时间:2023-03-21 17:01:03
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇边坡支护技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
在水利水电工程施工中实施边坡开挖支护工作时,先要对其进行监测。首先,要对边坡的安全性进行考察,主要是对边坡的内部进行断面布置的测试;其次,要开展爆破振动检测工作,充分利用衰减规律,测量爆破的振动频率,并据此来指导边坡开挖施工工作。另外,除了实施监测之外,还要开展物探工作。物探工作主要是对开挖过程中的边坡状态进行了解和分析,以调整边坡施工中的开挖技术,确保边坡施工的质量。在水利水电工程施工中,边坡支护施工控制技术具有重要的作用,通常而言,常用的几种边坡开挖支护控制技术有以下几种:第一种是浅层支护。浅层支护技术包含了排水孔、锚杆和喷混凝土等。在实施过程中,主要是利用全液压钻机来开挖边坡。进行钻孔。在安装锚杆的时候,则要先进行灌浆,然后再插杆实施开挖工作,但是需要注意的是,如果所开挖的岩层不够稳固,那么在施工的时候一定要先插杆再灌浆;第二种是深层支护方法。在边坡开挖工作中,深层支护工作必不可少,因而必须不断地创新和改进深层支护方法。在水利水电工程边坡开挖工程中,采用深层支护技术,一般是利用液压锚固钻机来进行锚索钻孔,通过导向仪器来调整钻孔,避免出现锚索钻孔出现偏斜的现象。在水利水电工程的边坡开挖支护施工中,还要做好钢筋网的铺设工作。当边坡受到地质灾害的破坏而坍塌时,就必须开展有效的钢筋网铺设工作,以加固边坡,使其更为安全。在输送钢筋网时,必须保证钢筋网与岩石层之间无缝隙,并且要将其与锚杆头进行焊接,以形成稳固的整体。除此之外,排水孔施工工作也是水利水电工程边坡开挖支护施工中的重要环节。边坡长时间的排水会削弱其稳固性,为此,可以利用永久排水孔来解决排水工作,开展支护施工。在喷混凝土的区域中,常常会使用永久性排水孔方法,能有效降低水压对边坡的影响。为保障排水效果,可在其内部添加排水盲材,以防止排水孔出现塌孔现象。
中图分类号:TV文献标识码: A
一、工程的施工准备
1.做好工程的施工安全因素剖析。就目前我国水利工程施工的情况看,边坡开挖和支护工程的施工影响的主要安全因素主要有以下几方面
(1)水利工程边坡上部岩体的结构不够稳定,导致在工程施工过程中的一些安全隐患问题,所以未来在确保下部施工安全下, 工作人员需要在施工的过程中妥善做好一定的加固处理。
(2)在边坡施工过程中,应该充分考虑到岩石各种指标和其本身的性能,必须要认真分析它的岩抗风化的能力、抗软化的能力以及硬度,还应充分考虑到强度、透水性和组成等方面指标。
(3)水利工程的岩层结构相对于水利工程高边坡在施工质量上影响也是及其重要的,必须要综合的考虑岩体节理裂隙以及发育程度和岩体结构基本分布的情况。
(4)在施工区域水文环境以及气候对于高边坡施工的影响也是巨大的。其五,施工地区本身地质地貌和坡度对于施工的质量应用也占有很重要的一部分。
(5)对于施工过程中风化作用影响,也是不容忽略重要因素之一。
2.做好工程的施工道路布置。在水利工程施工的过程中,道路布置对工程施工效率影响是非常重要的,特别是对于高边坡施工的过程,组织好工程道路,就会大大提高施工的效率。一般情况下,应该布置选择最少是两条施工的道路,左、右岸要各布置一条,如果存在临时施工工程,还应该另外新增设两条其它的线路。
二、水利工程边坡开挖施工技术的分析
1.水利工程边坡的开挖流程。就目前我国的水利工程边坡施工的情况看,通常情况下所采取的是自上而下开挖的挖掘原则和顺序,从具体流程上看,通常情况下应该按照如下的顺序进行:即表面植清除――土方来开挖――石方来开挖的原则,需要注意的是,在挖掘过程中,必须完成了上一步挖掘项目,才可以进行下面的施工。
2.水利工程边坡开挖的施工说明
(1)植被的清理
在对于边坡的施工前,必须要对其施工的地区来进行一定的清理,通常情况下,施工范围应涵盖在开挖线外五米的距离左右的位置,这样才能够避免一些杂物进入到施工的区域。
(2)土方的开挖。上文我们提到在土方开挖过程中,应该采用按照自上而下顺序来进行,这样不仅利于工程的施工区域下地表水的排水,还能够有效避免在施工的过程中因为雨水的冲刷所导致边坡施工质量的不合格。
(3)石方的开挖。在高边坡施工的过程中,石方开挖的施工主要包括内容主要是左岸坝的肩石方开挖、河床石方的开挖和右岸的坝肩石方的开挖三个部分,下文将结合实际的工作经验,逐一的进行分析。首先,左岸坝肩石方的开挖。因为左岸坝肩石方的开挖施工特点决定了该选用露天液压钻的CM351钻机与ZQ100D的潜孔钻钻孔式设备来作为主要施工的设备,并且还可根据工程实际岩体的结构来选择手风钻式作为辅助。在左岸的石方挖掘过程当中,仍旧采用的是分层方式进行, 避免因此开挖与爆破所导致岩体的结构破裂,从而所导致的工程安全方面的问题。其次便是右岸坝肩石方的开挖。一般是和左岸坝肩的石方开挖比较相似的是,在右岸坝肩石方的开挖过程当中,仍然需要采用露天液压钻的CM 351式钻机与ZQ100D的潜孔钻式设备为主,采用以手风钻式钻孔为辅原则。但是要注意的是,在石方的开挖过程中,应采用自卸车方式将挖掘出来的废料与岩碴依照相关指定线路运送至工程上游所制定弃碴的场地。
三、水利工程边坡的支护施工与技术分析
1.支护前各项准备工作
(1)在边坡支护之前,应该根据地质的条件、工艺的要求,结构的形式以及岩体暴露的时间等因素来编制施工的方案,再制定详细施工作业的指导书,并向施工的作业人员来进行交底工作。
(2)作业人员应该根据施工的作业指导书要求,及时的进行支护。
(3)在作业前,应该认真的检查施工区边坡的稳定情况,需要的时候应首先进行安全的处理。
(4)对于一些不良的地质地段临时进行支护,应结合永久性的支护来进行,即为在不拆除或是对一部分拆除临时的支护条件下,来进行永久性的支护。
2.锚喷支护的施工说明。锚喷支护在施工时应该做好以下几个方面工作:
(1)在施工前,首先应该通过现场的试验或者依工程的类比法,来确定合理锚喷支护的参数。
(2)锚喷作业机械的设备,应该布置在安全的地段。
(3)注浆器和喷射机等设备,应该在使用之前做好安全的检查工作。
(4)喷射的作业面,应该采取综合的防尘措施来降低粉尘的浓度,可以采用湿喷的混凝土。
(5)在岩石渗水比较强的一些地段,在喷射混凝土前应该设法把一些渗水集中的排出。在喷后来钻排水孔,以 防止喷层来脱落伤人。
(6)当凡锚杆孔直径如大于设计所规定数值时,就不应该安装锚杆。
(7)砂浆锚杆在灌注浆液时,应该遵守下列的规定
在作业前应该检查注浆罐、注浆管和输料管是否完好。
注浆 罐的有效容积不应该小于0.02m,耐力要不小于0.8MPa,在使用前应该进行耐压的试验。
在作业开始时,采用水或者是0.5―0.6 的水灰比纯水来泥浆的注浆罐和其管路。
注浆的工作压力应该逐渐升高。
注浆的作业应该连续进行,罐内的储料应该保持罐体容积约三分之一处左右。
喷射机、水箱、注浆器以及油泵等设备,应安装使用压力表与安全阀,在使用的过程中如果发现有破损或者是失灵时,应该立即的更换。
在施工期间应该经常的检查输料管、注浆管和喷头等管路连接的部位,如果发现有磨薄、连接不牢或击穿等现象,应该立即处理。
四、案例分析
下面便是以某水利水电工程施工的过程为例来讲述边坡的支护及开挖。
通过一定的科学分析认证而知,某工程所需要的开挖及支护的工程量相对较大,所需要进行明挖的土方量为24.62万立方米,进行明挖的石方量为6.09万立方米,所用于护坡混凝土的量为0.83万立方米,此外还需要一些不同种类的锚筋,总根数大概在0.5万。
