时间:2023-03-22 17:33:46
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇生物技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2.1改革现有教学模式
目前,生物技术专业人才不但需要掌握扎实的生物学理论知识,而且还需要具有一定独立从事科学研究和创新能力。许多综合性大学生物类研究生的招生规模已超过了本科生的招生规模。为了满足社会的需要,应在本科阶段即开始培养学生科学研究和创新的能力,为学生的进一步深造打下良好基础。因此,可以考虑改革现有教学模式,将生物技术专业毕业论文时间安排提前,在大三甚至大二时学生即可以在导师指导下进入实验室进行科学研究。郑增娟等对某医学院校本科生通过问卷调查研究发现42.6%受调查的学生都希望将毕业论文撰写时间提前至大三[4]。这样不但可以增加学生对理论知识掌握和应用的能力,还可以加强学生的科学研究素养,让学生有充分的时间去完成创新性和探索性较高的课题,以保证毕业论文的质量。目前,我校药学与生物科学学院已开展了尝试,在新生入校起,所有生物技术专业本科生就实行导师制,一般每位导师指导2-4名本科生。这样学生从大一开始,就可以进入导师的实验室,有充足的时间来确定毕业论文的选题,以及培养学生的科研兴趣、实践能力和创新思维能力。
2.2选拔具有较高学术水平和责任感的教师承担论文的指导
要明确指导教师的责任,通过制定指导教师工作细则来实现本科毕业论文指导的制度化[5]。指导教师应在毕业论文过程中培养学生树立勤勉严谨的工作态度、实事求是的科学作风,使学生充分认识到做好毕业论文对提高自身思想道德、业务水平、工作能力和综合素质的意义。同时指导教师自身的学术水平、学术道德和品行操守对学生会有深刻的影响。
2.3全程监控毕业论文质量
毕业设计过程中,要始终以指导教师为主导、学生为主体、组织管理为保障[6]。从任务书的下达、相关文献的查阅和论文的准备、开题、实施、中期检查、论文撰写阶段教师均要全程进行指导和监控。学校教务部门应制定论文开题与中期检查制度,全程监控论文的实施和完成情况。学校还应为学生建立完整的论文档案,如学生的任务书、开提报告、实验记录、论文等。指导教师在论文全程中的指导和监督是指强调指导教师的启发和引导作用,而不是布置任务似的指导,否则会导致学生过分依赖于指导教师,无法培养学生独立分析问题和解决问题的能力。
2.4规范论文写作、严格答辩程序、客观评定成绩
论文写作要按正式期刊的发表要求来规范,从科学术语、文献引用、标点符号使用、图表绘制、图表说明等方面都应规范化。学校从2012年起实行本科毕业论文制度,规定重复率在30%以上的必须修改后才能参加答辩,重复率在60%以上的推迟一年答辩。对答辩过程应严格监督,如采取的教研室小组答辩、院级公开答辩和校级公开答辩三种形式是一种较好的尝试。小组答辩以教研室为单位分组进行,导师一概回避,互相答辩对方评委的学生,严格规定答辩程序和时间(如学校规定陈述和答辩时间必须控制在15min左右)。成绩的评定应采用客观、公正、合理的评价体系,最好是能量化的指标,如从论文的创新性、理论知识的掌握、论文工作量、实验结果、论文撰写等各个环节给出具体评分标准,成绩评定的主体可采用指导老师、论文评阅教师、答辩评委三级评分相结合。随机抽取30%左右参加院级公开答辩,被评为优秀的再参加校级公开答辩。这样能有效地对毕业论文(设计)的最终质量进行监控。
2.5建立本科毕业论文的激励制度,提高学生毕业设计的积极性
应建立完善的本科毕业论文激励制度,如学生的毕业论文公开发表在学术刊物上、获得了某些等级的奖励与表彰、获得了国家专利等,学校应给予一定的奖励。可以通过物质鼓励或以增加综合素质测评绩点、评优、评先、评奖学金、免试推荐攻读研究生等形式进行奖励。这样就能大大提高学生毕业论文的积极性,为毕业论文质量的提高打下基础。
1.分子生物学技术
由于农业养殖日益呈现出规模化与集约化较高的特征,再加上人们对短期经济效益的集中追求,所以我国传统的畜禽品种资源将会遭遇越来越严重的破坏,其群体数量将日益降低,品种资源的破坏形势会日益加深,根据这种现实情况,未来农业动物生物技术将在以下分子生物领域进行发展:对我国固定的优良品种或基因进行挖掘与定位;为畜禽的遗传多样性进行保护的分子监测技术;我国固有畜禽品种的起源与进化的比较基因组学研究;保存动物遗传资源的生物技术研究。
2.分子育种技术
我国农业中的畜禽育种工作经过长时间的发展,逐渐由追求数量转向追求质量,育种方法也逐渐由数量遗传法转向分子育种与常规育种相结合的方法,所以分子育种技术的改进将是未来阶段我国农业动物生物技术的一个主攻方向,分子育种技术的研究将集中在标记辅助育种技术、数量性状主基因的检测和定位技术、动物功能和抗病基因的诊断技术以及试剂盒的研究,通过这些方面的技术研究提高动物产品的质量,实现其最大效益。
3.分子诊断技术
畜禽疫病是对我国畜牧业生产以及产品安全造成主要影响的关键因素,畜禽疾病的危害严重、流行面广,潜在危险性较大,一旦发生就会造成较大的经济损失,因此,利用免疫学、现代分子生物学以及病毒学的相关技术,对我国畜禽的重要疫病进行分子生物学研究是是农业动物生物技术的主要发展趋势之一,主要包括:重要畜禽疫病的分子诊断、监测、重要畜禽疫病病原的大分子结构与功能研究以及试剂盒的研发。
4.转基因动物技术转基因动物是一种将胚胎工程与分子生物学有机结合而研究出来的一种基因工程动物,这种技术是克隆技术的突破性进展,影响动物发育过程中的基因表达,能够促进遗传学与发育生物学以及相关学科的发展,是加快动物育种进程、提高育种效率,为濒危动物提供生存方式的有效方法。
生物技术及应用专业的培养目标,是培养具有从事生物技术应用必备的专业理论知识和较熟练的综合职业技能,适应食用菌、组培苗、发酵产品等生产、基地建设、经营管理、技术服务及相关专业第一线需要的高技能人才。实训基地是培养高技能人才的必要场所,实训基地建设是实现专业培养目标的必要条件。通过实训,培养学生的职业技能,提高学生的实际动手能力。
(二)实训基地建设有利于提升学生就业竞争力,提高就业率
高职院校要保证就业率,就必须提高毕业生的“含金量”,让其成为用人单位心目中的合适人选。建立实训基地,让学生亲身实践无疑是提高其自身“含金量”最有效的方法。在参与实践的过程中,学生能将平时所学的理论知识与实际联系,同时,在实践中体现自身的价值,使学生的学习动机和方向更加明确,从而不断提高自身职业素质,提升就业竞争力。
(三)实训基地建设有利于培养“双师型”教师,提高教学水平
实训基地建设有利于培养“双师型”教师,提高教学水平。教师通过到实训基地锻炼,来提高自身的技术水平和动手能力,同时,教师在生产、管理第一线有利于获取各种最新的技术方法和管理理念,将这些新知识应用于教学,既可以保证知识的更新,又能激发学生的兴趣。
二、高职生物技术及应用实训基地的建设与实践
(一)校内实训基地建设
1.加强实验室建设,改善实验室条件。生物技术及应用专业重视和改善实验条件,加强实验室基本设施的建设,形成完善的实验教学规章制度和科学的运行机制。在学院的大力支持下,投入大量资金,对生物基础实验室、生物类专业实训室,重新装修并添置了不少仪器设备,大大加强了实验室建设。有足够的实验室承担专业基础与专业课的实验实训项目,可用于该专业的教学实验设备数量(800元以上)共610件,总价值237万元,生均10031元。实验开出率达100%。生物类基础实验室2005年8月通过了广西教育厅基础实验室合格评估。
2.加强校内实训基地建设,走“产学研结合”发展之路。广西农业职业技术学院现有校内实训基地5个:生物技术中心、生物技术实训基地(园艺方向)、食品生物技术实训基地、食用菌生产实训场、广西现代农业技术展示中心。主干课程“植物细胞工程”“发酵工艺学”“食用菌栽培”均有实力雄厚的校内实训基地。生物技术实训基地、食品生物技术实训基地,被批准为自治区示范性高等职业教育实训基地。
