传输技术论文汇总十篇

时间:2023-03-16 15:26:58

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇传输技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

传输技术论文

篇(1)

2.微波传输系统

通信微波的波长在0.1毫米至1米范围内。通信微波的传输与接收之间无障碍时便可使用,成为现在网络通信的主要工具。微波的发展与无线通信是密不可分的,成为远距离通信的主要媒介,广泛应用于军事通信领域。微波站的设备主要由多路复用设备、天线、收发信机、电源设备、调制器和自动控制设备等组成。微波通信系统特点在于系统使用周期短和线路建设时间短。微波传输系统适合在山区、海峡、水面和不易铺设光纤网的地区使用。其抗干扰性比较强,更容易适合复杂的自然环境,如水灾、风灾以及地震等。微波传输频带宽、容量大,可用于包括数据、电话、传真和电报等多种业务的传送。但微波的缺点在于衍射能力弱,直线型的传播方式,对物体的穿透能力比较弱,因此微波系统的搭建必须要在无线电管理部门的管理中实施,线路设备的铺设必须与市政建设相结合,制定科学的规划,以便避免微波通信效果受到影响。

3.卫星传输系统

卫星传输系统由星载转发器、上行发射站、地球接收站和测控站。星载转发器接受地面上传送的微波信号,并对信号进行变频和放大处理,再发射到地面服务区内,星载转发器作为空间的中继站,它应以最低附加噪声和失真传送电视广播信号。上行发射站是把节目制作中心输送的信号进行处理,通过调试,上变频和高功率放大,通过定向天线向卫星发射上行C、Ku波段信号,同时接收由卫星下行转发的微弱的微波信号,监测卫星转播节目的质量。地面接收站对来自卫星的信号进行低噪声放大,下变频为中频信号、中频信号经过调频、解调后得到基带信号,通过伴音解调电路和视频恢复电路的途径,建立起正常的视频信号和伴音信号,在电视机里实现音频和视频。在广播电视传输系统中卫星传输系统得到了广泛使用,一颗通信卫星的通信范围广,可以对几百套电视节目进行传输,在卫星信息覆盖的空间弄均可实现信息通信,由于卫星的信息传播功能强大,传播速度快,信息传播效能好。电路和话务量可灵活调整;同一通信可用于不同方向和不同区域,但卫星传输受雨衰、日凌、风向等天气影响较大。随着数字化技术的不断改进和成熟,卫星系统的传输性能的稳定性和抗干扰性不断提高,增强了卫星传输信号的质量。

4.SDH传输技术

SDH传输是一种线路传输、功能交换、融合复接和统一管理的网络操作信息传送系统。SDH的功能比较强大,可实现动态网络管理与网络维护功能,能够提高网络资源的使用率,满足现行广播电视传输网的信息传输与交换要求。SDH传输技术是未来广播电视信号传输发展的趋势,SDH在广播电视传输网中被广泛应用,已成为广播电视领域传输技术方面的发展和应用热点。SDH同步传输模式(STM-N)承载信息业务,根据ITU-TG.707规范的SDH速率,STM-1对应的线路速率为155.520Mbps、2.048Mbps的速率等级接口。SDH网能够与PDH网兼容,具有统一的光接口和复用标准,它采用同步复用映射结构和先进的指针调整技术,使来自不同业务提供者的信息能够在不同的环境下同步复用,同时可承受一定的基准丢失;SDH具有健全的网络管理功能,可以进行统一的网络管理,并可以对网络单元进行分布式的管理、具有业务的性能监视、网络的动态维护、不同供应商设备间的互通等功能。

篇(2)

网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。

基本概念:抖动和漂移

抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为T1的位流的最佳采样时刻。虽然希望各个位在T的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。

图1.抖动示意

抖动,不同于相位噪声,它以单位间隔(UI)为单位来表示。一个单位间隔相当于一个信号周期(T),等于360度。假设事件为E,第n次出现表示为tE[n]。则瞬时抖动可以表示为:

一组包括N个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:

漂移是低频抖动。两者之间的典型划分点为10Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。

抖动类型

根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数(PDF),由其均值(μ)和均方根值(rms)(σ)决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。

图2.以高斯概率密度函数表示的随机抖动

对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限(arbitrarylimit)。误码率(BER)是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。3

由公式可得到下表,表中峰到峰抖动对应不同的BER值。

确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路(IC)系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真(DCD)和脉冲宽度失真(PWD)会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。

图3,总抖动的双模表示

数据相关抖动(DDJ)和符号间干扰(ISI)致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动(PDJ)。信号路径的低频截止点和高频带宽将影响DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰(ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7

正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。

考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布4:双模响应,其中部表示确定性抖动,尾部为高斯响应,表示随机抖动分量。

抖动测量—TIE、MITE和TEDV

时间间隔误差(TIE)是通过对实际时钟间隔的测量和对理想参考时钟同一间隔的测量得到的。在给定时间t,以一个称为观测间隔的时间间隔产生时间T(t)的时钟,其相对于时钟Tref(t)的TIE可通过下面公式表示。(x(t)称为误差函数。)

TIE表示信号中的高频相位噪声,提供了实际时钟的每个周期偏离理想情况的直接信息。TIE用于计算大量统计派生函数如MTIE、TDEV等。

最大时间间隔误差(MTIE)定义为,在一个观测时间(t=nt0)内,一个给定时钟信号相对于一个理想时钟信号的最大峰到峰延迟变化,其中该长度的所有观测时间均在测量周期(T)之内。使用下面公式进行估计:

MTIE是针对时间的缓变或漂移而定义的。当需要分析时钟的长期特性时,就需要对MTIE进行测量。MTIE值是对一个时钟信号的长期稳定性的一种衡量。

图4.TIE的图形表示

TDEV是另外一个统计参数,作为集成时间的函数对一个信号的预期时间变化的测量。DEV也能提供有关信号相位(时间)噪声频谱分量的信息。TIE图中每个点的标准偏差是对一个观测间隔计算的,该观测间隔滑过整个测量时间。该值在整个上述测量时间内进行平均以得到该特定间隔的TDEV值。增大观测间隔,重复测量过程。TDEV是对短期稳定性的一种衡量,在评估时钟振荡器性能时有用。TDEV属于时间单位。

高速传输系统中抖动和漂移的原因

最常用的一种时钟体系结构是,在备板上运行一个低频时钟,在每个传输卡上产生同步的高频时钟。低频时钟在集成电路内或通过分立PLL实现进行倍频以产生高频时钟。通过典型的PLL倍频,倍频后时钟上的相位噪声增大为原来时钟相位噪声的20*log(N)次方,其中N为倍频系数。此外,PLL参考时钟输入上的抖动将延长锁定时间,且当输入抖动过大时高速PLL甚至无法实现锁定。在备板上采用一种更高速的差分时钟将比采用低速单端时钟具有更好的抖动性能。

由于VCO对输入电压变化较为敏感,因此电源噪声是增大时钟抖动的一个主要因素。输出时钟抖动幅度与电源噪声幅度、VCO增益成正比,与噪声频率成反比。因导线电阻形成的电阻下降和因导线电感形成的电感噪声而造成的电源或接地反弹,会对上述输出时钟抖动产生相似的影响。在系统板上对电源进行充分过滤,靠近集成电路电源引脚提供去耦电容,可以确保PLL获得更高的抖动性能。