依据水利工程施工的设计图而知这个水利工程的边坡所需要开挖最大度可以达到120米,但是在实际的施工过程当中,所需要开挖最大度是140米,这便就需要做好较为科学的计划及预算,这样才能确保施工环节顺利的进行。电站的厂房建设主要形式一般为靠近岸边地面厂房的类型,所有的厂房基本位置通常都是位于钢筋混凝土结构石坝的右岸,施工的现场大概要布置了4台水轮发电机组,发电机组的容量达880MW,根据水利工程的陡边坡的具体施工情况以及地质的特点布置爆破的实施步骤,要严格的控制爆破的技术,确保开挖的质量。边坡支护以及开挖当中的爆破技术的具体程序应该包括以这几个方面:
1.要做好网络工程的准备工作
这个工程所使用到的爆破网络一般为非电雷管孔间的并且具有微差顺序特征爆破的网络,且预裂孔起爆的时间要求在75m/s到100m/s之间,拱坝建基面的预裂孔单响药量通常在小于20kg为最佳,在离建基面30米以外的单响药量务必要控制在小于100kg,若是15米以内的就要控制在小于25kg,此外还应该考虑到质点的振动速度大小,这样才可以确保施工的质量。
2.在钻孔的时候主要所使用的为液压钻,二者的钻孔位置都要保持平衡,水平距离要控制在1m到1.5m,此外爆破孔孔底同预裂面的垂直距离要控制在大于2.5米。在通常情况下,缓冲孔的药卷直径一般要控制在50毫米左右,装药的方式通常为连续不耦合的两段式,堵塞段的长度要设置在1.0m到1.5m之间,通常线装药的密度为2.0 kg/m3到2.8kg/m3,第二段要封堵孔口,第一段要封堵中部。
3.要控制预裂孔尺寸以及爆破的标准。预裂孔一般有两种类型,其中包括着马道水平的预裂孔以及坡面的预裂孔,这两种的钻孔所使用的机械是不相同的,在尺寸方面的控制要得当。在马道的水平预裂孔的钻孔的过程当中通常要使用的机械为YT28型的手风钻,孔深一般要控制在2米左右,每一个孔间的距离要控制在小于50厘米,将孔口堵塞的深度要控制在小于0.5米。对于坡面的预裂孔来说,孔径大小通常要控制在小于90厘米,在钻孔时一般采用的是XZ-30潜孔钻,预计深度为17.28米,超深在0.5米左右,各个间的距离控制在60cm到80cm之间。
结语
边坡的开挖以及支护工程施工部分作为水利工程在施工过程中的重要一个环节,边坡的开挖和支护工程施工的质量会直接决定和影响整个水利工程的施工质量,因此,对于水利工程的高边坡开挖和支护工程施工技术的研究分析有着重要的现实意义。
参考文献
深基础施工是大型和高层建筑施工中极其重要的分项工程,而深基坑支护结构技术无疑是保证深基础顺利施工的关键。高层建筑为满足承载力、埋深要求,考虑建筑功能和成本,其基础多设计带有地下室的深基础,且大部分施工场地窄小,不能采用基坑边缘放坡,只能采用桩柱、墙等特殊支护结构。做好基坑支护的质量控制对保证施工安全、临近建筑物及施工人员生命、财产安全极其重要。
1.基坑支护施工组织设计方案
深基坑支护结构选择,应优先考虑施工单位现有施工技术水平,优先考虑工程基础桩相同类型桩作为基坑支护结构,如果工程桩采用钢筋混凝土灌注桩,则基坑支扩结构应尽量选用这种桩型,其直径可相应选用较小直径,这样可减少机械设备进场费用。当基坑较深围护桩布置位置允许时,应尽量选用两排支护桩,种布置方式力学性能好,前后排桩与桩顶圈梁形成刚架结构,桩间土参与支护工作,改善围护桩的受力状况,达到减少桩的配筋数量。当围护桩要求达到防渗要求,基坑深度小于 7m,地表回填土中固体碎片含量较多时,不宜单独选用水泥搅拌桩,应采用水泥灌注浆。
基坑支护施工组织设计与施工要综合考虑工程地质与水文条件、基础类型、基坑开挖深度、降排水条件、周边环境、基坑周边荷载、施工季节、支护结构使用期限等因素。基坑支护施工控制的关键是基坑上部坑沿的稳定性、地面变形及地下水的控制、防止基坑周边隆起、管涌与流砂等险情,并要根据地质、环境因素的变化及时地调整支护方案。深基坑支护结构的主要作用是挡土,使基坑在开挖和基础施工的全过程中能安全顺利地进行,并保证对临近建筑、公共设施和周边环境不产生危害。目前国内深基坑支护技术有:地下连续墙排柱支护、水泥搅拌柱、土钉墙及复合土钉墙、喷锚网支护、逆作法与半逆作法施工、环形支护结构等等。实践中根据土质条件、基坑深度、地下水情况等,结合不同支护方式的优缺点,选择经济合理的施工组织设计。
2.深基坑支护的基本要求
喷锚网支护是目前深基坑支护工程中采用较多的一种支护方式它是喷射混凝土、锚杆、钢筋网联合支护的简称,作为一种先进的支护加固技术,在岩土质高边坡,特别是在不良地质条件下,已得到了广泛的应用。喷锚网支护,是通过在岩土体内施工一定长度和分布的锚杆与岩土体共同作用形成复合体,弥补岩土体局部强度不足并发挥锚拉作用,使岩土体自身结构强度潜力得到充分利用,保证边坡的稳定。坡面设置钢筋网喷射混凝土,起到约束边坡表面变形的作用,使整个坡面形成一个整体。为做到及时支护、有效地保持土体强度,喷锚网支护的施工要紧跟开挖,随挖随支,每层开挖高度,随地质条件而定,一般为 1.5m~2.5m。采用喷锚网支护的主要特点是:结构简单承载力高安全可靠:可用于多种土层,适应性强;施工机具简单施工灵活污染小噪声低,对周围环境的影响小;可与土方开挖同步进行,工期短,本身不需要打桩,支护费用低。
控制要点是必须重视前期地质勘察工作,要熟悉并掌握工程的地质勘察报告,熟悉基坑开挖地的地形、地貌和地质特点,分析深基坑可能导致边坡土体滑坡的各种可能,对影响边坡稳定性的关键地段、地层和土质技术指标做到心中有数。论文参考网。由于地质勘察资料不一定很详细而且与实际情况往往有出入,在基坑开挖中还要经常比对现场的地质情况与地质勘察报告差异很大时要及时书面告知建设单位,由建设单位通知勘察和设计单位,必要时调整施工组织设计。施工组织设计方案必须经过专家组技术论证:由具备设计资质的支护施工单位自行设计或施工单位委托设计单位负责设计。
3.深基坑支护的过程控制
按设计方案组织施工施工前,有关人员应熟悉地质资料、设计图纸及周围环境,降水系统应确保正常工作及储备应急抢险排水系统,保证必须的施工设备正常运转。施工单位在施工过程中不得随意改变锚杆位置、长度、型号、数量,钢筋网间距,加强筋范围,放坡系数等。设计方案变更时必须重新评审。校准水准点及坐标控制点的正确性和实施保护措施。审查施工单位的水平及竖向施工放线是否正确,开挖过程中要随时督促施工单位对基坑的开挖尺寸、水平标高和边坡坡度进行检查,注意基坑周边的土体变化。测量观测站要日夜值班,出现险情立即报告。坚持见证取样制度,对进场材料严格把关。做好隐蔽工程验收:监理工程师应对锚杆位置、钻孔直径、深度及角度、锚杆插入长度,注浆配比、压力及注浆量,喷锚墙面厚度及强度,锚杆应力等进行检查,按规定留置混凝土试块、水泥浆试块,锚杆抗拔力实验。采用机械开挖时,应预留 0.3m~0.4m原始土层,人工铲除修整坡面,尽量减少边坡超挖和扰动边坡土体,使之表面平整,坡角符合设计要求。钢筋网的钢筋直径和间距要符合设计要求,钢筋网绑扎随开挖分层进行时,搭接长度要符合要求,一般为一个网格边长。
锚杆钻孔应按设计倾角和孔深进行。论文参考网。当钻孔遇到障碍物无法钻进时,允许适当改变钻孔方向。当土层为软土时允许加大倾角,将锚杆嵌入持力的土层中:当钻孔深度达不到要求时,应在该孔的左右或下方按锚杆抗拔力等同的原则补强加固。嵌入锚杆前应将孔内松土、泥浆等清除干净,方可送入锚杆。下锚杆时,应把注浆管、锚杆和止浆袋一起放入孔内。注浆要严格控制混凝土配合比,并根据注浆情况多次注浆,以保证浆液充满孔壁,使锚杆具有较高的抗拔力。当锚固体强度达到设计强度的 70%以上且不小于 3 天,方可开挖下—层土方。 喷射混凝土要搅拌均匀,垂直作业面尽量从底部逐步向上部施喷,混凝土厚度要符合设计要求,喷射面要留置试块,每组不小于 3 块。
