工程热力学论文汇总十篇

时间:2023-03-20 16:07:04

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇工程热力学论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

工程热力学论文

篇(1)

2课程设计的理念与思路

高职学生在学习基本专业知识的基础上,如何把知识转化为技能,技能转变为职业素质是我们需要破解的难题。金属热处理生产工艺是金属材料及热处理技术专业必修的核心主干课程,是培养金属材料热处理专业实用型人才的重要组成部分。在金属热处理生产工艺精品课程建设中,坚持以金属热处理生产典型工作任务为载体,培养学生掌握金属热处理生产的基本知识和基本技能,初步形成分析问题和解决问题的能力,熟练掌握金属热处理生产的工艺设备和机械设备的相关知识,使学生毕业后能在金属热处理生产企业进行生产和解决实际操作技术问题,成为高级技术技能型的专门人才。通过对本课程的学习,学生应具备以下主要技能:①掌握常规金属材料热处理的基本知识,能编制钢铁件的典型热处理工艺;②能对热处理设备、常用的工装及辅助设备、热处理炉的温度进行测量与控制;③会典型零件热处理的基本操作;④能进行表面改性热处理的工艺制订;⑤能进行化学热处理的工艺制订;⑥掌握复杂工件的畸变规律与矫正方法,掌握分析判断工件变形的原因及预防工件畸变的方法;⑦能借助金相检验报告判断材料及热处理质量的方法,能分析工件淬火产生常见缺陷的原因并提出预防和补救的方法;⑧能对金属材料进行常规检验及对常见的热处理缺陷进行分析。

3教学内容的改革

3.1根据热处理典型的工作任务,组织教学内容,改革教学方法

在教学内容的选择上,以《金属热处理工国家职业标准》为依据,确定热处理工的岗位职责、工作任务和技能要求,在教学的实施过程中把典型的工作任务转换为学习情境,制定课程标准,围绕热处理设备操作、热处理工艺的编制、典型零件热处理的操作技能等典型工作任务,遵循由浅入深、由简单到复杂的原则,设置了8个学习情景:①热处理工艺准备;②热处理设备与操作;③退火与正火;④淬火与回火;⑤表面改性热处理;⑥化学热处理;⑦复杂工件的畸变规律与矫正方法;⑧质量检验与缺陷分析。通过对8个教学子领域的学习让学习者能在金属热处理生产企业进行生产,并具备编制热处理工艺的能力和热处理操作技能。同时编制实训指导书,完成实训室实训项目的开发,在教学过程中聘请企业技术人员担任实践指导教师,使课程体现工学结合的特点。在本课程8个学习情景中,以典型的工作任务为载体,以项目为导向,按“理实一体化”展开教学。在课程教学中根据不同要求的教学内容的不同特点,采用讲授教学法、项目教学法、任务驱动教学法、分组讨论法、以实践技能为导向的课题式教学法等教学方法,引导学生积极思考、乐于实践,提高教学效果。表1列出了8个教学情景所须学习的内容、项目和使用的教学方法。

3.2教学内容的针对性与适用性

课程教学内容选取针对热处理岗位群的职业标准,以就业为导向,以金属材料热处理人才培养目标为标准,以满足就业岗位对所学人才能力的要求为宗旨,进行面向岗位的教学内容设计。充分体现教学内容来源于企业、服务于企业的教学宗旨,密切联系生产实践,做到学以致用。通过对热处理生产各岗位知识、能力、素质要求进行分析,以学习内容和工作过程为导向的原则,课程设计创设“三结合”的学习情景:学习内容与工作内容相结合,学习过程与工作过程相结合,学习情景与工作情景相结合。按照热处理生产岗位的需求,以热处理工的职业标准为依据,设计了8个学习情景。课程内容在设计过程中参考热处理岗位群多工种的职业标准,归纳出典型的工作任务作为教学情景,每个情景由若干项目任务组成,形成8个教学情景。各情景教学内容以热处理工国家职业标准中初级工—高级工的知识和技能要求为依据选取教学内容,设计实训项目,进行单元考核。由于教学内容考虑了工种职业资格的需要,不仅适合教学,还可作为企业员工培训教材使用。

3.3教学方法的多样性

传统的教学模式具有其自身的优势,如传授的知识系统、严密,较好地发挥了教师的主导性,但弊病也十分明显:其一,教材抽象,体系严密,学生难以学习;其二,学生的主体地位难以体现;其三,重理论轻实践,学生动手的能力比较差,与素质教育的要求不相适应;其四,以教师为中心,只强调教师的“教”而忽视学生的“学”。在这样的教学模式中,学生参与教学活动的机会少,动手更少,大部分时间处于被动接受状态,学生的学习主动性很难发挥,更不利于创新、创造型人才的培养,不利于学生的发展[3]。为此,在课程教学中针对不同要求的教学内容既采用了传统的讲授教学法,又采用了任务驱动教学法、项目教学法、分组讨论法、以实践技能为导向的课题式教学法等教学方法,引导学生积极思考、乐于实践,提高教学效果。

4课程的特色与创新

4.1采用任务驱动式教学法,实现“理实一体化”教学模式

金属热处理生产工艺课程实践性强,为了加强实践性教学的效果,教学中注重理论与实践相结合,在教学中以典型工作任务为载体,以任务为导向,突出“练”,边讲基础知识,边应用到典型的工作任务中。实现“理实一体化”教学模式,提高学生学习的积极性和能动性,当下发了项目任务书后,学生必须积极学习基础知识,才能完成相关的项目任务。本课程以提高学生分析、发现、解决工程实际问题的能力为重点,强调学生个性发展。深化教育改革的关键,是改变以往单一的课堂讲授的教学形式,改变传统的系统式学科教学体系,提倡进行“教、学、做”一体化改革,使学生在专业理论知识方面以“够用”为主,更多突出技能的培养。采用任务驱动式教学法,就是要兼顾理论知识与技能的合理配置。任务的设计很重要,它是为实现一定的教学目标,依据课程内容主题,为学生策划学习资源和学习活动的过程。教学任务设计的最终目的是使学生掌握实际工作岗位对本课程所要求的知识和技能[4]。通过项目任务和专题设计等自主学习方式,体现学中做、做中学,活学活用,注重了学生的实践能力、创新能力及团队协作能力等综合素质培养。金属材料热处理技术校内实训基地的建设及实训项目的开发应用,解决了困扰热处理技术专业进行生产性实训所面临的困难和矛盾,实现了课堂与实习地点一体化的行动导向教学。通过系统实训,不断训练,极大地提高了学生岗位操作能力,同时也促进了学生的学习方式由个人竞争学习模式向团队协作学习模式的重要转变,提高了学生对企业生产组织方式的适应能力,实现与企业的“零距离”接触。以“淬火与回火”学习情景为例,任务驱动教学模式如表2、3所示。

4.2遵循了由浅入深、由简单到复杂的原则

遵循了职业成长的规律。以学习情景4的淬火与回火为例,设计了2个项目任务,项目8与项目10虽然都是淬火与回火工艺,但前者是试样的淬火与回火,后者是零件的淬火与回火,项目任务书如表4所示。2个项目任务中,1个是实验室试样,1个是轴,在编制淬火工艺时,淬火方法、加热温度、冷却介质、加热设备的选择都有差异。20钢、45钢、T10钢制试样按AC3或AC1±(30~50)℃的原则选择加热温度,按t=αkD选择保温时间,在箱式炉中进行加热后,以水作为介质进行冷却即可获得马氏体组织,硬度达到55~63HRC。对于轴,从技术要求上看,心部和表面硬度不同,在选择淬火方法和加热设备时需要充分考虑。结合材料65Mn淬透性曲线,可采用水-油双液淬火的方法进行处理。操作时掌握好在第一种淬火剂中的停留时间,同时注意上下移动工件。2个项目遵循了由浅入深、由简单到复杂的原则,通过反复训练,使学生工艺编制和操作技能由生疏到熟练,遵循了职业成长的规律。

