时间:2023-03-21 17:00:47
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇数学论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
1.确定合适的选题和角度
教学论文的选题有大有小,有难有易,必须从实际出发,适当确定。太大了,力不胜任,难以完成,会挫伤写作的积极性;太小了,轻而易举,不费力气,不利于用己的锻炼提高。
确定了选题以后,还有一个论述角度的问题。论述角度对题目的大小有调节作用,论述角度选得恰当,大题可以小作,小题也可以大作。一般地说,确定论文的选题和论述角度要注意下面两个问题:
首先,要量力而行,实事求是,不要好高鹜远,贪大图深,勉强去做一个自己无力胜任的、缺乏基础和准备的、体会不深或兴趣不浓的题目。当然,也不要应付差事,贪图便宜,去做一个非常容易的题目。初学写作,题目还是以小一点为好,这样有利于由浅入深,由易到难,循序渐进。同时,题目小也比较容易驾御,能够做到收放自如。
其次,要着眼于教学中有普遍意义的、大家都关心的问题。从自己的实践出发,选择一个容易被人忽视的角度去阐述、论证,才能既易于引起重视,又易于写出新意不落俗套,。
2.定好论文的标题
文章的标题是文章的标记,是文章主题的高度概括,具有画龙点睛吸引读者的作用。因此,标题要内容具体、反映中心、用词精当、长短适中,但是,也不可为了哗众取宠而故弄玄虚。
3.安排好论文的结构
在安排文章结构时,一是要围绕主题对所掌握的材料进行筛选,选择那些最有代表性的典型材料,根据需要适当安排,做到层次分明、前后连贯、逻辑性强,使主题思想得到鲜明突出的表现;二是要正确反映事物的规律,就是说,必须反映客观事物的实际情况和事物的内在联系,必须符合人们的认识规律。
4.写好提纲
5.按照提纲撰写初稿
提纲只是文章的一种预想,一个轮廓,不可能对每个细节都考虑得那么周密、完善。写作中如果发现观点或材料的某些细节与原来提纲的设想不吻合,就应该核实材料的真实性,必要时要对相关的论述进行修改;如果发现有些观点或材料不恰当或者不确切,就应该中止写作,重新收集材料,重新审视自己的论点。
初学写论文的一个有效方法就是摹仿。要多看一些有关的论文,看看人家是怎样写的。如怎样立意,怎样选村,怎样布局,怎样开篇,怎样结尾。但是要注意,摹仿的出发点是为了能够从别人成熟的作品中揣摸、领悟出论文写作的一般规律,而不是抄袭别人文章的内容,剽窃别人研究的成果。
在写作时,还要注意小学数学教学论文的语言和修辞特点。语言特点是:具体、准确、简练、易懂;用短词不用长词;用规范词不用生造词;用短句不用或少用长句;用单句不用或少用复句。修辞特点是:语义明确具体,不要含混抽象;叙述直接了当,不要拐弯抹角;文风朴实,不求华丽。
小学数学论文格式要求
小学数学论文文稿格式基本要求
文章应论点明确,论据充分,数据可靠,题文相符,条理清晰,文字简明,用A4纸打印,一般上、下、左、右页边均取2.5。具体要求如下:
1.文题限20字以内,能够准确反映文章的主要内容。小二号黑体,副标题
为小四号楷体加粗。
2.摘要及关键词字数在200字左右,关键词3-5个左右。五号楷体。3.正文
(1)正文标题层次一级标题用小四号黑体加粗字体一、二、三……依次排序;二级标题用小四号宋体加粗(一)(二)(三)……依次排序;三级标题用小四号楷体加粗1.2.3.……依次排序;四级标题用小四号楷体(1)(2)(3)……依次排序。标题均要求空两格后书写。
(2)正文内容字体、字号、行间距分别为宋体、小四号、1.5倍行距,其中列举的案例可以为楷体。
4.注释以下两种情况列入注释:(1)对论著中某一特定内容做进一步解释或说明;(2)引文来自内部资料。注释采用脚注,用圆圈标注在文中需注释处的右上角。格式如下:
①作者:《题名》,《刊名》,xxx年第x期,第x页。(引自期刊)②作者:《书名》(内部资料),xxx年,第x页。(引自著作)
5.参考文献参考文献是作者写作论著时所参照的文献书目,除注释中所列情况外,其余引文所参照的著作皆列入参考文献中。参考文献列于文后,采用顺序编码制,按在文中出现的先后顺序排列编号,标注在文中引用处的右上角。格式如下:
[1]责任者(3人及以下全列出,3人以上加“,等”,多个作者之间用,——下同).题名[J].刊名,出刊年,卷(期):起止页码.(引自期刊)
[2]责任者.书名[M].其他责任者.版本项(初版不写).出版地:出版者,出版年:页码.(引自著作)
[3]责任者.题名[N].报纸名,年-月-日(版次)(引自报纸)
[4]责任者.题名[C]//论文集责任者.文集名.出版地:出版者,出版年:页码.(引自论文集)
[5]析出文献责任者.析出文献题名[M]//专著责任者.题名.出版地:出版者,出版年:析出文献起止页码.(著作中析出的文献)
[6]责任者.题名[Z].会议名称,会址,会议年份.(引自会议论文)[7]责任者.题名[D]:[学位论文].保存地:保存者,年份.(引自学位论文)[8]责任者.文献题名[R].报告地:报告会主办单位,年份.(引自报告)[9]标准代号.标准名称[S].出版地:出版者,出版年.(引自标准)
[10]责任者.题名[DB/OL(联机网上数据库),或DB/MT(磁带数据库),或M/CD(光盘图书),或CP/DK(磁盘软件),或J/OL(网上期刊),或EB/OL(网上电子公告)].出处或可获得地址,发表或更新日期/引用日期(任选).(引自电子文献)
6.编排顺序文章请按以下顺序编排:(1)题目;(2)摘要;(3)关键词;(4)正文;(5)注释、参考文献。
小学数学论文范文
下面是小学生的论文范文:
容易忽略的答案
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。
二、生活中学习———经验迁移
陶行知说过:“生活即教育.”生活本身就是一个巨大的数学课堂,小学数学教育理应回归到儿童的生活中去.荷兰教育家弗赖登塔尔说:“数学来源于生活,也必须植根于生活.”紧密联系学生的生活实际,让数学从生活中来,到生活中去,是数学课程改革的重要理念之一.我们不妨结合课堂教学内容捕捉生活现象,采撷生活实例,把学习与儿童自己的生活充分地融合起来,让学生感受到数学处处与生活同在.同时新课程标准强调数学与现实生活的联系,而且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发”,因此我们必须关注学生的生活,他们在学校之内、之外都做些什么事情,对什么比较感兴趣.