基坑支护施工要与挖土互相配合,合理安排工序及工期,土方开挖的顺序、方法必须与设计相一致,并遵循开槽支撑,先撑后挖,分层开挖,严禁超挖的原则,减少开挖过程中原土体的扰动范围,缩短基坑开挖卸荷后无支撑的暴露时间,对称开挖,均衡开挖,合理利用土体自身在开挖过程中控制位移的能力。基坑开挖过程中,应防止碰撞支护结构、工程桩或挠动基底原始土层。发生异常情况时,应立即停止挖土,并应立即查清原因和采取措施,方可继续挖土。基坑开挖完成后,应提醒建设单位及时组织勘察、设计、质监、监理、施工等部门进行验槽,及早开始地下结构工程的施工,严禁基坑长时间暴露。基坑回填前,支护层不能破坏,特别是坡脚部分。地下结构工程完工一层基坑及时回填有利于边坡稳定,注意地下水或自来水或排水系统水患的影响。
深基坑支护的应急准备预案:做好预测、信息采集与反馈、控制与决策等方面的内容。由于深基坑开挖过程中,边坡稳定存在很多潜在的危险和破坏的突然性,地下工程受各种水文、地质、雨水等复杂条件的影响,特别在基坑旁有基础埋置较浅的建筑,或有重要的地下电缆和市政管线,很难预估出现的问题。论文参考网。因此,必须加强观测,出现问题,立即按深基坑支护的应急准备预案进行救险施工,根据土层位移的时空效应,及时掌握土体变形特性、边坡的稳定状态和支护效果,发现异常情况及时采取措施,预防边坡失稳和临近建筑沉降等事故发生。
4.结语
1公路防护技术的类型
公路路堑边坡防护技术大体上可分为2种类型,即植物防护和工程防护。
1.1植物防护
植物防护就是在边坡上种植草丛或树木或两者兼有,以减缓边坡上的ooo水流速度,利用植物根系固结边坡表层土壤以减轻冲刷,从而达到保护边坡的目的。这对于一切适合种植的土质边坡都是应当首选的防治措施。植物防护还可以绿化环境,和周围环境相协调,也是一种符合环境要求的防护办法。草种应就地选用覆盖率高,根系发达、茎叶低矮、耐寒耐旱且具有匍匐茎的多年生植物品种,也可以引进适应当地土壤气候的优良草种,如兰茎冰草、扁穗冰草。
1.1.1 条播法
在整理边坡时,将草籽与土肥混合料按一定比例间距水平条状铺在夯层上,宽约10CM,然后盖土再夯,并洒水拍实。单播只用一种草籽,混播用几种草籽混合,使根系植被和出芽率为最优。另外由于草皮在5摄摄氏度以下停止生长,10摄氏度以下基本不发芽,另外高温季节蒸发太快,草皮生长易于干枯,故在此期间不已播种。
1.1.2密铺法
老边坡先要整理坡面,填平细沟坑洼路堑:边坡防护,新边坡要经初验合格洒水浸湿后再平铺草皮。草皮之间要稍有搭界,块块靠拢,不得留有空隙,根部要密贴坡面、每块拍紧使接茬严密才能成活。边坡陡于1;1.5的就需加钉固定。草皮的切块尺寸约25CM*40CM,厚5CM左右。1.1.3 植树
植树不仅可以加强边坡的稳固性,防风固沙,减轻冰雪对路面的危害,还可以美化路容,调节小气候,大量栽树可以获得部分木材增加收益。但是高大乔木不能植于公路弯道内侧,以免影响视线论文范文。
1.1.4框架内植草护坡
在坡度较陡且易受冲刷的土质和强风化的岩质堑坡上,采用框架内植草护坡。框架制作有多种做法,例如;①浆砌片石框架成45o方格网,净距2 ~4m,条宽0.3~0.5m,嵌入坡面0.3米
左右;②锚杆框架护坡,预制混凝土框架梁断面为12cmⅹ16cm,长1.5m,用4根6~ 8mm 钢筋,两头露出5cm,另在杆件的接头处伸入一根直径14长3m锚杆,灌注混凝土将接头固定。锚杆的作用是将框架固定在坡面上,框架尺寸和形状有具体工程而定,其形状可设计为正方形、六边形、拱形等,框架内再种植草类植物。
1.2工程防护
对不适宜植物生长的土质或风化严重、节理发育的岩石路堑边坡,以及碎石土的挖方边坡等,只能采取工程防护措施即设置人工构造物防护。工程防护的类型很多,有护面墙防护、干砌片石防护、锚杆防护、抗滑桩防护和挡土墙防护。各种防护技术都各有其优、缺点和适用条件,一般说除锚杆、抗滑桩和挡土墙外,其他各种防护结不承受荷载,所以不进行内力分析,直接根据适用条件选择使用。先简单介绍如下;
1.2.1 坡面防护
坡面防护包括抹面、捶面、喷浆等形式
⑴抹面防护
对于易风化的软质岩石,如页岩、泥灰、千枚岩等材料的路堑边坡,暴露在大气中很容易风化剥落而逐渐破坏,因而常在坡面上加设一层耐风化表层,以隔离大气的影响,防止风化。常用的抹面材料有各种石灰混合料灰浆、水泥砂浆等。抹面厚度一般为3―7cm,可使用6-8年。为防止表面产生微小裂缝影响抹面使用寿命,可在表面涂一层沥青保护层。
⑵捶面防护
捶面防护与抹面防护相近,其使用材料也大体相同。为便于捶打成型,常用的材料除石灰、水泥混合土外,还有石灰、炉渣、粘土拌合的三合土与再加适量沙粒的四合土。一般厚度10-15cm,捶面厚度较抹面厚度要大,相应强度较高,可抵御较强的雨水冲刷,使用期约8-10年。抹面、捶面是我国公路建设中常用的防护方法路堑:边坡防护,材料均可就地采用,造价低廉,但强度不高,耐久性差,手工作业,费时费工。
1.2.2砌石防护
砌石防护包括护面墙、干砌片石防护、浆砌片石护坡。
⑴护面墙
护面墙是采用浆砌片石结构,覆盖在各种软质岩层和较破碎的挖方边坡,使之免受大气影响而修建的墙体,以防止坡面继续风化。在缺乏石料的地方,也可以采用现浇水泥混凝土或用预制混凝土块砌筑。护面墙除之自重外,也能增加路堑美观。所以在岩石甚至在一些土质路堑边坡也可砌筑一定高度的护面墙,以美化路容。若岩层破碎或在开挖时坡面有严重凹陷,应局部采用支补护面墙的方式进行。
⑵干砌片
干砌片石防护适用于土质、软岩及易风化、破坏较严重的填挖方边坡,以防止雨雪水流冲刷。在砌面防护中,宜首选干砌片石结构,这不仅为了节省投资,而且可以适应边坡有较大的变形。干砌片石受水流冲击时,细小土颗粒易被水流冲刷带走而引起较大的沉陷,为防止坡面土层被水流冲击和减轻漂浮物的撞击力,应在干砌防护下面设置碎石或砂砾结构的垫层。干砌片石坡脚应视土质情况设置不同埋深的基础
⑶ 浆砌片石防护
浆砌片石防护也是公路路堑边坡防护中常用的工程防护方法。浆砌片石是用水泥砂浆将片石间隙填满,使砌石成为一个整体,以保护坡面不受外界因素的侵蚀,所以比干砌片石有更高的强度和稳定性。干砌或浆砌片石防护在不适于植物防护或者有大量开山石料可以利用的地段最为适合。砌石防护的优越性是显而易见的,它坚固耐用,材料易得,施工工艺简单,防护效果较好,因而在公路的边坡防护中得到了广泛的应用。
1.2.3 挡土墙防护
在公路路堑边坡防护工程中,大量的挡土结构得到了广泛应用论文范文。挡土墙按断面的几何形状及特点,常见的形式有:重力式、锚杆式、土钉墙、悬臂式、扶臂式、柱板式等。各种挡土墙都有其特点及适用范围,在处理实际挡土工程时,应对可能提供的一系列挡土体系的可行性作出评价,选取合适的挡土结构形式,做到安全、经济、可行。现结合工程常用介绍如下形式。
⑴重力式 挡土墙
重力式挡土墙是以挡土墙自生重力来维持其在水土压力等作用下的稳定。它是我国目前常用的一种结构型式,重力式挡土墙可用砖、石、素混凝土、砖块等建成,其优点是就地取材、结构简单、施工方便、经济效益好;缺点是工程量大,地基沉降大,它适合挡土墙高度在5-6M的小型工程。
⑵锚杆挡土墙
锚杆挡土墙是由钢筋混凝土面板及锚杆组成的只当结构物。面板起支护边坡土体并把土体的侧压力传递给锚杆的作用,锚杆通过其锚固在稳固土层中的锚固段所提供的拉力;来保证挡土墙的稳定,而一般挡土墙是靠自重来保持其稳定。锚杆挡土墙按其钢筋混凝土面板的不同,可分为柱板式和板壁式。柱板式挡墙是锚杆连接在肋柱上,肋柱间加当土板;板壁式挡墙是由钢筋混凝土面板和锚杆组成。