生物技术中心是一个集科研、生产、教学、技术推广为一体的现代生物技术综合开发中心。该中心初步形成了布局合理化、教职工知识结构专业化、生产科研管理科学化、生产经营规模化和教学实践化的产学研基地,成功开发果树类、经济作物类、药用植物类、观赏植物类等数十个品种,享有较高声誉。由专业教师担任生物技术中心主任,教师在生物技术中心开展科学研究,承担“优质网纹甜瓜组织培养技术研究”等6项科研课题。生物技术中心按教学计划安排学生实习,使其在取得较好的经济效益的同时,提高了教师的业务素质和学生的实践操作技能。
3.加强能力本位实践教学,提高学生综合能力。为了培养学生的实践能力和综合能力,我们非常注重以能力为本位的教学,开展各种形式的实践教学。(1)加强课内实践活动。主干课程理论和实训的比例为1∶1,做到理论与实践的结合。模拟生产实践活动,如食用菌课教师带领学生栽培各种食用菌,由学生自行制种、栽培、销售,既掌握了技能,又获得一定的经济效益。(2)改验证性实验为探索性实验,提高学生动手能力。根据课程的特点,学生在教师指导下,进行探索性实验。例如,在植物组织培养中,培养基不同,植物生长效果也不同。教师在教学中并不直接将这些实验技巧或方法告诉学生,而是指导学生根据所学的理论知识进行探索性实验,最后通过实验和分析得出最佳的方案或结果。(3)利用科研资源丰富实践教学,培养学生创新能力。在生物中心承担的科研项目中,有丰富的实验材料供学生进行实践教学活动。例如,在植物脱毒培养和试管苗增殖培养实验中,让学生参与香蕉、生姜的脱毒与工厂化试管苗快繁培养等项目,对提高学生的知识应用能力和科研创新能力起到了很好的作用。
4.健全实践教学管理规章制度。建立了一整套完整的实验、实训大纲和实习指导书。制定各门课程实践技能考核办法,加强学生实践技能考核。理论教学和实验教学由学校组织实施,生产实习和专业实践与合作办学单位共同组织实施。实训环节的成绩由指导实习的企业参与评定。
(二)校外实训基地建设
1.开展校企合作,实现双方共赢。实训基地建设离不开企业的参与。校企合作、工学交替是高职教育发展的必由之路。生物技术及应用专业通过签订合作办学协议,共建立了15个稳定的校外实训基地。如桂林莱茵生物应用技术有限公司、广西北生集团海玉农业开发有限责任公司、南宁市良风江食用菌生产示范基地等。这些实训基地实力雄厚,足以承担本专业的实训任务。我们每年都会派遣学生到企业进行实践,不少学生在实习期间就被企业选中留用。
2教学手段与方法的改良
传统的基因工程教学方法在水产类高等学校中多以板书结合多媒体的方法来讲解概念、原理以及性质等内容,其过程相对机械、枯燥,使得学生难以理解所学内容。对此,笔者通过多媒体教学与自制模型演示相结合的方法取代原有的传统教学。由于基因工程的很多内容相对抽象,仅仅通过文字、图片和语言来表述是难以讲解透彻的。现代的多媒体教学技术具有图文声像随意组合、灵活多变的特点,为学生创造了良好的学习情境。通过功能强大的各种计算机软件把一些很难理解的内容做成动画影片,化难为易、化静为动、变抽象为形象,使学生对上课产生兴趣,促进学生对知识学习的渴望。同时,利用自制的模型讲解课程中的重点以及难点。例如:在介绍限制酶的切割位点时,让学生手持模型,分别角色扮演限制酶和基因序列,在排列位置的互换中了解3种切口的方式以及位置。这样的教学方法不仅形象,也让学生在互动中快速、深刻地记忆知识要点。另外,通过当下研究的前沿话题为例,先提出一个问题,引导学生运用其他课程所学过的或者自身所积累的知识来联想、分析、讨论,自己设计解答此问题的方法或实验流程。然后老师再参与其中,在讨论和修改方法以及实验流程的过程中,引出所要讲授的新的概念和知识要点。
例如介绍表达物质(蛋白质)的鉴定时,老师会先提出问题:基因克隆表达出的物质是什么?这些物质是由什么组成的?鉴定这些物质可以使用什么方法?然后引导学生回顾生物学中心法则,得出基因表达物质为蛋白质,蛋白质是由氨基酸组成等所学过的知识,由此学生可归纳出氨基酸测序法等鉴定蛋白质的方法。最后老师再在此基础上补充出WesternBlot法、生物质谱技术等新的鉴定方法。这样的讲课方式让学生回到课堂上的主角位置,在复习了以往的知识要点的同时也加深了学生对新知识的理解与记忆,在一定程度上启发了学生如何去发现问题和解决问题。此外,基因工程是一门实践性很强的课程,在讲授理论课的同时,实验课的安排也是非常重要的。设计好与理论课相配套的实验课程,可以使学生加深对基因工程学理论的学习和理解,达到理论和实践相结合的目的。对此,各大高校均在基因工程实验课上进行了改革创新,但有一点总被忽略,那就是实验研究对象。目前,国内大多数高校基因工程实验课所使用的研究对象均为果蝇等无脊椎模式生物。这种情况对于普通高校而言是可行的,但是对于拥有特色学科的水产类高校而言,研究对象也应具有其专业特点。所以本实验课所使用的研究对象是斑马鱼这种海洋模式生物。研究对象的改变虽微不足道,但是能让学生更好地理解自己所学专业的特色,在实践操作中加深对所属专业的热爱。
3成绩考核
中国传统的应试教育产生了“高分决定一切”的迂腐思想。随着国家教育体系改革的不断推进,学生对于专业知识的掌握与否,已经不能仅从一张考卷成绩的高低来反映,考核成绩的结构应向多元化的方向发展。基因工程的最终考核成绩主要包括两部分:平时成绩占40%,其中课堂出勤率10%、课堂讨论10%、课堂小考10%以及实验报告10%;期末考试成绩占60%。这样的考核体系改变了过去注重结果忽略过程的做法,让学生在平时将知识一点一滴地积累起来。同时,也让授课教师能够及时得到教学效果的反馈信息,进一步提高教学水平。
苯丙氨酸解氨酶(Phenylalanineammonia-lyase,PAL)是苯丙烷途径的第一个关键酶。PAL普遍存在于植物和某些真菌、细菌和藻类中,其功能是催化L-苯丙氨酸非氧化性脱氨生成反式肉桂酸(cinnamicacid,CA),而肉桂酸是苯丙烷类次生物质(如黄酮、香豆素、木质素及某些酚类)生物合成的通用前体,因此该酶在植物次生代谢中具有极其重要的位置[14]。多数被子植物中,PAL是一个多基因家族,在一组染色体中含有一到多个PAL基因。PAL亚基通常由小型基因家族编码(一般2~5个成员),这些基因家族又图1黄芩苷生物合成途径Fig.1Biosyntheticpathwayofbaicalin186可分成2或3个亚族,随植物不同而异。烟草(Nicoti-anatabacumL.)PAL由2~4个独立基因编码,而欧芹(Petroselinumcrispum)PAL至少包含4个编码基因[15],例外的是火炬松,仅有1个pal基因。Whetten等[16]采用多克隆抗体识别火炬松PAL亚基,获得cDNA,经PCR扩增后测定pal基因序列,发现其与水稻、豆、甘薯等被子植物的编码序列存在60%~62%同源性。欧芹中pal基因含有6个内含子,其上游含有一段富含CT的区段[17]。目前已在诸如马铃薯(SolanumtuberosumL.)、拟南芥、烟草、黄瓜(CucumissativusLinn.)和大麦(HordeumvulgareLinn.)等植物中,克隆到了编码PAL酶的cDN段或基因组序列,其它多种植物的pal基因已测序并在GenBank注册[18]。课题组也已分离获得粘毛黄芩的pal编码基因,并进行了相应的序列和表达分析,发现黄芩pal基因与其它植物pal基因具有很高的同源性,从而证实了该基因具有高度的遗传保守性[9]。
2查尔酮合成酶
