时间:2023-03-16 15:26:52
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇人工智能技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2人工智能技术在电气自动化控制中的应用
2.1人工智能控制实现了数据的采集及处理功能
在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。
2.2人工智能控制实现了系统运行监视机报警功能
电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。
2.3人工智能控制实现了操作控制功能
电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。
3人工智能技术在电气自动化控制中的控制方式
3.1模糊控制
模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。
3.2专家控制
专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。
3.3网络神经控制
网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。
2计算机网络技术的问题
目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。
3计算机网络技术中人工智能的应用分析
在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。
3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,
3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。
高校培养人才的目的是为社会输送人才,尤其是为当地社会输送人才,服务于当地经济的建设,因此做好调研工作,必须依托于当地企业。调研工作不能流于表面,要发动整个教学团队的力量。首先,从专业层面应该有整体规划,确定调研的时间段、调研哪些企业,到具体实施阶段,老师下去调研的时候不能仅仅是盖个章回来就了事,应该提供现场调研的图片、个人小结等资料,另外为了调动老师的积极性,专业层面可以发放调研津贴。材料收集好之后,要依据材料进行细致的分析、总结工作,提炼出对制订人才培养方案有用的信息,尤其是企业需要什么样的综合人才、岗位能力分析、职业资格证书的获取情况等。
1.2充分发挥校企合作委员会的作用
每个专业都有自己的专业指导委员会或是校企合作委员会,要充分发挥其作用。首先在人选是一定要经过筛选,务必选择一个对整个专业发展能够提供指导性意见的人,这就需要他有在这个行业多年的工作经验,另外需要热爱教育事业,不能只是来挂个名,开个会,还需要在平时的各项工作中直到作用。
2.做好课程体系建设
2.1根据专业情况重新整合课程体系
每个专业发展的沿革不一样,所以制订课程体系时绝不能照抄照搬别人的。尤其是楼宇智能化工程技术专业,很多课程的开设是需要硬件支撑的,因此有些课程其他学校能开,本校可能开不了。另外,要充分考虑到师资情况,校内教师上不了的课程,要请企业老师来上课,如果连企业老师也找不到合适的,就得考虑这门课程是否能开设。
2.2注重实践课程的教学设计
高职高专的学生,人才培养的目标并不是研究型人才,而是技术型人才,因此要充分做好实践课程体系的建设。首先,理实一体课程要采用一体化的教学模式。教学决不能只在黑板上写写划划了,现如今90后的学生,接受信息的渠道很多,老师一定要充分备课。师生双方应该在实验实训室边教、边学、边做、边评定,把理论与实践教学紧密地联系在一起。其次,做好学期实训课程的教学设计。每个学期的实训内容可以是基于某门课程的也可以是基于多门课程的,以楼宇智能化工程技术专业来说,可以基于电工电子技术进行维修电工的实训,也可以综合楼宇智能化工程技术、安防技术、消防技术等进行智能管理系统综合实训。这种生产性的实训课程要尽量聘请资深的企业人员参加,这样对于教师和学生提高专业技能都有帮助。另外,做好顶岗实习和毕业项目设计。教师在给学生顶岗实习成绩评定时要有充分的依据,不能依照个人的喜好,这就需要专业层面制订合理的规章制度。最后,做好职业认证工作。要为学生制订弹性的证书获取机制,每个学期的实训课程尽量为学生提供考证的机会,告诉学生哪个证是必考的,哪些证书是选考的。这样学生可以根据自己的需求选考合适的证书。