4.3构建了TEST评价系统

评价的实质在于肯定学生的学习过程,重视学生学习中的知识积累和实践能力的发展,培养科学的思维方法,这是评价学生的理论依据,也是学生学习过程的目标导向[5]。传统课程的考试都是在课程结束后进行一次闭卷考试,这对该课程的学习来说是有局限性的,它难以测试学生综合性分析问题的能力,故此在精品课程建设中构建了TEST评价系统。新评价系统构建思路重视考核评价学生学习的过程及过程的动态化、评价内容的多元化。TEST评价系统是指课程总成绩由教师评价(T)、企业工程师评价(E)、学生评价(S)、总评价(T)组成。教师评价主要对学生的学习行为过程(包括学习态度、学习意识、精神、态度、价值观、行为习惯等)进行相应的评价。企业工程师评价主要根据项目任务从加热温度、加热设备、保温时间、冷却介质的选择进行考核评价,学生评价是对各组查阅资料、PPT的效果、汇报表现、实训准备和完成情况进行互评,使评价触及到学生的内心深处,使评价产生教育意义。总评价(T)由项目考核(40%)、期末考核(30%)、过程考核(30%)组成。其中项目考核由教师评价(T)(15%)、工程师评价(E)(15%)、学生评价(S)(10%)3部分组成。为方便不同角色对课程进行评价,开发了昆明冶金高等专科学校金属材料与热处理技术专业教学资源库,在这个网络平台上,教师、企业工程师、学生以不同角色进行登录,即可完成T、E、S的评价,理论考试课由网络系统根据考试大纲生成不同的试题,可进行在线测试,最终由系统按不同角色的权重自动生成总成绩(T)。在金属材料与热处理教学资源库社会评价系统中,用人企业登录后可对毕业生进行评价,教师根据企业的评价对教学进行改进,校企合作不断提高教学质量,共同培养出大批社会需求的高级技术技能型人才。

5教学效果

昆明冶金高等专科学校金属热处理工生产工艺课程于2012年获批云南省精品课程建设立项,如图1所示。金属热处理生产工艺的教学改革从2010级金属材料与热处理专业开始实施,为了对比教改前后的教学效果,分别对采用传统教学法、多媒体教学法、项目教学+任务驱动教学法的学生成绩进行统计分析,结果见表4。由表4可知,在试卷难度基本不变的情况下,采用项目教学+任务驱动教学法后,学生成绩优良率和平均分均明显高于传统教学,不及格率明显下降。通过4年的教学实践,学生反映项目教学+任务驱动教学法能调动学习的积极性:每次课都有不同任务,带着任务查阅资料,互相讨论,完成项目任务,把任务完成的结果上传到教学网络系统进行评价,得到项目考核的成绩。最终成绩中,项目考核占40%,期末考试占30%,过程(作业和考勤)考核占30%。在项目+任务教学过程中,教师的主导地位没有动摇,以项目和任务作为载体,运用网络平台提供的学习资源,引导学生自主学生,不断培养学生分析问题和解决问题的能力,提高学生专业综合素质和创新能力,构建学生知识、能力、素质协调发展的合理结构,并得到用人企业的好评。

篇(2)

作者简介:裘薇(1976-),女,浙江临安人,上海电力学院能源与环境工程学院,讲师;朱群志(1972-),男,浙江台州人,上海电力学院能源与环境工程学院,教授。(上海?200090)

基金项目:本文系上海市教育委员会重点课程建设项目(编号:20105302)的研究成果。

中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)21-0062-02

工程热力学是研究热能和其它形式能量(特别是机械能)相互转换规律以及提高能量转换效率的一门学科,是热能与动力工程专业的一门必修的主干专业基础课程,也是学生开始接触的第一门和热能工程有关的课程。工程热力学不仅为学生学习相关的专业课程提供必要的基础理论知识和基本技能,也为学生日后从事热能利用、热设计、热管理和热控制等方面的专业技术和科学研究工作打下必要的理论基础。

近几年,随着学校的不断发展,上海电力学院先后开设了“热动卓越工程师班”、“电厂自动控制”、“电厂测控”、“电厂核电”新专业和获得了“热能工程”硕士点的授予权。为了适应新时期人才培养及“085工程”的需要,教师除了继续承担“热动专业”的“工程热力学”教学任务外,还将面向“电专业”和研究生开设不同层次内容的工程热力学课程,因此,为了提高本课程的教学质量,有必要对“工程热力学”课程教学方法及手段开展更高层次的研究工作。

一、教学目标

根据专业人才培养的需要,“工程热力学”课程的教学目标是通过本课程的学习,应使学生掌握工程热力学的基本理论和基本知识,受到较强的基本技能训练,能正确进行热力过程和热力循环的分析和计算。教学方向定位于基础科学理论与工程实际之间的桥梁,着重培养学生应用基础知识解决工程实践问题的能力,为后续专业课的学习奠定坚实的理论基础。课程的特点是:将工程热力学作为一个整体来组织教学,并借助于现代教育手段、密切结合实验与专业课程,进行完整、系统的教学。

二、教学改革采取的措施

教学方法和教学手段的改革是服务于课程体系和教学内容的改革,它是实现教学目标的重要措施。”工程热力学”课程的逻辑性很强,各部分内容又交叉渗透,一环扣一环,而且概念抽象,是一门难教难学的课程,所以在教学的过程中,需要注意教学的方法和手段,使学生能较好又容易地理解教学内容。

1.教学方法的改革

(1)开展教学研讨活动,理解教学思路。通过开展多次教师试讲活动,对本课程的教学目标、教学要求、教学方法等有比较清楚的认识。教学目标要从学生专业课的学习以及职业发展的需求考虑。基础课不只是为后续课程服务,为专业的学习服务,更重要的是培养学生的科学素质和科学思维方式,提高他们分析问题和解决问题的科学研究能力,使学生眼光远、层次高、后劲足。教学上需要控制教学内容的难度。注意将教学内容及习题的难度控制在适当的水平,难度太大的习题,会过度加大学生的负担,不提倡作为作业而布置。教学中需要清楚讲述知识点产生的背景和来龙去脉,争取用一条主线将各章节的内容穿起来,避免对知识点的孤立讲授,避免学生孤立地理解知识。教学中需要介绍本学科在工业、民用及高新技术领域的一些应用实例,加深学生对基础知识的理解,使学生充分认识本门课程的重要性,提高学习的兴趣和积极性。

(2)注重学生应用能力和创新能力培养。在课程教学过程中注意理论联系实际,注重工程应用。以往学生反映“孤立系统熵增原理和作功能力损失”这部分内容抽象难懂。在教学中可举一个工程实例:大气环境温度为-10℃,为保持计算机房内20℃,需每小时向机房供热7500kJ。若采用三种方式供热:(1)电热器;(2)电动机带动热泵;(3)温度为80℃的热水供暖,让学生分析三种情况的熵增和作功能力损失。使用这种工程例子好处是:学生接触的概念和原理不再枯燥空洞,而是富有工程背景和实用价值,可以使学生加深对这部分内容的理解。同时从实例的比较中,学生自己也可领悟出一个道理:对能量应从量和质两方面综合评价,才能真正找到节能途径。

讲述教材内容和工程实践有机联系。例如:制冷循环的原理与制冷装置、冷藏库、家用空调、电冰箱的联系,湿空气的相关知识在空气调节、电厂冷却塔中的应用,郎肯循环与火力发电厂实际循环等。通过介绍这种内在联系,使课堂教学内容生动,帮助学生理解所学知识和原理在实际中运用。

改变以往全部由教师做习题点评的方式,请学生上讲台讲演自己的解题方法,其他同学评判和讨论。通过各抒己见,对比分析,最后达到“明辩是非”。教学实验表明:采用这种做法,激发了学生学习兴趣,学生的解题方法明显增多,有些学生的解题思路相当活跃。

篇(3)

Destruction of Resources

2011,500pp

Hardback

ISBN9780521884556

B. R. Bakshi等编

本书从独特的多学科的视角努力把严格的热力学基础知识在各个学科领域的应用展示出来,所有这些领域的探索都涉及了可持续发展问题。这些领域包括机械、化学工程、物理学、地理学、经济学、生态学和工业生态学。

编者相信:需要一本像本书那样能综合反映热力学基本原则在各个领域应用的专著,使人们能充分地了解热力学基本原则可以在定性判断“人类活动如何影响自然资源和环境”方面发挥重要的作用。所以本书的目的就是汇集各个领域的专家撰写的各自领域内热力学规则应用的最新成果,并将本书的最终目的演化为:不是在领域以外寻求解决本领域内的严格的科学和工程问题的方法,但是要吸取其他领域解决类似科学问题的经验和智慧,定义好所要解决的问题的核心、坚定“环境保护”的原则,在本领域解决方法的基础上适当融合其它学科的有效办法,为将来有可能被称之为“可持续性科学”的解决方法打下基础。

全书分为4部分,含19篇论文,第1部分基础,含第1-3章:1. 热力学:广义的有用能量和可用的最大功或放射本能(exergy);2. 能量和放射本能(exergy):研究资源利用需要的两个概念?3. 热力学给出的资源使用帐单。第2部分产品和过程,含第4-8章:4. 材料的分离和回收;5.转换技术发展的一种基于熵的度量;6. 在生产过程中所用资源的热力学分析;7. 超纯度和能源利用:半导体制造的个案研究;8. 能源和利用:现状、未来可能的发展路径和热力学的观点。第3部分生命周期的评估和度量,含第9-13章:9. 用热力学和统计学提高生命周期库存数据的质量;10. 可持续发展技术:来自热力学的度量;11. 生命周期评估中的熵的生产和资源消耗;12. 在工业和生态系统中的能量和物流;13.物流分析和投入产出分析的合成。第4部分经济系统、社会系统、产业系统与生态系统,含第14-19章:14.能源和生态系统投入产出分析的早期发展;15. 放射本能(exergy)经济学和放射本能(exergy)环境分析;16. 熵、经济学和政策;17. 人口的一体化和隔离:热力学家的一个观点;18. 在生态系统中的放射本能(exeergy)分析:背景和挑战;19. 热力学用于可持续发展科学发展的思考。附录:标准化学放射本能。

