时间:2023-03-23 15:04:01
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇扩频技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2应急信号传输系统
在系统调制端,串行码元序列经基带调制和串/并转换分别被调制在N个子载波上。发送端所发送的子载波信息码序列由待传递的信息码序列与高速率的伪噪声码序列进行模二加后(波形相乘)得到复合码序列,用它来直接控制射频信号的某个参量(通常是载波相位),由此得到的一个直接序列扩展频谱信号。各巷道内的通信设备之间的信息传输时,校验码是由核心控制芯片发出,供给扩展模块与宽带伪随机序列调制的窄带信号实现扩展频带、提高抗噪声的能力。鉴于伪噪声码的多样性,扩频可以在同一时间使用多个伪噪声码。正交小波基可以代替传统的正弦载波,合适的正交小波基,可以减少系统的干扰。在接收端,接收到的信号进行采样的转换器具有相同的采样频率。循环前缀部分在接收端被去除,然后进行解调。由于循环前缀的存在,所有的子信道是独立的。并行数据在接收端经耦合电路和解调后转换为频域的子载波分量,并恢复到数据码元序列的原始信号。使用相同的扩频码序列进行解扩,展宽的扩频信号恢复成原来的消息,从而取得直接序列扩频信号。如果接收信号中被检测到有错误,信号重发的请求信号被叠加在预先指定的负载波上来生成重发信号。接收机实际上是一组解调器,它将不同载波搬移至零频点.然后在一个码元周期内积分。其他载波在该区域由于与所积分的信号正交,因此不会对这个积分结果产生影响。如果每个子信道都可以正确解调出源信号,将其合并后就能够恢复发送端高速串行码元序列。
3实验
为了测试的三相交流信号传输情况,对基于多载波扩频调制技术的数据传输进行测试,如下所述。数据传输测试终端和开关柜之间的直线距离约200米。与以太网RJ-45接口,用于连接计算机的调制解调器,然后连接到电源插座。点对点测试数据如下所示(单位:Mbps):平均吞吐量:1.30;最大吞吐量:1.86;最低吞吐量:0.61。从测试中,我们发现大多吞吐量的范围在1Mbps~2Mbps之间。三相耦合信号强于单相耦合信号;针对复杂的情况下,测试效果还是相当不错的。这证明了在矿山巷道中基于多载波扩频的信号传输是完全可行的。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用。扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
传统的标签防碰撞算法可分为ALOHA算法[2-3]和树形算法[4-5]2类。ALOHA算法是1种完全随机接入的多址接入协议算法,比如:PALOHA算法(随机推迟算法)、时隙ALOHA算法(SA算法)、帧时隙ALOHA算法(FSA算法)、动态帧时隙ALOHA算法(DFSA算法)和分组ALOHA算法等。该类算法在标签试图发送数据时,并不考虑信道当前的忙闲状态,一旦产生数据,就立刻决定将其发送至信道,这种发送控制策略有严重的盲目性。随着用户数量或发送信息量的增加,这种完全随机接入的算法将使信道重叠现象加剧,碰撞概率增大,传输性能下降。
近几年,有学者提出了采用CDMA技术进行防碰撞的方法,其性能有明显改善。文献[6]提出在标签识别过程中,使用码分多址技术,实现一个时隙可以同时传输多个标签。文献[7]提出了一种基于码分多址思想的时隙ALOHA算法,来解决射频识别中的防碰撞问题,此算法的系统稳定范围要大于时隙ALOHA系统,并且当选用的扩频码组阶数为N时,此算法的最大吞吐量可达原时隙ALOHA的N倍。上述2个文献所提到的算法,当标签数量很多时,数据碰撞的概率明显增加,使系统的吞吐量急剧下降,影响了系统的整体性能。基于以上原因,本论文提出了1种改进的基于CDMA技术的防碰撞算法,能够适应大量标签的识别应用,减少了识别碰撞的发生,使系统吞吐量得到明显改善。
1基于CDMA技术的新型防碰撞算法
n×1-1Nn-1(2)由于传统的基于ALOHA的防碰撞算法中一个时隙最多只能正确识别一个标签的信息,所以当标签数目过大时,系统的吞吐率,即正确识别标签数目所占的百分比将会大幅度的降低,所以对于过量的标签,本算法将会采取对所有标签进行分组识别,当标签需要分成2组时(系统识别帧最大时隙数N为256):nN×1-1Nn-1=n2N×1-1Nn2-1 (3)用上述公式可知n=354,所以当标签数量大于354时,系统将会对标签分组识别。
