁(一块在塑料盒子里,另一块放在盒子底下面),另一边放一些圆形空心铁垫圈。当学生不断往一边盒子里加圆形空心铁垫圈时,另一边的两块小磁铁分开了。教师要求学生在课堂笔记本里记录每次实验操作的结果。最后教师把每组的结果写在白板上。下课前,教师发给每个学生一张作业单,上面有一个表格,要求学生把实验结果用图表的形式表现出来。但这节课的任务没有完成,等待下节课继续。第二节课是5年级科学课。学习的内容是混合液、溶解、饱和等概念性知识。上课开始,教师把这些概念及其定义写在白板上,并向学生解释这些概念的含义。然后发给每个小组一个工具盒,里面有注射器、漏斗、瓶子、支架、食盐等。接着要求学生先把实验的步骤写在笔记本里,她让学生用注射器把水(一定量)装进瓶子里,然后要求学生把食盐一小勺一小勺地通过漏斗放进瓶子里,盖上盖子使劲摇晃,让其溶解,直到饱和为止。最后要求学生计算出盐水的重量。方法是把溶液倒进一个杯子里,把同样量的水倒进另一个杯子里,放在天平上,天平因盐水重不平衡而倾斜。然后要求学生把塑料块(每个1克重)放进水杯子里,直到平衡。学生每个人都要记录每次实验的结果。实验结束后,师生一起讨论实验过程和结果,结合一开始教给学生的那些概念,深化对它们的理解。这两节课给我总的感觉是学生合作学习、动手操作的活动比较多,时间比较充分。小组成员之间一边活动、一边交流是很自然的学习形式,似乎也没有特别的分工。小组合作—探究以后,教师注重组织课堂讨论,讨论中教师重视引出学生自己的观点,帮助他们修正和发展自己的观点,体现了学习科学时合作—建构的特征。另外比较突出的一点是,每个学生都有一个课堂听课笔记本,上面记录着实验的结果。由此可见,这节课上观察、提问、交流、推理等科学过程技能使用得比较多,而学生通过合作—探究,关于力的概念也在形成和发展中。
2005年12月21日(星期三)上午,我和另外两位中国访问学者到麦迪逊市著名的威斯特高中(West High School)听了两节科学课。一节是开设一个学期的跨年级的生物技术课(biotechnology),有20多名11年级和12年级的学生选修;另一节是9年级的必修课生物Ⅰ。在生物技术课堂上,授课教师贝翠·巴纳德(Betsy Barnard)女士首先进行简要的陈述,提出任务与要求,并给每个学生三页的实验操作指南,然后就让学生自由组合分4人一组进行实验。实验的任务是找出实验的样本DNA来自哪种动物。具体的实验过程是,学生先提出假设,进行探索,记录实验数据,最后写出简要的实验报告。在此过程中,教师不断为学生提供需要的材料和仪器,在各个小组之间穿梭进行个别指导和答疑。整个一节课教师讲授的时间大约不到10分钟,大部分时间留给学生进行合作—探究。从另外一个角度看,这堂课也可以说是基于项目的探究学习,因为学生始终是围绕一个核心问题而进行开放式探索。
在9年级的生物Ⅰ课上,我们发现20多名学生分4人一组围桌而坐。年轻的授课教师克里斯·黑格(Chris Hager)首先检查了前一次上课(星期一)留的作业,其内容是关于细胞及其环境的一项练习,一共17题,印在一张作业纸上,要求学生把右边每一个描述与左边的术语一一对应起来。在检查作业时,学生的回答时有出错,但教师并不批评或直接纠正,而是解释错在哪里,然后从学生中引出正确答案。接着教师使用投影仪讲解了动、植物细胞不同的特点和结构。这是一个大约5分钟的简短讲授。我们注意到,教师在讲解时很强调与学生的互动,学生不仅在听,也在教师讲解过程中主动提问。显然,这是为下面的实验做准备。紧接着,学生离开座位到教室的另一端进行观察实验。学生4人一组围着放着显微镜的实验台,从教师提供的放在清水中浸泡的植物细胞与在盐水中浸泡的植物细胞标本中提取样本,观察它们的颜色、排列和结构有何不同。课后教师克里斯·黑格告诉我们,生物学Ⅰ每星期有一次实验,实验时间占这门课教学总课时的40%。这堂课实验结束后,我们发现教师给每个学生布置了课后的探究作业,作业的要求打印在两张作业单上,上面的标题是“咸味的马铃薯”。