在系统板内,时钟和数据相互独立,发射和接收端在启动、保持和延迟时间方面的变化对高速率非常关键。因数据和时钟路径中存在不同有源元件而使数据和时钟路径之间出现传播延迟差异,时钟路径之间的接线延迟差异,数据位之间的接线延迟差异,数据和时钟路径之间不同的负载情况,分组长度差异等等,均可能造成上述变化。在规划系统抖动余量时,必须将不同信号路径的变化考虑在内。

当在一段距离上进行传输时,在发射机和接收机中的很多点上存在抖动累积。在发射机物理层实现中,DAC非线性或激光非线性等非线性特性会加重信号失真。在传输介质和接收机中,除了外部乱真源(大多在铜导线中)之外,因不同频率和调制效应而导致的光纤失真、因接收机实现(主要与带宽有关)和时钟提取电路实现而导致的信号相关相位偏离,会加重信号流的抖动。

图5.来自TIE图的MTIE偏差

具体到SDH(同步数字系列)传输,有大量的系统级事件会导致抖动。在将PDH(准同步数字系列)支路映射为SDH帧并通过SDHNE(网络组件)进行传输的典型传输系统中,在PDH支路于SDH的终端多路分配器解映射之前,将在每个中间节点处出现VC(虚拟容器)的重新同步。有间隙的时钟用于将各个支路映射到STM-N帧和从STM-N帧解映射,发出与开销、固定填充和调整位相应的脉冲,因而造成映射抖动。采用调整机会位补偿PDF支路中频率偏移的方法会造成等待时间抖动。还有指针调整机制,用于对来自初始NE的输入VC与本地产生的输出STM-N帧之间的相位波动进行补偿。根据频率偏离,VC在STM-N帧中前后移动。这将使VC提取点看到位流中的突然变化,导致称为指针抖动的类型抖动。所有上述系统级抖动都将加重总的确定性抖动。

尽管所有上述因素都会加重从源到目的地之间信号传播的抖动,标准要求仍然规定在传输点需具有比理论值更低的抖动数值。这样,考虑到时钟倍频、电源变化、电-光-电转换、发射和接收影响以及其他致使实际信号恶化的失真信号的影响,在源处驱动信号的时钟将具有一个相对很低的抖动数值。

抖动对收发器的影响

理想情况下,数字信号是在两个相邻电平转换点的中点进行采样的。抖动之所以会造成误码,是由于相对于理想中点,它改变了信号的边沿转换点。误码可能由于信号流边沿变化太晚(在时间上比理想中点晚0.5UI(单位间隔相当于信号的一个周期))或太早(在时间上比理想中点早0.5UI)所致。当时钟采样边沿在信号流的任何一侧错过0.5UI时,将出现50%的误码概率,假设平均转换密度为0.5。7如果分别知道确定性抖动和随机抖动,可通过上述两个数字和将峰到峰抖动值与均方根抖动值联系在一起的表,来估计误码率。校准抖动,定义为数字信号的最佳采样时刻与从其提取出来的采样时钟之间的短期变化,可以造成上述误码。对于商业应用,源时钟和源发射接口抖动规范将远远低于1UI。

发射接口抖动规范通常与接收端的输入抖动容限相匹配。对于抖动测量回路滤波器截止频率,尤其如此。例如,在SDH系统中,有两种抖动测量带宽,分别规定:一个用于宽带测量滤波器(f1到f4),一个用于高频带测量滤波器(f3到f4)。数值f1指可在线路系统的PLL中使用的输出时钟信号的最窄时钟截止频率。低于此带宽的频率的抖动将通过系统,而较高频率的抖动则被部分吸收。数值f3表示输入时钟捕获电路的带宽。高于此频率的抖动将导致校准抖动。校准抖动造成光功率损失,需要额外光功率以防各种恶化。因此限制发射机端高频带频谱的抖动十分重要。

漂移对收发器的影响

市场上销售的大多数电信接收机都使用了一个缓冲器,以适应线路信号中存在的随机波动。下面框图6详细表示出这一概念。恢复时钟将数据送入富有弹性的缓冲器,而系统时钟则将数据送出到设备的核心部位。

在准同步传输系统中,发射机和接收机工作在相互独立而又极为接近的频率上,fL和Fs分别表示发射机和接收机的频率。当两者之间存在相位或频率差异时,弹性存储会将其消除,否则缓冲器将出现欠载或溢出(取决于差异的幅度和弹性缓冲器的大小),造成一次可控的帧滑动(基本速率传输)或一次位调整(高阶异步多路复用器)。

在准同步应用中,根据可接受的缓冲滑动对频率变化和缓冲器深度进行了标准化。最初的网络主要用于语音传输,在一定的频率门限之下不会造成语音质量下降。ITU-T规范规定该变化为+/-50ppm。但是随着网络开始传送压缩语音、传真格式的数据、视频以及其他种类的媒体应用,对于差错和重传以及刚刚兴起的同步网络,滑动使效率严重下降。

在同步传输系统中,系统时钟通常同步到用于接收更高时钟等级信号的接口的恢复时钟上。恢复时钟和系统时钟之间相位和频率的瞬时和累积差异将被弹性缓冲器吸收,否则将导致弹性存储器溢出/欠载(取决于缓冲器大小和变化的幅度),造成指针调整而延迟或提前帧传输、帧滑动或系统中某处出现位调整。

在同步系统中,所有网络组件工作在同一平均频率,可以通过指针机制消除帧恶化。这些指针机制将提前或延迟有效载荷在传输帧中的位置,从而调整接收和系统时钟中存在的频率和相位变化。SDH收发器中的缓冲器比PDH收发器中的要小,而且对于SDH系统中可能导致的指针移动等不规则性有限制。因此,与PDH系统相比,同步系统的要求更为严格。由于网络发展的历史和不同网络之间的互操作连接,在某些阶段或其他阶段,这些同步网络会通过准同步网络来连接。因此PDH网络的时钟体系结构也要考虑在内。

MTIE提供了时钟相对于已知理想参考时钟的峰值时间变化。在同步传输和交换设备的弹性缓冲器的设计中将用到MTIE值。在弹性存储中,缓冲器填充水平与输入数字信号和本地系统时钟之间的TIE成正比。确保时钟符合有关MTIE的时钟规范,将保证不会超过一定的缓冲器门限。因此,在缓冲器设计中,其大小取决于MTIE的规定极限。

图6,典型传输系统的接收机接口

系统时钟输出相位扰动对收发器的影响

一个时钟的输出相位变化可以通过分析其MTIE信息获得。漂移产生(在自由振荡模式和同步模式中)主要指系统中所用时钟振荡器的长期稳定性,在自由振荡模式中系统的稳定性仅受振荡器的稳定性影响。除了漂移产生之外,输出时钟相位还受到大量系统不规则特性的影响。

特别是对一个系统同步器而言,将参考源从一个不良或恶化参考时钟转换到一个正常参考时钟可能会导致输出相位扰动。传输用高速PLL中使用的传统VCO(压控振荡器)在改变参考时钟时采用了切换电容器组的方法。这种切换转换会对输出时钟造成暂时的相位偏移。采用超低抖动时钟倍频器电路可以解决这个问题。