⑶锚钉墙
锚钉墙支护技术有着比单纯锚杆支护或土钉支护更广泛的适用范围,它可以结合锚杆深部加固和土钉浅部加固的优点路堑:边坡防护,来对边坡进行加固处理。工程实际中,锚钉联合加固支护的形式各异,大体可归纳为两种: ①强锚弱钉支护体系:该体系以锚杆为边坡的主要加固手段,抑制基坑边坡的整体剪切失稳破坏,然后辅以土钉支护,抑制边坡局部破坏;②强钉弱锚支护体系:即以土钉为边坡的主要加固手段,形成土钉墙,然后辅以锚杆支护,限制土钉墙及墙后土体的位移。
2结语
公路及其附属建筑物的边坡稳定是保证其正常使用的前提条件。边坡的防护技术类型很多,本文只介绍了一些较常用的类型。从力学角度分析,维护边坡稳定的方法,一是借助挡墙的自重来平衡墙后岩土体传来的推力;二是在岩土体中“钉钉子”,如锚杆,利用周围土体对锚固段的锚固力来维持土体的平衡,从而达到保证边坡稳定的目的;第三种办法就是改变土体的性质,通过外加材料而形成强度高、稳定性好的复合土体,这种方法的分析和验算比较复杂,有的机理还在研究中。在实际工作中,还要强调自然界和人为因素这一外部环境,强调岩土参数的准确性,因地制宜选用上述方法,进行符合实际的施工,达到边坡防护的目的。
参考文献:
⑴达.公路挡土墙设计、北京:人民交通出版社,2000.
中图分类号: TV551 文献标识码: A
大多数城市都进行着规模较大的旧城改造工程,而给在繁华的城市内进行深基坑的开挖问题提出了的新的挑战,如何控制因为深基坑开挖而产的环境效应问题,进而促进深基坑的开挖技术的研究与发展,提出了许多先进的设计方案、计算方法,和众多新的施工工艺,同时也出现了许多先进技术的成功工程实例,比如,环球金融中心和金茂大厦等超高层建筑的圆满完成;然而不可回避的事实是,由于基坑工程本身的复杂性以及设计和施工管理的不当,基坑工程在施工中发生事故的可能性仍然非常高。
一、我国深基坑支护工程中存在的主要问题
1.支护结构计算模型分析
当前应用最广泛的基坑支护结构计算模型有平面框架计算模型和不协调空间计算模型旧。
(1)平面框架计算模型旧是将支护结构体系采用平面分析,选用一个适合的支撑刚度,得到一个每延米的支撑力,再将每延米的支撑力作为每一层支撑体系的外荷载,对支护结构进行平面框架内力分析。其主要存在以下几点不足:①很难选择一个适当的每延米支撑刚度;②对于约束点的选取主要靠工程实际经验,如果约束点不巧取在最大位移点,就会与实际情况存在着偏差;③将基坑支护空间问题转化为平面问题,这与基坑支护结构的实际受力情况相差较大。
(2)不协调空间计算模型 是指将深基坑施工中的支护结构看成一个空间的排架系统,其底部视为铰支,铰支位置由平面分析进行确定,而平面分析采用“nl”法。这种方法主要存在如下几个缺点:①该模型适用于对称开挖而实际基坑开挖中很难做到对称开挖;②将铰支点看成是反弯点,而实际反弯点并非是位移零点,这与实际情况有相当大的出入;③实际基坑施工中的支撑刚度是不能确定的,因此对支撑等效刚度的选取会导致帽梁、围令与维护墙之间的位移不协调。
2.支护结构监控报警值分析
在深基坑支护结构的监测过程中对各项检查项目的监控报警值的确定是一件及其重要的工作。在每一项工程监测中,都应当根据工程的实际情况和设计计算书先确定相应的监控报警值,用来确定支护结构的变形和基坑周围的土移是否超过了允许的范围,以此来判断基坑是否处于安全状态,进而对支护方案进行优化或改变以确保基坑施工的安全。
二、基坑开挖与支护现状及特点
(1) 基坑开挖越来越深。有的是为了施工的方便,有的因为昂贵的地价,再就是为了符合当地政府规定和人防需要,建筑物不得不向地下发展。过去城市中修建2层地下室也非常少见。但现在的大城市尤其是沿海城市和特区,3~4层地下建筑物已很常见,5~6层也有。因此基坑深度多在10~16m间,甚至20m的也有许多。
(2)工程地质条件越来越差。这一点在某些沿海经济开发区较为突出。
(3)基坑周边的环境较为复杂。高层和超高层的建筑大多集中在人口密集、建筑物密度大的地方,还多处于市政公路旁边。原来的建筑结构陈旧复杂,地上和地下管网分布密集。因此,基坑开挖不仅要保证基坑本身的稳定,也要保证周围的建筑物和构筑物不受破坏。
(4)基坑支护方法和种类多。如人工挖孔桩,钢板桩,预制桩和深层搅拌桩,还有地下连续墙等,内支撑包括各种桩、墙、板、管和撑同锚杆的联合支护等等。
(5)基坑工程的成功率较低。一旦基坑支护出现事故,会成邻近房屋、地下管道和管线及道路的开裂,甚至引发工程纠纷,或出现严重的破坏,造成人员伤亡和重大经济损失。
三、建议及对策
1.坚持分层分段开挖与支护的原则
一般情况下,边坡破坏是从局部开始,然后逐渐扩大。首先产生局部破坏的部位为突破点。当结构中部分土体应力达到甚至超过它的强度时,突破点就开始发生破坏,并引起其周围的土体性质的变化,进而引起临近部位土体应力值的升高,从而扩大破坏面积。高层建筑的飞速发展,使基坑越挖越深,边坡也更加陡立(一般约为80~90°左右)。边坡开挖后,不仅破坏了自然土体的三向受力状态,而且在开挖面周围产生高能区。部分能量会传给开挖面周围的土体,也就成为土体变形的动力。相对直立的边坡工程,如果开挖深度过大,高能区积聚的能量也非常大,有可能成为破坏的突破点进而造成塌方。所以,施工过程中必须控制开挖面的深度与长度,并快速进行支护,达到消除和控制破坏突破点扩张程度。分层分段开挖并支护有利于边坡能量的释放。前期开挖掘层段的能量有一部分通过锚体传到土层较深部位,部分留在边坡相对浅的部位。当下阶段开挖后,该能量就被新的开挖段释放和吸收。所以,分层分段开挖并支护的施工方法也会释放能量,使得开挖能量较少留在坡面,这有利于整个破会面的稳定。边坡层段开挖的大小应作为设计的重要内容,在分析土体力学性能、边坡附加荷载分布的基础上预测突破点可能产生的部位,这是划分层段的重要依据。据此绘出每一坡面的层段开挖图,作为施工依据,并在施工中根据具体情况进行调整。
2.信息反馈是基坑施工的重要组成部分
信息反馈是指两个方面:一是指在坡面开挖中,对表现出来的地下水分布、地质构造、水位变化和地下未知建筑物的信息反馈;二是指施工过程中,对边坡应力监测和位移信息的反馈。而在施工中发生侧移的原因有:
(1)土力学的模糊性:土的层面结构多变,影响因素多,物理力学性能分散性大。其结构计算原理及各种参数取值有较大的模糊性,不可能一次计算到位
(2)在外力作用下产生变形。
(3)施工过程中土体的不稳定。
3.支护结构改革和创新
(1)根据受力情况改变结构的形式。闭合拱圈挡土、连拱式基坑支护,都是应用空间支护结构,充分利用拱的性质,即减小土对桩基的侧向压力,也把结构受弯转换为拱圈受压,充分发挥混凝土的受压特性,不仅提高了支护效果,也降低了支护的费用。
(2)从施工方法上改变。桩墙合一地下室逆作法,是将地下室墙和基坑支护桩合在一起,以地下室的梁板作为支护,从上往下施工,同时地下室的外墙也在施工。它的优点是节省资金,在高水位地区和地下水丰富区域,还要做防水帷幕。
(3)发展新的支护方法。近几年,锚钉墙法和喷锚网支护法在工程中应用了很多,表现出一定的经济效益。它不要一根管、一根桩、一根撑、一块板,以尽可能保持并提高、最大限度地利用基坑边壁土体固有力学强度,变土体荷载为支护结构体系的一部分。它主动支护土体,并与土体共同工作,具有施工简便、机动、快速、适用性强、灵活、随挖随支、挖完支完、安全经济高效等特点。它的工期比传统法短一至两个月以上,工程造价降低10%~30%左右。
4.进一步研究基坑支护理论
