钢结构设计论文汇总十篇

时间:2023-03-23 15:05:41

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇钢结构设计论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

钢结构设计论文

篇(1)

钢材受自然因素影响较大,一旦长时间暴露在室外环境中,就极易被锈蚀,不仅钢材的外观会深受影响,钢材的质量也会大打折扣。因此,在钢结构建筑设计中钢材防腐问题也是必须引起高度重视。当前,钢结构建筑设计中对于防腐方面问题的解决方法通常是采用涂抹防腐涂料的措施。设计人员会根据钢结构建筑的要求选用合适的防腐涂料,并要求施工人员在施工中严格按照相关要求规范进行操作。此外,对于钢结构构件也有不同的要求,例如有的构件在出厂前需要涂刷一层底漆。在钢材上涂抹防腐涂料就目前来看是最为有效的防腐措施。但是这样做只是基础性的防腐,因而为了提高钢结构的防腐效果,就必须选用耐候钢作为钢结构建筑的首选材料,并利用热浸镀锌技术对其进行处理,利用镀层,达到保护钢结构不被腐蚀,尤其是应加强有机涂料配套技术的应用,以及阴极保护技术的应用,才能更好地确保其防腐性能得到有效的提升。

1.2钢结构设计在物理方面的问题及对策

1.2.1噪声问题及对策

噪声问题是现代建筑中最为常见的问题之一,且一直没有得到彻底的解决。怎样有效降低噪声已经成为当前建筑学中的重要研究课题之一。人类耳朵能够听到许多种声音,而这些声音又大致能够分为两类,一类是无害悦耳的声音,例如音乐声、鸟鸣声等;另一类则是有害的噪声,例如各种机械发出的轰鸣声,刺耳的喇叭声等。一般情况下,建筑使用功能的不同对隔音的效果要求也不同,例如大型商场建筑,其隔音效果要求较低;寻求安静的住宅建筑隔音效果要求就较高,这就需要设计人员根据建筑使用功能以及隔音效果的不同要求进行专门的设计。在钢结构建筑设计中所采用的隔音措施主要有:使用隔声门、隔声窗,并在建筑或需隔音的房间外墙上使用隔声性能较好的材料。根据建筑使用功能的不同,其对吸音的效果要求也不相同。例如音乐厅类型的建筑,其主要使用功能就是让人类的耳朵吸收发出的音乐声,所以在音乐厅类型的建筑中通常会在顶棚增加反射板用来反射声音,若是音乐厅中的声音无法反射,那么人类的耳朵所听到的声音就会有缺失,甚至是听不到声音。当前,解决吸音问题的主要措施有两种:第一种是科学的设计吸声结构,例如孔石膏板吊顶。第二种是采用先进的吸声材料,例如玻璃、岩棉等吸声性能较好的材料。

2建筑工程中钢结构设计的稳定性与设计要点

2.1建筑工程中钢结构稳定设计的特点

建筑工程中钢结构稳定设计的特点主要表现为:第一,钢结构的多样性。建筑工程中钢结构设计方面的问题直接影响着钢结构的稳定性,特别是承荷载力大的钢结构部位,在进行这类钢结构部位设计时必须进行多方面的考虑,并对钢结构的稳定性进行认真分析、探究。第二,钢结构的整体性。钢结构建筑是由多种构件共同组成的一个整体,任何一个构件所具有的作用都是不容忽视的,若是当任意一个构件出现问题,例如失稳、变形等情况,那么必定会对其他构件造成影响,最终导致钢结构整体稳定性出现问题。

2.2钢结构稳定性的计算方法

(1)整体刚度计算。在现行的钢结构计算规范中,通用的计算方法是轴心压杆稳定计算方法,其主要采用是折减系数方法和临界压力求解法。其中,临界压力由欧拉公式给出。(2)整体稳定性分析。钢结构建筑是由多种构件共同组成的一个整体,其整体稳定性受各种构件的制约较大,各构件之间是否具有良好的稳定性,是确保钢结构整体稳定性的前提基础。所以,应对其整体稳定性进行分析。(3)其他特点的稳定计算。钢结构的各种组成构件又能分为两大类,为弹性构件和柔性构件,因而,在进行钢结构稳定性时应重视这一特点。由于柔性构件容易发生变形,进而导致钢结构内部也发生变化,最终对钢结构整体稳定性产生严重的影响,所以,必须重视柔性构件的分析。