1.在生活中发现数学
让学生根据自己现有的知识水平在生活中经历“数学发现”,会使抽象的数学变得通俗易懂,让课本上的“数学”和孩子们变得更加贴近,使学生们更加主动地去学习数学,会发现一些新的数学内容.作为教学主导者的教师也要善于发现生活中的数学素材.如教室排列的座位、体育课上的队列、本教室在学校各个教室中的相对位置等;生活中到处可见的几何形体,门、柱子、柜子、各种球等;人们生活中的吃穿住行包含着许许多多的数学问题.假如能把这些生活中的数学问题搬进课堂,学生们就会感到非常真实、有趣,同时学生们也会充分地认识到数学并非枯燥无味,会感到数学就在他们身边.生活中的数学发现不仅是一种数学学习的“预习”或者“复习”,它更是数学知识建构的桥梁.如寻找生活中的几何图形,联系生活中实际事物的过程使几何表象更加清楚,有利于建立对应的几何概念.
2.在生活中解决问题
让学生运用学到的数学知识解决生活中的实际问题,是数学教学的目的.华罗庚说过:“宇宙之大,粒子之微;火箭之速,化工之巧;地球之变,生物之谜;日用之繁,无处不用数学.”数学源于生活,课本上的数学知识都可以在生活中找到它的蓝本.在生活中解决数学问题,使得单一的数学练习更富有现实意义,也更加有综合性,可以说是更多地还原了数学的本质.如让学生记录自己和家人的一次超市购物过程:买了哪些东西,单价多少,每种物品花了多少钱,总共花了多少,什么东西最贵/便宜,吃的物品有几种,用的有几种,等等.这样一个过程涵盖了多个数学知识点,不仅是加减乘除的练习,也是统计等概念的渗透.另外,我们也可以让学生计算家里一年的水电费,了解水电费的计费方式;记录并计算出行、旅游的交通费用;学习比例时,将自己家房屋结构平面图画出来;学习平均数,可以统计班级各科考试的平均分等.如下面两道题就是很好地利用生活资源来进行数学学习的案例:
(1)在下面的括号里选择合适的单位、数或词语填在横线上.你的身高是138(米、分米、厘米),体重是36(吨、千克、克),你每天步行去上学从家到学校要走20(时、秒、分),你每分钟走50(千米、分米、米),你的家到学校有(100、1000)米,来回一趟要走2(千米、分米、米).如果学校8:45上课,你8:30离家去上学,你(一定、可能、不可能)会迟到,因为.
(2)请你计算一下你家客厅的面积.如果客厅用边长为5分米的正方形地砖铺设需要多少块?
ThomsonScientific国家科学指标数据库2004年数据显示,中国数学论文在1999~2003年间篇均引文次数为1.03,同期国际数学论文篇均引文次数是1.3,这表明中国数学研究的影响力正在向世界平均水平靠近。相较于物理学、化学和材料科学等领域,中国数学研究的国际影响力是最高的。
我们以美国《数学评论》(MR)光盘(1993-2005/05严为数据来源,用统计数据揭示国际数学论文的宏观产出结构。通过对《MR》收录中国学者发表数学论文每年的总量及其在63个分支上的分布统计,将中国数学论文的产出置于一个相对明晰的国际背景之下,借以观察中国数学的发展态势。此外,我们还以中国科学院文献情报中心《中国数学文献数据库》(CMDDP为数据来源,统计了中国数学论文在63个分支领域的分布,并对其中获国家自然科学基金资助或国家自然科学基金委员会数学天元基金资助的论文情况进行了定量分析。上述数据库均采用国际同行认可的《数学主题分类表》(MSC),分别在国际、国内数学领域具有一定的影响力和相当规模的用户群。
《MR》光盘收录发表在专业期刊、大学学报及专著上的数学论文,其收录范围非常广泛。1993~2004年共收录论文769680篇,其中有74988篇是由中国学者参与完成的,我们称之为中国论文。这里中国论文是指《MR》的论文作者中至少有一位作者是来自于中国(即《MR》光盘中所标注的“PRC”)。12年中,中国论文数占世界论文总数的9.74%。
《CMDD》收录中国国内出版的约300种数学专业期刊、大学学报及专著上刊登的数学论文,此外,还收录了80种国外出版的专业期刊上中国学者发表的论文,并对那些获国家自然科学基金或国家自然科学基金委员会数学天元基金资助的论文进行了特别标注。
2.1《MR》收录中国论文的统计分析
考虑到二次文献的收录时差,为保证数据的完整性,选取的是1993~2004年的文献数据,检索结果如图1所示。数据显示,《MR》12年来收录的中国论文呈现出稳步增长的势头,中国论文的增长速度要大于《MR》总论文数的增长速度。
2.2《MR》收录论文在数学各分支上的分布
为避免重复计数,在对63个数学分支进行统计时,均按第一分类号统计。按2000年《MSC》提出的修订方案,将1993~1999年的数据进行了合并和调整。图2显示了国际数学论文在63个数学分支上的分布。
数学各分支占论文总产出的百分比在一定程度上反映了该领域的研究规模,而相应分支学科的研究热点变化也是统计中着重揭示的问题。在实际统计中,跟踪热点变化主要是通过这63个数学分支的时间序列分析完成的。统计数据揭示的主要特征和趋势如下:1993〜2004年,国际数学或与数学相关论文产出百分比最高的前10个分支依次是:量子理论(81)、统计学(62)、计算机科学(68)、偏微分方程(35)、数值分析(65)、概率论与随机过程(60)、组合论(05)、运筹学和数学规划(90)、系统论/控制(93)、常微分方程(34),这10个分支的产出占总体产出的42.5%。
隹某些分支领域表现出良好的增长势头,如统计学领域的论文数量近3~4年增长较快,有取代量子力学成为现代数学最大板块的趋势。对统计学进一步按照次级主题分类进行统计,结果表明论文产出主要集中在非参数推断(62G)方向(见图3)。