2.3改革创新考核方式和评价模式
考核的目的是对学生的知识和技能掌握程度的评价,也是对教学效果的一种评估。在改革创新考核形式上,可以根据课程性质的不同采用多种多样的考核形式,可以积极推进过程考核,让学生付出的每一份努力都能够得到回报。总之,真实、客观的评价对于促进学生的学习是非常有帮助的,不仅能提升学生学习的动力,还能让其明白处于集体中的责任。
2.4注重综合素质的培养
人才培养方案制订过程中要充分注重对于学生综合素质的培养。尤其是楼宇智能化工程技术这种偏理工科的专业,要让学生明白一个人以后想在社会上立足并且过得幸福,这跟人的综合素质是分不开的,并不完全依赖于个人的技能。因此在开设课程时要充分考虑到上述能力的培养,可以开设大学生就业创业、法律法规常识、大学生心理健康教育等公共基础课,也可以开设电影艺术欣赏、围棋、书法等素质拓展课。另外,可以在以专业为单位积极鼓励学生创办或参加社团,这对于学生综合能力的培养非常有帮助,让他们提前了解和融入社会。
计算机辅助工艺设计(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以来,其系统特性经历了检索式、派生式、混合式、创成式、智能化等过程,智能化CAPP是当前CAPP系统的研究热点。CAPP是现代制造业信息化的一部分,是计算机集成制造系统(CIMS:Computer IntegratedManufacturing Systems)中的桥梁和纽带。“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。人工智能是相对于人类智能而言的,它是采用人工的方法和技术来模拟、延伸和扩展人类智能行为的一门综合学科。
将人工智能技术(AI技术)应用到CAPP系统开发中,使CAPP系统在知识获取、知识推理等方面模拟人的思维方式,解决复杂的工艺规程设计问题,使其具有人类“智能”的特性即为智能化CAPP,是AI在CAPP中的一种应用。
CAPP系统分为专用型和工具型系统。前者可以根据用户的特定需求定制开发,针对性强,具有较好的实用性,但对系统进行功能扩展困难;后者可以由用户根据自身特定的要求进行二次开发,可以实现更多的柔性和开放性,这种系统与CAD(计算机辅助设计)、CAM(计算机辅助制造)、PDM(产品数据管理)等系统的信息共享存在缺陷。
CAPP设计理论目前研究的很少,机械产品设计理论研究的较多,有学者认为设计理论与方法由设计理论基础层、设计工具和支持技术平台层等三大部分组成。有的学者提出四理论框架,即设计过程理论、性能需求理论、知识流理论和多方利益协调理论。CAPP设计理论与机械产品设计理论既有共同性又有特殊性,特别在智能化设计方法方面有较大的差别,因此认为面向智能化的CAPP设计理论与方法体系结构由有三层组成,即基础科学层、信息技术层和智能化设计方法层。
在机械产品工艺设计中,存在大量的不确定因素,许多问题需要靠经验来解决,早期建立在单纯依赖于成组技术基础上的CAPP系统,不能很好地解决这些离散知识的获取问题,只能设计出检索式或派生式系统。近年来,人工智能技术在CAPP系统
开发中的应用,使CAPP技术得到了较大的发展,人工神经网络技术就是AI在CAPP系统中一大应用。人工神经网络(ANN: ArtificialNeuralNetwork)是按照生物神经系统原理处理真实世界的客观事物,它由大量的简单的非线性处理单元高度并联而成,具有信息的分布式存储、并行处理、自组织和自学习及联想记忆等特性;多层前馈网络误差反向传播(ErrorBack Propagation,简称BP)算法。反向传播算法(BP)是一种监督训练多层神经网络的算法,每一个训练范例在网络中经过两遍传递计算:第一遍向前推算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;第二遍向后推算,从输出层至输入层,利用差错矢量对权值进行逐层修改。转贴于
AI在CAPP中的另一应用——粗糙集技术。粗糙集(RS:Rough Set)理论是一种擅长处理含糊和不确定问题的数学工具,在理论中“知识”被认为是一种对对象的分类能力,通常采用二维决策表来描述论域的信息,其中列表示属性,行表示对象,每行表示该对象的一条信息。属性分为条件属性和决策属性,论域中的对象根据条件属性的不同,被划分到具有不同决策属性的决策类中。在CAPP系统中,可以用RS理论构建专家系统,对知识进行获取及优化,其基本思路是:将各种零件的加工特征和已知加工方法表达成条件属性和决策属性的形式,一行表示一种零件,多种零件构成一个二维表,对属性进行量化,组织决策表,再采用一定的约简算法对属性集和属性值进行约简,去掉冗余的条件属性和决策规则,得到最小化决策规则集,当输入待加工的零件加工特征时,就可得到优化的加工工艺。