探究的任务是“找出浸泡在两种不同的溶液里的马铃薯片对其质量和硬度的影响”。这个两页纸的作业单给我印象深刻的是,教师对每个学生的要求非常具体,如要求写出问题的情境、需要的材料、对探究的规划、进行探究的步骤、交流的结果以及评价的规则等等。可以看出,这项探究任务留给学生创造性探究的空间很大,比如,在学生对探究进行规划时,要求他们“给它(实验)一个标题,包括自变量和因变量……作一个可以检验的假设,并与问题(如果──,那么──)相关联。给出理由,解释为什么认为你的假设是真的。”总之,这是一项要求严谨而又需要学生发挥想象力和创造力的科学探究活动,而不是我印象中的那种刻板的、例行公事式的、按步骤完成任务的课后练习。
与其他学科不同,科学学习尤其需要采用小组合作—探究的方式来教学,因为科学探究不是学生一个人独自就能有效进行的活动,而是需要小组成员共同学习才能很好地完成教学任务。例如在进行一项实验时,不可能也没有必要让每个学生都有一套实验仪器和材料,因此小组合作—探究学习成为必然的选择。美国从20世纪60年代开始,一些教学理论学者(如约翰·霍普金斯大学的罗伯特·斯莱文教授、明尼苏达大学的罗杰·约翰生教授等等)大力倡导合作学习。经过40多年的努力,合作学习成为从幼儿园到大学普遍采用的主要的学习方式。也是从20世纪60年代开始,科学课程与教学改革大力倡导探究学习。20世纪80年代以来,建构式学习(constructivist learning)、基于项目的学习(project-based learning)、概念图(concept map)、学习环(learning circle)、情境学习(situated learning)、真实学习(authentic learning)、学习性评价(assessment for learning)等教学策略成为当今美国中小学科学课堂上的主要的探究式教与学的方法。
在美国科学课堂上,合作—探究学习如今已经成为美国公立学校普遍的科学教学方式。合作—探究学习的含义是多方面的,有不同的表现形式,并不是固定不变的模式。在美国中小学科学课堂上合作—探究学习的基本特征是:小组成员之间克服不良竞争的心理,彼此尊重、友好;学生愿意与他人分享自己的经验与观点,耐心倾听同学的发言;教师在课堂上给学生比较长的时间动手做实验、做科学,并在动手做之后引导学生通过互动、交流、讨论、甚至辩论,注重对科学概念或原理的深度理解;重视学生在小组合作学习过程中建构对重要科学概念的理解,促进学生的原有观念向公认的科学概念转化;重视课堂评价或学习性评价在教学中促进学生理解的作用;等等。合作—探究学习是当代科学文化和科学精神在基础科学教育中的体现,其价值不仅体现在科学学习本身,亦有助于学生终身学习和终身发展。
当前我国科学教育改革的一个重要目标是,改变教与学的方式,提倡合作学习、自主学习和探究学习。但是,在我国科学教育改革中由于教师教育和教师专业发展远远适应不了科学课程与教学改革的需求,合作、自主、探究的学习方式恐怕还需要相当长的时间才能成为普遍的教学方式。当前,我国师范院校在培养新科学教师过程中,传统的科学教育观念、课程观念、教学观念和评价观念等还在根深蒂固地影响着教师教育实践,合作、探究、反思、建构的科学教学思想和方法还没有得到普遍认同与制度化;另一方面,在职科学教师的专业发展主要限于少数骨干教师,多数科学教师仍然受传统的授受式教学观念和考试指挥棒的影响,缺乏主动改革科学教学方式的制度环境、经验和能力。由于我国缺少科学教育专家和研究人员,中小学科学教师在课程与教学改革中也很少像美国科学教师那样得到必要的专业支持。这种状况应当引起我国教育决策部门及科学教育界的高度重视,应当重视科学教育研究和培养高层次的科学教育研究、开发与教学人才。
三、科学课程与教学资源上的差异