包括黄芩苷在内的所有黄酮类化合物的直接通用前体物均是柚皮苷查尔酮,它是由1分子桂皮酰辅酶A与3分子丙二酸单酰辅酶A缩合而成,其中前者来自苯丙酸中间途径,后者经醋酸经乙酰辅酶A羧化酶催化生成。这个重要的缩合反应就是由查尔酮合成酶(Chal-conesynthase,CHS)催化完成的,这是黄酮类化合物合成中第1个关键酶,具有限速作用[19]。自从第1个荷兰芹的chs基因在1983年以来[20],迄今已从多种植物中克隆了chs基因,如高粱(Sorghumbicolor)[21]、兰花(OrchidBromheadiafinlay-soniana)[22]和拟南芥[23]等。chs基因在不同植物类群中保守性较高,一般都含有2个外显子和1个内含子,而金鱼草chs则含有2个内含子[24]。chs基因的外显子1和2分别编码60个和340个左右氨基酸残基,但在序列长度和核苷酸组成方面外显子2的保守性高于外显子1,而作为活性位点的4个保守氨基酸残基位于外显子2中。chs基因内含子的大小及序列差异都较大。不同物种中查尔酮合酶在氨基酸水平上的一致性很高,约79%~91%,说明其具有高度的遗传保守性[25]。chs基因启动子具有多个对环境感受的特异性元件,如接受激发子诱导的ACE元件(ACGTele-ment)[26-27]和H区(H-box)[28],富含AT元件区[29-30]、以及负调控的沉默子[31]和维持基因转录水平的P区[32]。大部分植物的CHS编码基因是一个多基因家族,如矮牵牛、大豆和豌豆等,特别是双子叶植物的chs家族基因数目较多,如菜豆中已发现8个chs基因[33],矮牵牛的chs基因家族包括8~10个成员[34]。虽然chs基因家族中数目较多,但各成员基因编码区的同源性较高。由于CHS在植物外源基因的表达、细胞的发育和分化、花色素的积累和抗菌、抗胁迫生理过程等起着重要的作用,因此chs基因家族的不同成员往往受植物不同发育时期和组织特异性调控,对不同外源刺激的敏感程度也不同,这个特点与黄酮类物质的功能多样性相适应[35]。该课题组基于黄芩chs家族,利用同源性克隆方法,克隆获得了粘毛黄芩chs基因,并从分子水平上验证了所选植物的chs可能起源于同一个祖先,也反映出黄酮化合物为聚类指标的进化生物学意义,从而说明作为类黄酮代谢关键酶的CHS蛋白在自然演化进程中的遗传保守性和功能稳定性[36-37]。chs基因具有显著的时空差异性表达模式,如组织和发育时期的特异性表达,在一些植物发育的早期阶段CHS在叶片中表达,而成熟植株中主要仅限于花组织中存在;chs基因接受诱导因子调控的特异性转录,在很多植物(如矮牵牛、菜豆等)中,外界刺激如胁迫、紫外线和病原体会诱导CHS的快速响应并表达,CHS的这种对外界刺激的敏感程度的差异特点与CHS编码序列上游启动子中含有的特异性顺式作用元件有关[38]。此外,笔者也发现粘毛黄芩chs基因受到外源甲基茉莉酸的时间依赖性地调控,并建立了其诱导差异表达谱[37]。在基因工程领域,对chs基因调控作用的研究主要集中于植物花色表型和抗逆性状的遗传改良,而这种改变实质上也是基于细胞和组织内黄酮化合物的含量调节,例如通过对chs基因的反义或共抑制操作培育颜色变异的转基因花卉[39],也可以正调节马铃薯中的chs基因增加花色素苷等黄酮类化合物的积累,从而改善其抗氧化能力[40],而基于烟草转化系统的研究证实黄芩chs基因在驱动黄酮化合物生物合成的过程中发挥了重要作用[41]。
3黄烷酮3-羟化酶
黄烷酮3-羟化酶(flavanone3-hydroxylase,F3H)是黄烷酮分支点的一个核心酶,其作用是催化5,7,4-黄烷酮C3位的羟化,生成二氢山奈素(dihydrokaempferol,DHK),而该物质则是合成黄烷酮和花色素的重要中间产物[42]。因此F3H也是黄酮化合物生物合成途径中的关键酶,是控制黄酮合成与花青素苷积累的分流节点,被认为是整个类黄酮代谢途径的中枢。1991年,人们首次获得f3h基因序列,是从金鱼草中克隆出来[43]。目前已经在拟南芥[44]、苜蓿[45]和玉米(Zeamays)[46]中被陆续分离鉴定,且是以单拷贝形式存在,但在甘蓝型油菜和紫苏中则是以多基因家族形式存在,分别含有5~7个和2~3个成员。在这些植物中,f3h基因一般具有3个外显子和2个内含子[45]。笔者首次克隆了粘毛黄芩的f3h基因,通过系统进化树分析,从分子水平上验证了所选植物的f3h可能起源于同一个祖先,也反映出植物间的植物黄酮醇类化合物的含量与植物间亲缘关系有一定关系。f3h基因在一些植物中是独立表达的,如矮牵牛中的f3h基因,而在大多数的情况下,f3h则是和其上游的chs、chi(查尔酮异构酶)基因以及下游的dfr(二氢黄酮醇还原酶)基因协同表达的,这在拟南芥和金鱼草中都有相关的报道。此外,矮牵牛和金鱼草中f3h基因突变失活则可在阻断花色素的合成通路,获得白花的矮牵牛或金鱼草[43,47]。近期研究表明,通过调控f3h基因的表达能够有效改变植物花卉或种皮的颜色,基于该基因的遗传操作已成为花卉育种研究的重要手段[44,48];而旨在高产黄酮和异黄酮的药物代谢工程领域,通过反义抑制f3h基因阻断花青素合成途径能够使通用前体柚皮苷更多地流向黄酮和异黄酮,从而获得促进目标产物的积累,该方式证明F3H是黄酮代谢工程的重要靶点[49]。由此可见,f3h是黄酮生物合成途径上关键的限速基因,其催化反应是黄酮合成调控的的重要步骤。
生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。
生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。
生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。
生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。
在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。
生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。
同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。
二、生物技术带来的不利
从经济角度上讲,生物技术带来的不利并不明显,然而,它会引起发达国家与发展中国家贫富差距进一步扩大。因为,生物技术公司主要集中在发达国家,发达国家可以通过输出生物技术产品而获得利润。与此同时,发展中国家由于技术、及其产品还远没有被广泛接受。
生物技术可能引起生产方式和人类健康的退变。这种情奖品可能会随着需要特定处理的转基因作物的出现而产生,特别是抗除草剂的转基因作物出现。农民必须从同一公司购买种子和除草剂,否则除草剂起不了作用。同样的问题也可能在需人造肥料的转基因作物上出现,这些转基因作物会取代传统的依靠有机肥的作物,后者在发展中国家是很普遍的,并且也有利于环境保护。生物技术在食品上的应用对发展中国家的农民也会造成许多困难。生物技术也会对人类的健康制造麻烦。近年来在英国已有这方面的报道。特别是当能引发人体过敏反应的基因转入农作物时,例如,坚果能引发人体过敏反应,若它的基因被导入其他作物,则有可能其他作物也会引起人体过敏。为了预防起见,转基因作物产品必须经免疫测定筛选后才能利用。
验证性实验比例高达80~90%,而综合性或设计性实验比例很低或缺无;部分地方高校虽然设备更新很快,但不注重实验内容的开发,重硬轻软;实验师资队伍不稳定,加上学生多,分组大等因素,教学效果不佳;实验考核环节简化,缺乏对学生动手能力的测评.
1.2生产实习方面
高质量的实习基地建设较为困难;实习内容单一,难以满足实纲的要求;实习指导教师相对缺乏,且队伍不稳定,难以满足实习需要.
1.3毕业论文方面
选题开题一般安排在第七学期初进行,时间较晚;选题面相对比较窄,虽然能够满足每生一题,但真正原创性的选题比例较低,验证实验论文选题比例偏高;另外,综述性论文相对较多.
1.4课程见习方面
课程见习还没有形成综合课程见习体系,单门课程见习课时较少,多数是组织学生到企业参观,对学生的要求也不高,一般只需完成一份参观体会或调查报告即可,对课程见习的考核流于形式.