本书是由来自世界各个国家的24位专家撰写。可供相关领域的大学生、研究生、教师、工程师和研究人员阅读和参考。

吴永礼,

研究员

篇(4)

关键词:能分析 分析 能效率 效率 损失

0 引言

随着人们节能意识的不断提高,为了获取更大的经济效益,人们将热力学原理应用于工程实际各能量系统的分析中。能量系统的热力学分析是根据热力学原理对各种能量系统进行研究分析,以明确系统各部位的能量损失状况,求取各种性能指标,对所研究的系统进行客观评价。

1 热力学分析的方法、内容

热力学分析的方法主要包括两种:以能量平衡为基础的叫做能分析法,它是传统的分析方法,依据热力学第一定律,建立在能量“量”的守恒上,对热力系统进行分析。而以平衡为基础的叫做分析法,是近些年发展起来的一种方法,依据热力学第二定律,是对能量“质”的分析[1][2]。

1.1 能分析法

能分析法是以热力学第一定律为基础,应用热平衡原理,并以热效率为基本评价准则,分析、评价系统能量有效利用状况的方法。它依据能量系统建立热力学模型,进行能量平衡计算,得出系统的热效率和各项热损失,得到系统热损失的分布,从而找出系统中热损最大的薄弱环节和部位,为改进设备和系统的用能状况提供技术依据。

1.2 分析法

分析法是以热力学第二定律为基础的热力学分析法。它是依据能量中的平衡关系,列出平衡方程并求解,通过分析,揭示能量中的转换、传递、利用和损失的情况,确定出该系统或装置的利用效率。

分析法的主要内容有[3]:

①进行物流、热量衡算,确定输入、输出体系中各种物流量、热流量、功流量以及各物流的状态参数(如温度、压力、组成等)。

②流计算。

③由平衡方程确定过程的损失。

④确定效率。

参与用能系统的流,可以分为三类,即输入流、输出流和系统内流。

①输入流类:是指由外界的源,物流穿过系统边界而进系统的。

②输出流类:是指由系统通过边界向外输出的。

③系统内部类:是指系统的输入于输出之差的部分。

1.3 两种热力学分析法的比较

两种热力学分析方法都是通过输入输出,有效利用能和损失的平衡,求解系统的总损失,进而确定损失的分布。并通过计算出的效率有效利用率来评价系统的完善程度。但能分析法只是从不同质的能量在数量上的守恒来计算损失,因而只计算外部损失而忽视了内部损失,其评价指标也只是计算了被利用部分能的数量和输入能的数量而忽略了其质量的变化,即忽略了过程的不可逆性所带来的损失。而且能效率的分子分母常常是不同质的对比,不能准确地表征能量的利用程度,而效率和分析法正好能解决上述缺陷,所以分析法要比能分析法更科学、更深入也更全面,它能准确地揭示损失的原因、部位以及指出改进方向等。分析方法既可以进行系统分析,又可以进行优化综合,它可以很便捷地进行系统优化,与经济因素结合后还可作设备全寿期成本统计等[4]。

随着节能工作的一步步深入,分析方法在能源管理、热能动力、制冷技术、石油化工和冶金等许多领域得到了广泛的应用。目前,有些国家已经将方法用于热力系统的热经济分析当中,而我国火电机组热力系统的分析方法实际上都是基于热力学第一定律的分析方法,其存在的缺点是不能揭示内部不可逆性大小,不能反映能质的蜕变情况,不能体现不可逆性对经济性造成的影响。因此对热力系统进行研究分析,根据分析结果所提出的问题采取相应的措施提高热力系统的热经济性,具有十分重要的现实意义[5][6]。

2 锅炉系统的热力学分析

2.1 原始数据

某电厂锅炉,其出口蒸汽压力为p=13.72MPa,温度为330℃,给水温度tw=215℃,尾部排烟温度为135℃,过热蒸汽量为410t/h,空气预热器出口空气温度为226℃,炉膛过剩空气系数为1.1。理论空气量为4.907m3/kg,每小时燃煤量为58298kg,其燃煤的低位发热量QL=18636

kJ/kg,全水分ω=4.9%。环境温度为19℃,依据上述数据分别对此锅炉系统进行能分析和分析。

2.2 分析计算

设图中mf、ma、ms、mg和mw分别为燃料、空气、蒸汽、烟气和给水的质量流量;而ha、hs、hg分别表示相应物质的焓,QL为燃煤的低位发热量,QB是损失的热量;ef、ea、es、eg和ew表示相应各物质流的比,IQ为向环境散失热量而引起的损失。由题设得:mf=58298kg,ma=4.907×1.293×1.1×58298=406875kg,ms=410000kg,不考虑锅炉排污损失mw=ms=410000kg,由已知温度查表得:

ha=509.4kJ/kg sa=7.2245kJ/(kg・k) hs=3469.8kJ/kg,ss=3.5449kJ/(kg・k),hw=598.4kJ/kg,sw=2.4747kJ/(kg・k),ha=292.25kJ/kg,so=6.6732kJ/(kg・k)

图1 锅炉的能量平衡

图2 锅炉的平衡

按照图1所示的锅炉能量平衡关系,得出能量平衡方程:

mfQL+maha+mwhw=mshs+mghg+QB (1)

其中QB、mghg为损失的能量,而mshs-mwhw=ms(hs-hw)为有效利用的能量,则该锅炉的能效率为:

η=

=

=1.91(2)

按照图2所示的锅炉平衡关系,可以写出下面的平衡方程:

mfef+maea+mwew=mses+mgeg+IQ+IB(3)

式中IB表示整个锅炉内部过程总的损失。考虑到mw=ms,则锅炉内部过程总损失为:

IB=mfef+maea-ms(es-ew)-mgeg-IQ(4)

该锅炉的目的效率η应为:

η= (5)

由于es=(hs-h0)-T0(Ss-S0),ew=(hw-h0)-T0(Sw-S0)两式相减得:

es-ew=(hs-hw)-T0(Ss-Sw) (6)

用(5)对应除以(2)可得:

η=η (7)

将(6)式代入上式,则有:

η=η(1-T0) (8)

代入数据得:

ea=(ha-h0)-T0(sa-so)

=(509.4kj/kg-292.25kj/kg)-292.3(7.2245-6.6732)

=56.01

η=η(1-T0)

=0.91(1-)

=0.69

3 结论

从以上的计算结果可以看出,虽然是对同一台锅炉进行效率计算,但能效率和效率相差很大,能效率为91%而效率仅为69%,能效率的计算主要取决与锅炉排烟向外界散热的多少,主要考虑的是能量“数”的变化。但效率则不同,它不仅考虑了锅炉燃烧过程中的外部损失,而且考虑了燃烧、传热等锅炉内部各个过程所造成的不可逆损失。实际上,蒸汽锅炉的损失中最大的一项就是燃料燃烧和传热造成的损失,所以虽然从能效率即能量的数量上来看锅炉损失的不多,但这部分能量都是高品位的能量,价值都很高[7][8]。

由此可见,效率比能效率更能完善地反映锅炉的热经济性。所以,通过系统分析计算,找出损高的部位,采取相应措施进行改善。对目前我国火电机组热力系统分析具有十分重要的意义。

参考文献:

[1]郑体宽.热力发电厂.中国电力出版社,2001.

[2]郭民臣,魏楠.电厂热力系统矩阵热平衡方程式及其应用[J].动力工程,2002,22(2):1733-1738.

[3]杜亚荣.600MW机组热力系统的热力学分析与优化.硕士学位论文,保定:华北电力大学动力系,2007.

[4]朱明善.能量系统的分析.清华大学出版社,1988.

[5]林万超.火电厂热系统节能理论.西安:西安交通大学出版社,1994.