高性能网络时钟在系统的所有参考时钟都失去时采用一种称为“保持”的机制。这是通过记忆存储技术产生系统最后一个已知良好参考时钟来实现的。进入和退出保持模式可能会对输出造成相位扰动。当处于保持模式中时,由于准确频率的再生不够精确,因此会继续产生输出相位误差。集成电路技术的进步已使保持精度达到了0.01ppb。输入参考时钟恶化和对系统的维护测试(不会导致参考时钟切换)过少,也会造成输出相位扰动。

系统输出扰动是有限的,取决于系统在较低层次可以接受的输入容限。例如,符合G.813选项1的时钟,其相位扰动中所允许的相位斜率和最大相位误差被限制为1μS,最大相位斜率为7.5ppm,两个120ns相位误差段,其余部分的相位斜率为0.05ppm。这些数字对应于G.825标准规定的输入抖动容限,该标准描述了在SDH网络内对抖动和漂移的控制。

篇(3)

天线的安装技术

接收天线可安装在地面和平面屋顶。不管采用何种方式,都要先浇筑基座,等基座凝固好后,才能安装天线。天线基座制作尺寸和方法通常由天线制造方提供,在安装时要严格按图纸要求完成。在天线放置在屋顶上或楼顶上时,要进行风荷载和天线质量计算,确认安全后才能进行施工,同时要注意必须将基座制作在承重梁上。安装天线要根据厂家提供的结构图严格进行安装。在装配时,不可把面板划伤或碰撞变形,而影响装配精度和天线电气性能。要把脚架装在基座或地面上,校正水平,调好方位角后固定脚架,完全调好方位角后方可紧固脚架或焊接固定;装上方位托盘和仰角调节螺杆或螺钉;按顺序把反射板的加强支架和反射板装在反射板托盘上,在反射板及相连接时稍微固定,暂不固紧,在全部装完后,调整板面平整,再把全部螺钉紧固;馈源、高频头和矩形波导口要对准、对齐,波导口内应平整,两波导口间要加密封圈,拧紧螺钉而避免渗水,把连接好的馈源和高频头装在馈源固定盘上,对准天线中心位置焦点。如果接收天线在某建筑避雷针保护范围以内,可不单独设避雷针。而其基座螺栓接地要良好,接地电阻不大于4h,不然,要重新作接地极。若接收天线独处于空旷地区,或在雷雨较多区域,要加装避雷针。避雷针要在接收天线的主反射面和副反射面的顶端各装一个,避雷针的高度要使它的保护范围覆盖整个主反射面,通常高出1m~2m。基座螺栓接地电阻不大于4h时能作为接地极,不然也应重新做接地极。避雷针的引下线用10mm的镀锌圆钢。天线的避雷接地线不能与室内卫星电视接收机等设备的保护地线接在一起。同时要按规范要求进行接地线的安装。

接收天线的调试

技术准备。要了解欲接收卫星电视下行技术参数:波段、极化方式、传输方式、符码率、加密情况和卫星的位置;通过计算和查表等方式确定天线的方位角和仰角;正确连接高频头、低损耗电缆、卫星接收机和监视器,准备适当的调试仪器。调试。极化匹配调试要对照安装图安装极化器;进行天线仰角、方位角和极化角粗调。要依次对天线仰角、方位角和极化角进行粗调,再检查没备接线,在确认接线无误后,开启电源,对卫星接收机输入欲接收的卫星电视自于信号参数,获得较好的图像和伴音;进行天线仰角、方位角、极化角和焦距细调:运用场强仪调整天线仰角、方位角、极化角和馈源的位置,按仰角、方位角、馈源焦距和极化角顺序进行;天线固定要在细调完成后,把全部螺栓紧固好,并把仰角和方位角在天线上做好标记。

本文作者:李晓华工作单位:勃利县广播电视事业局

篇(4)

目前,数字化电视可以为人们提供良好的电视节目。数字电视实现电视节目播放的原理是:利用数值信号,在演播现场到发射端再到传输的过程中,进行采样和量化,然后形成编码,最后以二进制数字在电视荧屏上完成电视节目的播放。数字电视系统可以很好的满足人们的切实需求,最主要的原因是其在实际应用过程中,能够快速、有效的实现网络互动以及软件下载等功能。要想数字电视在以后能够更大程度的满足人们的多种需求,就需要很好的掌握数字电视信号传输技术,并不断对该技术进行改进。

1数字电视传输技术的特点

(1)数字电视信号在传输过程中可靠度更高,原因是数字电视信号是通过多次采样、量化及编码后处理得到的。即便在传输过程中容易受到外界杂波的干扰,但仍可以用错误编码技术对在额定点评的可控范围内的干扰波进行及时纠正。(2)数字电视设备方便储存信号,而且对信号强度和时间没有要求。(3)信号传输的有效性较高。将来,单频网络技术将主要运用于数字电视信号的传播。

2安装和应用数字电视卫星传输技术

2.1安装卫星接收设备工序

在卫星接收设备安装前,有关技术工作人员需要对安装设备的说明书仔细阅读,熟悉了解每个部件的使用用途,如图1为卫星接收设备。一是,在接收天线、高频头安装过程中,应该固定住连接接收天线、底座,之后连接上所有高频头和接收机间的电缆。二是,安装接收机。在安装之前需要接通接收设备电源,之后将在电视机与接收机之间安装音视频线。三是,调试接收机,在调试过程中需要对调试说明书内容全面掌握,之后严格根据说明书的内容展开调试。

2.2应用卫星接收设备的可行性

在传输有线数字电视信号中,卫星接收设备发挥着积极的作用,卫星接收设备质量的高低影响着有线数字电视是否可以正常运作。在近些来信息技术的迅猛发展下,有线数字电视遍布在全国各地,以前的接收设备已经很难满足传输数字电视信号的要求,为了可以更好的满足人们需求,卫星接收设备应运而生,得到了各地区人们的普遍认可。卫星接收设备既可以在各个地区中发送已经接收的信号,也以发送速度极快被人们所肯定。

2.3维护卫星接收设备注意事项

(1)检查设备里的连接件。在安装卫星接收设备中,连接件发挥着尤为关键的作用,如果连接件出现松动或者变形情况,那么卫星设备就不能正常运作。所以,有关技术工作人员需要经常检查与维护连接件。同时,在螺丝表面上有锈蚀后,有关人员需要第一时间处理螺丝,进而确保卫星接收设备能够正常接收到信号。(2)检查馈线与高频头之间的连接。在这项工作进行过程中,有关人员需要适度的调整卫星接收设备,进而保证卫星接收设备能够及时接收到信号。在调整卫星天线之前,有关人员需要对如何安装天线进行了解,之后遵循相关标准实施调整。同时,在调整前,有关人员需要了解是什么原因造成天线出现故障,之后,采取可行的解决措施。