1.5社会实践方面
很多地方性高校大学生的社会实践活动由共青团组织,没有设立全校层面的管理和协调机制,不利于实践活动的有效开展;部分地方高校未把该环节列入人才培养计划,自主性较大,且考核不严格,也不能满足全体学生参加,效果不明显.另外,学生参与的社会实践内容与专业的关系往往不密切,仅仅停留在调查层面,缺乏专业性或者探究型的社会实践.
1.6科技创新方面
多数地方性高校大学生科技创新活动没有列入人才培养计划,有的高校即使列入了人才培养计划,也只是抵其它模块的学分(譬如公选课学分),而大部分学生参与科技创新的机会不多,且参与时间一般都在三年级以后,科技创新活动往往又归属于团委管理,这种管理归属不当,导致组织不力,考核不严,学生及指导教师的参与率均较低,不能培养大部分学生的科技创新能力。
2实践教学体系的构建与实践
构建完善的实践教学体系,能够有效地开展实践教学,解决实践教学中存在的突出问题.要体现“优化课内、强化课外、交叉融合、功能互补”,也要体现知识、能力、素质结构,强调宽口径专业教育和综合能力培养,更要加强动手能力培养,重视应用性技能培养,突出职业技能和创业能力的培养.以专业实践能力培养要求为主线,构建全程实践能力训练的教学体系,即构建以实验教学、知识应用、素质拓展、科技创新和社会实践等模块为载体的实践能力培养体系,完善和丰富每个实践教学平台中的具体内容.使实践教学累计学分占总学分及课程实践实验教学学时占理论课总学时均达35%以上.
2.1实验教学平台
将生物技术专业的传统实验课程进行有机整合,构建实验教学平台,按照“基础-应用-综合-创新”的四层设计思路,设计生物学基础实验、专业应用实验、综合运用实验和创新设计性实验等,深化专业知识的掌握,提高学生的动手能力和创新能力.该平台包含形态结构模块、生物分子与功能模块和及生物技术专业实验模块.在保证掌握基本知识、基本技能和基本实验方法的前提下,减少验证性实验数量,增加设计性及综合性实验的开设比例,培养学生的实验创新能力.该平台由基础交叉学科课程实验、微生物学、生物化学等专业基础课实验及分子生物学、微生物工程学及生物技术大实验专业技能实验等共计15门实验课程构成,各门实验课程既相互独立,又交叉互补,实验内容得到优化和整合.
2.2课程见习平台
由动物生物学、植物生物学、食品微生物学等及生物制品学、生物技术制药基础、生物工程设备及生物工程下游技术等18门课程,构成课程综合见习平台.每门课程设置9~12学时的课外实践课程,各门课程根据内容的相近和关联性,实施单一或综合课程见习.
2.3综合实践教学平台
该平台体现出基本理论与基本能力的协调、基础与专业能力的融合、专业技能与综合能力训练相结合的整体要求,以实践教学全程化、实践环节课程化为途径,旨在培养学生的基本技能,强化学生职业技能训练,培养学生的综合能力、从业能力及创新精神.该平台学生需修满34学分.
2.3.1知识应用模块
按照生产见习与职业岗位、生产实习与就业、毕业论文及学年论文与实际需要相结合的原则,设置生产见习、生产实习、学年论文和毕业论文等实践环节.对“实习”教学,积极主动地开发和建设校内外优质实习基地及实践教学基地,增加实习经费投入,保证实习时间和质量;同时,充分利用学校与企业及科研院所的科研合作关系,加强与产业、企业在人才培养方面的合作.实习期限由过去的6周增加到21周(一个学期).该模块学生需完成20学分.
2.3.2科技创新模块
课外科技创新包括专业技能竞赛、科技创新项目、科研论文等内容.设置科技创新学分,鼓励学生尽早参加科研和创新活动,以提高学生的科学素养和科研能力、技术开发能力,以及发现问题、分析问题、解决问题能力和创新能力.本模块学生需完成4学分.
2.3.3社会实践模块
积极鼓励学生面向行业,走向社会,加强学生与社会生活生产实际的联系,提高学生的社会服务意识,增强了解社会、适应社会、服务社会的能力.主要在暑期进行与生物技术产业相关的市场调研,了解行业发展现状,掌握专业发展趋势,提交产业调查或发展规划建议报告.本模块学生需完成2学分.
2.3.4素质拓展模块
素质拓展计划以培养学生综合素质、精神品质、身心健康和延伸专业能力为目标,根据学生的个性差异和兴趣爱好,通过实施厚德计划、博学计划、创新计划、远航计划、笃行计划及铸魂工程、治学工程、培英工程、励志工程、沟通工程、心理工程,实现学生能力训练的规范化和全程化,培养学生的综合素质,促进学生全面发展.本模块学生需完成8学分.
3结果
3.1实践教学所占比重
生物技术专业实践教学体系的构建、完善及实施,为应用型专业人才培养奠定基础.构建的实践教学体系中,实践教学累计学分占总学分的比例为35.6%;专业课程实践、实验教学学时占理论课总学时的比例为38.8%。
3.2实施后的成效
1.实验、见习及实习教学大纲得以完善.修订完善了实验教学大纲、课程见习及专业见习、实纲.
2.制度得到完善.形成了学年论文、毕业论文工作条例和考核等管理制度;完善了专业技能竞赛办法和科技创新奖励激励措施.
3.学生取得成绩.该实践教学体系实施后,学生的综合素质得到提高.2011~2013年该专业学生在河南省生物基础实验技能竞赛中获得一等奖3项,二等奖5项,三等奖6项;在第九届挑战杯赢响中原河南省大学生课外学术科技作品竞赛中获得二等奖6项,三等奖12项;获得国家级创业设计大赛项目7项;毕业数量逐年增加,该专业学生2011届毕业生毕业率为12.2%,2012届毕业率为16.4%,截止2014年4月15日,2013届毕业率(包括录稿)为16.9%.
3.3实施中存在的问题
1.时间保障.由于实践教学往往需要占用较多的时间,因此,在不占用日常课堂教学时间的前提下,挤出时间来实施新的实践教学体系规定的内容,有时候占用了周末时间,使得学生略感学习紧张,产生抱怨情绪.