2.3《MR》〉收录中国论文在数学各分支上的分布
MR收录中国学者的数学论文的主要特点表现在以下几个方面:
參1993~2004年论文产出百分比最髙的前10个分支领域依次是偏微分方程(35)、数值分析(65)、常微分方程(34)、系统论/控制(93),运筹学和数学规划(90)、统计学(62)、组合论(05)、概率论与随机随机过程(60)、动力系统和遍历理论(37)、算子理论(47),这10个分支的产出占总体产出的52.25%。
偏微分方程(35)是中国数学论文产出的最大分支,对偏微分方程的二级分类进行细分,结果见图5。
从图中可以看出数理方程及在其它领域的应用(35Q)所占比重较大。同时,根据对35Q的下一级分类的追踪发现,关于KdV-like方程(35Q53)、NLS-like方程(35Q55)的论文有增加的趋势。
差分方程(39)、Fourier分析(42)、计算机科学(68)、运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、系统论/控制(93)、信息和通讯/电路(94)表现出一定的增长势头。
结合环和结合代数(16)、逼近与展开(41)、一般拓扑学(54)、大范围分析/流形上的分析(58)、概率论与随机过程(60)等表现出下降趋势。
与《MR》收录数据的主题分布所不同的是中国的量子力学和统计学均没有进入前5名,量子力学排到了第12位,且有下降趋势。计算机科学(68)、常微分方程(34)在《MR》中分别排在第3位和第10位,而中国数学论文中,常微分方程位居第3,计算机科学位居第11。
1993~2004年《中国数学文献数据库》收录论文统计分析
1993~2004年《CMDD》收录中国学者发表的论文总数达到93139篇。从这些论文在63个数学分支上的分布中可以看出,这63个数学分支学科的发展是不平衡的。对这63个数学分支的论文产出的时间序列分析发现,有些分支增长较快,如运筹学和数学规划(90),对策论/经济/社会科学和行为科学(91),有的变化不大,如几何学(51-52)。
通过对《CMDD》的数据统计,表明中国数学文献的学科分布有如下特点:
參1993〜2004年论文产出百分比最高的前10个数学分支依次是数值分析(65)、运筹学和数学规划(90)、常微分方程(34)、偏微分方程(35)、统计学(62)、系统论/控制(93)、计算机科学(68)、组合论(05)、概率论与随机过程(60)、对策论/经济/社会科学和行为科学(91),这10个分支的产出占总体产出的56.0%。
一些分支表现出良好的成长性。如数理逻辑与基础(03)、矩阵论(15)、实函数(26)、测度与积分(28)、动力系统和遍历理论(37)、Fourier分析(42)、变分法与最优控制/最优化(49),运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、生物学和其它自然科学(92)、系统论/控制(93)、信息和通讯/电路(94)。
參一些分支所占比重下降。如逼近与展开(41)、一般拓扑学(54)、概率论与随机过程(60)、统计学(62)、数值分析(65)等。
參在排名位于前10位的数学分支中,量子理论(81)在《MR》、PRC(《MR》的中国论文)和《CMDD》中所占比重有较大的差异,其余的9个分支尽管所占比重不同但基本上都能进人分布的前10名,例如,计算机科学(68〉在《MR》数据组的排名是第3位,到PRC和《CMDD》数据组就下降到第11位和第7位,在《MR»数据组的排名分别是第8位和第10位的运筹学和数学规划(90)和常微分方程(34),在PRC数据组中,则上升到第5位和第3位,在《CMDD》数据组则为第2位和第3位。这些排名的变化可以部分地揭示出中国在量子理论、计算机科学的交叉研究等方面稍有欠缺,但在数值分析、运筹学(含数学规划)等方面,中国具有相对的竞争优势。
组合论(05)在《MR》、PRC和((CMDD》中所占比重较为一致,分别位居第7、第7和第8位。数据表明组合论中的二级分类图论(05C)的论文产出比例最高,对图论主题进行进一步分析,发现这几年成长较快的图论领域的研究论文大多集中在图和超图的着色(05C15),其次是因子、匹配、覆盖和填装(05C70)。在图论的这两个三级分类上,中国学者的论文产出与国外非常吻合。
本文中的“基金资助”指的是国家自然科学基金或国家自然科学基金委员会数学天元基金的资助。为统计方便,二者统一按基金资助处理。1993~2004年《CMDD》收录的获基金资助的论文共计27662篇,受资助力度达到30%左右。表8显示,获基金资助的论文近年来有不断上升的趋势。2005年《中国数学文摘)>第6期附表1说明《中国数学文摘》和《CMDD》2005年收录的论文受基金资助的比例达40%以上。《CMDD》收录的获基金资助的中国论文在数学各分支上的分布特点如下:
在数量上,前10个分支领域为:数值分析(65)、系统论/控制(93)、偏微分方程(35)、运筹学和数学规划(90)、计算机科学(68)、常微分方程(34)、统计学(62)、概率论与随机过程(60)、组合学(05)、对策论/经济/社会科学和行为科学(91),这10个分支占总体产出的60.2%。
学数学是非常重要的,但要学好它,也要讲究方法,不能死记硬背,下面是我给大家推介的方法: 首先,一定要抓紧上课的学习时间,上课老师讲的内容一定要全部弄懂,不留一丁点儿的漏洞,若有不明白的地方马上问老师;其次,回到家一定要将当天老师教的内容从头到尾复习一遍,复习完之后多做几道题巩固运用知识,要养成独立思考的习惯.