3安装和应用数字电视传输技术

3.1安装数字电视

安装对于后期的维护非常重要,所以,在安装有线数字电视中必须要高度重视。在连接有线数字电视信号中,机顶盒上的信号接入线必须要定期或者不定期检查,一旦发现有破损情况,应及时换一个新的电缆线。通过调查发现,若是信号接人线是旧的,则有线数字电视网络就难以保障正常运作。同时在实际操作中,必须要防止塑料式的插头线使用,进而避免脱落引发故障。在分接电视信号中,必须要做好分支器选型、分配器选型工作,进而提高有线数字电视网络运作效率。

3.2应用数字电视

传统模拟电视与有线数字电视对比而言,前者很难接收到数据信号,必须辅助机顶盒才可以,而机顶盒具有占据空间大、接线复杂等不足,已经逐渐被家电市场淘汰。而数字一体机自身内置中包括数字电视高频头,可以直接接收到数字信息,不需要使用机顶盒,之后将接收数据、解码数据、显示数据融合在一起,实现了“三模式、全数字”的电视播放模式,也正是因为这一使用优势,有线数字电视彻底淘汰了传统模拟电视,成为了各地区人们购买家电的首选。

3.3维护数字电视两种故障的方法

(1)零星用户故障的维护。这一故障会严重影响着有线数字电视网络的有效运作,所以,有关技术人员需要尽可能降低零星用户故障的发生率。大多数零星用户故障的产生都是因为接人电压值太低而造成的,通常会出现线路接触不良的状况。在进行这项工作中,需要检查好故障所在之处,在明确故障位置后,再展开相应的处理。如:可成立检查故障小组,并且为用户开设固定的咨询热线,全天二十四小时内为用户服务,一旦有用户反应有问题,故障检查小组就需要及时检测用户的有线电视,在找到引发故障的原因后,针对性的解决,保证用户可以在最短的时间继续正常使用有线数字电视。(2)局部点片出现故障。这一故障先要深入研究局部点片故障中的线路,在检查中对接触不良、导体霉断等方面进行排查,特别是要光发射机中存在的问题进行深入检查,在检查中,维修工作人员需要掌握导致局部点片故障发生的原因全面了解,并且还需要明确解决好这一故障的各种方法,进而保证完善解决这一故障。

4结语

从上面的分析中可见,在普遍推广和使用有线数字电视下,不但给人们带来了更多的欢乐,而且也将更多的信息传递给人们,在开阔人们知识视野的基础上,也帮助人们更好的享受了生活。在信息时代的今天,数字电视企业不能因为取得很好的成绩而沾沾自喜,还需要对数字电视深入研究,对数字电视技术不断改进与完善,以便可以为社会公众提供更多更好的服务。

作者:李晓光 单位:山西广播电视无线管理中心

参考文献

[1]谭志远.数字电视信号传输技术的研究与分析[J].西部广播电视,2016,(01):230.

[2]刘兆杉.浅谈实现移动数字电视信号传输的有效方式[J].数字技术与应用,2016,(02):256.

[3]杨睿.数字电视信号传输技术研究[J].通讯世界,2016(19):65-66.

篇(5)

1.主机到网络层在这一层面,主要探讨在数据链路层软件方面实现安全传输通道的技术。现在,通用的安全协议有两个:PPTP和L2TP。它们主要在远处访问VPN上起作用。1.1PPTP的封装将用户数据,TCP或UDP,IP进行绑定,封装,然后传输给PPP。

2.网络层在网络层实现安全传输通道的技术主要体现在IPSec规范上,它是将安全机制引入TCP/IP网络的一系列标准,主要包括安全协议、安全联盟、密钥管理和安全算法等。是主机之间、安全网关之间以及主机与安全网关之间数据安全的保证。它支持多种方式的VPN访问,包括ExtraNetVPN访问,IntraNetVPN访问和VPN远程访问。

3.传输层目前,在传输层能够实现安全传输通道的协议是安全套接层协议,(SecureSocketLayer,简称SSL),它需要以可靠的传输服务为基础。它主要由SSL记录协议和SSL支持协议两部分组成。

4.应用层网络层的安全协议增加了主机或进程的数据通道的安全性。实质上是说,安全数据通道主要在主机之间或进程之间,但对于传输文件的安全性不同需求无法满足。换言之,如果两台主机之间或进程之间建立起一条安全的IP通道,则在这条通道上传输的全部IP包都会自行被加密。但是如果真的需要区分具体文件的不同的安全性要求,那就需要依附于于应用层的安全性。应用层的安全服务,最突出特点就是能安全的灵活处理单个文件。以电子邮件的收发为例:一个电子邮件系统也许需要对待发信件的某些段落进行数字签名操作,而对于较低层的协议,他们是无法区分文字段落的,因而无法对相应的文字进行数字前面。继而不能保证文件传输的安全性和完整性。可是应用层就能够达到这个要求,对精细层面进行安全操作。

篇(6)

ASON系统作为通信工程传输技术中一项重要的科研项目,它有效的将通信数据与网络有机的连接,并实现了IP所具有的一些特征。同时,在通信传输过程中,ASON系统可以实现超大容量的接收,针对所连接的网络进行全面的覆盖,有效的整合了网络信息传输资源,实现了自动搜索的智能计算方式,是一种高效率的传输网络系统,在通信工程管理中,ASON也发挥了极其重要的地位和作用,它可以将部分信息进行控制移动,然后进入系统控制层进行分布设置,完成一系列的智能恢复业务,以及动态式的管理方式链接。

1.2MSTP系统

MSTP是以SDH为基础进行通信工程传输的新传输系统,它可以通过多条线路进行同时传输,也可以与其他通信工程系统进行交叉同步传输,这种传输方式大大提高了工作效率以及信息传输的稳定性。满足了广大用户对信息传输量需求大的要求,同时也实现了多系统的整合与汇集。这样在传输过程中即便发现问题也能针对数据进行有效的解决。

1.3WDM系统

WDM是一种能够在很大程度上提高光纤频率带宽利用率的系统,它属于波分复用系统;其工作原理是在光层上复用之后,通过光发射机将不同的波长信号进行传输,附着在一根光纤上,到达节点之后,可以再解复用。WDM系统在本质上属于同时在光纤上传输不同的波长信号的技术,它可以实现光信号的传输,主要应用技术有OXC、OADM、DXC、ADM等,这些新技术并不需要通过OE技术的转换。

1.4SDH系统

SDH是一种数字系列,它是在SONET的基础之上,通过整合新的技术手段而得到的,其主要的功能是针对光纤传输的新型的数字传输网体系。国际上针对SDH技术有着标准的光路接口和统一的帧结构数字传输标准速率,以保证网管系统互通;它有着很好的横向兼容性,能够与现在通用的PDH完全兼容,并能够整合、容纳新的业务信号,形成统一的、全球通用的数字传输系统,从而实现了网络的可靠性。SDH的主要工作原理是将信号固定在一定的帧结构之上,在电路层上复用之后,以一定的速率在光纤上传输。当光纤通过进入到ADM之中后,信号就转变成为基本的电信号,再通过数字配线架(DDF)及电缆系统,接入到用户端口。