本文提出的新型算法如下:依据分组帧时隙ALOHA算法,通过此算法的分组规则,完成识别的所有标签的分组。分组帧时隙ALOHA算法的分组规则如下:当标签数量≤354时,无论帧长选择8个时隙还是256个时隙,标签都不分组,按照一个大组来进行识别;当标签数量>354时,帧长选择256个时隙比较适合读写器的识别;当标签数量在355707时,标签分为2组;当标签数量在708~1 416时,标签分成4组更适合信息的传输识别。当标签数量更多时,按照这个规律分成合适的组数再进行识别,详细过程如图1所示。标签分组工作完成后,在每个分组中分别采用码分多址技术,利用其技术的保密性、抗干扰性和多址通信能力,对标签中的数据进行扩频处理并传输。然后读写器端利用码组的自相关特性对不同标签所发的数据进行解调,从而达到防碰撞的目的,进而完成对全部标签的识别,也实现了同一时隙可以传输多个信息的情况。本论文中提到的新型防碰撞算法需要预先在待识别的标签中植入扩频性良好的正交码组,以防止接收端没有办法正确解扩接收,本文选用Walsh序列。该算法可以有效减少图1算法执行过程示意图标签识别过程中的碰撞次数,从而减少了识别时间并且降低了功耗。本论文将分组帧时隙ALOHA算法和码分多址技术相结合,实现在每个分组内可以有多个标签同时进行扩频传输,并且在接收端采用并行接收技术进行多个标签的同时接收。本发明在识别标签过程中,每个组内均为一个独立的识别过程,在分组帧长不改变的前提下,提高了标签数量庞大时的系统性能。有效地减小标签之间的碰撞概率,缩短读写器操作时间,提高吞吐率, 很适合应用于具有较大数量标签的RFID系统中。
2仿真结果
本论文提出了采用码分多址技术的新型防碰撞算法,并仿真了固定时隙数下ALOHA算法的系统吞吐率和本文所提出的算法改进后的系统吞吐量。
RFID系统中时隙ALOHA算法的帧长取值从16个时隙到256个时隙变化,根据公式2,系统吞吐率如图2所示。其中,系统仿真设定的信息帧长F即时隙数设定按2的幂次方递增,即F取值从16个时隙变化到256个时隙,横坐标为标签数N从1变化到500,纵坐标为吞吐率。当帧长设定为256个时隙,标签数量少于256个时,系统吞吐量随着标签数量的增加而增加,直到标签数量达到256时系统的吞吐量达到最大值。随着标签数量的逐渐增多,系统的吞吐量又呈现下降趋势。从图2可以得出2点结论:一、当标签个数接近信息帧长时,系统的吞吐率比较高;二、随着帧长取值的增加,系统对标签的识别性能有明显改善。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.
[2]查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,2004.
0引言
目前,变电站系统自动化正成为一种不可改变的趋势,其监控和通信系统的重要性日益凸显。变电站现有测控系统多采用有线通信方式,但是,有线通信的弊端是显而易见的,例如传输线铺设复杂、不易检修和维护,长距离传输线易受电磁千扰的影响等等。而无线通信则具有运行可靠、安装灵活。成本低廉等优点,尤其是在需要实时监控变电站信息的情况下,无线通信更是具有极大的优势。
现有无线通信方式主要有ieee802.11b/g、蓝牙、zigbee. gprs/gsm等。而zigbee技术更是以安全性高、响应时间快、占用系统资源低、成本低以及能耗低等诸多优点成为变电站实时监控系统中首选的无线通信技术。zigbee技术是专门针对无线传感器开发的,无线传感器网络在变电站中的应用研究尚处于起步阶段,其研究重点主要放在配电网自动化以及温度、电能在线监测方面,然而,变电站高强电磁环境对无线传感器网络通信的影响的研究还相对缺失。因此本文对变电站的干扰和无线传感器网络的调制技术进行研究,对无线传感器网络在变电站中的应用的可行性进行论证。
1变电站中的电盛千扰
变电站内部具有复杂的电磁环境,因此必须对各种典型的电磁干扰源进行详细的分析。变电站存在的典型的电磁干扰源有:50hz工频电磁场;设备出口短路引起的脉冲磁场;电晕放电;静电放电;局部放电;空气击穿燃弧;sf6间隙击穿燃弧;真空间隙击穿燃弧等。其中工频电磁场和脉冲磁场对无线信号基本不会产影响。
1. 1静电放电和局部放电
两个具有不同静定电位的物体,由于直接接触或静电场感应引起两物体间的静电电荷的转移。静电电场的能量达到一定程度后,击穿其间介质而进行放电的现象就是静电放电。当外加电压在电气设备中产生的场强,足以使绝缘区域发生放电,但在放电区域内未形成固定放电通道的这种放电现象,称为局部放电。两者都是小绝缘间隙、小能量放电的击穿。
这两种放电产生辐射干扰在几百khz以内,且能量低,衰减快,因此对无线通信不会造成影响。
1.2电晕放电和空气击穿放电
电力导线在高压强电场作用下,可能对周围空间产生游离放电的电晕。导线表面的机械损伤、污染微粒或者导线附近的水滴、灰尘等,都会引起导线表面曲率变化,从而使得点位梯度达到空气介质的击穿介质。因此,在电力系统的实际运行中电晕的产生几乎是不可避免的。
由图1可见电晕放电的辐射信号主要集中在78mhz和180mhz附近的两个包络内,并且最大信号强度仅为一40dbmw。
由图2可知空气间隙击穿产生的电磁场带宽较宽,主要集中在600mhz以下,并且干扰信号的强度很小,即使在580:mhz频率附近也只有-35dbmw。
1.3开关操作干扰
变电站内断路器、隔离开关等一次设备在投切操作或开关故障电流时,由于感性负载的存在,开关触头开断时,产生的电弧的熄灭和重燃可能在母线或线路上引起含有多个频率分量的衰减振荡波,通过母线或设备间的连线将暂态电磁场的能量向周围空间辐射,形成辐射脉冲电磁场。设备操作干扰主要有sf6间隙击穿和真空间隙击穿所产生的辐射信号。
图3. 4可知sf6间隙击穿放电和真空间隙击穿放电所产生的干扰信号覆盖频段很宽,且在整个频带范围内电磁信号的强度比较强,在2. 4ghz频段,电磁信号的强度约为一40dbmw。
2无线传感网网络的扩频技术
2.1 zigbee协议