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去。
二、培养学生的知识应用能力
数学日记的书写还能够很好的起到培养学生的知识应用能力的作用,能够在学生们记录日记时展开对于学过的知识综合应用。这是一个很好的巩固与深化课堂教学内容的方式,也能够检验学生们对于所学内容的掌握程度。教师可以结合相关教学内容给学生们布置相应的数学日记为作业形式,让学生们将所学内容应用到日常生活中,并且对于这些应用有良好的记录。这样的作业布置形式不仅更为灵活多样,过程中也能够充分锻炼学生的思维以及对于相关知识点的掌握能力。学完《认识人民币》这节内容后,不少学生对于人民币的几种常见币值基本能够较为熟练的区分,同时,对于不同币值的转化也基本有了认识。大部分学生在初次接触这部分知识时都需要一个较长的消化过程,尤其是熟练的完成不同币值间的转化,这需要学生们在今后的生活中不断练习。为了巩固大家对于相关内容的掌握,我会让大家结合课堂上学到的内容写一段数学日记,记录生活中和人民币有关的日常片段。一个学生这样写道“:我爸爸很喜欢吸烟,一星期10包!每包20元,10×20=200元,如果爸爸不吸烟的话,一星期就能省下200元,一个月4个星期,200×4=800元,一个月不吸烟就能省下800元,一年12个月,800×12=9600元,一年就可以省下9600元,而且吸烟有害健康,污染环境。因此,我劝爸爸不吸烟或少吸烟。”从学生的日记中不难看出,学生在记录这件事情上思路是十分清晰的,不仅如此,他还很好的展开了数学知识的应用,非常准确的计算出了爸爸吸烟每天、每周、每个月以及每年的花费。记日记的过程中不仅是对于日常生活的良好记录,学生也非常灵活的展开了对于数学知识的有效应用,这对于提升学生的数学素养将会很有帮助。
三、培养学生的信息收集能力
记数学日记的另一个重要作用则在于可以培养学生的信息收集能力,能够让大家对于日常生活中的数字有更为敏锐的观察、比较与记录,这些都是深化学生对于数学知识的掌握、提升学生数学素养的非常有效的途径。一位学生在日记中这样写道:“快过年了,许多商场都实施优惠政策。下面的3家商场的羽绒服,也实施了优惠的政策“:丫丫专卖店(单价200元)6折;波司登(单价220元)满200元以上送50元;雪中飞(单价190元)买三送一。我对收集到的信息进行处理思考:我们一家人要去买羽绒服,每人一件,到哪里去买最好呢?丫丫:200×3×60%=360元;波司登:220×3-50×3=510元;雪中飞:190×2=380(元)这样看来去丫丫买是最便宜。通过这次信息的收集,我知道买衣服也要精打细算,原来在购物中还能学到很多数学知识呢!”从这段日记不难看出,学生具备非常好的信息收集与记录的能力,不仅如此,学生还能够借助学过的数学知识对于这些信息进行分析比较,这些都是学生数学能力的综合体现。
(一)重视外在形象
教师要拥有一个良好的外在形象,这主要体现在平时的衣着打扮与言行举止上。如果教师不修边幅、口无遮拦,如何让学生喜欢你。为此教师要衣着整洁大方、举止文明得体,这样学生才能从心里接受教师,愿意亲近教师,如此才能对数学学科产生兴趣。
(二)加强师德修养
教师是人类灵魂的工程师,其不仅在于传授知识与技能,同时还肩负着提升学生道德品质的重任,为此教师要重视师德修养,为人师表。不仅要热爱教育事业,更要热爱学生,将爱的暖流传递向学生的心田,唯有发自内心的教育教学才能取得成功。同时,还要乐于助人、关心集体等,不断提高自身的道德修养。
(三)提升专业技能
教师不仅要精通本学科的知识,同时还要跨越学科限制,拥有广博而深厚的知识体系,这样才能将数学知识生动活泼地展现出来,才能将学生的学习置于更为宽广的平台上,引导学生展开主动探究,才能促进学生综合能力的发展与提高,推进数学教学改革的步伐。
二、趣味游戏
让学生在玩中主动学习小学生活泼好动,游戏是他们的最爱,将游戏引入数学教学机制,顺应了学生的天性,真正实现了寓教于乐,使得原本枯燥的数学教学更加生动活泼、富有趣味性,从而激起小学生强烈的参与热情,使学生主动而积极地投入到游戏中来,在游戏中主动求知,这样更能取得事半功倍的效果。因此,在教学中我们要有意识地来设计与组织学生开展游戏活动,让全体学生都能参与到游戏中来。如在学习能被3整除的数的特征时,我设计了这样的游戏活动:数字王国里要举办一个盛大的晚会,但只有能被3整除的数字才有资格参加。现在你就是审查员,来看哪些数字符合要求,并颁布通行证。这样学生在游戏中可以切身感受到乐趣,更是在不知不觉中巩固与掌握了所学知识,这样比起枯燥而机械的训练更加能够吸引学生的注意力,激发学生学习热情,自然能够取得事半功倍的效果。
三、生动故事