2传输技术在通信工程中的应用

2.1无线传输

信息传输技术大多采用电磁波方式来实现其无线传输,这项技术因其稳定性高,成本低,故此被广泛的应用于生产生活的方方面面。尤其是针对其安全防范措施而言,这项技术是一项比较优越的信息监控系统,在很多场合,例如商业大厦、智能小区都设有其这种无线监控系统,以便更好的通过无线传输的方式可以监测到环境的各方面,且无线传输技术对于环境的适应性很强,对于铺设布线等要求比较低,是当今广泛被使用的一种无线传输技术。这种无线传输技术对于网络传输维修的费用相对较低,在起初使用的过程中,信息系统拥有其自我免费维修系统,随即可以被使用。无线传输技术与监控技术的有效结合更加可以针对现场各个传输地点进行有效的无人监控,通过信息传输将信息画面传输至控制中心并通过视频软件呈现,这种监测手段不仅仅可以确保信息传输过程中的质量,还可以有效的保障信息传输的连续性。

2.2光纤传输技术

随着无线传输的广泛使用,为了提高通信工程更好的服务于社会生产生活的各个方面,在此基础上以光纤为媒介的传输方式开始大量的使用。这种传输技术可以通过光纤可以传输视频以及数字信号,且传输速度比铜线的传输更加稳定可靠。光纤传输过程中信息容量比较大且在很大程度上可以抵御电缆传输过程中所产生的噪音,而且维修成本相对较低。就目前发展阶段而言,光纤传输被广泛的应用于工业与商业领域之中,尤其是在军事方面更加可以有效的进行监控、防御等军事监控。其他广播媒体和卫星与光导纤维结合在一起,将在交通运输、传感器、机器人、航空电子学、武器系统中得到专业应用和商务通信。

篇(7)

OTN作为光层组织网络的传送网络,整体可划分为光通道层、光复用段层和光传送段层三大子层机构,三大子层有机构成一系统建构,组构OTN技术支撑。其中,光通道层又由两部分建构,OTUk和ODUk。OTUk即光通道传送单元,ODUk即光通道数据单元。光通道传送单元和光通道数据单元基本与SDH技术的段层和通道层两部分相对应。所以,从OTN技术本质上来讲,它打破了现存的SDHWDM的传统优势,是对传统的更进一步、提升效能的继承和创新,而且,OTN技术还扩展了对应业务传送需求的组网功能。

1.2OTN优势

OTN技术是对传统组网技术的继承、整合和创新,与已有的SDHWDM等传送组网技术比较,它具有多元优势:多种客户信号封装和透明传输。完美支持多种协议,大颗粒的带宽复用、交叉以及配置。容量的可扩展性较强、强大的开销和维护管理能力。FEC的纠错能力较强、增强了组网和保护能力。

2OTN传输技术在移动网络中的应用

2.1网络组网架构

OTN组网总体网络架构在移动网络建设中存在不同的方式,当前整体分为省际干传送线网、省内干传送线网以及城域传送网3大建构板块。通过3大板块的组网构建,OTN作为一种透明的信息网络传送平台,能够实现多元业务平台提供的多元业务的统一传送。

2.2OTN组网模型

2.2.1省与省之间的干线传送网的组建模式

(1)网络组建的拓扑模式

省级干线能够传送到省际干线传送网旁边的部分省份,光缆网络传输的出口方向只有2个,通过对比得知其它省份光缆网传输的出口方向3个以上,可以根据光缆网络拓扑采用网状式的结构组建OTN传输网,外省的业务接入点通过环网来实现。

(2)网络传输的波道规划

如果一个节点需要担任多方位传输的任务,那么在规划它传输方向的波道时要根据它的业务流量和流向来确定,如果同一条线路使用了两个不同方向的波道要将它们规划到同一个交叉单元中,这样可以有效地避免在外部跳纤来实现通道的连接。

2.2.2省内干线传送网OTN组网

(1)组网拓扑

组网的业务特点:将省会城市的网络节点作为中心,担任汇聚和收集各地市业务节点。光缆网的业务特点:各地市的节点以省会城市的节点作为中心,且分布在各个环线之上。

(2)网络波道规划

ONT网络组织的环形结构有以下特点:省会的城市节点呈现多维状态,而一般的地市级节点只能支持两维。

2.2.3城域传送网OTN组网

城域传送网OTN网络结构不同的组建方式是根据网络规模的大小来确定的,主要分为大规模形式的城域传送网和中小规模形式的城域传送网,下面举例说明。

(1)组网模式的拓扑

从城域传送网的整体来看,它的规模相对较大且核心的节点数量也比较多,整个网络的业务量也大。在这种传输网络中核心层是专门负责提供核心节点之间的中继电路,同时也负责各种业务的调度,且能够实现业务的大容量调度和多业务同时传送的功能。

(2)网络波道规划

核心层和汇聚层可以组建独立的网络,在业务的初期可以根据实际情况只在核心层组建ONT传输网络,在组织网络结构的时候要充分地考虑光缆网络的连通程度和业务的流量和流向,汇聚层采用环形组建形式,每个环可以接到两个核心的节点之上。

篇(8)

一、引言

目前存储式电子压力计已广泛应用于国内各大油田高温井下压力和温度的测量。存储式电子压力计在工作过程中,仪器内的单片机系统和各种传感器共同完成井下压力和温度的采集,并以数字量形式存储于电可改写型存储器中,待测试过程完成后,再将压力计返回地面,用专门配套研制的数据回放仪与压力计连接,通过软件和硬件接口通讯进行数据的接收、回放和处理,使用很不方便,影响生产。

因此,为克服存储式电子压力计的上述缺点,提高油田生产效率,提升电子压力计在油田测井领域的市场竞争力,必须研制在井下高温、高压、远距离条件下,实现压力、温度数据实时可靠采集、传输、分析的压力计——直读式电子压力计。

二、直读式电子压力计技术需求分析

(一)功能及主要技术指标要求

直读式电子压力计实现井下压力和温度参数的测量,并将测量结果通过单芯铠装电缆实时传送至地面解码控制仪,主要技术指标要求如下所示。

a)压力测量范围:(0~30、45、60、80)MPa;压力测量误差:0.04%F.S;

b)温度测量范围:(-20~+150)℃,测量误差:±1℃;

c)传输距离不小于6000m;通讯误码率1.0×10-7。

(二)基本方案及工作原理

直读式电子压力计由井下电子压力计和地面解码控制仪两部分组成,其中井下电子压力计由压力传感器、温度传感器、信号放大电路、模数转换电路、单片机系统、编码电路、数字通讯接口电路和装载于单片机系统中的相关工作软件组成,解码控制仪由解码电路、通讯接口电路、通用计算机(油田配置)和相关工作软件组成。

工作过程中,井下电子压力计由地面解码控制仪通过单芯铠装电缆提供能源,温度和压力传感器分别将环境压力和温度转换为电信号输出,该电信号经放大和模数转换后由单片机系统进行数据实时采集和处理,然后按一定周期经数字通讯口输出。井下电子压力计和井上解码控制仪之间通过单芯铠装电缆连接,解码控制仪中通讯接口电路接收井下电子压力计输出的压力和温度数据,并经解码后输入计算机中进行实时分析和处理。

三、数据传输方案选择

设备之间数据通讯通常有并行通讯和串行通讯两种方案,并行通讯的缺点是传输距离短,通讯信道所占点号多,而串行通讯与之相反。根据井下电子压力计与井上解码控制仪的数据传输特点,需选择串行数据传输方式。