无线传感器网络应用的zigbee协议的框架是建立在ieee802. 15. 4标准之上,ieee802. 15. 4定义}zigbee的物理层和媒体访问层。ieee802. 15. 4定义了两个物理层标准,分别是2. 4ghz物理层和868月i5mhz物理层。两个物理层都基于直接序列扩频(dsss)技术,主要完成能量检测、链路质量指示、信道选择以及数据发送和接收等功能。无线传感器网络输出2.4ghzism频段直接序列扩频信号,输出功率大于一17dbm,工作频段2. 405^2. 480ghz 。
2. 2直接序列扩频技术
扩频是利用与信息无关的为随机码,通过调制的方法将己调制的频谱宽度扩展到比原调制信号的带宽宽得多的过程。常用的扩频技术有调频、混合扩频和直接序列扩频等。无线传感器网络采用直接序列扩频技术。
直接序列扩频系统就是用具有高码率的伪随机(pn)序列,在发送端扩展信号的频谱,在接受端用相同的pn序列对信号进行解扩,还原出原始信号。
3变电站干扰对传感器网络的形晌
变电站的电磁干扰主要分为两部分:0~300mhz低频部分、2. 4~2. 5ghz同频带宽。
1)电晕放电和空气击穿所产生的低频干扰的频带离无线传感器网络的工作频段2. 4ghz很远,并且强度小于一40dbmw,可以通过低通滤波器进行处理,因此对无线传感器网络的无线通信基本没有影响。
2) sf6间隙击穿放电和真空间隙击穿放电所产生的电磁干扰在2. 405ghz~2. 485ghz频带内也有较强的信号存在,在间隙击穿电压为i5kv左右时电磁强度达到一40dbmv。变电站现场的击穿电压可能会更高,电磁强度也就更高,因此对无线通信会有一定的影响。但是同频干扰对于无线传感器网络通信的影响是很小的,这可以通过两方面说明:
①无线传感器网络应用的直接序列扩频技术,直接序列扩频技术的抗干扰能力是由于接收机将扩频后的信号再次与扩频码相乘还原出原始信号,同时干扰信号也在接收端与扩频码相乘从而将其频带展宽,干扰信号能量也就分散到很宽的频带上,这样2. 405ghz~2. 485ghz频带内只有很小部分干扰信号能量,因此同频噪声对于无线传感器网络通信干扰是微乎其微的。
②sf6间隙击穿放电和真空间隙击穿放电产生瞬态电磁千扰,这种干扰只能持续很短的时间,因此对无线传感器网络的干扰也是瞬间的,瞬态电磁干扰结束,无线传感器网络也恢复正常。
一、前 言:
移动通信是现代通信系统中不可缺少的组成部分。移动通信不但集中了无线通信和有线通信的最新技术成就,而且集中了网络和计算机技术的许多成果。在第三代移动通信的主要技术体制中,WCDMA-FDD/TDD(现称为高码片速率TDD)和TD-SCDMA(融和后现称为低码片速率TDD)都是由1998年12月成立的3GPP(第三代伙伴项目)进行开发和维护的规范,这些技术都是以CDMA技术为核心的。CDMA技术作为第三代数字蜂窝移动通信系统的主要技术,以及在它基础之上发展起来的WCDMA和TD-SCDMA移动通信系统将会更广泛的应用于我们的生活之中,为我们带来更多方便。
二、理论基础及算法分析:
1、大步进快速捕获方法的基本原理:
在这里我选用“大步进快速捕获方法”来实现PN码的同步,在扩频通信系统中接收端的己调信号一般可以表示为:式中 是高斯白信道噪声,T是相对发射机的时延,A是输入信号载波幅度, 是伪噪声码, 是数据信息码, 是载波角频率, 是载波初始相位。
大步进搜索实现PN码快速捕获的实质就是将要搜索的q相位单元分为q/m段,每段m /q个相位单元,用步进电路使本地PN码逐段移动,即每次步进m个相位单元。每移动一段,做一次m路并列相关判决。由于大步进搜索每次相关判决同时对m个相位进行,而单步进搜索每次相关判决只对一个相位进行,故而大步进的捕获时间较单步进可以缩短1/m实现快捕。
使用大步进搜索方法的快速捕获系统的实现机理见图3.1。图3.1中S(t)为接收信号,它与m路本地PN码相乘,每一路代表了一个PN码相位,再经窄带滤波得到(1)~(m)这m路相关运算结果。将其送入多路比较判决电路,与门限 比较,当m路相关运算结果都小于判决门限 时,无相关输出,代表这m个PN码的相位都没有与发端PN码对齐,此时由判决输出端控制步进电路,使本地PN码大步进m位进入下一段相关处理,如果m路相关运算结果中有一路超过门限 有相关输出说明该路(设为第i路),代表的PN码相位已经与发端PN码对齐,此时由判决输出端控制步进电路停止步进,进入跟踪阶段。
2、大步进PN码捕获方法的算法分析
在本节分析中将采用状态转移图对捕获过程建立数学模型,计算大步进快速捕获方法的平均捕获时间、捕获时间方差。
对快速捕获系统的捕获性能分析,主要指平均捕获时间和捕获时间方差计算。运用状态转移图的思想来建立数学模型,使分析系统化、简明化是由J.K.霍姆斯JACK.K.HOLEMS提出来的。概括地说,该方法对离散的时不变马尔柯夫过程建立状态转移图,在状态转移图的基础上得到生成函数流程图,运用信号流图理论于生成函数流程图求得生成函数,利用捕获时间平均值及其方差与生成函数的一阶导数和二阶导数之间的关系,推导计算平均捕获时间和捕获时间方差。该方法适用于不同的捕获方案分析,且分析直观、简明,易于理解,所以我们采用该方法来分析大步进快速捕获系统的捕获过程。为简单起见本论文就大步进快速捕获延迟锁定环捕获过程建立圆形状态流程图,对该图作计算,对计算结果作分析。首先就研究的系统作一定的说明。