篇(5)

中图分类号:G642.0 文献标识码:A 文章编号:1672-3791(2014)07(c)-0170-02

材料物理专业是材料科学与物理学的一个交叉学科,专业特点要求在课程设置上既有材料科学方面的课程又要有物理类课程。安徽工业大学材料物理专业于2003年开始进行筹划建设,2005年实现了首次招生。经过几年的探索、规划和实践,基本完成了专业定位和课程体系设置[1],正逐步完善专业建设。现阶段,保留了量子力学,热力学与统计物理(以下简称热统)和固体物理学作为本专业的物理类必修课程。其中,热力学与统计物理是一门重要的专业基础课,无论对后续的物理类还是材料类课程的学习都起到承上启下的知识连接作用。本课程的设置目的使学生能够熟练掌握热力学和统计力学的基本原理和研究方法,逐步建立分析微观世界的思路和方法,训练学生严格的逻辑思维能力,培养演绎推理能力,提高解决具体问题的能力。

1 热力学与统计物理课程教学中存在的主要问题

热统课程内容由热力学和统计物理两部分组成。其中,热力学是研究热现象的宏观理论,它从若干经验定律出发,通过严密的逻辑演绎方法,最终给出系统的宏观热性质;而统计物理则是研究热现象的微观理论,它从微观粒子的力学规律出发,加上统计假设,获得系统的宏观性质。从内容上来看,热统课程的理论性强,教学内容繁杂。尤其,在当前高校推行素质教育和培养应用型人才的指导下,基础理论课课程教学学时均有不同程度的压缩。我校热统课程安排为40个学时,由此带来了教学学识少和教学内容多的严重矛盾。我们根据我校材料物理专业特色方向和后续课程,在热统教学内容上做出了适当的调整。

现行的热统教材理论性强,较适合理科生使用,缺乏较合适的工科材料类学生使用的热统教材。在组织教学中,我们以汪志诚编写的《热力学・统计物理(第四版)》作为主要参考教材[2],同时综合了多本经典教材,如:胡承正编著的《热力学与统计物理学》,包景东编著的《热力学与统计物理简明教程》等[3~4]。根据我校材料物理专业培养目标和专业特色方向,本着“先进、有效、有用”的原则,对热统课程的教学内容应该进行认真清理与重构,形成适合本校实际的课程讲义。

在教学方法和考核方式上也应根据我校实际进行相应的改革。热统课程是一个理论性强的课程,其中的物理概念抽象,物理公式繁杂。安徽工业大学材料物理专业是在工科背景下成立并发展起来的,学生的数理基础相对薄弱,在学习的过程中会有些吃力。长期的教学实践告诉我们,如果采取传统的灌输式教学方法,只能使热统课堂教学枯燥无味,学生被动的接受知识,失去了学习兴趣,甚至对后续的专业课学习产生抵触情绪。另外,传统的闭卷考试常造成学生不重视平时的学习过程,期末复习只看教学课件,期待老师划重点,搞突击记忆。

针对上述现状,我们尝试着进行了教学内容,教学方法和考核方式的改革和实践。

2 教学内容的改革

2.1 优化教学内容

热统课程的热力学部分与先修课程,如大学物理、物理化学和工程化学基础的部分内容重复率较高。我们在充分了解本专业学生的先修课程和后续课程的教学内容后,对与其他课程有交叉重叠的部分进行了压缩和删减。比如:热力学部分的热力学基本定律,热力学函数,化学平衡条件,理想气体的化学平衡等都在先修课程里面作为重点内容进行讲授的。在实际教学时,只作复习性的简述或以学生自学的方式完成。但为保证热力学基本概念与规律的严格性与系统性,对重要的基本概念和定律还是进行重点讲解。通过这样的调整,节省了热力学部分的教学学时,加大了统计物理部分的学时讲授。统计物理是从宏观系统的微观结构入手,从内容上与量子力学和固体物理课程联系紧密,也为后续的计算材料学课程,甚至可为本科毕业论文工作提供前期的知识准备。在统计物理教学部分,将在先修课程中学习过的麦克斯韦速度分布率和能均分定理略讲;固体的热容量的德拜理论是固体物理课程的重点教学内容,在热统教学中,这部分只简单提及。经过这样的教学内容优化后,节省了课时,加强了课程之间的联系,提高了教学效率。

2.2 适当引入材料学科前沿内容

创新型人才的培养要求课程内容要体现先进性和现代化。通过合理的补充与热统课程相关的材料学和物理学最新的学术成就与进展,有意识的突出课程的广度,丰富和具体化基本理论内容。增加学科前沿内容,我们从两个方面进行。一方面是在讲授基础理论知识的同时,引入与该知识密切相关的科学技术发展的介绍。例如:在对温度和温标作复习简述的时候,介绍测温仪表和测温技术。电阻温度计,热电偶测温技术,红外测温技术等在后续的材料类课程学习,课程设计和实验及毕业论文工作是非常重要的一部分。在讲授气体的节流和膨胀过程一节时,介绍了获得低温的技术,以及与低温有关的材料性能的变化,超导电现象的发展历史及科研现状等;在讲授单元系的相变时,加强了对二级相变和临界现象的讲授,介绍了磁性材料,超导材料,超流体等方面的最新研究进展;在统计物理部分,介绍玻色-爱因斯坦凝聚的新进展,讲授统计物理部分的金属中的自由电子时,适当介绍计算材料学和计算物理方面的研究现状等。另一方面是通过鼓励学生现场听取相关的学术报告,或者观看相关报告的视频。通过前沿知识的适当引进,开阔了学生的视野,激发了学生的学习和科研兴趣,获得了较好的教学效果。

2.3 注重理论联系实际

材料类专业是应用性很强的专业,要求热统课程教学内容要体现实用性,加强理论与实际的联系。我们鼓励学生通过本科生科研训练计划(SRTP)和大学生创新创业计划的方式参与相关教师的课题研究,或者开设课程设计和实验。如在讲授相变的章节时,为了让学生加深对二级相变的理解,开设了高温超导转变的实验,巨磁电阻材料的相变实验等。组织学生参观学校相关的实验室,如参观计算材料实验室,使学生了解相图的理论计算方法,第一性原理计算及材料设计方法。经过这样的训练,学生对物理概念有了深入的理解,提高学生的应用能力,研究能力和创新能力。

3 教学方法和考核方式的改革

3.1 学生为主体,教师为主导

在组织课堂教学时,认真贯彻以学生为主体,教师为主导的教学思想,加强师生互动,争取使学生由被动接受知识变为主动探索知识。在课前,给学生预留思考题进行课前预习,让学生带着问题去听课,做到有的放矢。在组织教学时,对重点章节进行精讲,适时开展物理基本概念和基本问题的讨论,启发学生思考和推理。对相对容易理解的章节组织学生自学,或者制作成ppt课件,在课堂上讲解,教师在做总结式讲授。课后,要求学生独立完成作业和习题,以期加深对基本概念的理解和应用。

3.2 重物理思想 简化数学推导

在组织教学的过程中,重点讲解基本概念,突出物理思想。借助于多媒体教学,对于较抽象、难理解的概念和原理,可通过制作图文并茂的课件,或者观看相关视频的方式,使抽象的概念形象化,增强学生的感性认识。适当补充基本概念辨析题和思考题以促进学生对基本概念的深入理解和掌握。对于必要的数学推导,使用板书的方式进行详解和推导,留给学生足够的时间思考并跟上教师的思路。

3.3 考核方式的改革

考核是教学过程的主要环节之一,应具有实用性和针对性,并能体现学生的综合素质。我们在考核方面,加大了平时成绩的比例,增加了课堂回答问题,课堂讨论,撰写科研小论文等环节的考核。在期末的闭卷考试中,减少死记硬背的概念题和公式,把考核重点放在学生对基本物理概念的理解和基本理论知识的实际应用上。

4 实践效果

在教学实践中逐步形成了适合我校材料物理专业实际的热统课程讲义。实践证明,改革措施在缓解授课学时与教学内容的矛盾,拓宽学生知识面等方面效果显著。尤其,热统课程作为材料物理专业的前期先修基础课,对后续的课程学习起着承上启下的重要作用。通过上述的教学改革后,学生的学习积极性大大提高,热爱本专业的学习,踊跃参加SRTP和大学生创新创业的计划,甚至部分同学提前加入教师团队的课题组,对未来的工作或者继续深造充满信心。

参考文献

[1] 方道来,童六牛,夏爱林,等.材料物理专业定位及课程体系设置的探索[J].安徽工业大学学报:社会科学版,2011(23):104-105.