遗传算法,AI在CAPP系统的又一应用。遗传算法(Genetic Algorithm)是模拟达尔文遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成,每个个体实际上是带有染色体特征的实体。因此,在一开始需要实现从表现型到基因型的映射即编码工作,如二进制编码。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小挑选个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。
智能化CAPP系统开发中还有模糊推理、混沌理论等智能化方法,实际应用中,往往将多种智能技术相互结合,综合运用,发挥各自的特长,如人工神经网络具有知觉形象思维的特性,而模糊推理等具有逻辑思维的特性,将这些方法相互渗透和结合,可起到互补的作用,提高智能化水平。
智能化是今后CAPP系统发展的主要趋势,但从目前的人工智能技术水平来看,不可能使CAPP系统在智能化水平上有实质性的突破,因为目前的人工智能技术主要是模拟人的逻辑思维和逻辑推理方面的能力,不能有效地模拟人的形象思维、抽象思维和创造性思维能力,而CAPP系统不仅要有推理的功能,还要有“联想”的功能, CAPP系统开发是要解决大量的人类思维活动方面的智能问题。因此要提高CAPP系统的智能化水平,必须在人工智能技术方面有新的发展,要解决人工智能技术方面的问题,必须在一些基础
理论和基础科学方面有新的突破,如在生命科学、数学等方面要有新的突破。由此可见,在可以预见的将来,智能化CAPP系统的发展仍将是在充分发挥人的智能优势的基础上,综合应用各种人工智能技术,实现CAPP系统的智能化。
通过以上论述,相信大家对计算机辅助工艺设计与人工智能以及AI在CAPP中的应用有了一定的了解。人工智能技术的不断发展,智能化CAPP系统必将在知识获取、表达和处理的灵活性和有效性上得到进一步的发展,提高CAPP系统的智能化水平,从而提高现代制造技术水平,是我国由制造大国成为制造强国。
当前的网络舆情监测工作平台主要是基于信息采集、整合技术和智能处理技术,通过对互联网海量信息的自动抓取、自动分类聚类、主题检测、专题聚焦,实现对用户的网络舆情监测,并由相关部门形成舆情工作报告、舆情信息简报等,为舆论引导提供可靠的分析依据。
进入大数据时代,网络舆论呈现的新特点,促使网络舆情监测工作暴露出诸多不足之处,这为网络舆情监测工作带来了诸多挑战。
网络舆论信息格局发生变化,舆情分析质量亟待提高。据人民网权威的《2016年中国互联网舆情分析报告》显示,在2016年,伴随着移动互联网应用不断向社会各层面渗透,网络舆论的格局发生了很大变化,如网民结构与社会人口结构趋同,网民产生代际更新导致网络流行议题和文化热点发生转换,微博、微信平台化,专业自媒体步入兴盛等。在这样的变局下,网络舆情监测工作面临着新的挑战。然而,有些部门的舆情信息收集工作仍然停留在报刊、门户网站、BBS、微博等开源信息的收集阶段,并未将新闻客户端、微信、直播等平台打通,难以保证舆情信息分析的全面性以及舆情热度指标的准确性。《2016年中国互联网舆情分析报告》还对近五年来参与当年最具网络关注度的20个舆情热点事件讨论的320万微博用户样本进行了分析,发现关注新闻事件和聚焦热点话题的网民发生了代际交替,在性别方面,女性的比例明显上升;在地域上,三、四线城市用户增长迅猛。受众层面发生的这些变化,也将在舆情监测工作中体现出来。然而在目前的舆情监测工作中,相关信息部门的舆情信息报送在内容上只是就事论事、停留在现象层面,对受众的成分、热点事件的社会背景以及事件背后所反映出来的社会问题没有进行细致深入的研究分析;在形式上,网络舆情监测工作的报送还停留在工作动态报告或者事件日志等形式的报送上。这样就造成了网络舆情信息的价值作用降低、服务能力减弱的问题。
热点事件话语体系不可控,舆情预警能力亟待增强。纵观近年来发生的热点公共突发事件,可以发现,在以大数据为基础的社交平台上,公众的话语体系呈现出了一些全新特征,如舆论主体的匿名性、参与渠道的多元化、生成议题的自发性、交流观点的无界性、汇集意见的实时性、发展趋势的不确定性等。这些特征与舆论话语体系在传统媒体的呈现完全不同,网络舆论热点事件话语体系的不可控性大大增强。