2需要建立科学合理的实践教学计划根据具体培养要求,在培养计划中建立一个基本完整的实践教学模式。按照实践教学目标体系,整合实践项目和内容。在学生入学后的不同学习阶段,分别在各个实验室进行学习,按照循序渐进的教学原则,设置各个课程的验证型,综合型实验,另设置基础和专业课的实习和实训,虽然这些课程都有专门的培养方案和教学安排,但如何科学安排好各个课程的衔接,还需深入研究。
3需要研究实践教学体系的组成按照专业实践能力培养的自身规律性,首先针对本专业的培养目标,体现理论教学与实践教学相互联系,建立符合实际、具有科学性和操作性的实践教学体系,分别包括了实践教学基础训练(课程教学实验、专业教学实验)、实践教学的依托训练(毕业实习、科研训练)、实践教学核心训练(各种设计性实验、毕业论文实验)、实践教学补充训练(社会实践),这四个训练贯穿整个学程,构成培训学生基本能力、综合能力和创新能力的平台。教学实践环节可分为四大类进行:认知实践:结合基础阶段所学理论,激发学生对本专业后续课程的求知欲望,为学习专业基础课和专业课提供感性认识;课程实践:选择一些专业主干课程,根据每门课程的授课内容和教学进度,安排学生实习,加深学生对授课内容的理解;专业实践:使学生系统参与专业课的具体实践,培养应用与创新能力,团队协作和交流能力。落实到各个专业课程的实践中;综合实践:按本科培养方案的要求,撰写毕业论文,组织答辩。实验考核的效果能够反映平时实验课的成绩,考试的目的是为了促进学习,从而进一步保证实践教学质量的不断提高。
近10年来,由于海洋在沿海国家可持续发展中的战略地位日益突出,以及人类对海洋环境特殊性和海洋生物多样性特征的认识不断深入,海洋生物资源多层面的开发利用极大地促进了海洋生物技术研究与应用的迅速发展。1989年首届国际海洋生物技术大会(以下简称MPS大会)在日本召开时仅有几十人参加,而1997年第四届IMBC大会在意大利召开时参加入数达1000多人。现在IMBC会议已成为全球海洋生物技术发展的重要标志,出现了火红的局面。《IMBC2000》在澳大利亚刚刚开过,《IMBC2003》的筹备工作在日本已经开始,以色列为了举办们《IMBC2006》早早作了宣传,并争到了举办权。每3年一届的IMBC不仅吸引了众多高水平的专家学者前往展示与交流研究成果,探讨新的研究发展方向,同时也极大地推动了区域海洋生物技术研究的发展进程。在各大洲,先后成立了区域性学术交流组织,如亚太海洋生物技术学会、欧洲海洋生物技术学会和泛美海洋生物技术协会等。各国还组建了一批研究中心,其中比较著名的为美国马里兰大学海洋生物技术中心、加州大学圣地亚哥分校海洋生物技术和环境中心,康州大学海洋生物技术中心,挪威贝尔根大学海洋分子生物学国际研究中心和日本海洋生物技术研究所等。这些学术组织或研究中心不断举办各种专题研讨会或工作组会议研究讨论富有区域特色的海洋生物技术问题。1998年在欧洲海洋生物技术学会、日本海洋生物技术学会和泛美海洋生物技术协会的支持下,原《海洋生物技术杂志》与《分子海洋生物学和生物技术》合刊为《海洋生物技术》学报(以下简称MBT),现在它已成为一份具有权威性的国际刊物。海洋生物技术作为一个新的学科领域已明确被定义为“海洋生命的分子生物学如细胞生物学及其它的技术应用”。
为了适应这种快速发展的形势,美国、日本、澳大利亚等发达国家先后制定了国家发展计划,把海洋生物技术研究确定为21世纪优先发展领域。1996年,中国也不失时机地将海洋生物技术纳入国家高技术研究发展计划(863计划),为今后的发展打下了基础。不言而喻,迄今海洋生物技术不仅成为海洋科学与生物技术交叉发展起来的全新研究领域,同时,也是21世纪世界各国科学技术发展的重要内容并将显示出强劲的发展势头和巨大应用潜力。
1.发展特点
表1和表2列出的资料大体反映了当前海洋生物技术研究发展的主要特点。
1.1加强基础生物学研究是促进海洋生物技术研究发展的重要基石
海洋生物技术涉及到海洋生物的分子生物学、细胞生物学、发育生物学、生殖生物学、遗传学、生物化学、微生物学,乃至生物多样性和海洋生态学等广泛内容,为了使其发展有一个坚实的基础,研究者非常重视相关的基础研究。在《IMBC2000》会议期间,当本文作者询问一位资深的与会者:本次会议的主要进步是什么?他毫不犹豫的回答:分子生物学水平的研究成果增多了。事实确实如此。近期的研究成果统计表明,海洋生物技术的基础研究更侧重于分子水平的研究,如基因表达、分子克隆、基因组学、分子标记、海洋生物分子、物质活性及其化合物等。这些具有导向性的基础研究,对今后的发展将有重要影。
1.2推动传统产业是海洋生物技术应用的主要方面
目前,应用海洋生物技术推动海洋产业发展主要聚焦在水产养殖和海洋天然产物开发两个方面,这也是海洋生物技术研究发展势头强劲。充满活力的原因所在。在水产养殖方面,提高重要养殖种类的繁殖、发育、生长和健康状况,特别是在培育品种的优良性状、提高抗病能力方面已取得令人鼓舞的进步,如转生长激素基因鱼的培育、贝类多倍体育苗、鱼类和甲壳类性别控制、疾病检测与防治、DNA疫苗和营养增强等;在海洋天然产物开发方面,利用生物技术的最新原理和方法开发分离海洋生物的活性物质、测定分子组成和结构及生物合成方式、检验生物活性等,已明显地促进了海洋新药、酶、高分子材料、诊断试剂等新一代生物制品和化学品的产业化开发。
表1近期IMBC大会研讨的主要内容
表2近期IMBC大会和《MarineBiotechnology》学报论文统计表
1.3保证海洋环境可持续利用是海洋生物技术研究应用的另一个重要方面
利用生物技术保护海洋环境、治理污染,使海洋生态系统生物生产过程更加有效是一个相对比较新的应用发展领域,因此,无论是从技术开发,还是产业发展的角度看,它都有巨大的潜力有待挖掘出来。目前已涉及到的研究主要包括生物修复(如生物降解和富集、固定有毒物质技术等)、防生物附着、生态毒理、环境适应和共生等。有关国家把“生物修复”作为海洋生态环境保护及其产业可持续发展的重要生物工程手段,美国和加拿大联合制定了海洋环境生物修复计划,推动该技术的应用与发展。
1.4与海洋生物技术发展有关的海洋政策始终是公众关注的问题
其中海洋生物技术的发展策略、海洋生物技术的专利保护、海洋生物技术对水产养殖发展的重要性、转基因种类的安全性及控制问题、海洋生物技术与生物多样性关系以及海洋环境保护等方面的政策、法规的制定与实施倍受关注。
2.重点发展领域
当前,国际海洋生物技术的重点研究发展领域主要包括如下几个方面:
2.1发育与生殖生物学基础
弄清海洋生物胚胎发育、变态、成熟及繁殖各个环节的生理过程及其分子调控机理,不仅对于阐明海洋生物生长、发育与生殖的分子调控规律具有重要科学意义,而且对于应用生物技术手段,促进某种生物的生长发育及调控其生殖活动,提高水产养殖的质量和产量具有重要应用价值。因此,这方面的研究是近年来海洋生物技术领域的研究重点之一。主要包括:生长激素、生长因子、甲状腺激素受体、促性腺激素、促性腺激素释放激素、生长一催乳激素、渗透压调节激素、生殖抑制因子、卵母细胞最后成熟诱导因子、性别决定因子和性别特异基因等激素和调节因子的基因鉴定、克隆及表达分析,以及鱼类胚胎于细胞培养及定向分化等。
2.2基因组学与基因转移