篇(6)

《工程热力学》是一门将经典热力学理论与工程实际应用相结合的应用基础学科[1],在我校该课程是面向“过程装备与控制工程”(以下简称“过控”)、“油气储存工程”(以下简称“储运”)等专业学生开设的一门重要的基础理论课,为《过程流体机械》、《压缩机与泵》等后续专业核心课程奠定热力学基础,在专业人才培养方案中占有举足轻重的地位。可近年来,学生对该课程的学习热情、学习掌握情况均每况愈下,教学现状堪忧,影响到后续相关课程的开展,严重制约学生专业知识体系的形成。因此,笔者对不同专业的人才培养计划方案、不同专业学生学习情况等进行相关调查与分析,并科学合理地开展一系列教学探索与实践。

一、严把课程考核质量关

对本校过控专业和储运专业中《工程热力学》的课程性质、购买教材情况、学生学习情况等多方面进行对比(如表1所示),从表中可知,不同专业学生的到课率和认真听课率悬殊均很大,究其原因有以下三点。其一,学生未认识到选修课与必修课同等重要性,误认为选修课教材不由学校统一购买且选修课程不由学校统一安排考试说明学校不重视选修课程。其二,由于学校多媒体教室有限,因此需要使用多媒体教室的选修课程原则上只能安排在周末或晚上,与学生的休闲娱乐时间冲突。其三,在选修课堂上做与学习无关事情的学生不在少数,学习功利心强。

表1 不同专业课程情况

选修课程成绩评定重视课堂点名、课堂讨论、课堂回答问题、课堂小测试、课后作业、小论文等过程考核环节,授课教师严把选修课程考核质量关,不给人情分。另外,可以借鉴西安交通大学、北京石油大学、西安石油大学等高校的做法,在学时允许的前提下,将《工程热力学》改为必修课。

二、重视绪论课程建设

绪,丝端也,即是丝的头,比喻事情的开始。《现代汉语词典》中阐述为“学术论著的开头部分,一般说明全书的大旨和内容等”[2]。笔者认为,“千头万绪,在此概论”,故称“绪论”。可见,绪论课是对整体课程的总体概述和高度概括,起着提纲挈领、纲举目张的作用。然而,通过查阅历年的教学检查资料和教学反馈意见,笔者发现在往届教学环节中,课程绪论部分的教学安排和教学设计并未充分在“课程教学大纲”、“教学计划进度表”、教案及授课过程中体现出来,存在对绪论课轻描淡写甚至根本不讲授绪论课的现象。直接进入正题,让学生在第一课就面对抽象枯燥的知识,这让很多学生无所适从。绪论课被忽视,究其原因,有以下三点:第一,起教学主导作用的教师乃至高校教学管理部门在主观意识层面上没有认识到绪论课的重要性。第二,绪论课既是课程的重点,又是课程的难点,并不容易把握。据报道,在美国通常只有资深教授才有资格讲授绪论课。就绪论课对总体课程的统领作用及课程的广度和深度而言,一堂精彩的绪论课,是对授课教师教学艺术、科研水平及知识面等综合素质的全面考验,因此绪论课最能体现一个教师的教学水平,有的教师深知其利害关系,不敢贸然应战。第三,专业人才培养方案中课时被大量压缩,教师无暇顾及绪论部分,此乃客观原因。

在过控专业的选修课程开设中,允许学生以试听第一节课的方式决定是否选择此门课程,且要求教师合理设计板书。这一举措对教师而言,要求更高,压力与挑战更大,促使教师摒弃照本宣科和敷衍应付,努力扩大知识面,结合理论与实践,融入科研进课堂,学习教学艺术与授课技巧,等等。

作为课堂教学的第一课,绪论课既是课程的重点,更是课程的难点。《工程热力学》绪论部分主要讲授课程的研究对象、研究内容和研究方法等。研究对象是工程中能量转换的基本规律及能量转换与工质性质之间的关系,研究内容包括基本概念、基本定律、工质性质、热力过程及工程应用,研究方法涉及宏观和微观两方面。通过绪论课的学习,要求学生了解热力学发展概况及工程热力学发展现状与趋势,明确课程的学习目的、任务和主要内容,并掌握正确的学习方法。在绪论课中,教师要让学生明白以下五点:为什么要学习这门课?这门课有什么作用?要学些什么内容?各内容之间存在哪些千丝万缕的联系?怎样才能学好这门课?

要生动详尽地阐明上述五方面内容,绝不能局限于书本,必须在有大量信息支撑的前提下,串讲整本教材,举工程事例,列工程现象,提出与生产生活紧密相关的问题,吊足学生胃口,在后续课程中陆续分析并解决问题,要让学生在教师启发下积极主动思考、收获自己解决问题的喜悦与满足。在绪论课中,有必要阐明此课程与后续课程的联系,详细介绍哪些知识点会在后续课程中涉及,让学生重视并意识到课程学以致用的必要性。

三、全程注重学习力培养

对本科生而言,大学课堂并不是知识的简单灌输,而是思考能力、自学能力、分析解决问题能力的锻炼与培养。并非所有毕业生均会从事本专业工作,在工作中也并非所学知识会直接涉及,只要学生能运用大学期间积累的学习力,通过正确途径最终顺利解决问题,便是本科教学的成功之处。

学习力的培养并非一蹴而就,需要在不同教学环节中全方位、多角度地练习。《工程热力学》秉承这一授课理念,不将死记硬背的知识列为考核内容,亦不把简单的套公式计算作为重要考核环节,重点落足于分析与思考,课堂全程采用启发式提问教学方式,教师负责提问和引导,学生参与讨论并回答问题,课堂氛围轻松活跃。为避免抄袭作业现象的发生,应给每人布置不同题目,力求课外巩固环节的有效性。

参考文献:

[1]沈维道,等.工程热力学(第四版)[M].高等教育出版社,2007.

篇(7)

中图分类号 X799.5文献标识码:A 文章编号:

一.前言

焚烧法己成为发达国家处理城市生活垃圾、工业有害废弃物、医院废弃物以及市政废水处理后污泥的主要技术途径之一。

焚烧技术因可对垃圾进行有效减容及资源利用而获青睐,目前在国内得以积极推广。但垃圾焚烧炉渣和烟气富含有机氯、重金属等有毒有害物质,给环境带来二次污染,必须对其进行有效处理。处理焚烧炉渣及飞灰的方法主要有固化、酸提取、熔融等。由于熔融过程中二恶英去除率可达到99%以上;飞灰经熔融后可减容2/3;高沸点重金属被稳固的包裹在SiO2所形成的Si-O网状结构中,熔渣浸出毒性大大降低,可作为建筑材料得以资源利用等优点,熔融处理技术逐渐成为当今研究热点。为了掌握重金属在熔融过程中的迁移分布规律,以指导熔融工艺条件优化,以Pb、Zn元素为例,利用FACT 软件对其进行热力学模拟计算分析。

二.分析方法

以重庆市同兴垃圾焚烧厂为例,其焚烧炉温为950℃左右,其焚烧飞灰中铅、锌、硫、氯元素含量组成如表1所示:

表1 飞灰中铅、锌、硫、氯元素含量(%)

Table1the contents of Pb、Zn、S、Cl in fly ash(%)

采用FACT 软件[6]进行化学热力学平衡分析。该软件的理论计算模型如下:

(1)

(2)

(3)

FACT软件数据库存储了比容随温度变化的系数(a、b、c),

(4)

通过(4)可计算出

(5)

中的系数,从而获得单一物质在不同温度下的吉布斯自由能;以最小吉布斯自由能为理论基础,认为体系达到热力学平衡的充要条件为:

or (6)

从而预测出体系平衡时可能出现的产物。

文章计算分析了200-2000℃温度范围内 ,0.1MPa 压力条件下不同系统中铅、锌的迁移分布。

三. 模拟计算结果与讨论

2.1 直接熔融飞灰体系

模拟飞灰熔融过程, 以同兴垃圾焚烧厂飞灰的主要化学组成(见表2)作为输入数据,分析其中Zn、Pb的迁移分布规律,结果见图1、图2。

表2飞灰主要化学组成(除Zn、Pb、S、Cl外%)

Table 2 the main components of fly ash (beside Zn、Pb、S、Cl% )

由图1-图2可以看出,在模拟实际的飞灰熔融体系中,在900℃以下Zn、Pb主要以其固态硫化物存在,1000℃左右才开始以其氯化物挥发至气相中,并随温度的不断升高,其气态单质及硫化物的量有不断上升的趋势。

图1飞灰体系中Zn的分布图2飞灰体系中Pb的分布

Fig.1 the distribution of Zn in the fly ash system Fig.2 the distribution of Pb in the fly ash system

2.2 铁浴熔融飞灰体系

模拟飞灰铁浴熔融过程,生铁与飞灰的比例为1:1,铁的输入值为17.857mol,生铁的含碳量为2% (1kg生铁中含碳量为1.667mol),分析铁浴熔融飞灰体系中 Zn、Pb的迁移分布规律,结果见图3、图4。

图3 铁浴熔融飞灰体系中Zn的分布图4铁浴熔融飞灰体系中Pb的分布

Fig.3 the distribution of Zn in the iron melting bath system Fig.4 the distribution of Pb in the iron melting bath system

由图3-图4可以看出,Zn受铁浴的影响,较直接熔融提前在800℃即从固态ZnS形态全部转变为ZnCl2挥发至气相。Pb在低温段(500℃以下)以其单质态取代PbS存在于渣相中;在600℃到1000℃温度段,Pb几乎全部进入铁相,随温度的不断上升,铁相中的Pb逐渐以PbCl2 、PbCl形态进入气相;并于1200℃时在铁水相中的分布达到一个峰值50%左右,可推测在1200℃铁浴熔融分离Pb的效果最佳。