可以看到,随着国民经济的飞速发展和城市现代化的进程,基坑工程的可靠性成为高层建筑亟待解决的问题。因此进一步探讨基坑支护的方法和计算理论,尤其是新型支护方法的计算理论,乃为工程实际所急需。如喷锚网支护法、锚钉墙法。
5.探讨基坑护壁抢险技术
如前所述,基坑工程的破坏率较高。因此,施工过程信息反馈技术,对进行基坑支护抢险有重要意义。当发现基坑护壁出现失效时,采用的办法大多是回填土方或停止开挖等,收效甚微。因此在支护设计和确定施工得方案时,就一定要考虑基坑支护的抢险措施。如基坑护壁帷幕漏水化学灌浆抢险技术,具有简单、经济。快速和有效的特点,是目前基坑漏水涌砂最好的抢险补救方法。
结语
在随着我国的经济不断的高速发展,工程建设方面的投资额度也在不断地增加,各类的高层建筑同时也逐年增加,随之而来的便是各种深基坑不断地涌现,那么在深基坑的支护方案设计的时候,就不仅仅是在技术上可以满足基坑的安全稳定性这样就可以了,而应该是我做到根据现场的实际情况来设计出一种可以在技术上可行并且在经济上合理的优化方案,这样就能为国家节约每一分钱,为祖国的经济可持续发展做出我们应有的贡献。
参考文献
中图分类号:TU473.11 文献标识码:A 文章编号:1006-8937(2016)08-0161-02
1 概 述
广东某市新修建一条景观绿化道路,由于场地是在河边,且为密集住宅区,该道路施工存在边坡支护和临建筑上边坡支护两种主要支护措施,均为永久支护。根据实测,上边坡支护高度基本为10~14 m,距离建筑物1~12 m,下边坡坡体倾角近于60 °左右,而水深度较大,河道外侧约15 m处水深部分达到 10 m。
为保障在有限的宽度内修建此景观道路(路宽13 m),设计必须考虑尽可能的利用现有空间规划出河道观景平台、左线人行道、两车道机动车道、绿化带、右线人行道、污水管道等必要设施,故下边坡支护采用局部填土堆高后施工抗滑桩及挡土板墙。而上边坡因场地限制坡顶均临近建筑物,对支护设计的技术要求更高,在技术可行的前提下,经技术经济必选,为保障排污管道的合理埋设高度,并保障沿线绿化景观美观,上边坡均采用了两级边坡支护结构,大部分地段均采用锚杆支护挡墙方案,局部临近天然基础建筑物或摩擦桩基础建筑物设计采用双排桩支护结构。本论文特就支护结构及排污管道基础的设计与施工进行总结,以供借鉴。
2 工程概况
2.1 地质情况
根据现场踏勘并结合详勘报告,本边坡工程地层自上而下分别为杂填土、淤泥质土(局部有)、软可塑粘性土、粉土、坡底有卵石。坡面存在周边居民污水直排入坡面现象,场地内地下水位标高与河水标高基本一致,地下水主要分布在卵石层中,水位变化受河水控制。
2.2 使用功能概述
上边坡支护工程既承担了边坡安全稳定的功能,同时又承担了右线人行道、右线绿化带以及污水管道基础等综合功能,为此,边坡设计基本采用两级边坡支护,第一级边坡坡顶紧邻建筑物,第二级边坡的坡顶由外向内依次布置为坡顶绿化带、人行道及Φ 600污水管道。
3 工程设计
3.1 支护设计
本工程为紧邻河道的高边坡,由于其洪水位较高,在洪水泛滥时,河水基本将本工程所在的边坡完全淹没,由于此边坡为永久支护边坡,因此,此边坡支护工程必须着重考虑在地下水及水动力作用下边坡的安全稳定性以及支护体系的长久有效性。本工程边坡开挖较高,范围很大,边坡支护施工期间,存在约6个月的汛期,故须先进行临时度汛支护施工。
鉴于上述情况,在技术可行的前提下,应尽量采用经济合理的支护结构。本设计整体设计思路为:采用复合锚杆挡墙支护结构,利用锚杆和预应力锚索形成的支护体系达到边坡的安全稳定,通过锚杆钢筋的防锈处理以及采用压力分散型锚索实现锚杆承载能力的长期有效,实现边坡永久支护安全之目的。并通过外侧钢筋砼面板的钢筋笼与锚杆钢筋焊接连接使支护结构形成稳定的整体结构。部分紧邻建(构)筑物的边坡设计采用桩锚支护结构,以确保建筑物的安全以及边坡的稳定。
3.2 结构设计
为保障边坡支护的长期有效,边坡设计使用年限为30年,并考虑由于河水以及地层中地下水的长期影响,边坡支护进行结构封闭设计,本工程通过支护桩或喷锚面形成坡体内封闭,然后通过外侧的面板和顶板实现了结构封闭,即有效阻隔了河水,又使边坡体刚度增大。一、二级边坡的面板设计厚度为 800 mm厚度,二级边坡85.00 m标高以上为500 mm厚度接顶部300 mm厚度顶板,面板配筋均为双层双向φ18@200钢筋笼,保护层厚度为60 mm。
3.3 排污设计
二级边坡顶部排污管道每隔100 m及转角处设置一处砖砌污水检查井,检查井直径800 mm,沿线有排污口至坡面的均通过连接管连接至线路上的排污管道,在连接处设置一带沉泥槽的检查井(直径为1 250 mm),过规划道路处排污采用倒虹吸结构,管道采用钢管。排污管侧壁为钢筋砼侧板,管道底部与顶板之间的空隙采用水泥砂浆找平,管周360 °均充填优质粘性土或碎石,之上为300厚C30钢筋砼顶板(沉泥井、检查井除外)。
3.4 度汛临时支护设计
度汛临时支护均采用了造价低、施工进度快、防水效果好的锚杆挡墙临时支护结构。锚杆均采用钢筋锚杆,采用锚杆钻机干作业成孔,孔径130 mm。临时支护施工仅一个月左右即完工,在夏季的洪水袭击中,洪水完全淹没了上边坡,因为施工了,临时支护,坡体和坡上建筑物均未受损,保障了人民生命财产安全。临时支护典型剖面,如图1所示。
3.5 双排桩支护设计
双排桩支护结构采用两排直径1 200 mm人工挖孔桩+冠梁(腰梁)+六道预应力锚索的支护结构体系,桩采用人工挖孔桩,桩身混凝土强度等级为C 30,桩径1 200 mm,护壁厚度200~250 mm,桩间距1 500 mm或2 000 mm(即密布)。冠梁断面尺寸为200X 1 000 mm;腰梁断面尺寸550X420 mm。支护桩桩长为19.0米,桩底进入卵石层。预应力锚索长25~32 m,为压力分散型锚索,采用4×7Φ5无粘结钢绞线,成孔直径Φ 150mm。具体剖面图,如图2所示。
1动态设计原理与方法
对于边坡工程来说,设计往往具有超前性,而施工则直接体现了现实性。这样,二者之间不可避免地要产生矛盾,为解决矛盾就需要把施工中不断获得的新信息经处理后传递给设计,以此不断修改完善设计,直至最终解决矛盾。
对于重大的深挖方路堑边坡工程,在勘察和设计阶段对其认识是有限的。而随着施工开挖的逐步进行,真实的工程地质条件逐步摆在面前。在施工完成后,对勘察、设计、施工及监测获得的经验数据进行总结归纳,则可为相似工程提供可借鉴的经验,提高施工前的认识水平。因此,在深挖方路堑边坡工程设计施工过程中,应将勘察、设计、施工及施工监测、施工后分析作为一个整体,进行动态设计施工。针对近年来公路建设中出现的问题,结合公路工程特点,对于公路深挖路堑边坡工程,提出如下系统的动态设计方法(图1):
(1)进行详细的施工前地质调查和勘察,力求正确把握边坡工程地质条件。重视岩体结构特性的研究,在勘察中要查明边坡岩体结构特征,分析控制边坡稳定的主要结构面;
(2)运用工程地质类比分析、地质力学综合分析等方法对边坡的稳定性做出定性的判断,尤其是要判明边坡的整体稳定性问题;
(3)运用数值计算分析、极限平衡分析等对边坡的稳定性做出定量的判断;
(4)根据稳定性分析评判的结果,进行开挖和防护工程设计;
(5)针对边坡地质结构、薄弱环节和防护措施特点,进行施工期间施工监测设计,确定重点监测部位、监测方法、手段等;
(6)开展边坡工程开挖和防护工程施工,进行施工监测,获取开挖揭示的工程地质信息、变形信息、施工技术信息、防护结构应力信息等,并对获取的信息进行及时整理分析,据此以修改设计;
(7)施工完毕后,对监测资料进行综合整理分析,对施工后的稳定性作进一步的判定,对边坡的变形破坏特征进行深入研究,分析不足,总结经验,为其他工程提供可借鉴的经验。