激发学生强烈的学习热情将故事与数学教学结合起来,可以避免以往枯燥而单纯地数字、公式与字母的讲解,使得教学更加富有生命力,这符合学生的心理特点与年龄特征,不失为激发学生数学学习兴趣的一个重要手段。如在学于号、小于号这节内容时,学生往往很容易混淆,鉴于此我编排孪生兄弟历险记的故事,以讲故事的形式来将整个教学串联起来。这样学生不再是被动参与与机械记忆,而是在听故事的愉悦氛围中,渗透知识。这样学生的学习兴趣更浓,对于知识的理解更透彻,掌握更牢固。实践证明故事的引入,大大改变了以往数学教学的枯燥与无味,更加贴近学生的心理特点与认知规律,可以让整个教学有血有肉,更加富有生命力,让教学更加生动活泼,能够调动起学生身体的每个细胞,让学生在无形中将思维与注意力集中于新知的学习上来,从而在听故事中快乐而有效地掌握所学。四、巧设疑问,激活学生思维的火花小学生有着很强的好奇心与求知欲,这正是学生学习的强大动力。因此,在教学中我们要保护与不断激发学生的好奇心,巧设疑问,以问题来激发学生的好奇心、唤醒学生的求知欲,激活学生思维的火花,彻底改变以往学生的被动接受,让学生独立思考、积极思维,展开主动探究,让学生在释疑的过程不断生疑。如在学习“梯形面积计算”时,我用两张颜色不同的纸片来制作大小不同的两个梯形,提出:两个梯形的面积哪个大、哪个小?相差多少?对于第一个问题,学生通过观察便可以直接回答,但是对于差多少就无法回答。这样学生自然就会产生强烈的求知欲,要先求出两个梯形的面积是多少。这样的提问激起了学生浓厚的学习兴趣与强烈的探究热情,使学生带着强烈强烈的学习动机与明确的学习目标来展开有效的学习,这样更能达到预期的教学效果。
第一,在学习新内容时要渗透数学思想。在设计教案时教师要有意识地增加数学思想的启发,将数学思想与新的数学知识结合起来,避免只讲知识表面不讲数学原理,只讲习题不讲思想。在讲授新内容时,不能直接将相关概念和定理告诉学生,而是通过一定的方法引导和启发学生逐步探索、猜测,慢慢接近,掌握知识形成过程中的相关思想,锻炼学生的数学思维。这样学生可以发挥数学思维能力去推理,对所学知识理解得更加透彻,记忆也更加深刻。
第二,在解题中渗透数学思想。数学离不开解题,但是解题的方法不止一种,多一种方法就可能多一种数学思想。如苏教版的练习册中有这样一道题:1998×3.14+199.8×31.4+19.98×314。先让学生观察数字的关联性,学生会很容易看出数值1998小数点在往左移动,3.14的小数点在往右移动,两个数值相乘,根据小数点移动的知识,学生能够推断出三个乘积是相等的,无论它们怎么变动,小数点后面一共是两位,只要算出1998×3.14再乘以3就可以了。这个解题思路实际上渗透了划归的数学思想。教师要在解题之前就开始向学生渗透,解题之后还要进行深化点睛,久而久之,学生就掌握了这种方法。
第三,经常讲,反复讲。数学思想渗透是需要潜移默化的,教师要坚持这一过程,在讲课时不断举一反三,帮助学生深刻领会。
第四,要引导学生从生活中发现数学思想,鼓励学生将课堂中学到的思想运用到生活中,将生活中的问题带到课堂上。
2日本是如何将数学史与专科数学教学整合在一起
日本是和我国比邻的国家,日本的数学教学中如何使用数学史也是有一定的方法。日本的数学学习,重视基础知识的理解,重视能力、态度和数学的思想方法的培养,并强调“使学生体会到数学学习活动的乐趣”,突出了对情感体验和学习兴趣的重视。无论是小学数学还是中学数学的教学,以及到专科数学的教学中都会将基础知识作为学习的重点,因此在教学中涉及到不同的教学的理念。如:“高明的计算”、“古人乘法的窍门”、“秀吉令人惊奇的故事”、“测量的技巧”、“离不开数学的人们”、“电子计算机的诞生”。它们旨在帮助学生理解数量和图形的有关概念在人类活动中的发展过程,提高学生对数学的兴趣、关心和学习的欲望,给学生以学习数学的动力。因此日本能很好的将数学教学和数学史进行有效的整合,将学生的兴趣作为数学教学的基本,然后通过数学史的内容和数学教学融合在一起,就会激发学生们的学习积极性,这些教学理念和中国的教学有几分相似之处。
3德国是如何将数学史与专科数学教学整合在一起
德国是一个欧洲国家,发达的经济背后更注重学生的学习,对于数学的教学中更关注他的实践作用,在教学中涉及到的内容也会和数学史联合起来。没有数学的发展历史就不会当前发达的数学,因此在数学的教学涉及到的数学史的内容也很多,在数学的教材中有100多处涉及到数学史,将数学史编到数学的教材中,而不是单独列出数学史作为一个单独的科目,而是有机的将数学史融合到数学的教学中,这样不仅可以让数学教师更容易的将数学教学和数学史联合在一起而且更能将这两者教学很好的告诉学生。德国这种教学方式更能使学生们接受并达到更好的学习效果。如在自然数表达一节就介绍了数表达的历史特别是罗马数系;在韦达定理的应用一节就介绍了数学家韦达。而在大数定律一节则介绍了数学家雅各布•伯努利。这些教程中的内容不仅可以给数学教师指出一条更好的教学之路,还能将数学的教学有效的教给学生,学生学到的知识就会更明确。
4其他国家是如何将数学史与专科数学教学整合在一起