我国学校(也包括社会和家庭)为学生提供了大量以应试为目的的练习资料:试题汇编,教研员及重点中学骨干教师编写的课外辅导材料,与课程标准和教材配套的同步练习,等等。相反,美国学校首先是为科学教师提供大量的科学教学参考书籍(包括科学教学理论与方法的书籍、科学教科书的教师用书、科学课堂探究的实用手册等)和可用于课堂的科学探究活动的材料和资料,为学生提供了科学探究的仪器和设备、科学探究的材料、科学普及的图书,等等。例如,在威斯特高中克里斯·黑格老师9年级生物 Ⅰ 课堂上,我们看到了学生在课外自己进行探究的活页指导材料。在林肯小学,我们看到课堂上几乎每节课都有供学生实验使用的仪器和材料。克莱尔·瑟坤老师告诉我,这些器材是由学校提供需求单报给学区,由学区统一购置免费提供给每所学校的。在威斯康星—麦迪逊大学教育学院的图书馆的书架上,关于科学教师专业发展的图书资料和音像资料比比皆是。
近年来,随着信息技术和互联网的发展,美国社会和学校提供的网络课程与教学资源给人留下深刻的印象。在这方面,中美两国学校存在的差异也十分突出。笔者在北京几个名牌中学网站上搜索过,几乎找不到关于科学课程与教学的网络资源,而我国成千上万的县级中小学和农村中小学连校园网都没有建立起来。而在美国威斯康星州麦迪逊市著名的威斯特高中网站(madison.k12.wi.us/west/science/index.htm)上,有包括科学在内的各学科丰富的课程与教学网络资源为师生服务。如该校科学组的网上资源有:麦迪逊南部地区物理教学资源共享网页,上面有该地区物理教师1990年以来专业发展会议的简报,许多物理学的网络链接,物理教学活动的通知,等等。在科学组的生物学网页上,有关于生物教师的详细资料,有给学生提供的非常详细的网络链接,以及其他引起学生学习兴趣的资源。在科学组生物技术学科的网页上,有该门课程的概述、实验记录的要求、期末考试的不同选择形式、科学论文报告表、研究项目和作业要求、生物技术的专门术语、上课演示时常用的动画、提供给学生的生物技术的大量网络链接、教师情况介绍、实验规则等10项内容。此外,科学组网页上还有对各门科学课程的详细介绍,以及所有科学教师的简介等信息。
我所访问的其他中小学,如詹姆斯·麦迪逊高中、詹姆斯·赖特中间学校和林肯小学等,都为学生提供了许多学习科学的网络链接。而麦迪逊都市学区的网站上(mmsd.org)提供的科学课程与教学资源更是丰富多采。无论是学校校园网还是学区网站,它们提供的科学课程与教学资源为激发学生学习科学的兴趣,进行自主学习和独立探究,培养从事科学研究的能力,创造了良好的资源条件。
特别值得一提的是,美国从20世纪90年代以来,不仅政府与教育界推动科学教育改革,民间机构与科学教育界的密切合作也为科学课程与教学改革提供了大量丰富有用的资源。例如,爱林伯格基金会(Annenberg Foundation)与史密桑宁研究院(Smithsonian Institution)及许多著名大学的科学教育教授以及中小学科学教师合作,10多年来制作和发行了34套科学课程与教学改革的录像带(以及许多其他学科的录像带),并在其网站(learner.org)每天24小时不间断地免费播放。例如,有关于建构—探究式教学案例的录像,有关于学习性评价案例的录像,也有关于K—12年级(即幼儿园到高中)科学教师专业发展的录像。这些科学教育的录像无论对提高中小学科学教师自身的科学素质还是提高他们的科学教学水平,都发挥着较大的作用。
中美两国学校科学教育在课程教学资源上的差异,既有两国科学教育人员观念上的不同,也存在科学教育人员数量和素质上的差异。在课程与教学观上,我国科学教育界仍然受教师教学即是“教书”(教科学教材)、学生上学即是“读书”(读科学教材)的传统观念影响。因此,科学教学实际上主要是让学生学习书本上的科学知识,主要目的是为了应付升学考试。从学校、社会到教师、家长和学生都具有这种根深蒂固的意识。从科学教育人员(科学教育研究者、教研员、教师、教材编辑、辅导材料编写人员等)的数量与素质来看,我国近百年来师范院校培养出来的从事科学教育的人员除理、化、生各科教师外,鲜有辅助课程开发和提供科学教学器材研制的人员,尤其缺少进行科学教育研究的人才。而在美国,仅获得科学教育博士学位的科学教育研究人员、科学教师教育者(science teacher educator)就有数千人,近年来参与科学课程与教学网络资源开发的公司不计其数。