在实际系统中,捕获过程具有不确定性,该不确定性由诸多因素造成。例:
A、两PN码起始相位相对位置是不确定的。
B、信道畸变,如衰减信道和外来干扰、人为或非人为。
C、载波频率漂移(多普勒频移)。
D、接收端加性白高斯噪声的作用。
因此,捕获时间也是不确定的,虽然捕获时间的分布函数原则上能得到。
但在实践中得到它是非常困难的,至少在精确形式上是困难的,因此只限于研究捕获时间的平均值及其方差。
三、快速捕获系统在MATLAB上的仿真:
1、使用系统仿真软件MATLAB创建用户代码库:
MATLAB最受人们欢迎的特点之一是其具有开放性,任何用户可以通过对工具包源文件的修改或加入自己编写的文件去构成新的用户专用工具包。这里我利用MATLAB来进行仿真。为了修改和编写源文件,必须熟悉掌握SIMULINK的核心――S-FUNCTION 。
S-FUNCTION具有三种表现形式:
(1)框图形式
(2)M文件形式
(3)MEX文件形式(C语言或FORTRAN语言子程序)。
本课题中采用第一种形式和第二种形式。
S-FUNCTION仿真工作原理如下:S-FUNCTION与SIMULINK非线性库中的S-函数模块配合使用。将S-函数模块从非线性库中拷贝到用户自己的模块框图中,然后在模块的对话框中定义调用的S-函数的名称,则该模块完成的功能由调用的S-函数决定。每个SIMULINK模块都有三个基本参数:输入矢量u,输出矢量Y和状态矢量x。三者的连接关系如图3.1。
输入矢量,输出矢量和状态矢量的数学关系式如下:
式中: ,状态矢量可以为连续状态,离散状态或两者的混合状态。在调用了M文件的S-函数模块中,SIMULINK将状态分为连续状态和离散状态两部分,连续矢量放在状态矢量的前半部分,离散矢量放在状态矢量的后半部分。在仿真的特定阶段,SIMULINK反复调用模型文件中的每一个模块,控制它们完成特定的功能,如:计算输出,更新离散状态或计算状态导数等。为了执行初始化过程或中止仿真任务,在仿真开始部分和结束部分还要调用一些附加过程。图3.3给出了SIMULINK进行一次仿真的完整流程。
SIMULINK首先对模型中包含S-函数模块在内的每个模块进行初始化,然后进入仿真环。仿真环每运行一个周期称为一个仿真步长。仿真的每一个步骤都要调用S-函数,直至仿真结束
创建一个用户自定义的SIMULINK模块的步骤为:
① 根据算法和公式编写核心部分的S-函数。
② S-函数经过通用S-函数模块处理后,转化为用户自创建的模块。
③ 根据要求的功能构造用户子系统(subsystem),包括输入端口,输出端口,S-函数模块和其它一些附加模块。
④ 利用SIMULINK中的封装功能将子系统封装起来,生成用户自定义的封装对话框和图标,为整个子系统提供统一的设置。具体设置包括模块名称,模块类型,仿真参数,图标符绘图指令,模块功能描述信息和模块帮助信息。
这样最终能得到一个用户自定义的SIMULINK模块,该模块能完成所要求的功能。在本课题所要仿真的锁相环中,很多模块都采用调用S-函数的方式实现其功能,如信号产生模块,逻辑控制模块,扩频码产生模块等。
2、系统模块构建设计:
(1)、信号模型:
该模块的功能是产生二相相移键控(BPSK)调制的直扩码序列。设一个chip内有10个载波,一个chip采样100次。
(2)、PN码产生模块:
模块的功能是产生伪随机序列,包括两部分:一是模拟BPSK调制信号时用作调制码,二是在接收后的本地伪随机序列。可将捕获后的结果与发射前的随机码相比较,检验捕获结果。
3、系统仿真模型的构建仿真:
单系统的仿真框,系统论证的宽带滤波器和窄带滤波器已经合并入模块中,参数选择如上所述。
4、仿真结果:
按照系统仿真模型,最终得到的捕获结果如图所示
当捕获成功时发端码(上)与本地码(下)的比较(单位:秒)
由上图的结果是在m=5时得到的结果,可以清楚的看到,当捕获成功时,接收端的随机码与本地伪码的相位相差半个码元,达到要求,实现PN码的同步。此仿真实现了利用“大步进快速捕获方法”对PN码的同步。
四、结束语:
同步是CDMA通信系统中一个重要的实际问题。在通信系统中,同步具有相当重要的地位。通信系统能否有效地、可靠地土作,很大程度上依赖于有无良好的同步系统。通信系统中的同步又可分为载波同步、位同步、帧同步、网同步几大类。
因此,对于相干扩频通信系统而言,必须保证接收端与发送端实现信息码元同步、PN码码元和序列同步和射频载频同步。只有实现了这些同步,直扩系统才能正常工作,可以说,没有同步就没有扩频通信系统。扩频通信中,主要关注的是PN码的同步。
扩频通信系统中的同步问题可分为三个方面,即伪随机序列的捕获,伪随机序列的跟踪和载波的同步。其中,伪随机序列的捕获是扩频通信系统得以工作的基础,而伪随机序列的跟踪和载波同步是保证系统性能的最关键因素。
本文围绕CDMA扩频通信系统中PN码同步进行了研究,并实现了CDMA通信系统中的PN码同步算法。
参考文献
1、A. J.维特比著,李世鹤等译,CDMA扩频通信原理,1998
2、姜为民,CDMA系统中长PN码的捕获,武汉大学学报,1999年11月