其他国家中对数学的教学和数学史的整合的现状,不同国家得到的结果也不尽相同。欧洲国家中除了德国还有法国,法国指出了数学史要和专科数学教学中的各项内容要一一结合,只要有数学内容就应该涉及到数学史,将数学史有机的融合到数学的教学的每一个章节。欧洲国家中另一个国家英国,英国要求学生们要知道数学史,并对涉及到数学教学中的数学史要详细的研读如数学家的名字以及他们的业绩和生平。并作为考试内容重点来考察,这样的教学要求可以激起学生们的独立学习的能力,更能将数学史整合到数学的教学中。其他国家还有俄罗斯,作为中国相邻的国家,俄罗斯的数学教学中也涉及到数学史,主要还是将数学史作为一门单独的课程,在教学中涉及的内容也不多,主要还是学生们的自学,对数学史和数学教学的整合存在一定的差距。不同的国家对数学教学的重视程度不同在数学史与数学教学中的整合也存在一定的差距,无论怎么样的发展,数学史作为一个学科也越来越多的受到教师的重视,在整合的路上还有一段路要走。
由于专业课的课时设置得过多,使得学生个人自学、独立思考的时间变得很少,留给学生自由发挥的空间也很少,很难激发他们的创造力。一直以来,我国的高等教育的主要目的是培养教学型人才和科研型人才,而当前的数学与应用数学专业的教学模式和课程内容都呈现出陈旧老化的状态,已经不能适应当前社会对新型人才培养的要求了。无论在哪种时期,经济理论都是为当前时期的经济建设和发展而服务的,是为指导当前时期的经济活动而服务的,而教育体制的改革常常滞后于经济体制的改革,导致教学内容很难满足现阶段的市场经济发展的需求。
1.2不够重视课外动手能力的培养环节,设置的实践环节层面不高
纵观现阶段我国的数学与应用数学专业的教学实践来看,还存在很多有待改进的地方,主要表现为学生学习课堂知识的环节设置很多,而动手实践的环节设置很少,培养其创造能力的环节设置更少。因此,要对现阶段的教育模式进行调整,改变传统的学生听老师讲的方式,而是多创造师生之间交流探讨的机会。客观条件的限制也会影响教学模式的改进,有些学校由于一些客观原因只能以传统教学方式为主,使得教学质量得不到很大的提高,学生创造水平的发挥也受到了限制。
2.对于数学与应用数学专业的人才培养教育方案的探讨
2.1明确数学教学的目标,改进教学模式,及时更新教学内容
实现教学目标的创新,要从以下三点入手:一是从注重知识结论变成注重知识体系的构建;二是从注重知识传授变成注重能力培养;三是从注重技能训练变成注重思维训练。实现教学模式的改进,首先,要做到将教学模式从以教师为中心转变为以学生为中心;其次,将教师的灌输性教学转变为协作互助的教学模式;再者,从纯教学知识讲解的模式转变为以培养学生逻辑思考能力和创新能力为主的模式。以此来实现课堂模式从“一言堂”向“群言堂”的转变,调节课堂气氛,鼓励学生积极发言,说出自己的见解和观点,形成自己的逻辑思维,才能激发他们的好奇心,培养创新精神。在教学内容上,要注意将经典性与现代性相结合,将学科性与专业性相结合,提高课程的实用性,检验学生的认知水平和实践能力。
2.2完善数学课程体系,开设选修模块,发展学生的个性
数学与应用数学专业课程体系的建立是由专业定位和社会需求所决定的,并在具体的实施过程中不断完善和改进的。课程体系的建立是基于“三和模块,四个平台”的构件,三个模块是指专业选修模块、能力拓展模块以及素质拓张模块,四个平台是指公共教学平台、专业教学平台、学科教学平台以及实践教学平台。在课程体系的设置上,要从学生的后续发展出发,为其以后的发展奠定扎实的理论基础,增加应用数学类的学时数,培养学生初步运用数学知识的能力。
2.3培养学生的创造力,重视应用型人才的培养
培养数学与应用数学专业学生的创新能力是我国培养教育的一个全新领域,还有很多问题需要去研究和探讨。现阶段在数学与应用数学专业所实行的新能力培养模式还不够完善,存在很多弊端,例如,很多学校还在使用灌输式教育模式,忽视了训练学生的独立思考能力和批判性思维,使学生处于被动地位,难以为其创造良好的个性发展空间。在培养数学与应用数学专业学生的创新能力的过程中必须突出“创新”,高校要采取相关措施,努力适应社会变革和科技发展的需求,不断更新教育观念,改革教育体制。实现教育模式从应试教育向创新教育和素质教育的过渡,培养德智体美劳全面发展、生理心理健康发育、社会适应能力强的复合型和创新型人才。更好地为我国的社会主义现代化和经济建设服务。
2.4提高实践教学环节的设置层面,突出人才的素质培养
实践教学体系由能力拓展平台以及实践教学平台两部分组成,其中,实践教学平台又可分为实验与实训、综合训练课程、各类实习等。随着近年来数学建模教育的普及,数学建模对于增强学生的实践能力和创新意识的培养所起的作用已得到大家的共识。数学建模的一般步骤可分为问题的提炼、假设的提出、模型的建立、模型的求解、模型的检验和分析、模型的实施。进行数学建模的目的是通过观察、类比、归纳和分析等环节,结合数学知识和思想,构造数学模型解决所遇到的问题,其是一个分析和解决实际问题的过程,或者说,数学建模的过程是一个“做数学”的过程。该模型已经成为数学教育领域的新观点,有助于学生主动学习课本上的理论知识,主动参与到生动的思维实践活动中,实现创新,提高自身素质。
数学教育的一个重要任务就是培养学生的数学思维能力。努力提高学生的数学思维能力.不仅是数学教育进行“再教育”的需要,更重要的是培养能思考,会运筹善于随机应变.适应信息时展的合格公民的需要。本文从数学思维的特征,品质出发.结合中学数学教育的实际.探讨了中学数学教育如何有效地培养学生数学思维能力的问题.