此外,中美两国科学课程与教学资源上的差异也反映了两国学校科学教育不同的社会生态环境。我国学生从小学开始就面临着严峻的竞争和升学压力,因此,各种考试题汇编和辅导资料,以及各种课外强化班应运而生,并盲目地受到许多家长和学生的欢迎。相反,在美国中小学,一般看不到这样严峻的竞争和升学压力,学生成长的社会生态环境要优越得多。
四、科学教科书及其使用上的差异
我国中小学每个学生都有自己的科学教科书,科学教学实际上主要就是教师教教材、学生读教材。而在美国课堂上,公立学校学生接受义务教育,教科书并非每个学生人手一册,上科学课时,教师和学生也很少使用教科书。当然,教科书每个班级教室里都有,是学校的公共财产,每届学生循环使用,既节省了资源,提高了使用效率,又节约了经费。在科学课堂上,教科书只是师生的参考书籍之一,或者说是可以利用的课程资源。教师在课堂上教学并不依赖某一本教材,他们可能参考几种教材,以及各种各样的其他资料。过去,美国小学教师上科学课时教科书也曾经是教师使用的唯一的信息源。但这种状况从20世纪60年代以来,尤其是从90年代以来已经发生了根本的改变。根据1998年《科学与儿童》期刊第5期的一项调查显示,28%被调查的小学教师报告说,他们使用教科书只作为参考资料;33%的教师说他们很少使用或从来不用教科书;只有28%的教师说他们在使用一种教科书。 [2]笔者在几所中小学的观察也发现:课堂上使用的书面资料很多,除了教科书以外,还有各种教学参考资料、活动资料、网络上下载的资料、音像资料等等。由于美国科学教育为教学服务的非教学机构和人员很多,他们为师生提供了大量可用于课堂教学的科学器材和多种媒体资料。以小学和中间学校使用的FOSS科学教材为例,这是由一系列配套的教师指导书与供学生阅读的科学故事、DVD录像、实验器材和材料(即工具箱)、FOSS网站等组成的系列科学课程,远远不是我们所想象的单一的科学教科书。
中美科学教育课程上的这种差异,实际上反映了两国科学教育工作者的科学课程和科学教学观念的差异。美国新一轮科学教育改革比我国至少早15年,科学教师的课程观念已经发生并将继续发生深刻变化。就科学课程而言,不仅有科学教科书、国家和各州乃至各学区自己的科学课程标准、科学教学资料和材料、多媒体资源、网络资源等多种显性课程,更有科学文化、教师的科学态度和体现在他们身上的科学精神等隐性课程。因此,科学课程对于美国科学教师来说是丰富的、复杂的概念,科学课程的开发是每个科学教师自己需要做的事情。从学生的角度看,科学课程又是影响学生科学探究和科学学习的因素的总和。这其中还包括非常重要的、但传统的课程观排除在外的一种课程资源,即教师同行和学生相互之间的影响。当教师在一起探讨教学问题或进行专业发展活动时,他们得到的信息是“活”的科学课程资源;当学生在课堂上进行小组探究活动时,他们之间交流的信息、表现出来的或正确或错误的观念等等,对师生来说也都是不可忽视的、“活”的科学课程资源。因此,美国科学课程的概念很宽泛,除了教科书以外,它既包括科学教育改革文献(如《科学素养的基准》和《国家科学教育标准》等)、科学课程项目及其资源、各州和各学区自己制订的科学课程标准,也包括学校和教师自己设计的科学课程计划等等。所以,教师不是教教科书,而是自己根据国家、州、学区和学校的课程标准和指南设计和实施自己的科学课程,可见美国科学教师有实实在在的课程开发和实施的权力和责任。
中国科学教师的课程观念主要限于学科和教科书上,习惯于教科学教科书。现在随着科学课程改革的深入,我国科学教师的课程意识已开始形成,开发课程资源的观念也开始流行起来。