随着全球性基因组计划尤其是人类基因组计划的实施,各种生物的结构基因组和功能基因组研究成为生命科学的重点研究内容,海洋生物的基因组研究,特别是功能基因组学研究自然成为海洋生物学工作者研究的新热点。目前的研究重点是对有代表性的海洋生物(包括鱼、虾、贝及病原微生物和病毒)基因组进行全序列测定,同时进行特定功能基因,如药物基因、酶基因、激素多肽基因、抗病基因和耐盐基因等的克隆和功能分析。在此基础上,基因转移作为海洋生物遗传改良、培育快速生长和抗逆优良品种的有效技术手段,已成为该领域应用技术研究发展的重点。近几年研究重点集中在目标基因筛选,如抗病基因、胰岛素样生长因子基因及绿色荧光蛋白基因等作为目标基因;大批量、高效转基因方法也是基因转移研究的重点方面,除传统的显微注射法、基因枪法和携带法外,目前已发展了逆转录病毒介导法,电穿孔法,转座子介导法及胚胎细胞介导法等。
2.3病原生物学与免疫
随着海洋环境逐渐恶化和海水养殖的规模化发展,病害问题已成为制约世界海水养殖业发展的瓶颈因子之一。开展病原生物(如细菌、病毒等)致病机理、传播途径及其与宿主之间相互作用的研究,是研制有效防治技术的基础;同时,开展海水养殖生物分子免疫学和免疫遗传学的研究,弄清海水鱼、虾、贝类的免疫机制对于培育抗病养殖品种、有效防治养殖病害的发生具有重要意义。因此,病原生物学与免疫已成为当前海洋生物技术的重点研究领域之一,重点是病原微生物致病相关基因、海洋生物抗病相关基因的筛选、克隆,海洋无脊椎动物细胞系的建立、海洋生物免疫机制的探讨、DNA疫苗研制等。
2.4生物活性及其产物
海洋生物活性物质的分离与利用是当今海洋生物技术的又一研究热点。现人研究表明,各种海洋生物中都广泛存在独特的化合物,用来保护自己生存于海洋中。来自不同海洋生物的活性物质在生物医学及疾病防治上显示出巨大的应用潜力,如海绵是分离天然药物的重要资源。另外,有一些海洋微生物具有耐高温或低温、耐高压、耐高盐和财低营养的功能,研究开发利用这些具特殊功能的海洋极端生物可能获得陆地上无法得到的新的天然产物,因而,对极端生物研究也成为近年来海洋生物技术研究的重点方面。这一领域的研究重点包括抗肿瘤药物、工业酶及其它特殊用途酶类、极端微生物定功能基因的筛选、抗微生物活性物质、抗生殖药物、免疫增强物质、抗氧化剂及产业化生产等。
2.5海洋环境生物技术
该领域的研究重点是海洋生物修复技术的开发与应用。生物修复技术是比生物降解含义更为广泛,又以生物降解为重点的海洋环境生物技术。其方法包括利用活有机体、或其制作产品降解污染物,减少毒性或转化为无毒产品,富集和固定有毒物质(包括重金属等),大尺度的生物修复还包括生态系统中的生态调控等。应用领域包括水产规模化养殖和工厂化养殖、石油污染、重金属污染、城市排污以及海洋其他废物(水)处理等。目前,微生物对环境反应的动力学机制、降解过程的生化机理、生物传感器、海洋微生物之间以及与其它生物之间的共生关系和互利机制,抗附着物质的分离纯化等是该领域的重要研究内容。
3.前沿领域的最新研究进展
3.1发育与生殖调控
应用GIH(性腺抑制激素)和GSH(性腺刺激激素)等激素调控甲壳类动物成熟和繁殖的技术[1],研究了甲状腺激素在金绍生长和发育中的调控作用,发现甲状腺激素受体mRNA水平在大脑中最高,在肌肉中最低,而在肝、肾和鳃中表达水平中等,表明甲状腺素受体在成体金银脑中起着重要作用[1],对海鞘的同源框(Homeobox)基因进行了鉴定,分离到30个同源框基因[1],建立了青鳉的同源框(Homeobox)基因[1],建立了青鳉胚胎干细胞系并通过细胞移植获得了嵌合体青鳉[1],建立了虹鳟原始生殖细胞培养物并分离出Vasa基因[2],进行斑节对虾生殖抑制激素的分离与鉴定[2],应用受体介导法筛选GnRH类似物,用于鱼类繁殖[2],建立了海绵细胞培养技术,用于进行药物筛选[2],建立了将海胆胚胎作为研究基因表达的模式系统[2],通过基因转移开展了海胆胚胎工程的研究[2],研究了人葡糖转移酶和大鼠已糖激酶cDNA在虹鳟胚胎中的表达[3],建立了通过细胞周期蛋白依赖的激酶活性测定海水鱼苗细胞增殖速率的方法[3],研究了几丁质酶基因在斑节对虾蜕皮过程中的表达[4],从海参分离出同源框基因,并进行了序列的测定[4]。
3.2功能基因克隆
建立了牙鲆肝脏和脾脏mRNA的表达序列标志,从深海一种耐压细菌中分离到压力调节的操纵子,从大西洋鲑分离到雌激素受体和甲状腺素受体基因,从挪威对虾中分离到性腺抑制激素基因[1];将DNA微阵列技术在海绵细胞培养上进行了应用,构建了班节对虾遗传连锁图谱,建立了海洋红藻EST,从海星卵母细胞中分离出成熟蛋白酶体的催化亚基,初步表明硬骨头鱼类IGF-I原E一肽具有抗肿瘤作用[2];构建了海洋酵母De—baryomyceshansenii的质粒载体,从鲤鱼血清中分离纯化出蛋白酶抑制剂,从兰蟹血细胞中分离到一种抗菌肽样物质,从红鲍分离到一种肌动蛋白启动子,发现依赖于细胞周期的激酶活性可用作海洋鱼类苗种细胞增殖的标记,克隆和定序了鳗鱼细胞色素P4501AcD-NA,通过基因转移方法分析了鳗细胞色素P450IAI基因的启动子区域,分离和克隆了鳗细胞色素P450IAI基因,建立了适宜于沟绍遗传作图的多态性EST标记,构建了黄盖鲽EST数据库并鉴定出了一些新基因,建立了班节对虾一些组织特异的EST标志,从经HirameRhabdovirus病毒感染的牙鲆淋巴细胞EST中分离出596个cDNA克隆[3];用PCR方法克隆出一种自体受精雌雄同体鱼类的ß一肌动蛋白基因,从金鲷cDNA文库中分离出多肽延伸因子EF-2CDNA克隆,在湖鳟基因组中发现了TC1样转座子元件[4];鉴定和克隆出的基因包括:南美白对虾抗菌肽基因、牡蛎变应原(allergen)基因、大西洋鳗和大西洋鲑抗体基因、虹鳟Vasa基因、青鳉P53基因组基因、双鞭毛藻类真核启始因子5A基因、条纹鲈GtH(促性腺激素)受体cDNA、鲍肌动蛋白基因、蓝细菌丙酮酸激酶基因、鲤鱼视紫红质基因调节系列以及牙鲆溶菌酶基因等[1—4]。
3.3基因转移
分离克隆了大马哈鱼IGF基因及其启动子,并构建了大马哈鱼IGF(胰岛素样生长因子)基因表达载体[1]。通过核定位信号因子提高了外源基因转移到斑马鱼卵的整合率[1],建立了快速生长的转基因罗非鱼品系并进行了安全性评价;对转基因罗非鱼进行了三倍体诱导,发现三倍体转基因罗非鱼尽管生长不如转基因二倍体快,但优于未转基因的二倍体鱼,同时,转基因三倍体雌鱼是完全不育的,因而具有推广价值[2];研究了超声处理促进外源DNA与金鲷结合的技术方法,将GFP作为细胞和生物中转基因表达的指示剂;表明转基因沟鲶比对照组生长快33%,且转基因鱼逃避敌害的能力较差,因而可以释放到自然界中,而不会对生态环境造成大的危害[3];应用GFP作为遗传标记研究了斑马鱼转基因的条件优化和表达效率[3];在抗病基因工程育种方面,构建了海洋生物抗菌肽及溶菌酶基因表达载体并进行了基因转移实验[2];在转基因研究的种类上,目前已从经济养殖鱼类逐步扩展到养殖虾、贝类及某些观赏鱼类[2.3]。通过基因枪法将外源基因转到虹鳟肌肉中获得了稳定表达[4]。
3.4分子标记技术与遗传多样性
研究了将鱼类基因内含子作为遗传多样性评价指标的可行性,应用SSCP和定序的方法研究了大西洋和地中海几种海洋生物的遗传多样性[1]。研究了南美白对虾消化酶基因的多态性[1];利用寄生性原生动物和有毒甲藻基因组DNA的间隔区序列作标记检测环境水体中这些病原生物的污染程度,应用18S和5.8S核糖体RNA基因之间的第一个内部间隔区(ITC—1)序列作标记进行甲壳类生物种间和种内遗传多样性研究[2];研究了斑节对虾三个种群的线粒体DNA多态性,用PCR技术鉴定了夏威夷Gobioid苗的种类特异性。通过测定内含子序列揭示了南美白对虾的种内遗传多样性,采用同功酶、微卫星DNA及RAPD标记对褐鳟不同种群的遗传变异进行了评价,在平鱼鉴定并分离出12种微卫星DNA,在美国加州鱿鱼上发现了高度可变的微卫星DNA[3];弄清了一种深水鱼类(Gonostomagracile)线粒体基因组的结构,并发现了硬骨鱼类tRNA基因重组的首个实例,测定了具有重要商业价值的海水轮虫的卫星DNA序列,用RAPD技术在大鲮鲆和鳎鱼筛选到微卫星重复片段,从多毛环节动物上分离出高度多态性的微卫星DNA,用RAPD技术研究了泰国东部泥蟹的遗传多样性[3];用AFLP方法分析了母性遗传物质在雌核发育条纹鲈基因组中的贡献[4]。