二十世纪六十年代,人们发现了混沌理论。混沌理论即一个给出混乱、随机的分周期性结果的模型,却是由确定的非线性微分方程构成。混沌是一种形式非常复杂的运动,看似杂乱无章的随机运动轨迹,却是由一个确定方程模型得出。混沌对初始条件的敏感度非常高。密码技术是一种研究使用密码进行加密的技术,而随着信息技术的发展,窃取加密密码的方法越来越多,并且随着传统密码技术的不断使用和技术公开,传统密码技术的保密性已经降低,所以一些新的密码技术开始出现,其中包括混沌加密、量子密码以及零知识证明等。本文首先介绍混沌加密密码技术,然后介绍光学通信,最后重点探讨混沌加密在光学通信中的应用。
1.混沌加密
我们首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。混沌的特征主要有:混沌运动轨迹符合分数维理论,混沌轨迹是有序与无序的结合、并且是有界的伪随机轨迹,混沌运动具有遍历性,所有的混沌系统都具有几个相同的常数、并且符合利亚普诺夫指数特性,混沌运动的功率谱为连续谱线以及混沌系统具有正K熵等。混沌加密是一种新的密码技术,是将混沌技术与加密方法相结合的一种密码加密技术。混沌加密的方法有很多种,根据不同的通信模式,可以选择不同的加密方式与混沌技术结合,以实现信息的加密传输。混沌加密的常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。
2.光学通信
之所以将混沌加密应用在光学通信中,是因为光学中存在混沌现象,这种混沌现象既包括时间混沌现象也包括空间混沌现象。光学通信是一种利用光波载波进行通信的方式,其优点是信息容量大、适应性好、施工方便灵活、、保密性好、中继距离长以及原材料来源广等,光纤通信是光学通信中最重要的一种通信方式,已成为现代通信的重要支柱和发展趋势。光纤通信系统的组成主要包括:数据信号源、光数据传输端、光学通道以及光数据接收端等。数据信号源包括所有的数据信号,具体体现为图像、文字、语音以及其他数据等经过编码后所形成的的信号。光数据传输端主要包括调制解调器以及计算机等数据发送设备。光学通道主要包括光纤和中继放大器等。光数据接收端主要包括计算机等数据接收设备以及信号转换器等。
3.探讨混沌加密在光学通信中的应用
在光学通信中,应用混沌加密技术对明文进行加密处理,以保证明文传递过程中的安全性和保密性。本文重点对混沌加密在光学通信中的应用进行了探讨。其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。
3.1混沌加密常用方法
连续流混沌加密方法:连续流混沌加密利用的加密处理方式是利用混沌信号来掩盖明文,即使用混沌信号对明文进行加密处理。连续流混沌加密方法常应用在混沌掩盖加密方案以及混沌参数加密方案中。其加密后的通信模式是模到模的形式。
数字流混沌加密方法:其加密后的通信模式是模到数再到模的形式。
数字信号混沌加密方法:其加密后的通信方式是数到数的形式。主要包括混沌时间序列调频加密技术以及混沌时间编码加密技术。主要是利用混沌数据信号对明文进行加密。
3.2光学通信中混沌加密通信常用方案
在光学通信中,利用混沌加密技术进行通信方案的步骤主要包括:先利用混沌加密方法对明文进行加密(可以使用加密系统进行这一过程),然后通过光钎进行传输,接收端接收后,按照一定解密步骤进行解密,恢复明文内容。
混沌掩盖加密方案:其掩盖的方式主要有三种:一种是明文乘以密钥,一种是明文加密钥,一种是明文与密钥进行加法与乘法的结合。
混沌键控加密方案:其利用的加密方法主要为FM-DCSK数字信号加密方法。该方案具有良好的抗噪音能力,并且能够不受系统参数不匹配的影响。
混沌参数加密方案:就是将明文与混沌系统参数进行混合传送的一种方案。这种方案增加了通信对参数的敏感程度。
混沌扩频加密方案:该方案中,扩频序列号一般是使用混沌时间序列,其加密方法是利用数字信号,该方案的抗噪音能力特别好。
3.3光学通信中两级加密的混沌加密通信方案
为了进一步保证传输信息的安全保密性,需要对明文进行二次加密。其步骤是:首先先对明文进行第一次加密(主要利用双反馈混沌驱动系统产生密钥1,然后将明文与密钥1组合起来形成密文1),第二步是通过加密超混沌系统产生的密钥2对密文1进行二次加密,形成密文2,第三步将密文2通过光纤进行传递,同时将加密超混沌系统一起传递到接收端。第四步,接收端接收到密文2以及加密超混沌系统后,对密文2进行解密,形成密文1,然后将密文1传送到双反馈混沌驱动系统产生密钥1,然后将密文1进行解密,通过滤波器破译出明文。此外,还可以对二级加密通信进行优化,即使用EDFA(双环掺饵光纤激光器)产生密钥进行加密。
4.结论
本文首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。然后我们简单介绍了一下光学通信以及光纤通信,并且介绍了光纤通信的组成结构。并且由于光学中存在混沌现象,所以我们在光学通信中应用混沌加密技术进行保密工作。最后本文重点探讨了混沌加密在光学通信中的应用,其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。
【参考文献】
[1]马瑞敏,陈继红,朱燕琼.一种基于混沌加密的关系数据库水印算法[J].南通大学学报(自然科学版),2012,11(1):13-27.