四. 结论

根据重庆同兴垃圾焚烧飞灰的理化性质,通过模拟飞灰熔融过程的条件,对Zn、Pb在不同系体系中不同条件下进行热力学计算,可以得到以下结论:

1)熔融温度一般为1300℃左右,在此范围内,焚烧飞灰中的Zn、Pb均以氯化物形态挥发至熔融烟气中,Zn、Pb的主要形态为ZnCl2、PbCl2,伴有少量PbCl;

2)通过模拟计算,验证了铁浴熔融分离重金属的可行性。模拟预测在1300℃左右Pb在铁水相中分布率可达35.9%,对现实铁浴熔融工艺具有指导意义。

基金项目:“十二五”国家科技重大专项2011ZX05041-004

作者简介:姚成林(1981~),男,学士,工程师,主要从事煤矿安全与煤层气利用技术方面的研究

参考文献:

[1] 徐杰英.煤燃烧过程中痕量元素铅的反应机理研究.华中科技大学硕士学位论文,2004.4

[2] 张衍国,武俊,李清海等.垃圾焚烧重金属迁移特性及其影响因素.环境污染治理技术与设备,2005,6(12)

[3] 薛文颖,李薇,申勇峰.镍精炼过程中Pb和Zn的热力学探讨.矿冶,2007,16(2):35~37

[4] 薛浩栋.危险废弃物重金属迁移和控制机理研究.浙江大学硕士学位论文,2006,1

篇(8)

实。也许是我的水平不足,希望读者加以补充。

关于实验问题,理论有它的独立性,不会依附于实验。比如,狄拉克的磁的单极子理论,现在人

们没有人证实它。爱因斯坦在1905年发表的3篇论文,都是在以后几年才证实。我的思想只要内在逻

辑比原来好系就行。读者中间一定有实验物理学家,他们可以完成这项有意义的工作,并且可以设想

理论对人们的生产生活有什么影响。

作者:周伯利

题目:热力学第二定理的运用

提要:由于热力学第二定理存在局域性要求,在运用到存在远程相互作用(这里主要讨论电磁相互作用)的体系

时就会发生问题。(如果不存在远程相互作用,热力学第二定理是适用的。)

主题词:局域性 远程相互作用

1 理论逻辑部分

1。1两杯水里的热力学

> 热力学第二定理有许多表述,根据我的学习体会,描述为;孤立体系的热运动总是向着熵增的方向发展,并达

到熵极大,(稳定的平衡态)

> 热力学第二定理包含有两个内容:1,时间之箭的方向 2,时间之箭的目标

> 热力学第二定理对研究对象有个限制:孤立体系。下面的一个孤立体系,但是,热力学第二定理在运用上

却存在问题:> 桌面上有两杯水A B,水里悬浮有大量的电荷,外界对它们没有作用,可以把它们整体看

作孤立体系,由热力学第二定理得,体系应该有一个稳定的平衡态。我们从部分看:比如A,它受到B的

电作用,不能视为孤立体系,它有没有稳定态,就很成问题。同样B也是如此。同一研究对象,可能存在

不同研究结果,只能说明理论对于这样的研究对象存在先天不足。

> 这一体系有没有稳定态,得有物理方程确定,物理方程应该包含热和电

> 1 泊松方程

> 2 波尔兹曼方程 p=A*exp(qu/kT)

>求解方程是困难的,它是非线型的,从直觉上讲,有解的可能性小。

1。2普朗克熵理论的研究

下面是熵和热力学几率的关系的推导:普郎克发现孤立体系的熵和热力学几率存在单调的变化,猜测熵和热

力学几率存在如下关系:

S=f(W)

设体系有独立的两部分,

S---------体系总熵 S1-------1部分的熵

S2-------2部分的熵 W-------总几率

W1-----1部分的几率 W2-----2部分的几率

设S=S1+S2=f(W)

S1=f(W1)

S2=f(W2)

W=W1*W2---------(1)

通过微积分运算,得到

S=k*In(W)----------(2)(参阅王竹溪<统计物理学导论>第2版)

如果体系由无限独立部分组成,则S=S1+S2+S3+。。。。Sn+。。 Si是局域熵热力学第

二定理表示为:S1=S1max S2=S2max。。。。。(3)

以上推倒体现了热力学明显的局域性,也暴露了这种性质的力学本质:要求每个局域的

独立性,如果不独立,则

W=W1*W2---------(1)

不成立,则普朗克的推导就有漏洞,

实际上,世界上存在破坏这种局域独立性的现象,比如桌面上有两杯水,(可以看作总体系的两个部分,部

分的划分是任意的)水里悬浮有大量电荷,两杯水之间存在远程相互作用,独立性就没有意义,普朗克的熵

理论不能适用于这样的研究对象。

普朗克的熵理论的背景是热力学第二定理,普朗克提出

S=f(w)

原因为:孤立体系的热运动总是朝着熵增的方向发展,而热力学几率也是在增加,现在的体系不适用于普朗

克的理论,则也会不适用于热力学第二定理,我们知道,热力学第二定理要求平衡态的出现,平衡态的表示

为S1=S1max S2=S2max

这个体系中的局域独立性已经破坏,S1,S2没有意义。

1。3条件概率的研究

在电磁远程相互作用的体系不能用热力学第二定理说明。其中最明显的是整体几率与部分几率的关系:

W=W1*W2

不成立,从而普郎克的熵与几率的推导存在矛盾。

概率论中提供了一种叫条件概率的东西来说明两个几率事件的相互作用。比如;

明天下雨的概率是0.2,晴天的概率为0.8。如果是雨天,爬山的人占0.3,如果是晴天,爬山的人占0.7。那么

明天有百分之几的人要爬山呢

p=0.2*0.3+0.8*0.7=0.62

天气情况对人的出行有作用,但是人的出行对天气的几率是没有影响的,条件的几率是相对稳定的。如果人

的出行对天气变化有影响,你可以想象一下几率会是怎样?而我们要研究的热力学几率就是相互的。上面的

两杯带电水存在相互作用,状态之间的影响不是单向的。我们已经可以体会到其中的味道了

下面作一系简化计算:

设想体系1(杯子1)只存在两个状态A B 。体系2(杯子2)存在两个状态C,D。

两个体系的存在相互作用。我们让体系1处于A状态,体系1激发的场

会影响2。C,D的几率(几率的设定只有数学意义。即满足0.2+0.8=1)

P(c)|A=0.2

P(d)|A=0.8

同样有

P(c)|B=0.3 P(d)|B=0.7

P(a)|C=0.4 P(b)|C=0.6

P(a)|D=0.5 P(b)|D=0.5

那么ABCD四个状态的几率为多少。我们社Xa,Xb,Xc,Xd,就有

0.4*Xc+0.5*Xd=Xa

0.6*Xc+0.5*Xd=Xb

0.2*Xa+0.3*Xb=Xc

0.8*Xa+0.7*Xb=Xd

化解得到

Xa+Xb=1

Xc+Xd=1

几率不可求出。

你可以设想有许多的电子,状态有很多,可以将体系分为很多部分,分析出的结论是一样的。

数学具有数学逻辑的自由性,显然可以包含热力学几率的具体情况。

2。 具体的列子

2。1 静电平衡的研究

电荷在导体表面分布不均,到底会不会产生扩散呢?

有位老师说:不会,扩散只适用于中性的物质,对电荷是不适用的,因为电荷受到强大的电场力的作用。另

外他说,导体上的电荷分布满足最可几率分布(热平衡分布)。

我认为:1,扩散定理并没有强调它不适用于电荷,它的提法破坏了物理定理的普遍性; 2,电荷所受的电

场力垂直于导体表面,而电荷分布浓度梯度沿导体表面存在,显然电场力不会影响沿表面的扩散。3,我读

过热力学方面的著作,我没有看到过有关用统计力学方法推倒静电平衡电荷分布的,热力学统计理论发展

了100多年,热学家没有去研究经常的事实,是一种疏忽吧。

如果用热力学的统计理论去推导静电平衡电荷分布,必然电荷分布是温度的函数,因为统计力学的形式为:

p=A*exp(-E/kT)

统计出的结论与温度大大有关。事实并不如此,只能表明静电平衡事实不能满足平衡态的统计理论,他不可

能达到热平衡态 。

在我看来,电荷是可以扩散的,扩散会影响电荷分布,扩散随温度的升高而变大,则30度的电荷分布与50度

的不同,而等势分布是唯一的,不能适应温度的变化,所以带电的导体上必然存在电势差;另一方面,单单

存在扩散电流必然导致电荷均匀分布,事实并不如此,证明存在一种矛盾的运动,带电的导体上存在电势差,

电势差引起传导电流可以与之“平衡” 。一般情况下,导体所带电荷相比于导体自身的正负电荷来说是太少

了。引起的电势差太小。等势之说只具有工程意义,不具有理论意义。静电平衡的电荷分布是一个未知数

进一步分析扩散存在表面,扩散的方向必然与电场力的方向相反(电势差引起传导电流可以与之“平衡”)