在曼彻斯特编码中,用电压跳变的相位不同来区分逻辑1和逻辑0,即用正的电压跳变表示逻辑0,用负的电压跳变表示逻辑1。

在油田测井中,井下电子压力计在井下采集大量信息,并传送给地面解码控制仪;但井下电子压力计到地面解码控制仪这段信道的传输距离较长且环境恶劣,常用的NRZ码不适合在这样的信道里传输,而且NRZ码含有丰富的直流分量,容易引起滚筒的磁化。曼彻斯特编码方式使得信号以串行脉冲码的调制方式在数据线上传输,和最常用的NRZ码相比,消除了NRZ码的直流成分,具有时钟恢复和更好的抗干扰性能,这使它更适合于从井下到井上的信道传输,因而在井下电子压力计和地面解码控制仪之间选用曼彻斯特编码使数据传输可靠性更高、传输距离更远。

四、曼彻斯特码编码软硬件设计

每一周期井下电子压力计需将采集到的压力和温度两个参数分别进行曼彻斯特编码方式输出,井下电子压力计与地面解码控制仪之间按如下通讯协议进行。

a)压力与温度均以字为单位进行传送,先发送压力字,后发送温度字,一个压力字和一个温度字的组合称为一个消息;

b)每一个字由20位组成,第1~3位为3个起始位,第4~19位为16个数据位,第20位为奇偶校验位;

c)压力字3个起始位电平为先高后低,温度字起始位为先低后高,高低电平均各占一位半,压力字与温度字校验位均采用奇校验;

d)传输的波特率:5.7292kbps(175μs/位),传输一个消息共耗时3.5ms。为保证数据传输可靠性,井下电子压力计同一消息在一个采样周期内重复发送两次,地面解码控制仪根据校验位判断每个字的正确性。

由单片机编程输出两路I/O控制信号,经过滤波电路、运放电路、整型电路后,产生曼彻斯特编码双相电平信号,并经单芯铠装电缆送至地面解码控制仪。为满足曼彻斯特编码格式及井下电子压力计与地面解码控制仪之间的通讯协议,井下电子压力计软件采用如下的编程方式输出波形。

a)压力字同步头为262.5μs高电平后跟随262.5μs低电平,温度字同步头为262.5μs低电平后跟随262.5μs高电平;

b)若数据位为逻辑0,则在87.5μs低电平后跟随87.5μs高电平;

c)若数据位为逻辑1,则在87.5μs高电平后跟随87.5μs低电平;

d)校验位的波形产生方式与数据位相同。

五、曼彻斯特码解码软硬件设计

地面解码控制仪需将井下电子压力计输出的曼彻斯特码进行解码,并按通讯协议用软件将接收到的曼彻斯特码数据转换为井下电子压力计测得的压力和温度数据,即地面解码控制仪中的解码过程为井下电子压力计编码过程的逆过程。曼彻斯特码解码过程可分为如下三部分:

a)同步字头检测,并辨别其为温度数据还是压力数据。

b)对曼码形式的数据进行解码,从曼彻斯特码波形中分离出同步时钟,并将时钟和数据进行处理使曼码数据转化为非归零二进制数据。

c)将串行数据转化为并行数据,并进行奇偶校验,以检验数据传输的正确性。

经过几千米铠装电缆传输上来的数据,幅度衰减到毫伏级,因此井上需要精密的解码电路,才能保证数据传输无误码率。井下传输上来的数据经过滤波电路、精密运算放大器、双D触发器输出曼码波形给单片机,经过单片机的程序转化为井下的压力与温度数字量。

六、试验结果

直读式电子压力计首台产品完成厂内试验后,到油田用8000m的铠装电缆连接井下电子压力计和地面解码控制仪,将电子压力计下放到井下6500m的深度,在温度高达150℃、压力为30~60MPa的油井中测试压力和温度。在三次连续5个小时的测试过程中,数据传输准确可靠,没有出现丢点现象,误码率为零。

七、结束语

试验数据统计分析结果表明,本文研究结果解决了直读式电子压力计通讯方案、通讯协议、单芯远距离传输、曼彻斯特码编解码软硬件设计等关键技术,增强了电子压力计在油田测井领域的市场竞争力。

篇(9)

蓝牙(Bluetooth)是一种新型、开放、低成本、短距离的无线连接接技术,可取代短距离的电缆,实现话音和数据的无线传输。这种有效、廉价的无线连接技术可以方便地将计算机及外设、移动电话、掌上电脑、信息家电等设备连接起来,在它可达到的范围内使各种信息化移动便携设备都能实现无缝资源共享,还可通过无线局域网(WirelessLAN)与Internet连接,实现多媒体信息的无线传输。

蓝牙系统采用分散式(Scatter)结构,设备间以及从方式构成微微网(Piconet),支持点对点和点对多点通信。它采用GFSK调制,抗干扰性能好,通过快速跳频和短包技术来减少同频干扰,保证传输的可靠性。使用的频段为无需申请许可的2.4GHz的ISM频段。

蓝牙协议从协议来源大致分为四部分:核心协议、电缆替代协议(RECOMM)、电路控制协议和选用协议。其中核心协议是蓝牙专利协议,完全由蓝牙SIG开发,包括基带协议(BB)、连接管理协议(LMP)、逻辑链路控制和适配协议(L2CAP)以及服务发现协议(SDP)。蓝牙协议从体系结构又可分为底层硬件模块、中间协议层和高端应用层三大部分,其中链路管理层(LM)、基带(BB)和射频层(RF)构成蓝牙的底层模块。由此可见,基带层是蓝牙协议的重要组成部分。本文主要对蓝牙技术中最重要的基带数据传输机理进行分析。

1基带协议概述

图1给出蓝牙系统结构示意图。在蓝牙系统中,使用蓝牙技术将设备连接起来的网络称作微微网(Piconet),它由一个主节点(MasterUnit)和多个从节点(SlaveUnit)构成。主节点是微微网中用来同步其他节点的蓝牙设备,是连接过程的发起者,最多可与7个从节点同时维持连接。从节点是微微网中除主节点外的设备。两个或多个微微网可以连接组成散射网(Scatternet)。

图2给出蓝牙协议结构示意图。基带层位于蓝牙协议栈的蓝牙射频之上,并与射频层一起构成蓝牙的物理层。从本质上说,它作为一个链接控制器,描述了基带链路控制器的数字信号处理规范,并与链路管理器协同工作,负责执行象连接建立和功率控制等链路层的,如图3所示。基带收发器在跳频(频分)的同时将时间划分(时分),采用时分双工(TDD)工作方式(交替发送和接收),基带负责把数字信号写入并从收发器中读入数据。主要管理物理信道和链接,负责跳频选择和蓝牙数据及信息帧的传输、象误码纠错、数据白化、蓝牙安全等。基带也管理同步和异步链接,处理分组包,执行寻呼、查询来访及获取蓝牙设备等。

在蓝牙基带协议中规定,蓝牙设备可以使用4种类型的地址用于同场合和状态。其中,48位的蓝牙设备地址BD_ADDR(IEEE802标准),是蓝牙设备连接过程的唯一标准;3位的微微网激活节点地址AM_ADDR,用以标识微微网中激活成员,该地址3位全用作广播信息;8位的微微网休眠节点地址PM_ADDR,用以标识微微网中休眠的从节点。微微网接入地址AR_ADDR,分配给微微网中要启动唤醒过程的从节点。