扩频通信有直接序列扩频、跳频扩频、跳时扩频等几种方式[2].扩频通信系统中常采用的m 序列和Gold 序列,它们都有着较好的自相关特性,但其互相关函数存在大量的尖峰脉冲,这种现象特别是在多径效应的情况下对扩频通信十分不利。另外序列的数量有限,特别是m 序列,Gold 序列是通过m 序列优选对生成的,其可用序列的数量也是有限的。同时它们都有安全性问题,只需知道序列的2n 个比特(n 为寄存器级数)的码元就很容易破译,这就影响到了扩频通信的安全。可见扩频技术主要受传统的PN 码的相关特性以及PN 地址码个数的限制,且其抗截获能力比较差,这对于采用扩频技术的CDMA 系统都是十分不利的。
混沌扩频通信使用混沌序列代替扩频通信的PN 码,混沌序列的研究为选择扩频码开辟了新的途径。混沌是由确定性方程产生的,只要方程参数和初值确定就可以重现混沌现象,而且由于它对初值极端敏感,所以混沌过程既非周期又不收敛[3].从理论上,混沌序列是非周期序列,具有逼近于高斯白噪声的统计特性,并且混沌序列数目众多,更适合应用于扩频通信中作为扩频序列码。混沌系统有着对初始条件特别敏感的特点,对于一个确定的混沌系统,两个非常接近的初始条件(或参数)经过长时间发展后,可以输出完全不相关的结果。这样就可以很方便的产生出大量的不相关的混沌序列,只需通过简单的改变初始值。同时,这些混沌序列具有良好的相关特性,从有限长序列中不可能导出系统的初始条件,从而可达到保密通信的目的,这些特点使得混沌系统很适合于产生扩频通信中系统性能优良的扩频序列。由此,本文用混沌序列作为扩频序列进行了扩频通信系统的Simulink 建模仿真,仿真结果验证了该方法的正确性,先进性。
2 混沌扩频的基本原理
2.1 混沌扩频通信系统的框图设计
该扩频系统的原理框图如图1 所示,它按功能主要可以分为5 个部分:混沌序列产生部分、扩频调制部分、信道部分、解扩部分和误码比较部分。信号在系统的处理过程为:
(1)先由信源端随机生成准备传送的有用信号,有用信号经过信息调制形成数字信号。
(2)然后由混沌序列生成模块产生混沌序列去调制数字信号以展宽信号的频谱,将扩展频谱的宽带信号经信道传送,叠加上信道噪声。
(3)经过信道传送以后,由本地产生的与发送端相同的混沌序列去完成相关检测,即将收到的宽频信号进行解扩。
(4)经过解扩的信号再经过信息解调,恢复出发送的信号。将恢复出的信号与发送端的原始信号同时送入误码比较器进行比较,计算出系统的误码率。
2.2 混沌序列性质分析
目前应用于产生扩频伪随机序列码的混沌映射主要有:Logistic 映射、改进型Logistic映射、Chebyshev 映射和Tent 映射。这几种混沌映射都属于离散时间混沌系统,是目前研究较为集中的几种映射。本文中选用Logistic 映射动力方程[4].它具有很好的自相关性和互相关抑制性。 对于保密通信而言,既要求对初值的敏感性又要求信号的随机性,敏感性越强同时随机性越好,则保密性越强。这些特性可由概率统计特性均值、自相关和互相关性来定量描述。
当混沌序列无限长时,Logistic 序列的自相关特性和白噪声是一致的。Logistic 序列越长,互相关性越好。在码分多址系统中,最主要的干扰是多址干扰,衡量抗多址干扰能力的主要指标主要是码间互相关性的大小。利用概率密度函数,可以计算得到所关心的一些统计特性p(x)关于偶对称,自相关函数近似为δ 函数,互相关为零。其概率统计特性与白噪声一致,适合于在保密通信中的应用。
2.3 混沌序列与PN 序列的比较
在扩频通信系统中,大都采用线性或非线性移位寄存器产生的伪随机码作为扩频序列,例如,m序列和Gold 序列。然而,这些序列码集中的码个数都很有限。在具有大容量的CDMA通信系统中,这些序列的数量远远满足不了容量的要求。另外,他们提供的保密性也很有限,容易破译。根据以上所述的混沌序列的特性,可将混沌序列代替一般的伪随机序列来作为扩频系统的扩频序列,即所谓的混沌扩频序列。
使用混沌扩频序列主要有以下几个优点[5]: (2)混沌序列容易产生和存储。混沌序列只需要一个模型和初始条件就可以产生,而m序列、Gold 码等PN 序列,由多级移位寄存器或其它延迟元件通过线性反馈产生,要获得不同的随机序列,必须对其产生的随机二进制序列进行缓存,不如混沌序列产生方便。
(3)混沌序列对初始参数极其敏感,即使对相差为10?6的两个初值,经过混沌模型数次迭代后产生的序列也将变得毫不相关,这样可通过混沌模型产生大量不相关的序列。而m序列和Gold 码序列长度只能固定,并且序列的数量有限。