3.5DNA疫苗及疾病防治
构建了抗鱼类坏死病毒的DNA疫苗[1];开展了虹鳟IHNVDNA疫苗构建及防病的研究,表明用编码IHNV糖蛋白基因的DNA疫苗免疫虹鳟,诱导了非特异性免疫保护反应,证明DNA免疫途径在鱼类上的可行性,从虹鳟细胞系中鉴定出经干扰素可诱导的蛋白激酶[2];建立了养殖对虾病毒病原检测的ELISA试剂盒,用PCR等分子生物学技术鉴定了虾类的病毒性病原,将鱼类的非特异性免疫指标用于海洋环境监控,研究了抗病基因转移提高鲷科鱼类抗病力的可行性,研究了蛤类唾液酸凝集素的抗菌防御反映[2];研究了一种海洋生物多糖及其衍生物的抗病毒活性[3];建立了测定牡蛎病原的PCR—ELISA方法[3];研究了LatrunculinB毒素在红海绵体内的免疫定位[4]。
3.6生物活性物质
从海藻中分离出新的抗氧化剂[1],建立了大量生产生物活性化合物的海藻细胞和组织培养技术,建立了通过海绵细胞体外培养制备抗肿瘤化合物的方法[1];从不同生物(如对虾和细菌)中鉴定分离出抗微生物肽及其基因,从鱼类水解产物中分离出可用作微生物生长底物的活性物质,海洋生物中存在的抗附着活性物质,用血管生成抑制剂作为抗受孕剂,从蟹和虾体内提取免疫激活剂,从海洋藻类和蓝细菌中纯化光细菌致死化合物,海星抽提物在小鼠上表现出批精细胞形成的作用,从海洋植物Zosteramarina分离出一种无毒的抗附着活性化合物,从海绵和海鞘抽提物分离出抗肿瘤化合物,开发了珊瑚变态天然诱导剂,从海胆中分离出一种抗氧化的新药,在海洋双鞭毛藻类植物中鉴定出长碳链高度不饱和脂肪酸(C28),表明海洋真菌是分离抗微生物肽等生物活性化合物的理想来源[2];发现海洋假单胞杆菌的硫酸多糖及其衍生物具有抗病毒活性,从硬壳蛤分离出谷光甘肽一S一转移酶,从鲤血清中分离出丝氨酸蛋白酶抑制剂,从海绵中分离出氨激脯氨酸二肽酶,从一种珊瑚分离出具DNA酶样活性的物质,建立了开放式海绵养殖系统,为生物活性物质的大量制备提供了充足的海绵原料[3];从虾肌水解产物中分离到抗氧化肽物质[4];从一种海洋细菌中分离纯化出N一乙酸葡糖胺一6一磷酸脱乙酸酶[4]。
3.7生物修复、极端微生物及防附着
研究了转重金属硫蛋白基因藻类对海水环境中重金属的吸附能力,表明明显大于野生藻类[1],研究了石油降解微生物在修复被石油污染的海水环境上的可疗性及应用潜力[1];研究了海洋磁细菌在去除和回收海水环境中重金属上的应用潜力[1];用Bacillus清除养鱼场污水中的氮,用分子技术筛选作为海水养殖饵料的微藻,开发了六价铬在生物修复上的应用潜力,分离出耐冷的癸烷降解细菌,研究了海洋环境中多芳香化烃的微生物降解技术[2];从噬盐细菌分离出渗透压调节基因,并生产了重组Ectoine(渗透压调节因子),从2650米的深海分离到一种耐高温的细菌,这种细菌可用来分离耐高温和热稳定的酶,在耐高温的archaea发现了D型氨基酸和无氧氨酸消旋酶,测定了3种海洋火球菌的基因组DNA序列,借助于CROSS/BLAST分析进行了特定功能基因的筛选,从海底沉积物、海水和北冰洋收集了1000多种噬冷细菌,并从这些细菌中分离到多种冷适应的酶[2];建立了一种测定藤壶附着诱导物质的简单方法,研究了Chlorophyta和共生细菌之间附着所必需的形态上相互作用,研究了珊瑚抗附着物质(dterpene)类似物的抗附着和麻醉作用[3];分析了海岸环境中污着的起始过程,并对沉积物和附着物的影响进行了检测[4]。
2猕猴桃育种进展及其方法
2.1猕猴桃育种主要进展
据统计,截止到2013年,全球猕猴桃面积约为17万hm2,产量242.80万t(数据引自第八届国际猕猴桃会议资料)。从1978-2013年,我国猕猴桃种植面积从不足1hm2增加到了11万hm2,截止到2013年我国猕猴桃年产量达到约123.63万t。这些数据说明由于育种家的多年努力,猕猴桃主产国的栽培面积和产量在继续提高。我国猕猴桃育种取得的新进展主要表现在2个方面:(1)主栽区育成一批优良的新品种,实现了国外品种长期主导我国猕猴桃产业的局面。根据相关文献统计,主要美味猕猴桃品种有(陕西)秦美、(湖南)米良1号、(湖北)金魁、(江苏)徐香、(贵州)贵长、(陕西)翠香、(河南)华美2号、(陕西)金香、金硕(湖北)、(湖北)鄂猕猴桃4号(、河南)中猕1号(、安徽)皖翠(、陕西)秦翠(、四川)川猕1号、川猕2号(、河南)蜜宝1号。主要中华猕猴桃品种有(湖北)金桃、(四川)红阳、(陕西)华优、(湖北)金艳、(湖南)翠玉、(湖南)丰悦、(江西)早鲜、(江西)魁蜜、(江西)金丰、(湖南)楚红(、湖北)武植3号、(四川)金什1号(、湖北)金怡、(湖北)鄂猕猴桃3号、(湖北)金早、(湖北)鄂猕猴桃3号(、湖北)金阳1号、金农1号及(四川)川猕3号和川猕4号。主要雄性授粉品种有(新西兰)汤姆利、(新西兰)马图阿、(湖北)磨山4号及(湖北)超红。其他种猕猴桃品种有:毛花猕猴桃品种‘华特’、软枣猕猴桃新品种‘宝贝星’(四川)、黑蕊猕猴桃新品种‘红宝石星’(河南)和大籽猕猴桃新品种‘金铃’(湖北)。在我国大面积栽培的国外品种有海沃德(新西兰)、布鲁诺(新西兰)、Hort16A(新西兰)[1,64,65]。自1978年以来我国选育出了近100多个猕猴桃优良品种(品系),实际上大面积推广栽培的品种很少。截止到2011年,栽培面积占到全国5%的品种仅有红阳、徐香、秦美和金魁4个[1]。总体来说,大面积推广栽培的品种主要表现是产量和品质较高,而最突出的特点是生态适应性广。(2)育种目标趋于多元化发展。例如,传统的猕猴桃以绿肉果实为主,近年来黄肉和红肉猕猴桃逐渐受到消费者青睐,用中华猕猴桃和毛花猕猴桃杂交育成的黄肉品种‘金艳’已经成功进入欧洲和南美市场;另外,也培育了供观赏的品种,如‘江山娇’和‘满天星’[66]。猕猴桃育种中还存在许多较为突出的问题。总体上可以概括为:育种单位多,组织形式不合理,缺乏有效协作和必要的合作,材料和信息交流不畅通,严重影响了我国猕猴桃大品种和产业的发展水平。具体表现在以下几个方面:一是育种方法和品种单一。目前我国育成的这100多个新品种(系)中,约有95%以上的品种是通过野生、实生选优方法育成的;另外,这些品种中基本上以美味猕猴桃和中华猕猴桃为主,涉及到其他猕猴桃种的很少。二是生物技术应用慢,针对特定性状的分子标记很少,分子标记的开发与猕猴桃育种目标结合不紧密,尚未建立起为育种服务的生物技术平台,标记辅助选择育种技术没有真正在新品种培育中发挥作用。三是新品种审定应进一步规范化。近30多年来全国共育成审定品种数量很多,但大多数品种基本上都是处于“昙花一现”的困窘,真正能够在生产上推广栽培的品种寥寥无几;另外,这些审定的品种中对抗病性(特别是抗溃疡病)等基本上都缺乏鉴定结果,直接影响了品种的推广寿命。
2.2育种方法和育种路线浅析