2赣大高速公路某段高边坡地质概况
地面植被较茂密,表层有厚度约3m的坡残积粘性土,基岩主要为古生代变质岩—石英云母片岩。岩体受构造影响强烈,构造节理发育,有的节理面可见擦痕和硅化面,岩块上可见强烈的小褶皱和节理切割错断迹象,岩体风化带和风化节理很发育,全风化带厚5一lOm左右,下部为中等风化带。边坡岩体被结构面切割成碎石状和块状。岩体主要节理有5组,节理产状:120“乙45“一600;330“乙650;195“乙35“一580; 2400乙650;1700乙630。片理产状:800一95“乙29 0 } 45 0。线路走向1120,边坡倾向2020。由边坡与岩体结构面的关系可知,不利于边坡稳定的结构面主要有三组,即:2400乙650; 1700L630; 1950L350 }580。路堑挖方深度内无地下水,但降雨时,由于岩体节理发育,开挖裸露后,成为雨水人渗的路径,降雨期会出现临时性裂隙含水现象,因而影响边坡岩体的稳定。
3施工过程中的动态设计
(1)该路堑高边坡地段的最初施工设计方案为15m高挡墙,上接1一3级(15一20m)的高护墙,护墙坡率为1:0. 5,1:0. 75和1:1。
(2)经现场设计复查,为减少大量的高边坡护墙施工的难度和护墙浆砌片石污工量,将挡墙顶以上的护墙改为挂网喷浆轻型防护。
(3)该路堑高边坡地段按以上修改的设计开挖。至2006年9月,路堑上部开挖基本达到设计形态,岩体的构造节理和风化带基本裸露,同时也出现了局部边坡岩体开裂或坍滑。根据实际开挖和岩体变形情况,经过进一步的地质工作,全面查明了岩体风化情况和结构面组合特征,发现岩体很破碎,风化强烈,且存在三组不利结构面,导致由其组合产生的楔体状坍滑。
依据开挖后的实际地质条件,岩体边坡的设计参数相应修改后,对设计和施工方案同时作调整。考虑到边坡高、工期紧、施工难度大,进行了四个设计方案的详细比较。四个设计方案分别为:1)拉杆锚桩方案,适于在边坡下部支挡,可替代原设计的底部挡墙,但对高度达60m的边坡,仍需放缓边坡刷坡或采用预应力锚索等加固,施工困难;2)放缓边坡方案,则边坡高度将超过100m,土石方数量增加较大,坡面防护面积也大大增加;3)预应力锚索支护方案,锚索工程量大,但便于施工;;4)部分边坡放缓与锚索、锚杆支护相结合的方案,基本不增加边坡高度,通过锚固和挡护工程加固边坡,并维持原设计的挡墙和边坡坡率,对有条件刷坡且增加高度不大的地段,采取边坡放缓与锚索、锚杆支护相结合的措施。经综合比较,该方案最优,较为经济,便于实施。因此,采用了部分边坡放缓与锚索、锚杆支护相结合的方案。
(4)采用的设计方案如图2所示。底部片石混凝土挡墙高15m;中部两级边坡,预应力锚索加固和挂网喷浆防护,坡率1:0.75;上部边坡1:1,框架锚杆加固和挂网喷浆防护;顶部边坡1:1.25,植草护坡。设计对下一步施工方案做出了相应的规定,要求支护工程自上而下、边开挖边支护;边坡支护完成后,方能进行下部开挖;底部挡墙严格按跳槽开挖浇筑,墙背坡根据岩体情况,在开挖时采用随机锚杆和喷浆作为临时支护。
中图分类号:TD229 文献标识码:A 文章编号:
在城市不断发展延伸的过程中,各类功能性建筑也随之扩展,在平原、盆地等利于进行建筑工程建设的地方被利用殆尽后,建筑工程逐渐转向地形比较崎岖的山区、丘陵,其中功能性建筑占大多数,观赏性建筑如雕像、寺庙等建筑占少数。而要保护这些实用性建筑通常采取的做法是桩墙-锚喷组合结构,下面我们通过借鉴一个实例来讲解桩墙-锚喷组合结构在高边坡中的支护设计。
1.工程基本情况
1.1工程简单叙述
某集团因空间问题,需在一处山坡山上拟建一座具有四层楼和一层地下室的建筑,此建筑物的结构为钢筋混凝土框架结构。因为室外地面上控制标高的要求,在平整场地时,土方开挖后在所建的建筑物的东、西、北面形成了一个4米到17米高的土坡。经研究决定,对于工程的要求需要对这个高边坡进行长久性的支护。
1.2所建工程的地质情况
目前在拟建场地地面标高开挖后,处于20.75m到22.17m之间地形较平坦。此处的地貌单元在长江二级阶梯上。据拟建产地岩石土壤工程勘察相关报告显示,高边坡主要处于③—2可塑黄褐色的粉质粘土层中,其物理指标如下表:
表1③—2可塑黄褐色粉质粘土层土指标
2.针对工程实际情况提出的支护方案
根据土层分析的实际情况和坡高的差异,再把土层稳定性的分析加入其中,对边坡采用两种方法进行支护。
(1)在地段的坡高小于5.0m的地方,使用毛石与素混凝土有机结合,形成重力式挡土墙。
(2)在地段的坡高大于5.0m的地方,使用人工挖孔桩与喷锚的方式来形成支护结构,但要注意放坡的比例是1比0.3。
在支护工程中,可以从三方面入手:一、Φ1000人工采取挖孔桩的方式来加强对坡脚的防护,同时在孔桩的顶部位置设置一根锚杆,这样可以有效地提高土坡的稳定性。二、在坡面和孔桩顶部以上的高土坡体可以采用喷锚支护。三、在挖孔桩悬臂端的背后可以采用人工填土的方式进行夯实,在孔桩的顶部使用顶连和系梁的方式来保证支护结构的稳定,这样可以多角度地做到对高边土坡的支护。下面是高边坡支护的平面图的参考图:
3.对方案中支护结构的计算
3.1高边土坡稳定性的分析
(1)Taylor法
在放坡比例为1比0.3的前提下,土层参数取值为Φ=20°,C=70kPa,H=17.0m,β=75°,r=19.2Kn/m。
根据数据查询可知N=7.7,而土坡的放坡高度为:H= NC/r=(7.7*70)/19.2=28.1m,安全系数K=28.1/17.0=1.65,而1.65大于1.30,根据计算所得的结果可以知道,土坡依照这种方法支护是安全的。
(2)Bishop法
使用Bishop圆弧滑动面计算的方法来测定土坡的整体的稳定性。因为拟建场地的土坡高度不相同,现采取5.0m,11.0m和17.0m三种不同高度值的土坡进行稳定性分析,通过计算公式的计算,得出三种高度最小安全系数对应的值,如下表:
表2 三种不同高度值安全系数对比
通过对以上表中的数据进行比较发现,最小安全系数接近1.30,表明土坡存在安全隐患,并通过分析可以知道,坡脚附近是土坡最不利的滑动面发生的位置。如果土坡在不受外力作用的情况下,其自身土质层的性质较好,在短期时间内能确保无问题,稳定性还不错,但时间长了,受到一些外力的作用,如雨、风或震动情况,会使土坡坡面及坡脚发生变化,从而影响其原有的稳定性。尤其是在颇高17m处,此处的最小安全系数为1.39,很容易在外力的作用下产生隐患,因此建议本工程对坡面及坡脚进行长期性的支护。
4.对支护结构的计算
4.1针对坡高在17m处得支护段的验算,土压力强度设计分为主动土压力强度与被动土压力强度。
主动土压力强度:
被动土压力强度:
4.2锚杆的水平拉力计算
在反弯点2以上力矩平衡的条件下,R*5=227.25*2.07可得R=94.08kN/m。
4.3桩长的计算
在上端点1假设为铰支的条件下,按照单支点浅埋的支护方式来计算出嵌固深度t
桩长L=5+1.2*3.6=9.32m,实际中取值10m。
4.4验证单支点浅埋式计算模型的合理性
在人工挖孔桩Φ1000mm的情况下,混凝土强度等级C25,b=0.9*(1.5*1.0+0.5)=1.8m,根据其自身特性取值m为35000Kn/m
I==0.0491m EI=1.85*2.8*10*0.0491=1.17*10Kn/m
说明了使用浅埋式的计算模式是合理的。
4.5锚杆连系梁的设计
(1)锚拉杆力的计算。锚杆的水平倾角取用15度和20度,使其间隔排列,锚杆的有效孔径D=15cm,然后取土层参数,r=19.2kN/m,φ=20.9,C=73.8kPa。自由段长度为:
实际去5.0m。