(4)混沌序列的保密性要好于PN 序列。混沌序列具有确定的、随机的和不可预测的特征,并且具有连续宽频谱特征。混沌系列没有周期,类似于一个随机过程,且任意截取一段序列,均不能预测出整个序列,不同于普通扩频系统中的伪随机序列。
可见,混沌序列用于扩频调制,理论上可以进一步改善其性能。
3 MATLAB/SIMULINK 简介
MATLAB 是美国Mathworks 公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种精确计算和数据处理的、可视化的、强大的计算工具。MATLAB软件包括两大部分:数值计算和工程仿真。其数值计算部分提供了强大的矩阵处理和绘图功能;在工程仿真方面,MATLAB 提供的软件支持几乎遍布各个工程领域,并且不断加以完善。SIMULINK 是基于框图的仿真平台,它挂接在MATLAB 环境上,以MATLAB 强大的计算功能为基础,以直观的模块框图进行仿真和计算。在SIMULINK 环境下使用通信系统仿真模块库中的模块,可以很方便的进行通信系统的仿真,直观的图形输出让我们可以很清楚地看到仿真结果。
4 混频扩频系统的建模与实现
4.1 混沌扩频通信系统的仿真模型设计
在 simulink 环境下,在通信系统仿真模块库中选择本系统仿真所需要的各个模块,搭建仿真模型,如图3 所示。
4.2 系统仿真结果与性能分析
5 结论
本文给出了一种基于MATLAB/SIMULINK 的混沌扩频通信系统的仿真模型,验证了基于混沌序列的扩频通信系统的工作机理。从仿真的结果中的误码率和信号波形两个方面都可以验证利用混沌序列进行扩频通信是一种更为优良、可靠的通信传输手段。本文所设计的仿中国科技论文在线真框图,具有良好的性能和可视化的优点,下一步可以研究具有自适应特性的、对调制方式、载波数、扩频码的参数可以适时更改的、更加智能化和实用化的混沌序列扩频通信系统。随着第三代通信的发展,保密传输变得越来越重要了,混沌序列直接扩频提供了比传统的扩频系统更好安全性[7].比如非周期性、对初始值及参数的敏感性、非二元性、伪随机性等都在传输安全中有更好的优越性,再加上混沌序列具有无穷的多样性,从而为通信质量和系统容量的提高奠定了理论基础[8, 9]。
[2] 胡健栋,郑朝辉等。码分多址与个人通信[M].北京人民邮电出版社,1996.
1.绪论
在移动通信系统之中,由于城市建筑物和地形地貌的影响,传输信号经过无线信道传播,使得接收到的信号出现时延、频率和角度扩展等变化。其中,时延扩展将直接导致码间串扰,频率扩展将导致传输信号的时间衰落,角度扩展将导致信号的空间衰落,这些情况都将严重影响通信质量。在CDMA移动通信系统中采用RAKE接收机来完成分集接收,从而保证了系统可以获得较高的通信质量。本文采用MATLAB仿真软件对RAKE接收机进行仿真。结果表明:RAKE接收机能更有效地克服多径传输造成的干扰,将多径衰落信道分散的信号能量收集起来,从而降低信号误码率,提高通信质量。
在CDMA移动通信系统中采用RAKE接收机来完成传输信号的分集和接收,从而能够保证系统可以获得比较满意的信号传输结果和通信传输质量。在本文中,采用MATLAB软件对RAKE接收机进行编程和仿真,还通过比较分析选择式合并,等增益合并和最大比值合并这三种不同的合并方式情况下,RAKE接收系统的信号误码率的变化情况,用来说明不同合并方式对RAKE接收系统的效率的影响。
2.RAKE接收技术
2.1 RAKE接收信号合成矢量表现
RAKE接收机的基本原理就是将那些幅度明显大于噪声背景的多径分量取出,对它进行延时和相位校正,使之在某一时刻对齐,并按一定的规则进行合并,变矢量合并为代数求和,有效地利用多径分量,提高多径分集的效果。
不采用RAKE接收时,多径信号的合成矢量如图2-1所示。采用RAKE接收后的合成矢量如图2-2所示。
由于用户的随机移动性,接收到的多径分量的数量、大小(幅度)、时延、相位均为随机量,因而合成矢量也是一个随机量[1]。若能通过RAKE接收,将各路径分离开,相位校准,加以利用,则随机的矢量和将可以变成比较稳定的代数和而加以利用。当然这一分离、处理和利用的设想是在宏观分区域含义完成的,而不可能是针对所有实际传播路径而言的。
根据可分离路径的概念,当两个信号的多径时延相差大于一个扩频码片宽度,可以认为这两个信号时不相关的,或者说路径是可以分离的。反映在频域上,即信号的传输带宽大于信号的相干带宽的时候,认为这两个信号时不相关的,或者说路径是可分离的。