1、数学思维及其特征
思维就是人脑对客观事物的本质、相互关系及其内在规律性的概括与间接的反映。而数学思维就是人脑关于数学对象的思维.数学研究的对象是关于现实世界的空间形式与数量关系.因而数学思维有其自己的特征.
第一,策略创造与逻辑演绎的有机结合。一个人的数学思维包括宏观和微观两个方面。宏观上.数学思维活动是生动活泼的策略创造.其中包括直觉、归纳、猜测、类比联想、合情推理、观念更新、顿悟技巧等方面,微观上,要求数学思维具有严谨性.要求严格遵守逻辑思维的基本规律.要言必有据,步步为营,进行严格的逻辑演绎。事实上.任何一种新的数学理论.任河一项新的数学发明.只靠严谨的逻辑演绎是推不出来的.必须加上生动的思维创造.诸如特殊化一般化.归纳、类比、顿悟等等。一旦有了新的想法.采取了新的策略.掌握了新的技巧.通过反复深入地提出猜想.加以修正.不断完善.才有可能产生新的数学理论。也可以说.数学思维过程总是似真推理与逻辑推理相互交织的过程。似真推理起着为逻辑思维探路.定向的作用.可以用来帮助在数学领域中发现新命题.提出可能的结论.找到解题的途径与方法等。其中.类比推理和不完全归纳推理更是两种重要的策略推理形式;而逻辑推理则是似真推理的延续和补充.由似真推理所获得的结论.往往需要借助逻辑推理作进一步的论证、证实。因此.数学思维只有将策略创造与逻辑演绎有机结合.才能显示出强大的生命力。
第二、聚合思维与发散思维的有机结合。发散思维是指从不同方向、不同侧面去考虑问题,从多种途径去求得解答的一种思维活动.它是创造性思维的一个重要特征.其特点是具有流畅性、变通性和独特性。通常所说的一题多解.多题一解.命题推广、升维策略、降维策略等都于这方面的反映。聚合思维是以“集中”为特点的一种思维.其特点是具有指向性、比较性、程性等论文开题报告范例。在数学思维活动中,这两种思维也是常常被交替使用的。在解决一个较为复杂的数学问题时,为了探查解题思路.人们总是要将思维触角伸向问题的各个方面.考虑各种可能的解模式.并不断地进行尝试.设法找到具体的思路.在探测思路的过程中.又要对具体问题进行具体分析,要集中注意力初中数学论文,集中攻击目标,找到问题的突破口或关键。因此,在数学教学中.要注将聚合思维与发散思维有机结合,特别要重视发散发性思维的训练。
2、数学思维品质
数学思维能力高低的重要标志是数学思维品质的优劣,为了提高学生的数学思维能力,弄清数学思维品质的内容是必要的,但对这个问题的争论很多,我们认为数学思维品质至少应包含以下几个方面的内容。
第一,思维的灵活性,它是指思维转向的及时性以及不过多地受思维定向的影响。善于从旧的模式或通常的制约条件中摆脱出来。思维灵活的学生,在数学学习中,善于进行丰富的联想,对问题进行等价转换,抓住问题的本质,快速及时地调整思维过程。
第二,思维的批判性。它是指对已有的数学表述或论证提出自己的见解,不是盲目服从,对于思想上已经完全接受了的东西,也要谋求改善,包括修正、改进自己原有的工作,事实上,数学本身的发展就是一个“不断提出质疑,发现问题、提出问题进行争论。直到解决问题的过程。
第三、思维的严谨性。它是指考虑问题的严密、准确、有根有据。在思维过程中,善于运用直观的启迪,但不停留在直观的认识水平上;注重运用类比、猜想、但不轻信类比,猜想的结果;审题时不但要注意明显的条件.而且要挖掘其中隐含的不易被察觉的条件:运用定理、公式时要注意定理、公式成立的条件;在概念数学中初中数学论文,要弄清概念的内涵与外延.仔细区分相近或易混的概念,正确地运用概念,在解决问题时,要给出问题的全部解答,不重不漏,这些都是思维严谨性的表现。
第四、思维的广阔性。它是指思维的视野开阔,对一个问题能从多方面洞察。具体表现为对一个事实能从多方面解释.对一个对象能用多种方式表达,对一个题目能想出各种不同的解法.等等。如果把数学比作一座大城市.那么它间四面八方延伸的大路.正好表现出数学思维发展和应用的广阔性。
第五、思维的深刻性。它是指数学思维的抽象逻辑性的深刻程度.是抽象慨括能力的重要标志.它以抽象思维为基础.对事物在感性认识的基础上.经过“去粗取精.去伪存真,由此及彼.由表及理”的加工制作.上升到理性认识。它要求人们在考虑问题时,一入门就能抓住事物的本质.把握事物的规律.能发现常人不易发现的事物之间的内在联系。
第六、思维的敏捷性。它是思维速度与效率的标志.它以思维的合理性为基础.所谓合理性.主要反映在解决问题时.方法简明.单刀直入,不走弯路,?辣荃杈叮快速获?.它往往是思维深刻性.灵活性的派生物。