则电荷的动能会减少,温度降低,电势差不会只存在于表面,导体的内部存在传导电流(欧姆电流),温度

会上升。

读者听了一定会觉得太难令人置信,但是我们在前面已经说明了那么多的理论逻辑的问题,注意这里的导体

表面电荷存在远程相互作用,带电导体不会达到热平衡。

我们应该相信理论所确信的东西是真实的。现在所应该作的应该是实验证明。

2。2电荷布郎运动对导体的影响

图中容器内带电尘埃q,带电尘埃在空气中做布郎运动。容器附近有一导体。

导体处在激发的电场中,会发生静电感应,q的位置不断变化,静电感应(感应电流)不能停止。感应电荷分

布不可确定。实际上,空间的电场是在不断的变化,由前面的结论可知,这一体系不存在稳定态。

有两点与现有热力学不符:1感应电荷分布不可确定,意味着导体的宏观表现不是唯一的,现有热力学认为:

孤立体系的平衡态的宏观表现是唯一的,(容器,导体,q组成孤立体系);2感应电流的本质是传导电流,

会产生热量,导体温升,能量来自于的布郎运动,容器温降,布郎运动不会停止,这种单向能量输送不会停

止,不需要温差的先决条件

---------------------

> |...................|

> |.........+.........| 容器

> |...................|

> |___________________|

> ..**************

> ****************** 导体

> ..**************

2。3为什么不能将热力学第二定理简单应用到宇宙,

19世纪,克劳修思将热力学第二定理运用到宇宙上,得出宇宙最终会达到热寂的状态。事实并不如此,宇宙

的有序运动没有减少的迹象。我们的课本上说,不能将有限时空中的规律运用到无限时空中,为什么不能,

书本没有说明。有的作者甚至说热寂说是唯心论,这西都没有用物理学自身的逻辑去说明问题,下面我将分

篇(9)

【基金项目】本文系2013年哈尔滨工程大学教学改革项目“基于创新型人才培养的《燃料与燃烧》教学模式改革研究与实践”(JG2013YB09)的研究成果。

【中图分类号】G642.0 【文献标识码】A 【文章编号】2095-3089(2015)18-0057-02

现代社会能源主要来源于化石燃料的燃烧,能源短缺已成为世界各国面临的迫切问题,寻求新型燃料以及研发高效低污染燃烧装置已成为各国面临的重大任务。 “燃料与燃烧”是一门研究化石燃料及其燃烧规律的传统学科,同时又是一门反映最新燃料及燃烧技术,并与之保持同步的新学科。

作为高等院校热能与动力专业方向的重要专业基础课,“燃料与燃烧”以“高等数学”、“大学物理”、“大学化学”、“工程热力学”、“传热学”和“流体力学”等传统基础课程的知识为基础,由于涉及学科多,应用知识繁复,与其他基础课程相比,具有课程理论难度大、跨度大、知识点多且零散和对数学要求高等特点[1,2]。为此,针对我校热能与动力工程专业人才培养特点和要求,结合多年教学实践经验,对“燃料与燃烧”课程教学内容的制订及教学手段的选择提出自己的建议。

一、课程内容及特点

1.课程内容

“燃料与燃烧”包括燃料、化学热力学、化学动力学、燃料的着火理论、火焰的传播与稳定理论、预混燃烧理论和扩散燃烧理论等基础理论,液体燃料、固体燃料的燃烧过程及其经典的模型等教学模块;课程主要包含:(1)燃料、(2)燃烧过程的物质平衡与热平衡、(3)化学反应动力学、(4)燃烧系统守恒方程、(5)着火和燃烧界限、(6)预混气的燃烧、(7)层流预混火焰、(8)层流扩散燃烧、(9)气体湍流燃烧、(10)液体燃料的扩散燃烧、(11)固体燃料的燃烧、(12)燃烧污染与防治、(13)船舶动力装置的燃烧等教学内容。

2.课程特点

实际燃烧过程涉及质量、动量和能量的交换和变换,涉及燃料和氧化剂之间的化学反应,具体过程十分复杂。“燃料与燃烧”课程知识点多、理论性强、学科交叉性强。因此,一方面,该课程的学习要求学生很好地掌握前期“大学物理”、“大学化学”、“工程热力学”、“传热学”和“流体力学”等专业基础课程的内容;另一方面,该课程的学习又可以促进了学生对上述课程知识点的理解。

“燃料与燃烧”课程理论性强、知识涉及面广,是一门典型的理论和实验相结合的学科。由于燃烧过程的复杂性,截至目前,燃烧科学的研究仍然以实验研究为主。先进诊断技术的不断出现使得燃烧实验获取的数据更加可靠、准确[3]。20世纪以来,着火模型、火焰传播理论、反应流体力学和计算流体力学等的建立使燃烧理论有了长足的发展。并且,随着大型计算机的出现,使得采用数值模拟方法研究燃烧过程已经成为发展趋势[4],这些都有力地促进了燃烧技术的发展。但这些理论模型对于本科生而言很难理解。这就要求授课老师探索适合本科生知识结构及认知水平的教学内容和教学手段。

二、教学方法

1.教材的选择

“燃料与燃烧”这门课程知识点多、理论性强、概念抽象,如何上好这门课,选择适合的教材是非常重要的环节。好的教材有利于制订合理的教学内容和教学计划,可以有效促进教师的教学和学生的学习。目前市面上发行的教材主要有国外教材的国内翻译版和国内教材两类,比如Kuo. Kenneth K.的《Principles of Combustion》和Turns. S. R.的《An Introduction to Combustion》以及国内顾恒祥编著的《燃料与燃烧》教材和严传俊的《燃烧学》等,这两类教材各有特点。合适的教材应该能够与学生的知识结构及认知能力相适应,与该课程的教学目标相适应[5]。

针对本课程的特点,教材的内容要全要新,应能够较好地反映当前燃烧理论发展水平及技术发展现状。教材内容应当包括燃料、化学热力学、化学动力学、燃烧物理基础、预混燃烧及扩散燃烧、液体及固体燃料的燃烧等。由于是面向本科生的教材,应当内容简单易懂、表述深入浅出、实例丰富直观、结构逻辑清晰,能有效衔接理论分析与工程实例,这样才能提高学生学习兴趣。目前国内出版的《燃料与燃烧》教材要么理论性太强,要么涵盖内容不全面,要么内容深度不够,总之都存在这样或那样的问题。为此,根据我校本科热能与动力工程专业方向学生培养的目标和特点,我校“燃料与燃烧”课程组的老师编写了适合我校学生使用的《燃料与燃烧》教材,该教材系统地阐述了燃烧的基本原理和理论;详细讲述了燃料动力学燃烧的计算方法,详细论述了燃烧热力学和燃烧化学反应动力学,着重介绍了船舶动力装置涉及的预混燃烧和油滴蒸发控制的扩散燃烧;最后,为及时反映燃烧技术的最新研究进展,增添了新型船舶动力装置所采用的燃烧技术[6]。在教材的编撰过程中,大量引用了我校教师及研究生们的研究成果。教材针对性强、内容新颖,强调了“燃料与燃烧”课程的理论性和工程应用性,培养了学生学以致用、理论联系实际的能力和素养。

2.教学内容设计

“燃料与燃烧”课程教学内容应该具有目标性、实效性、科学性、启发性,为此在其教学内容的设计过程中,应该注意以下几点:

①内容要重点突出。“燃料与燃烧”课程内容包括化学热力学、反应动力学基础、着火理论、火焰传播与稳定理论、液体燃料及固体燃料的燃烧等部分,但在各部分内容的讲解上要有重点。课程中化学热力学和化学动力学基础是整个课程的理论基础,讲解内容包括化学平衡、热化学、化学反应速率、质量作用定律、反应级数、活化分子碰撞理论及链锁反应理论等。其中,化学反应速率、质量作用定律、阿累尼乌斯公式和链锁反应理论可作重点讲解。关于着火理论,授课重点放在闭口系统着火理论模型的建立和结果分析上,并分析燃烧放热量和散热量随温度的变化曲线,确定着火温度与初始温度、物理化学因素和散热强度的关系。对于火焰传播与稳定理论,授课的重点在火焰传播概念、气体的动力燃烧与扩散燃烧及火焰稳定的基本原理与方法的讲解。对于预混燃烧,授课的重点在瑞利公式、郎肯-雨果尼奥公式的推导,以及爆震波、缓燃波的性质,并分析层流火焰的传播速度。对于扩散燃烧和液体燃料的燃烧,重点在伯克-舒曼理论、燃料射流的唯象分析、液体燃料的雾化、蒸发模型及液滴的质量燃烧速率。对于固体燃料的燃烧,碳的燃烧化学反应及碳粒的燃烧速度可作为授课重点。