在社交媒体平台上,自媒体呈现出来的话语体系最为庞杂。许多舆情信息不仅包含结构化数据,还涉及大量非结构化数据,若对其准确性、真实性逐一核查,既耗费人力又耗费时间。就内容而言,较多负面、虚假舆情具有较强的隐蔽性,单纯以关键词或主题词进行搜索容易产生误判、遗漏。话语体系的不可控性增加了舆情监测工作的难度,这要求工作人员必须具备过硬的专业敏感性以及较强的网络操作技能。但是目前大多数舆情监测工作部门的信息工作人员缺乏专业化的训练,舆情信息工作水平参差不齐。就舆情监测平台系统来说,对于舆情信息的跟踪分析灵敏度较低,在有些热点事件的处理上没有按照公共突发事件的分类标准进行准确的分级,从而导致网络舆情信息的分析判断力体现不出其应有的情报价值,预警能力也随之削弱。
舆情监测的技术体系落后,人机不协调问题亟待解决。网络舆论的实时性及其发展的不确定性要求网络舆情监测必须迅速、及时,但很多单位部门的舆情监测平台的方法技术体系滞后,部分单位采用了网络监控系统、有害信息过滤系统等方式进行网络舆情监测,而有些单位为了节省舆情监测设备的成本,甚至将网络舆情监测工作依托于人工网页搜索及浏览的“人工盯梢”方式上,这成为监测工作的一大阻碍,监测工作出现疏忽错判也在所难免。排除资金、人力等客观因素,现阶段的网络舆情监测工作中技术方法体系的不足主要归因于“人机不协调”。机器与人工的协同分工模式不成熟、机器的辅助力量不够,导致人工智能技术在预测监测体系中分析情感、预测走势、检查效果等方面应用还稍显粗浅、机械,而在需要人工进行的高级维度分析、提出应对策略等层面,机器的应用又显得粗糙以及同质化。
人工智能为网络舆情监测带来的三大变革
网络舆情监测要适应大数据时代人工智能的要求,就必须顺势而为,积极进行变革,主要包括网络舆情监测技术体系的变革、网络舆情监测研究范式的变革以及网络舆情监测管理思维的变革三个方面。
网络舆情监测技术体系的变革。将人工智能技术应用于网络舆情是为了更好地对舆情进行分析研判,通过直观、简明的方式描述网络舆情信息的产生,进一步推导信息传播主体的态度倾向性、情绪感染性以及初衷、意图等,从而预测网络舆情信息的发展趋势。
如果说在“小数据”环境下,网络舆情监测工作还可以依托于“人工盯梢”的方式来完成,那么在“大数据”环境下,当数据的量级达到了EB甚至ZB级别后,以人工监测来把握舆情脉络已成为不可能完成的任务。而那些隐含在网络舆情信息中的观点、态度及情绪的表达,更难以从泛滥成灾的信息碎片中被真正发掘出来。加之海量信息的不共享所带来的“信息盲区”,更使得舆情信息分析不够严谨,易偏离实际,而这些问题都需要依托搭建智能化的网络舆情监管平台来解决。在平台上可以通过三种人工智能技术实现数据分析与人工智能研判相结合,再借助如眼动仪、脑电仪等受众检验仪器对网络舆情信息进行综合化分析。三种主要的人工智能技术主要包括:一是Web挖掘技术,该技术把互联网与数据挖掘技术结合起来,对网络上结构化数据如文字言论,以及非结构化的数据如视音频、图像等信息进行采集,完成信息前期处理的第一步;二是语义识别技术,该技术是利用采集到的信息,通过对语句中的关键词进行词义推断处理以及句子语法结构的分析,从而将复杂信息简单化,这是对采集的信息数据做进一步识别推断的过程;三是TFDF信息聚类技术,该技术主要提升数据信息的分析和分类速度,使网络舆情监测工作的处理更加及时,反应更加灵敏,提高采取措施的时效性。
人工智能技术的介入将有利于对信息进行挖掘、采集、分类、整理,从而找寻出最核心的关键性数据。在此基础上,还可以运用人工神经网络预测模型,对网络舆情的性质、发展趋势进行正确描述,并提出相应的对策。
网络舆情监测研究范式的变革。人工智能和大数据对网络舆情监测工作及其研究产生了颇为深刻的影响,舆情监测的研究范式从多角度发生了转向。
第一,舆情监测工作视角的转向:从单一化到多元化。在社交媒体平台上,受众的角色首先发生了转向,由信息的被动接收者转变为信息的参与者和传播者。这一转向给网络舆情监测工作带来了新的挑战,当受众是单纯的信息接收方时,网络信息的可控性强,舆情监测工作形式单一,把关相对容易。而受众角色发生变化以后,网络信息传播的不可控性大大增加,信息传播速度加快,信息传播呈现多元化特征,把关难度增加,网络舆情监测工作也从单一转向多元化,还需要对信息进行疏导、研判处理。
第二,研究视角的转向:从内容研究转向“内容+关系”研究。传统的网络舆情信息研究最重视的是受众借助网络进行的话语表达,其研究视角主要集中在内容层面。随着人工智能技术的介入,这一单向视角将发生转变,潜藏在内容层面背后的网络受众心理、行为、动机、诉求等多方面因素都将被关注到。借助人工智能技术及大数据分析技术,网络舆情信息的研究视角将透过内容层面深入到关系层面,转向对网络受众社会心理描绘、社会关系呈现、社会话语表达等多维度的研究。