取锚固段长度L=13m,锚杆总长L=13+5.0=18m,土体与锚固体极限摩阻力取q=60kPa,锚杆拉力R=πDL*q=3.14*0.15*13*60=367.38kN
锚杆容许水平拉力,锚杆抗力分项系数r取2.0
(2)锚杆间距与强度的计算
锚杆间距L==1.83m,实际取锚杆间距为1.5m
锚杆强度的计算:使用两根1860级的钢绞线,D=14.2mm
5.其他建设性的防护措施
加强土坡表面的排水系统,积极疏通坡脚水沟,对水沟进行填土夯实,预防水渗入边坡,可以在边坡的两面用石块混凝土砌严实。
加强坡面整体的绿化面积,植树种草,减低雨水等外力对坡面土石的侵蚀,并对施工后的高边坡的支护进行监督检测,发现问题及时的维修。
总之,人们从以往的实际工程建设中得出治理高边坡防护的经验与方案,桩墙-锚喷组合结构体系被广泛采用,它在高边坡支护中的效果很明显,它不仅安全性能可靠,在经济上相对合理。对高边坡的支护工程要经过精细的验算后得出是否有安全隐患的结论,这样不会造成盲目施工,导致人力、物力和财力的浪费。希望在以后工程中的不断使用,使此方法得到更有利的改进和完善,为复杂地形下的施工提供更好的解决方案。
参考答案:
[1]张质衡,汪秀石.桩墙—锚喷组合结构在高边坡支护中的设计[J].低温建筑技术,2009,(05):91-93.
[2]姚立新,姜景,倪爱琳.桩—锚组合法在高边坡支护中的应用[J].江苏建筑,2010,(06):74-76.
拟建某住宅项目由2#住宅楼、3#住宅楼以及地下车库三部分组成。其中地下车库地下2层,筏板基础,设计基底标高-10.0m,基坑深度9.4m;基坑支护方案为土钉墙护坡。护坡施工完工后第16天,该边坡发现不明水源,造成土钉墙墙面潮湿,并有渗水现象,施工方通过增设导水管,对其进行导水。第二日晨发现此段边坡顶局部出现裂缝,通过边坡位移观测,发现边坡水平位移突然增至64.0mm,并有继续增大的趋势。论文格式。施工方马上在坡脚进行堆土反压加固,第三日凌晨5点,回填至地表下2.5m位置,通过持续监测表明边坡已经得到有效控制,基坑变形没有发展。
根据现场情况编制如下应急预案:
坚持“安全第一,预防为主”、“保护人员安全优先,保护环境优先”的方针,贯彻“常备不懈、统一指挥、高效协调、持续改进”的原则。更好地适应法律和经济活动的要求;给企业员工的工作和施工场区周围居民提供更好更安全的环境;保证各种应急资源处于良好的备战状态;指导应急行动按计划有序地进行;防止因应急行动组织不力或现场救援工作的无序和混乱而延误事故的应急救援;有效地避免或降低人员伤亡和财产损失;帮助实现应急行动的快速、有序、高效;充分体现应急救援的“应急精神”。
1、场地条件分析
拟建场地地形较平坦。论文格式。在勘察深度范围内按地层沉积年代、成因类型及岩性将其划分为人工堆积层、新近沉积层、第四纪沉积层三个大层。根据岩土工程勘察资料,场地天然地表下4.00~6.00m时见地下水,静止水位1.40~2.20m,标高42.57~43.29m,为上层滞水。地下水对混凝土及钢筋混凝土结构中的钢筋在干湿交替状态下均无腐蚀性。现场已采取了降水措施,施工过程中,现场出现局部滞水已经完全排干,根据导水管出水量判断导致坡面变湿边坡位移的水源为非上层滞水。论文格式。
2、周边环境分析
基坑上口线距离建筑红线(围墙)3.1m;红线外3.7m有一座二层住宅楼,基础埋深2.0m;建筑红线内围墙脚下有一高压电缆,埋深0.5m;建筑红线内距围墙1.0m有两道150mm直径天然气管线,埋深1.2m。
3、边坡加固方案:
施工再次开挖基坑时,拟采用钢花管加锚杆加固措施,以增加支护结构的整体强度和对变形的约束力。
钢花管:设三道钢花管,采用直径1.5寸钢管,水平间距2.0m,钻孔直径Φ120,钢管内外注M10水泥浆。
第一道钢花管:长9.0m,布置在地表下2.3m处(2.7m以上),倾角15度;
第二道钢花管:长9.0m,布置在地表下4.1m处,倾角15度;
第三道钢花管:长6.0m,布置在地表下7.3m处,倾角15度;
锚杆:设两道锚杆。
第一道锚杆,锚杆长度为18m,两根Φ15.2钢绞线,自由段长度5.0m,水平间距2.0m,锁定荷载250kN。锚杆布置在地表下2.7m处,倾角15度;腰梁采用22b槽钢;承压板规格:200×200×16mm;锚具规格:QM15-2。
第二道锚杆,锚杆长度为15m,一根Φ15.2钢绞线,自由段长度5.0m,水平间距2.0m,锁定荷载150kN。锚杆布置在地表下5.6m处,倾角15度;腰梁采用20b槽钢;承压板规格:180×180×16mm;锚具规格:QM15-1。
4、现场风险分析
鉴于目前基坑边坡已经发生了较大的变形(坡顶水平变形最大变形70mm),根据目前状况,加固施工期间可能发生的风险有以下几点:
A.基坑变形继续发展,导致坍塌;
B.基坑东侧建筑物倾斜,造成无法正常使用;
C.天然气管线泄漏;
D.高压电缆无法正常使用。
5、应急物资准备
现场安排挖掘机、推土机挖土运土机械应急使用;
现场备锚杆钻机、压力注浆机应急临时支护使用;
现场安排面包车、小客车运送人员;
联系附近旅馆安置居民,联系社区医院做好居民保健工作;
临时支护材料:φ60钢管、锚杆、水泥;
消防器材:防止电源短路、煤气泄漏起火;
防汛器材:防止自来水、雨水、污水等管道破坏断裂,造成漏水,准备足够的潜水泵、污水泵、排水管、电缆等。
6、应急预案的启动前提
(1) 坡顶水平位移增量大于等于1.5mm/日,总位移累计大于90mm;
(2) 建筑物倾斜达到0.2%时或沉降速度达到1.0mm/d;
(3) 突降大雨、暴雨(大雪、暴雪);
(4) 意外事故造成边坡局部塌陷、崩塌。
(5) 煤气公司、供电局检测数据表明,煤气管线、高压电缆等生活设施出现险情:
(6) 建设单位、总包、监理单位认为需要的其他紧急情况。
7、管理措施
① 加固施工引起边坡水平变形及坡顶沉降、引起煤气管线及高压电缆的变形的指挥与控制。
通过变形监测,若发现坡顶水平位移增量大于等于1.5mm/日,总位移累计大于90mm;时,采取的措施如下:
A 立即停止基坑开挖,联系煤气公司人员检测煤气管线运行状况,联系供电公司检测高压电缆的运行情况;
B 根据煤气公司检测人员的意见,采取煤气管线加固措施,或断气处理;
C 根据供电公司检测人员的意见,采取电缆加固措施,或用备用电缆替换,保证供电安全;
D 据现场情况采取进行堆土反压(加高、加宽)措施。
② 加固施工引起地面不均匀沉降,引起附近建筑物的倾斜的指挥与控制。
当发现附近建筑物倾斜达到0.2%或沉降速度达到1.0mm/d时,采取的措施如下:
A 立即停止基坑开挖,加强基坑加固方案;
B 邀请有关专家或加固单位共同制订建筑物的纠偏方案并组织实施。
C 建筑物墙体发现裂缝时,联系物业、餐馆,组织建筑物内住户外迁。
② 突降大雨或大雪时,立即起动备用水泵抽水(突降大雪或暴雪时,立即组织清扫、外运坡顶积雪),并安排专人不间断观察基坑的稳定情况。
8、公共关系
项目部办公室为项目部各信息收集和的组织机构,人员包括,办公室届时将起到项目部的媒体的作用,对事故的处理、控制、进展、升级等情况进行信息收集,并对事故轻重情况进行判断,有针对性定期和不定期的向外界和内部如实的上报,向内部上报主要是向项目部内部各工区、集团公司的上报等,外部主要是向建设、监理、设计等单位的上报。
9、预案解除
充分辩识加固过程中存在的危险,当监测数据表明边坡处于安全稳定状态时,经甲方、监理工程师认可,由现场紧急抢险组长宣布解除紧急抢险状态,恢复正常工作状态。
【参考文献】
[1]建筑边坡工程技术规范. GB50330—2002.