②理论与实践相结合。“燃料与燃烧”是一门理论性及实践性都很强的学科。课程涉及的相关理论模型比较抽象,不易掌握。因此,该课程的教学内容必须与工程或生活实践紧密结合。在课程教学内容设计过程中必须将理论与具体工程案例或燃烧相关生活案例相结合,以具体案例作为切入点,将复杂抽象的理论概念穿插到生动、具体的案例中进行讲解。对于热能与动力专业的本科生,笔者结合船舶柴油机,利用燃烧学理论讲解燃烧室结构设计、燃油燃烧过程、过量空气系数、着火等这些具体设计方案背后的理论依据,从而强化对燃烧理论的理解;结合汽油机和柴油机,讲解点燃和压燃,讲解不同燃烧方式对汽油机和柴油机的影响,讲解烃类燃料着火点和自燃点的区别;结合家用燃气灶台,讲解燃料的扩散燃烧。通过以上措施,使学生课本理论与实践统一。

3.教学方法设计

①采用启发式教育。在“燃料与燃烧”课程教学过程中从学生的知识结构及认知能力出发,结合具体的教学内容和教学目标,采用提问、讨论和案例分析等多种方式,让学生参与教学过程,激发学生的学习热情,使他们在活跃、开放的教学氛围中理解掌握燃料与燃烧相关的知识点,并逐步掌握应用相关知识点分析解决实际问题的能力和提升团队合作能力。

②多媒体与板书的有机结合。随着计算机技术的发展,多媒体技术已成为课堂教学的重要手段。多媒体教学课件图文并茂、内容丰富、信息量大。就“燃料与燃烧”而言,燃烧过程细节可以被生动地显示出来,危险实验也可被充分地展示出来,使学生能够更加深刻、有效地理解相关燃烧理论和燃烧过程。但是,使用多媒体技术授课,老师讲课速度加快,课程信息量增加,学生课堂紧张度增加,易造成学生的思维跟不上授课速度,影响教学效果。板书比较灵活,便于控制授课节奏,适合于讲解复杂理论模型,教师在授课过程中,可以通过板书引领学生的思维,进行详细的讲解和推导,学生易于理解和融会知识。但是,板书速度慢、效率低。因此,在“燃料与燃烧”课程教学过程中,将多媒体教学与传统板书有机结合,扬长避短,充分发挥各自优势,以达到最佳的教学效果。

③多种考核手段的结合。在教学过程中,采用多样化的考核手段,了解学生对课程知识点的掌握情况,督促学生的学习。平时成绩、课堂提问、课后作业、案例分析、阶段考试和小论文等都可以作为考核手段。但无论采用何种形式的考核手段都应当从激发学生的学习热情、提高学生的学习效果和增加学生对本课程本专业的认识出发。

三、结论

综上所述,“燃料与燃烧”融合了“大学物理”、“工程热力学”、“传热学”、“流体力学”、“气体动力学”和“高等数学”等课程的知识。在教学过程中应点面集合,重点突出,理论联系实际,加强对学生实践能力、团队合作能力和创新能力的培养,不断更新教学内容。同时,作为老师,需要不断学习,及时掌握该课程新的知识点,及时更新教学内容。

参考文献:

[1]邓文义,苏亚欣. “燃烧学”课程建设与探讨[J]. 中国电力教育, 2012(27):70-71.

[2]苏磊. 燃烧学-教学有感[J]. 中国科教创新导刊,2009(34):134.

[3]Kuo, Kenneth K. Principles of Combustion

[4]严传俊, 范玮. 燃烧学[M]. 西安: 西北工业大学出版社, 2008.

[5]王保文, 王为术, 高传昌. 电厂热能动力工程专业“燃烧学”教学内容设计[J]. 中国电力教育, 2010, (30):100-102.

篇(10)

1 前言

利用水合物进行气体分离是一门新颖的学科。水合物法分离气体是基于各种气体形成水合物的压力差别很大,控制压力使易生成水合物的组分发生相态变化(从气态到固态),因此通过形成水合物易进行某些气体分离,如甲烷和乙烷、甲烷和乙烯等。与超临界萃取、深冷分离和冷冻结晶分离相比,水合物的生成条件温和、能耗低、分离效率高而且对环境无害,具有广阔的应用前景。

利用水合物进行气体分离就必须对水合物的相平衡条件进行深入的研究,气体水合物相平衡热力学主要解决气体水合物形成和存在的温度、压力条件,预测已知状态系统是否可形成水合物。其理论依据主要是多相系统相平衡理论,而这要涉及到水合系统所有相中每一组分化学势(逸度)的计算。因此,建立所有物质在每一相中的化学势(逸度)模型是气体水合物相平衡热力学的主要任务。

2 热力学预测模型的分析

根据相平衡准则,平衡时多元混合物体系中的每个组分在各相中的化学势相等,采用水(W)作为考察组分,即:

由上式可知,预测水合物生成条件的理论模型可分为水合物相和富水相的热力学模型两部分。

范德瓦尔-普朗特根据水合物晶体结构的特点,应用统计热力学方法结合兰格缪尔气体等温吸附理论,推导出如下的表达式:

C为客体分子j在i型空穴中的兰格缪尔常数;

NC为气体混合物中可生成水合物的组分数目。

以后针对ijC的计算,又提出了多种对此模型的改进,主要有:Parrish-Pransnitz模型,Holder-John模型,Ng-Robinson模型和Du-Guo模型等。

Chen-Guo模型

1996年陈光进和郭天民提出了一个完全不同于范德瓦尔-普朗特模型的全新的水合物模型。

Chen-Guo认为水合物的成核过程同时进行着以下两种动力学过程。

准化学反应动力学过程:气体分子和水络合生成化学计量型的基础水合物。

吸附动力学过程:基础水合物存在空穴,一些气体小分子吸附于其中,导致整个水合物的非化学计量性。

在第一个过程中,溶于水中的气体小分子与包围它的水分子形成不稳定的分子束,分子束的大小取决于气体分子的大小,一种分子只能形成一种大小的分子束。分子束实际上是一种多面体,它们缔合过程中为保持水分子四个氢键处于饱和状态,不可能做到紧密堆积,缔合过程中必然形成空的胞腔,称其为连接孔,这就是水合物中另一种大小不同的空穴。这一过程可由下面的反应表示:

对范德瓦尔-普朗特模型的改进主要集中于兰格缪尔吸附常数计算方法的改进,但结果始终不能令人满意,笔者认为,这是因为这些模型都是以统计吸附理论为基础,范德瓦尔和普朗特在最初提出该模型时,假设水化物生成过程服从兰格缪尔等温吸附理论,但事实证明这种假设过于简单,水合物生成机理极其复杂。这也正是Chen-Guo模型优于范德瓦尔-普朗特模型的原因。ChenGuo认为水合物生成过程同时存在着两个动力学过程,以此理论为基础得到的模型其计算结果与实验数值符合得较好。上述七种理论模型的精确度依次为:Chen-Guo>DuGuo>NR>HJ>PP>VDW。

更重要的是。Chen-Guo模型形式更为简单,避免了较难直接计算的化学位,因此也就避免了去选择一些易于造成混乱的基本参数,计算更为简便,总之,比起范德瓦尔-普朗特系列模型,Chen-Guo模型更适用于工程技术人员进行工业计算。

4 气体水合物热力学模型的修正与改进

综合上述各种模型的优点,结合实际工业需要,本文以Chen-Guo模型为理论基础,引用Nasrifar的混合规则,并且考虑了气体溶解度的影响,对Chen-Guo模型进行了改进。

由前述可知,对混合气体而言,ChenGuo模型的相平衡准则为:

该模型假设液相中的电解质、醇类和溶解气三者相互之间没有影响。

5 模型考核

为了证明本模型的预测能力,应该用本模型的预测结果和实验数据相比较,本模型即可预测平衡温度又可预测平衡压力,当考核预测温度的准确性时,采用温度的统计平均绝对误差(AATD)来表示。AATD按下式给出定义:

式中NPTS代表所取的点数。

压力的平均误差百分数(AAPE)由下式给出:

本文首先利用该模型预测甲烷在电解质(NaCl、KCl、CaCl)溶液中生成水合物的能力,然后将计算值与实验值相比较,见下表2,从表中可以看出计算值与实验值符合的比较好。

6 结论

本文对水合物相平衡热力学模型进行了总结和改进,将测试温度以冰点为分界点划分为两个区域,在不同的区域采用不同的方法计算水的活度。可以预测含醇或/和电解质溶液水合物的相平衡条件,考虑了气体在水中溶解度对水合物相平衡条件的影响。论文还对水合物气体分离技术进行了阐述。

参考文献

[1] Van der Waals,J.H..Clathrate solutions. Advances Chenical Physics,1959

上一篇: 数字电视技术论文 下一篇: 项目资金管理论文
相关精选
相关期刊