第七、思维的独创性。它以直觉思维和发散思维为基础,善于对知识、经验从思维方法的高度上进行概括,灵活迁移.重新组合,在更高的层次上作移植与杂交.思人所未思.想人所未想,具有思维新颖,别具一格.出奇制胜,异峰突起,独树一帜等特点。
以上,我们列举了数学思维品质的几个方面.这些方面是相互联系.互为补充的,是一个有机结合的统一体。数学教育中.要根据不同的素材.灵活选择恰当的教学方法.有意识、有计划、有目的的培养学生的数学思维品质。
3、培养学生数学思维品质的教学方法
数学教育必须重视数学思维品质的培养;数学教育也有利于培养学生良好的思维品质。蕴含在数学材料中的概念、原理、思想方法等.是培养学生良好思维品质的极好素材.作为数学教师,只有在培养学生的思维品质方面下功夫.方能有效地提高数学教学的质量。
第一、应使学生对数学思维本身的内容有明确的认识,长期以来,在数学教学中过分地强调逻辑思维,特别是演绎逻辑初中数学论文,都是教师注重给学生灌输知识.忽视了思维能力的培养.只注重结论,忽视了知识发生过程的教学,造成学生机械模仿,加大练习量,搞“题海战术”,抑制了学生良好的数学思维品质的形成。我们应当使学生明白,学习数学,不仅仅是为了学到一些实用的数学知识,更重要的是得到数学文化的熏陶。其中包括数学思维品质.数学观念.数学思想和方法等,因此,数学教师必须从培养学生的优秀思维品质出发.冲破传统数学教学中把数学思维单纯理解为逻辑思维的旧观念,直觉、想象、合情推理、猜测等非逻辑思维也作为数学思维的重要组成部分.在数学教学中,要通过恰当的途径,引导学生探索数学问题,要充分暴露数学思维过程,这样,数学教育就不仅仅是赋予给学生以“再现性思维”.更重要的是给学生赋予了“发现性思维”。
第二、优化课堂教学结构,实现思维品质教育的最优化。优良思维品质的培养,是渗透在数学教育的各个环节之中的,但中心环节是在课堂教学方面论文开题报告范例。因此.我们必须紧紧抓好课堂教学这个环节。在课堂教学中,学生的思维过程,实质上主要是揭示和建二新旧知识联系的过程当然也包含了建立新知识同个体的新的感知的联系。在这里我们要特别强调知识发生过程的教学。所谓知识发生过程,通常指的是概念的形成过程,结论的探索与推导过程.方法的思考过程。这些实际上是学生学习的主要思维过程,为了加强知识发生过程的教学,我们可从如下几个方面着手:首先.要创设问题情境.激起意向.弓i_起动机。思维处问题起初中数学论文,善于恰到好处地建立问题情境,可以调动学生的学习积极性,使之开启思维之门其次.要注重概念形成过程的教学。概念是思维的细胞.在科学认识中有重大作用。因此,数学教学必须十分重视概念的准确度与清晰度。概念的形成过程是数学教学中最重要的过程之一。那种让学生死记硬背概念.忽视概念形成过程以图省事的做法是实在不可取的。有经验的教师把概念的形成过程归结为.“引进一酝酿一建立一巩固一发展”这样五个阶段,采用灵活的教学方法.取得了良好的教学效果最后.要重视数学结论的推导过程和方法的思考过程。数学教学中的结i仑通常是通过归纳、类似、演绎等方法进行探索的,我们要善于发现隐含于教材内容中的思维素材.有意识地让学生自己去发现一些数学结论,帮助学生掌握基本的数学思想和方法。比如分析法.综合法.类比法.归纳法.演译法,映射法(尤其是关系映射反演原则),反证法,同一法等等。数学方法的思考过程其实就是解决问题的思维过程。教师要通过对具体问题的分析.引导学生掌握从特殊到一般.从具体到抽象再到更广泛的具体等一般的思考问题的方法。
第三、激发学生数学学习的动力.重视数学的实际应用.唤起学生学习的主动性和自觉性数学学习的动力因素包括数学学习的动机、兴趣、信念、态度、意志、期望、抱负水平等。数学学习的动力因素不仅决定着数学学习的成功与否.而且决定着数学学习的进程:不仅影响着数学学习的效果,而且制约着数学能力的发展和优秀数学品质的形成。事实证明.在数学上表现出色的学生,往往与他们对数学的浓厚兴趣.对数学美的追求.自身顽强的毅力分不开因此,在数学教学中,教师要利用数学史料的教育因素.数学中的美学因素.辩证因素.困难因素.以及数学的广泛应用性等,不断激发学生的学习兴趣,激励学生勇于克服困难.大胆探索鼓励学生不断迫求新的目标,不断取得新的成功。
参考文献:
[1]张奠宙,唐瑞芬,刘鸿坤等.数学教育学[M],江西教育出版杜,1991年11月。
[2]王仲眷。数学思维与数学方法论[M],高等教育出版杜,1989年11月;
[3]郭思乐.思维与数学教学[M]. 人民教育出版,1991年6月