第三,研究重点的转向:由舆情监测转向舆情预测。当前的网络舆情监测工作主要通过对当下网络舆情的动态信息进行随机采样来收集、整理、分析,更多的是关注已经发生的事件在过去及当下的动向,对未来的发展预测难以兼顾。而借助人工神经网络预测模型,通过自然语言处理、模式识别及机器学习等人工智能技术,可以对网络舆情的性质、发展趋势进行正确描述,再结合大数据分析处理整群数据来实现预测功能。比如,著名的搜索引擎公司谷歌通过关注用户搜索中的“流感”关键词来预测实际流感发生的时间,往往可以提前两三个周对流感的爆发进行预报及预防。
网络舆情监测管理思维的变革。在以人工智能技术为支撑的网络舆情监测平台出现之前,相关舆情监测部门的管理者往往由一人或几人的小团队组成,在监测信息数据量级不大的情况下,这种小作坊式单打独斗、面面俱到的舆情监控管理思维可以基本满足需求。但是随着人工智能技术的发展及大数据时代的到来,这种小作坊式的舆情监测体系面临瓦解。当前,商业化运营的软件监测团队多达几百家,这些监测软件服务商通过开发相应的舆情监测软件为政府部门、企业主体以及科研院所提供服务,进行简单的舆情信息数据采集及分类处理工作。在数据开源的情况下,这些软件服务商的竞争逐渐由粗放型、低层次化向数据处理的优化、人机互动、机器算法的精进等层面转变。
一、关于一体化智能系统的构建分析
现阶段,人工智能技术已逐渐在石油工程领域中取得了广泛性应用,其中涉及到高层管理决策、采油工程、油井处理及钻井油藏等相关内容,可有效解决石油工程开展期间存在不足之处,具体可将石油工程面临问题分为以下几种类型:第一,数据型问题。主要包括地震数据检测、钻孔曲线测量及油藏特征分析等方面内容,需得出准确性数据信息便于为其他工作开展提供切实可行参考依据[1];第二,优化型问题。具体是指通过地面设备的合理优化来大大提高石油产量;第三,公式型问题。主要包括鉴定识别、测井数据介绍及提高采收率等内容;第四,知识融合型问题。需要选出较为合理恰当实践应用手段。总体来说,尽管智能化系统已逐步应用到石油工程中去,但却因专业人士缺乏明显创新想象力而无法达到最佳效果,并且智能系统还具备一定局限性特点,对石油工程实施效率提升有着不利影响。在这种情况下,为有效克服上述难题,就需石油工程工作人员能积极采用人工智能技术手段,彻底解决以往智能系统应用存在不足,借助科学合理分析方法对数据信息展开深入化分析探讨,从而促使石油行业能够顺利发展。
二、石油工程领域中人工智能技术的应用分析
(一)油田地面设施系统模拟应用。在此以某区域油田资源为例,该油田共有700多口生产井,所有生产液体全部运送到三相分离设备中,并从分离设备中分离出适量高压气进入到管网结构中,并且周围环境温度还对设备工作效率有着直接影响,可以说是后期石油产量的主要影响因素之一。因此为有效解决这一问题,就需相关工作人员能积极构建智能模型结构,准确测量出石油工程地面系统实际运行情况,对分离设备产油量起到一定帮助作用。同时石油工程参与人员还应根据项目开况构建神经模型结构,着手于数据统计分析情况,主要包括鉴定识别和数字矩阵补孔两点内容,随后可综合采用模糊聚类和变量分析方法对石油工程中涉及到的所有数据变量展开分析探讨,充分考虑到各个变量可能对最终结果产生影响,防止数据信息出现较大变化情况。除此之外,模糊聚类还包含两大优势,分别是数据代表性和利用数据对研发模型进行检验等,往往该种方法主要适用于列串数据量低于30%情况下。
一、人工智能的定义
“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
二、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
三、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。
由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。
本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。
2 本科高年级的教学特点
中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。
3 人工智能课程的学科特点