当微微网主从节点通信时,彼此必须保持同步。同步所采用的时钟包括自身不调整也不关闭的本地设备时钟CLKN,微微网中主节点的系统时钟CLK以及为主节点时钟对从节点本地设备时钟进行周期更新以保持主从同步的补偿时钟CLKE。

与其它无线技术一样,蓝牙技术中微微网通过使用各种信道来实现数据的无线传输。其中,物理信道表示在79个或者23个射频信道上跳变的伪随机跳频序列,每个微微网的跳频序列是唯一的,并且由主节点的蓝牙设备地址决定;此外,蓝牙有5种传送不同类型信息的逻辑信道,它们分别为:

(1)LC信道:控制信道,用来传送链路层控制信息;

(2)LMC信道:链接管理信道,用在链路层传送链接管理信息;

(3)UA信道:用户信道,用来传送异步的用户信息;

(4)UI信道:用户信道,用来传送等时的用户信息;

(5)US信道:用户信道,用来传送同步的用户信息。

在蓝牙系统中,主从节点以时分双工(TDD)机制轮流进行数据传输。因此,在信道上又可划分为长度为625μs的时隙(TimeSlot),并以微微网主节点时钟进行编号(0-227-1),主从节点分别在奇、偶时隙进行数据发送。

2蓝牙数据传输

蓝牙支持电路和分组交换,数据以分组形式在信道中传输,并使用流控制来避免分组丢失和拥塞。为确保分组包数据正确传输,还进行数据的白化和纠错,下面分别对这些传输机制进行分析。

2.1蓝牙分组

分组包数据可以包含话音、数据或两者兼有。分组包可以占用多个时隙(多时隙分组)并且可以在下一个时隙继续发送,净荷(Payload)也带有16位的错误校验识别和校验(CRC)。有5种普通的分组类型,4个SCO分组包和7个ACL分组包。一般分组包格式如图4。

图3基带层抽象

其中,接入码(Accesscode)用来定时同步、偏移补偿、寻呼和查询。蓝牙中有三种不同类型的接入码:

(1)信道接入码(CAC):用来标识一个微微网;

(2)设备接入码(DAC):用作设备寻呼和它的响应;

(3)查询接入码(IAC):用作设备查询目的。

分组头(Header)包含6个字段,用于链路控制。其中AM_ADDR是激活成员地址,TYPE指明分组类型,FLOW用于ACL流量控制位,ARQN是分组包确认标识,SEQN用于分组重排的分组编号,HEC对分组头进行验。蓝牙使用快速、不编号的分组包确认方式,通过设置合适的ARQN值来区别确定是否接收到数据分组包。如果超时,则忽略这个分组包,继续发送下一个。

2.2链接及流控制

蓝牙定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。SCO链接是一个对称的主从节点之间点对点的同步链接,在预留的时间里发送SCO分组,属于电路交换,主要携带话音信息。主节点可同时支持3个SCO链接,从节点可同时支持2~3个链接SCO,SCO分组包不支持重传。SCO链路通过主节点LMP发送一个SCO建立消息来建立,该消息包含定时参数(Tsco和Dsco)。

ACL链接是为匹克网主节点在没有为SCO链接保留的时隙中,提供可以与任何从节点进行异步或同步数据交换的机制。一对主从节点只可以维持一个ACL链接。使用多个ACL分组时,蓝牙采用分组包重发机制来保证数据的完整性。ACL分组不指定确定从节点时,被认为是广播分组,每个从节点都接收这个分组。

蓝牙建议使用FIFO(先进先出)队列来实现ACL和SCO链接的发送和接收,链接管理器负责填充这些队列,而链接控制器负责自动清空队列。接收FIFO队列已满时则使用流控制来避免分组丢失和拥塞。如果不能接收到数据,接收者的链接控制器发送一个STOP指令,并插入到返回的分组头(Header)中,并且FLOW位置1。当发送者接收到STOP指示,就冻结它的FIFO队列停止发送。如果接收器已准备好,发送一个GO分组给发送方重新恢复数据传输,FLOW位置0。

2.3数据同步、扰码和纠错

由于蓝牙设备发送器采用时分双工(TDD)工作机制,它必须以一种同步的方式来交替发送和接收数据。微微网通过主节点的系统时钟来实现同步,并决定其跳频序列中的相位。在微微网建立时,主节点的时钟传送给从节点,每个从点节给自己的本地时钟加上一个偏移量,实现与主节点的同步。在微微同生存期内,主节点不会调整自己的系统时钟。为了与主节点的时钟匹配,从节点会偏移量进行周期的更新。蓝牙时钟应该至少具有312μs的分首辨率。主节点分组发送的平均定时与理想的625ms时隙相比,偏移不不能超过20ppm,抖动(Jitter)应该少于1ms。

在分组数据送出去并且在FEC编码之前,分组头和净荷要进行扰码,使分组包随机化。接收数据分组包时,使用盯同的白化字进行去扰处理。

为了提高数据传输可靠性及系统抗干扰性,蓝牙数据传输机制采用三种纠错方式:1/3率FEC编码方式(即每一数据位重复3次)、冗余2/3率FEC编码方式(即用一个多项式发生器把10位码编码成15位码)以及数据自动请求重发方式(即发送方在收到接收方确认消息之前一直重发数据包,直到超时)。

图4蓝牙分组包格式

3蓝牙设备连接

蓝牙链接控制器工作在两种主要状态:待令(Standby)和连接(Connection)。在蓝牙设备中,Standby是缺省的低功率状态,只运行本地时钟且不与任何其他设备交互。在连接状态,主节点和从节点能交换分组包进行通信,所以要实现蓝牙设备之间的互相,彼此必须先建立连接。由于蓝牙使用的ISM频带是对所有无线电系统都开放的频带,会遇到各种各样的干扰源,所以蓝牙采用分组包快速确认技术和跳频方案来确保链路和信道的稳定。在建立连接和通信过程中使用跳频序列作为物理信道,跳频选择就是选择通信的信道。

3.1跳频选择

跳频技术把频带分成若干个跳频信道(HopChannel)。无线电收发器按一定的码序列(以产生随机数的方式)不断地从一个信道跳到另一个信道,并且收发双方都按这个规律才能通信并同步。跳频的瞬时带宽很窄,通过扩频技术展成宽频带,使干扰的影响最小。当一个设备被激活时,该设备被分配32个跳频频点,以后该设备就在这些跳频点上接收和发送信息。通用跳频选择方案由两部分组成,即选择一个序列并在跳频频点上映射该序列。对于每一情况,都需要从-主和主-从两种跳频序列。蓝牙系统中使用的跳频序列有如下几种:

(1)呼叫跳频序列:在呼叫(Page)状态使用;

(2)呼叫应答序列:在呼叫应答(PageResponse)状态使用;

(3)查询序列:在查询(Inquiry)状态使用;

(4)查询应答序列:在查询应答(InquiryResponse)状态使用;