由于CDMA系统是宽带传输系统,所有信道共享频率资源,所以CDMA系统可以使用RAKE接受技术,而其他两种多址技术TDMA、FDMA则无法使用。
2.2 RAKE接收机的设计与仿真
2.2.1 系统设计
设计和仿真中的CDMA系统仅涉及到扩频调制、多径衰落信道、扩频解调模块,没有包含信道编/解码、交织等部分,也没有考虑CDMA系统的扩频调制解和调级上的RAKE接收机的误比特性能[2]。RAKE接收机的结构设计如图2-3所示。
其中,发送端发送的信号在信道中遇到3个障碍物而产生反射,那么本次模型中传输路径数=3;在瑞利衰落信道中,假定产生的3径信号互相独立,那么,以第1径信号的传输时延为标准时间0,第2径信号的传输时延为,第3径信号的传输时延为,其中是扩频码的一个码片时间。3条路径的信号合并后加载上加性高斯白噪声(AWGN)。在接收端进行分集的过程是,首先对每径信号分别进行相应的时延同步,然后对每径信号分别进行解扩。因为在瑞利衰落信道中3径的传输时延是[0,,],那么在接收端3径的同步时延就是[,,0]。接下来将3径信号进行RAKE合并,这里所采用的合并准则是等增益合并方式。
2.2.2 参数配置
(1)用户参数设计
用户数=1,发送端首先产生随机信号,然后使用Walsh码进行扩频,扩频因子取=16;之后信号通过DPSK调制器产生DPSK信号。因为多径时延也是独立的。在假设RAKE接收机中的信道估计单元对延迟和相位的估计都是准确的情况下,可以仅考虑加性高斯噪声和瑞利衰落对RAKE接收机接收性能的影响。图2-4是经过扩频后的信号。
(2)噪声的产生
是一一对应的关系。根据以往的研究发现,在噪声均方值的时候,仿真出的效果比较明显。则,令。信道中的高斯白噪声的单边功率谱密度为:
在接收端,噪声与载波相乘,其单边功率谱密度变为,双边功率谱密度即为。仿真中,让信号通过瑞利衰落后加载上高斯噪声,以实现噪声对RAKE接收机性能的影响[3]。
(3)瑞利衰落信道的产生
在前面计算噪声的功率谱密度时,有令,因为是服从瑞利分布的,其均值和方差分别为。又因为,所以可以推出瑞利衰落参数。瑞利衰落信道的抽样时间为1/10000,多普勒频移是100Hz,方差为。利用MATLAB自身函数产生瑞利衰落信道。
图2-5是通过瑞利衰落信道后的传输信号的仿真图。图2-6是加载了加性高斯白噪声后的传输信号。
2.2.3 仿真结果
传输信号通过瑞利衰落信道后,加载加性高斯白噪声。此后,每一径的信号通过各自的时延矫正以后,经过解扩就进入了RAKE接收合并模块。每条径解扩后的信号如图2-7所示。之后,信号进入RAKE合并器,合并方式采用等增益合并方式,经过图2-8所示的判决后,即可得到系统的输出信号。
图2-9为RAKE接收机误码率仿真曲线图,其中横坐标为信号干扰噪声比,指信号功率与噪声和干扰功率之比,纵坐标为误码率。由图2-9可知RAKE分集接收能有效地减少多径衰落的影响,降低误码率。由仿真结果可以看出,无论无论是否使用RAKE接收机处理信号,信噪比越大,误码率就相应的减小;在使用RAKE接收机处理信号后,同等信噪比条件下,信号的改善效果更好,抗干扰能力就越强。
经研究发现,根据扩频带宽的选择,多径环境下可能有几路到几十路可分离的多径信号,有的多径信号只包含很少的信号能量,所以,RAKE接收机不需要分集接收所有的多径信号[4]。为此,除了根据信道的特性,选择适当的RAKE支路外,还可以在RAKE接收机的每个支路设置一个门限,当信号的电平低于门限值时将该支路关闭,以防止信噪比很低的分集支路对RAKE接收机的影响。
3.结论
本论文是建立在RAKE接收机的分集重数对RAKE接收机误码性能影响的情况进行的分析和比较。在用户固定的RAKE接收机中,RAKE接收机的分集重数越多,搜索到的多径就越多,它主要是由信道的时延扩展决定的。在一定的码率下,延时扩展越大所需要的抽头数就越多,这样,在时延扩展很大的信道中,需要大量的抽头数,这将使得系统的复杂度很高。有时在硬件上很难实现。
通过RAKE接收机的原理的研究,应用MATLAB软件设计了RAKE接收机仿真程序,软件仿真结果与理论相符,RAKE接收机在采取多径合并后,能更有效的收集信号能量,恢复出原始信号,达到了预想中的效果。
参考文献
[1]朱秋明,徐大专,陈小敏.瑞利衰落信道模型比较与分析[J].四川大学学报,2009,41(6):238-241.
[2]郭文彬,桑林.通信原理——基于Matlab的计算机仿真[M].北京邮电大学出版社,2006:196-199.