【关键词】公路路基;边坡稳定;影响因素;防治工程
1.前言
伴随着经济的迅速发展,道路建设也在不断发展,在公路建设中,边坡建设也是重要一环,但是其在建设过程中存在着许多问题,特别表现在地理环境比较复杂的道路修建上论文交流,请加,谢谢。由于在道路建设中出现高边坡是无法避免地,从而边坡稳定技术也变得越来越重要,它不仅关系到工程建设的整体进度,也关系到场地周围的环境保护,更重要的是关系到建设工人的生命安全。因此,对造成公路边坡失稳的成因进行分析,并适当的采取行之有效措施,是使问题得到化解的关键。
2.路基边坡设计的特点
2.1非标准设计
不同地段的边坡有着不同成长因素,会因为其成因机制、稳定状态及形成条件等存在差异,所以对工程建设产生的影响也会不同,在边坡防治进行设计时,对所有边坡的范围、治理部位都要进行计算,并制定出分别与之相适应的措施及方案。所以,边坡治理工程的设计没有固定的设计标准,必须有针对性地对边坡加以设计。
2.2风险性设计
缺乏稳定性的边坡一般都位于比较复杂地形内,边坡体承受着外界巨大的荷载,在所有的治理工程必须对其进行承受,其本身必须具备充分的抗变形能力及抗破坏论文交流,请加,谢谢能力。但迄今为止,边坡防治技术还处在发展阶段,其存在不成熟、不完善、不严谨性,因此,边坡治理工程的设计还具备着一定的风险性。
2.3应急设计
边坡灾害的发生时常存在着突发的性质,为了减少其危害程度,必须对此进行有效的预防,但很多形式下都存在着应急的特点,其边施工、边监测、边勘察、边设计。
2.4综合防治设计
公路路基边坡的设计和施工,必须根据边坡的具体特点,同时采取不同的技术办法,达到综合治理的效果。因此需要对原有治理方案进行合理的分解,选择分步、分期实施,从而实现综合防治。
3.对影响边坡稳定的因素进行分析
剥落、崩塌、滑坡是公路边坡失稳的三种主要表现形式。一般由风化、雨水、爆破、地震等因素造成的,其中长期的风化、雨淋等因素致使边坡的抗滑力减弱,出现滑坡等现象,而爆破地震等可直接导致边坡失稳。
3.1边坡的成分和强度参数
目前我国的公路边坡以土质边坡为主,其强度由土的的内摩擦力及粘聚力决定,土的类型不一样,其颗粒大小也会不一样,含水量不一样,对边坡的承受强度也会造成直接影响,从而影响边坡的强度系数。同时不同的季节、不同的地区依照土的冻结状况其强度也会出现差异。
3.2边坡的坡度及施工因素
边坡的高度与其底部宽度的比即表示边坡的坡度,坡度的大小对稳定性造成直接的影响,坡度越小稳定性越高。在施工过程中,有时为了给施工带来方便,通常会筑起比较高的边坡,而且对边坡土质缺乏实际考虑,开挖方法、开挖深度及施工规范也缺乏认知,甚至还出现了随意在边坡顶部摆放废石残渣的现象,造成边坡过载。同时在工程施工中缺乏具体的勘察设计,也没能及时的采用加固及支护措施,这都会给公路边坡的稳定造成隐患。
3.3人类活动及工程建设
人类频繁的工程活动,存在着许多的违章挖填土行为,对坡脚待填土进行任意的开挖,在坡顶建造房屋,公路附近进行大工程量的建设,这些都会给公路边坡增加压力,坡体的下滑力得到增加,稳定性也就受到了影响。同时在工程建设中无定向、无防护的爆破,也会给边坡水文地质和力学性质造成影响,致使抗滑力下降,下滑力上升。
3.4自然环境和地质条件
不同地域的边坡其自然条件也存在着差异,不同的自然条件对其影响程度也不一样,其中影响最为明显的是含水量,地表的降水会渗入边坡,使软弱夹层的摩擦力被降低,同时会对坡体进行侵蚀,提高坡体的重量,使下滑力上升;再加上风化作用,土体的抗剪强度也会受到影响,使裂缝扩大造成土体剥落脱离;要是发生地震,就会直接使坡体的力学性质得到改变,使土体变得松弛,其整体强度会受到影响。
4.公路路基边坡稳定性预防和防治措施分析
4.1因地制宜
公路施工过程中经常会出现边坡,必须结合实际情况进行处理,从现场的地质条件、气候条件出发,合理设计坡度,适当的选择材料,对边坡实施防护。可以利用锚杆支护及水泥抹护等,必要时进行削坡减载、设置挡土墙等。此外还需要制定并实施施工规范,实现边坡防护的规范化。对降雨多发的地形,可以设置粘土垫层及止水帷幕,减少地下水及地表水的侵蚀,并在坡顶建设排水沟,第一时间将雨水排除,降低边坡的危险因素。
4.2喷锚加固及土石拦截
喷锚支护是当前边坡支护的主要的措施,土质边坡具有间隙大、强度低的特点,比较实用的措施有锚杆、支撑、灌浆等。对可能会出现较大规模滑坡的自然坡体,则可以修筑锚固桩、抗滑挡墙等较大型的防护工程,也可以选择对土性进行改良,采用动力固结、电渗及喷射注浆等措施。同时需要在坡面实施拦截措施,预防石块的下落及岩体的崩塌,减少对行车安全造成的不利影响,在设计勘察时就必须依照岩体滑落、翻滚、弹跳及落点的位置提前作出预测,通常的拦截办法有修建拦石墙、金属网及落石槽等。
4.3边坡生物防护及绿化
对边坡的稳定加以防护其生物防护的作用也日益突出,在边坡的修筑过程中,植被遭到损坏,加重水土流失,影响边坡的稳定性。通过对栽种植物的挑选,栽种时机的把握,对边坡沿线实施生态防护,这样不仅保持了水土还美化了环境,同时它还具有造价低、经久性强实用性高的优点,具有很高的实用价值。
4.4实施监测,及时预防
随着公路边坡事故的频繁出现,其危害也越来越明显,工程建设时必须加大对边坡稳定的防护,其监测技术也有待提升,如数字摄影、地震勘探、放射测量及探地雷达等的运用;目前主要是对边坡的位移及变形信息进行采集,然后分析出边坡的破坏特征及变形机制,从而对边坡的稳定性提前做出预测,及时采取适当的办法对边坡实施防护,使灾害在初始状态就得到控制,这样不仅可以减少经济损失,同时对人们的生活也不会造成困扰,具有极大的现实意义和运用价值。
【参考文献】
[1]王倜,陶双成,孔亚平.表土在彭湖高速公路低缓边坡生态恢复中的应用[J].生态学杂志. 2012(01).
[2]赵冰华,张士萍,沈振中.岩质高边坡开挖应力与蠕变稳定性研究[J].中国农村水利水电. 2012(01).
[3]杨光华,张玉成,张有祥.变模量弹塑性强度折减法及其在边坡稳定分析中的应用[J].岩石力学与工程学报.2009(07).