(5)信道跳频序列:在连接(Connection)状态使用。

3.2蓝牙连接建立

从待令状态到连接状态的过程就是连接建立过程。通常来讲,两个设备的连接建立过程如下:

首先,主节点使用GIAC和DIAC来查询范围内的蓝牙设备(查询状态)。如果任何附近的蓝牙设备正在监听这些查询(查询扫描状态),就发送它的地址和时钟信息后,从节点可以开始监听来自主节点的寻呼消息(寻呼扫描),主节点在发现附近的设备之间可以寻呼这些设备(寻呼状态),建立链接。在寻呼扫描的从设备被这个主节点寻呼后,就会以DAC(设备访问码)来响应(Slaveresponsesubstate)。主节点在接收到从节点的响应后,便可以以送主节点的实时时钟、BD_ADDR、BCH奇偶位和设备类(FHS分组包),最后在从节点已经接收到这个FHS分组之后,进入连接状态。具体过程如图5。

由图5可见,在蓝牙连接建立的呼个不同阶段,主节点和从节点分别处于不同的状态,这些状态包括:

查询(Inquiry):查询是主节点用来查找可监视区域中的蓝牙设备,以便通过收集来自从节点响应查询消息中得到该节点的设备地址和时钟,查询过程使用IAC;

查询扫描(InquiryScan):蓝牙设备周期地监听来自其他设备的查询消息,以便自己能被发现。扫描过程中,设备可以监听普通查询接入码(GIAC)和特定查询接入码(DIAC);

查询响应(Inquiryresponse):从节点以FHS分组响应查询消息,它携带从节点的DAC、本地时钟等信息;

寻呼(Page):主节点通过在不同的跳频序列发送消息,来激活一个从节点并建立连接,寻呼过程使用DAC;

寻呼扫描(PageScan):从节点周期性地在扫描窗间隔时间内唤醒自己,并监听自己的DAC,从节点每隔1.28s在这个扫描窗上根据寻呼跳频序列选择一个扫描频率;

从节点响应(SlaveResponse):从节点在寻呼扫描状态收到主节点对自己的寻呼消息即进入响应状态,响应主设备的寻呼消息;

主节点响应(MasterResponse):主节点在接收到从节点对它的寻呼消息的响应后,主节点发送一个FHS分组给从节点,如果从节点响应回答,主节点就进入连接状态。

3.3连接状态

连接(connection)状态以主节点发送一个POLL分组开始,表示连接已经建立,此时分组包可以在主从节点之间来回发送。连接两端即主从节点都使用主节点的接入码和时钟,并且使用的跳频为信道跳频序列。即在连接建立后,主节点的蓝牙设备地址(BD_ADDR)决定跳频序列和信道接入码。在连接状态的蓝牙设备,可以有以下几个子状态:

Active:在这个模式下,主从节点都分别在信道通过监听,发送和接收分组包,并彼此保持同步;

Sniff:在这个模式下,从节点可以暂时不支持ACL分组,也就是ACL链路进入低能源sleep模式,空出资源,使得象寻呼、扫描等活动、信道仍可用;

Park:当从节点不必介入微微网信道,但仍想与信道维持同步,它能进入park(休眠)模式,此时具有很少的活动而处于低耗模式,从节点放弃AM_ADDR,而使用PM_ADDR。

篇(10)

2.对意境的创造性的表达当代设计思想和制作表现手法与传统视觉元素的有机结合,可以使传统的纸质形态书籍拥有更为强大的生命力和更为深刻的内涵。中国画作为中国传统文化元素的一个重要载体,用水墨和笔触的方式追求独特的意境。近年来,越来越多的设计师将中国画的水墨效果应用到设计中,如《姹紫嫣紅<牡丹亭>》一书的封面设计用的是传统行书与色彩艳丽的中国画中的笔触晕染开的底色,呈现出一种带有写意的既传统又现代的视觉效果,图中没有写实的人物,只是用水墨的笔触传达其中的意蕴,这种对意境创造性的表达与主题极为契合,可以说是做到了意境的“神似”。

二、试析传统元素的视觉创新

1.传统图形的重构与书籍设计自新石器时代的人面鱼纹彩陶到商周时期象征权利的青铜器,从京剧脸谱到民间剪纸艺术,这些具有浓厚内涵的中国传统元素是中国古代各个时期社会生活的完美映射,而这些传统元素的人文价值毫无疑问成为今天的设计师取之不尽、用之不竭的设计素材。随着社会的进步和科技的发展,新兴技术的诞生使中国传统的视觉符号元素在原有的基础上可以通过新技术以不同的形态呈现在观者面前,这也是历史发展的必然。设计师要在探索现代书籍装帧时继承传统文化元素的特性,并在此基础上进行一系列创新,才能使书籍具有强大的生命力,才能吸引读者的眼球。吕敬人先生设计的《浣溪沙》一书,传统纹样被大量地应用在书籍封面和内页,这样的设计不仅能使文字和内容达到统一,使书籍的内容得到有力的衬托,更能使读者的心境和书籍统一在一个境界中。还有张卫设计的《寓言十家》一书,剪纸的原形赋予其浓厚的民间色彩,散发出浓浓的乡土气息,传统符号在书中表现出来的节奏感是“有意味的形式”最真实的写照。

2.汉字的创新与书籍设计汉字作为中华民族传统文化中不可多得的艺术瑰宝,其特有的线条造型具有天生的审美价值,而随着时间的推移,汉字已经不仅仅承载着继承文化的重任。在现代设计中,越来越多的设计师尝试对汉字的结构进行打散和重构,使汉字图形化、视觉化,最终由实用性升华为一门独立的艺术。在现代书籍设计中,可以说汉字是最能体现中国书籍装帧设计民族性的一种手段,将汉字书法进行修饰运用在书籍设计中已经成为中国书籍设计的一大重要标志,而汉字本身的应用可以使得书籍的整体格调变得典雅质朴,同时还不缺乏现代感。

3.传统色彩的提取与书籍设计色彩在书籍设计中是设计师极为重视的一个重要环节,越来越多的设计追求外在的视觉冲击力,色彩作为视觉元素不可或缺的一部分,在书籍设计中也占据了半壁江山。在书籍设计中,色彩运用得好更容易吸引读者的眼球,而一本书的色彩大概就能使读者感受到这本书的性质。中国杰出的书籍设计家邱陵先生指出:“中国的书籍装帧要以含蓄淡雅取胜,以此来反映中国文化的东方气质。”中国传统色彩包括青花蓝、中国红、中国黄等最常见的颜色,中国传统的“五行五色”中的“五色”包括黑、白、红、青、黄。这些都已经变成了中华民族传统文化的象征。色彩总能让人寄托美好的情感,在书籍装帧设计中,设计师若能充分应用传统色彩的丰厚资源,挖掘出这些色彩背后深刻的历史文化内涵,并且充分考虑中华民族数千年的色彩应用习惯和人们的色彩心理映射,如,中国红的强烈而又不轻浮,青花蓝的清幽淡雅,都散发着强烈的民族特色。红与黄的色彩搭配不仅具有强烈的视觉效果,渲染出热烈的气氛,还能体现出中国文化的内涵和底蕴。

上一篇: 农业推广毕业论文 下一篇: 专业教学论文
相关精选
相关期刊