现有的猕猴桃育种方法主要有:野生选优、实生选优、芽变选种、杂交育种和渐渗育种等[1]。现阶段,我国猕猴桃育种仍然以野生选优和实生选优为主,利用这些方法培育出的品种为推动猕猴桃产业发展作出了巨大的贡献,如秦美、金魁和金桃等;通过实生选优培育的品种有海沃德、红阳、徐香和华优等;也有经过种间杂交育成的品种,如金艳[64]。野生和实生选优存在育种周期长,同时是建立在大量野生资源收集基础上的。因此,如何将野生和实生选优与分子生物学技术结合起来,加速育种进程和定向性是急需解决的一个问题。另外,种间杂交在猕猴桃育种中应用也较多,该方法可以将感兴趣的野生物种农艺性状通过杂交转育到栽培品种中[67,68]。目前已有许多猕猴桃实现了种间杂交育种,主要包括中华猕猴桃、软枣猕猴桃、黑蕊猕猴桃、大籽猕猴桃(A.macrosperma)和狗枣猕猴桃等[36,38,67-75]。某些物种杂交后代虽然由于受精障碍无法获得可育种子,但在猕猴桃种间杂交中已成功获得了一些优良性状,如实现了红色和黄色果肉、高含量VC、绿色和无毛果皮、高含量的可溶性固形物、花结构和颜色[67,68,70,71]。例如,Hirsch等[36]配置了4个种间杂交组合:狗枣猕猴桃×中华猕猴桃、葛枣猕猴桃×对萼猕猴桃、软枣猕猴桃×葛枣猕猴桃、狗枣猕猴桃×美味猕猴桃,流式细胞分析检测结果表明在这些物种间存在广泛的种间可杂交性。近年来,利用体外染色体加倍技术进行育种的研究也有报道。如Wu等[37]利用秋水仙素离体加倍中华猕猴桃染色体进行育种,这是首次成功的将秋水仙素用于猕猴桃多倍体诱导育种研究中,结果表明加倍效率主要受体外培养基和秋水仙素浓度的相互作用。Wu等[76]报道了自然四倍体和人工诱导四倍体中华猕猴桃染色体减数分裂中的配对行为,指出二倍体种质资源可用于四倍体猕猴桃育种中。也有利用其他方法培育新品种的报道,如Mavromatis等[19]从猕猴桃品种“海沃德”中利用系统的孢子体选择方法选育出了一个新品种。合理科学的育种理论和方法对指导猕猴桃育种工作具有重要的意义。基于现阶段相关研究进展,我国猕猴桃的育种方法可以分为:传统育种和现代育种。(1)传统育种即选择具有特定性状的杂交亲本进行人工杂交育种以培育具有某种新性状的优良品种或者经过野生选优和实生选优培育新品种,如Atkinson等[77]对毛花猕猴桃利于剥皮的这一特性进行了分析,并将其用于常规杂交育种实践中;(2)现代育种,也可称为快速育种技术,主要是利用现代生物技术进行标记辅助选择育种,并借助生物统计学进行亲本、后代的有效选择和评价基因型和环境相互作用的影响,如黄宏文[1]提出的猕猴桃基因渐渗育种就是现代育种技术的一个范例。如在自然资源不具优势的新西兰和意大利等猕猴桃主产国,其新品种选育大多采用了大量的人工杂交设计育种程序和分子标记辅助选择育种[1]。例如,Gill等[8]利用RAPD分子标记开发了用于猕猴桃性别决定鉴定的序列特异性扩增区(Sequence-characterizedamplifiedregion,SCAR)标记,这些标记可以用于猕猴桃标记辅助育种选择中,如对杂交后代在苗期剔除雄株,当作为授粉树时用于选择雄株,或者用于确定种植群体的一个合理的雌雄子代比率。从育种路线上可以分为:抗逆育种、品质育种和砧木选择育种等。(1)抗逆育种具体包括抗病、抗旱、抗寒和抗热等育种;(2)品质育种主要包括果实大小和形状、果面毛被、果肉颜色、果实质地、果实风味和营养成分等。基于以上育种方法体系,适应于我国猕猴桃产业发展的育种策略和育种目标可以概括描述为:“以猕猴桃野生种质资源收集和评价为中心,通过传统育种和现代分子生物学技术相结合的方法,培育满足消费者和市场需求的具有新性状的优良品种为目标”。在具体育种实践中可考虑利用的现代技术包括:染色体重组调控、细胞选择、原生质体融合、倍性操作和胚胎培养等(plantandfood.co.nz)。此外,新一代测序技术如转录组测序和SLAF-seq技术对分子生物学的研究发挥了巨大的作用,我国猕猴桃野生资源丰富,利用新一代测序技术进行各种优异资源开发,建立大规模的基因组数据库,可加速育种进程,为培育转基因新品种提供丰富的基因资源[78,79]。
3展望
猕猴桃因其富含丰富的营养,已成为人们青睐的水果。而优质的猕猴桃新品种是实现其高品质的保证。因此,针对重要性状的多目标育种应是今后相当长时期内猕猴桃产业发展亟需解决的重要任务。
3.1加强我国野生猕猴桃种质资源的收集、鉴定、评价和利用
野生种质资源中包含着丰富的优异基因,是一个巨大的天然“基因库”,也是新品种选育的主要材料来源。目前主栽的猕猴桃品种基本上都是利用野生资源选育的,如海沃德和秦美。猕猴桃野生种质资源可以考虑从以下几个方面着手开展工作:一是加强野外资源调查工作。野生种质资源调查应是育种工作者坚持的一项常规性工作,当前更多的青年研究者热衷于从事实验室和分子研究工作,而往往忽视了野生资源的收集与利用;二是加强开展野生资源多目标评价筛选和优异基因的发掘。对野生资源的利用不能仅仅局限于品种选育方面,如在以往的抗逆性资源筛选和转基因研究中,选择的研究材料多集中在栽培品种中,将抗逆资源筛选和抗逆基因发掘的重点放在野生植物上更为可行,因为这方面的抗逆资源更为丰富、抗性更强,而且与栽培品种相比,这类野生植株存活需求是第一位的,产量品质是第二位的,生态生理效益在先,只要生存下来,就有机会实现其栽培经济目标。具体来说,在猕猴桃研究中,可从野生资源中鉴定筛选抗旱、抗寒砧木,利用抗猕猴桃溃疡病材料进行抗性基因发掘,为培育转基因品种奠定夯实的材料基础。
3.2加强猕猴桃特异资源的种质创新
通过植物基因工程、种间杂交、胚挽救和花药培养等方法可以实现新种质创新。特别是以猕猴桃野生近缘种为供体,与栽培品种杂交,同时利用“高代回交法”,可以将近缘种中的优异目标基因快速转移到栽培种中。目前,猕猴桃分子研究的目标性状多集中在果实风味、香味、成熟和颜色上;另外,由于溃疡病的大面积爆发,近年来在猕猴桃溃疡病方面的研究也越来越多,而对抗逆性状的研究相对较少。另外,猕猴桃雄性授粉品种特异资源的培育也是一个研究重点,利用野生资源进行雄性品种选育需要注意几个问题:一是选择树体健壮,花量大,花母枝开花数量多,每朵花含有的花粉粒多,花粉发芽率高,花期长的资源;二是选择多种倍性的雄株,以保证与雌性品种的配套,并开展多种雄花与栽培品种的花粉直感效应研究,为生产上栽培品种提供最优的配套雄株;三是在筛选猕猴桃主栽品种专用授粉雄株的基础上,开发花粉加工专用设备组装形成生产线,建设花粉生产工厂。如本单位已经研制出了猕猴桃雄株花粉加工专用设备、制定了花粉生产工艺、生产技术标准、辅助授粉器,该项目成果已在生产中进行了广泛的推广应用。
3.3加强基因组学技术在猕猴桃育种中的应用
生物技术育种取得的系列研究进展,特别是中华猕猴桃‘红阳’基因组测序成果的发表,为实现分子标记辅助选择和不同猕猴桃种质资源有利性状的基因渗入培育新品种奠定了基础,加速了猕猴桃分子育种的进程,给猕猴桃育种提供了新的发展机遇。在猕猴桃基因组学育种实践中,建议可考虑以下几方面工作:(1)功能标记是可用于育种工作的一种理想标记,功能标记的开发是以克隆基因序列、标记与特定性状的关系为前提的,该标记可用于亲本鉴定、育种后代材料的基因检测以及分离世代抗病性和品质性状的选择;(2)利用基因标记开展聚合育种,如聚合抗溃疡病或褐斑病的基因,以增加品种的多抗性和持久性;(3)利用流式细胞仪开展倍性育种,利用不同倍性亲本杂交可以提高结实率,不同杂交组合的杂交亲和性与亲本的基因型有关,特别是母本的基因型,因此在杂交后代进行倍性鉴定开展早期定向选择育种是非常有意义的。