与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。
4 人工智能教学的三点思考及对策
4.1 注重应用性和介绍性
在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。
4.2 注重科研引导性
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。
4.3 教学内容与毕业设计相结合
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法 技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支 它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器.该领域的研究包括机器人.语言识别、图像识别 自然语言处理和专家系统等。电气自动化是研究与电气工程有关的系统运行、自动控制,电力电子技术、信息处理、试验分析 研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是电气自动化和人工智能研究的交汇点。积极运用人工智能的新成果无疑有利于电气自动化学科特别是自动控制领域的发展.也有利于提高电气设各运行的智能化水平.对改造电气设备系统,增强控制系统稳定性.加快生产效率都有重大意义。
1、人工智能应用理论分析
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。
当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。
2、人工智能控制器的优势
不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。
(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。
(3)它们比古典控制器的调节容易。
(4)在没有必须专家知识时.通过响应数据也能设计它们。
(5)运用语言和响应信息可能设计它们。
总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。
3、人工智能的应用现状
随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。
3.1 优化设计
电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。
3.2 故障诊断
电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。
变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。
3.3智能控制
人工智能控制技术在自动控制领域的研究与应用已广泛展开.但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法.因而它的应用实例最多。
4、结语
人类智能主要包括三个方面.即感知能力.思维能力 行为能力。而人工智能是指由人类制造出来的 机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。人工智能的应用体现在问题求解.逻辑推理与定理证明,自然语言理解 自动程序设计.专家系统,机器人学等方面,而这诸多方面都体现了一个自动化的特征.表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化.因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。
2017年9月,依图医疗表示,浙江省人民医院作为依图医疗的首批合作医院,从上线至今,AI系统一共辅助医生诊阅1.7万名患者图像,被采纳率为90%;
在全球各个地方,医疗人工智能发展到今天,已经不是仅仅是一种创新的概念,基于人工智能技术研发的各种产品已经切切实实的为医生、患者、企业、医疗机构提供服务。
各个国家和地区看到人工智能的巨大前景,纷纷出台政策、投入资金加快布局速度。人们戏称人工智能的“军备竞赛”悄然来临。在全球的各个国家和地区中,美国、中国、欧洲是在医疗人工智能表现最抢眼的三个区域。
文无第一、武无第二,动脉网从医疗应用的角度梳理一下这三个区域的医疗人工智能发展现状,看看谁才是医疗人工智能领域的领跑者。
人才