2.3钢结构稳定性的分析方法

(1)静力法。静力法的分析原理是结合已经出现了微小变形后的一些结构受力的条件,并根据这些条件来建立相对平衡的微分方程。通过建立的微分方程仔细的计算出构件受力的临界相关荷载。在实际中应用静力法构件平衡微分方程时,应遵循相关设定,具体表现为:直杆构件应该为截面,其压力应始终遵循之前的轴线进行作用。(2)动力法。当钢结构的结构体系处于平衡状态下时,若是受到一定的干扰,那么整个结构体系就会产生振动,这时应采用动力法对钢结构的稳定性进行分析。钢结构整体稳定性与其所承受的荷载有着密切关联,在钢结构出现变形以及钢结构振动加速时,这种联系更加紧密。若是钢结构所承受的荷载值低于钢结构自身稳定性的极限荷载值时,会出现加速度和之前的钢结构变形的具体方向相反的状况。(3)能量法。若是在实际应用中钢结构载着保守力并且已经具备结构变形的相关受力条件,那么就能以此条件构建总体势能。如果要计算钢结构的总体势能,则必须满足一个前提条件,即钢结构处于相对平衡的状态下。

篇(2)

1、引言

由于国家政策、钢材生产、构件制作、设计研发、标准规范修订等方面的有利因素,近几年我国的建筑钢结构进入了一个全新的发展时期。新材料、新部品、新结构体系不断出现,钢结构设计研发、制作安装能力日益强大,建筑钢结构向多样性、适用性、经济性方向发展。

建筑钢结构的经济性能一直是大家最为关注的一个问题。如何控制工程造价,充分发挥钢结构建筑技术经济上的综合优势,工程设计阶段是关键阶段。据权威资料统计分析,在初步设计阶段,影响工程造价的可能性为75%-95%;在技术设计阶段,影响工程造价的可能性为35%-75%;在施工图设计阶段,影响工程造价的可能性为5%-35%。因此设计质量的好坏、设计是否优化对工程造价将产生直接的影响。下面以门式刚架轻钢结构厂房和多、高层钢结构建筑的设计为例,在材料选用、结构体系等方面进行简要分析,探讨在设计阶段控制工程造价,提高建筑经济性能的可行性。

2、材料选用方面工程造价控制

由于我国钢产量已经突破两亿吨,钢材品种更趋于多样化。各种新型建材,如轻质保温墙板、彩涂压型钢板、楼承板等不断开发出来并推广应用。建筑钢结构在设计阶段材料的选择上有了更大的空间。材料选择不同,工程直接费不同,总造价不同。设计阶段合理选择建筑材料,控制材料单价或工程量,是控制工程造价的有效途径。试举例如下:

(1)彩涂钢板:彩涂钢板一般用于轻钢厂房屋面板和墙面板,有不同板型、不同基板厚度和钢号、不同镀锌板类别和镀锌层厚度以及不同的彩涂层类别,在形式上又可选用单板、保温复合板、单板加内保温层等,其中保温层又有超细玻璃丝棉、硬质岩棉、聚苯乙烯等类别及厚度的不同,这些不同都造成单方材料价格的差异,从而影响厂房工程总造价。所以设计时要根据厂房性质、大气环境等因素综合考虑,合理选用板材,控制工程造价。

(2)多、高层住宅钢结构体系的墙体材料:墙体材料造价一般占土建工程造价的15%-25%。对于多、高层住宅钢结构体系来说,选用配套、经济、节能的墙体材料至关重要。目前,设计选用的外墙材料主要有水泥保温外墙板、轻质加气混凝土砌块、NALC板等;内墙材料主要有改性石膏板、GRC内墙板、水泥保温复合板等。莱钢集团自主研发的LCC-A系列、LCC-B系列和LCC-C系列轻质保温复合墙板也已应用于在建钢结构节能住宅工程中,逐步使钢结构住宅体系走向标准化、定型化和工业化,为降低综合造价创造了基础条件。

(3)多、高层钢结构建筑楼(屋)面的楼承板:设计时,根据在楼(屋)盖结构体系中的作用,楼承板可采用两种形式,即①楼承板只作为永久性模板,一般采用普通镀锌压型钢板即可,对最小镀锌量和耐火时间要求较低,价格较便宜;②施工时作为模板,在使用阶段则替代受拉钢筋,即组合楼板。由于在设计中考虑楼承板作为受拉筋,其使用寿命必须与主钢结构的使用寿命保持一致,所以对其最小镀锌量和耐火时间要求较高,单方价格相对较高。

(4)钢材规格及材质:由于钢材品种的增多,结构设计时可选择的构件形式也多了。比如框架柱,可采用热轧H型钢、焊接H型钢、螺旋焊接圆钢管、焊接方钢管以及组合截面等形式,钢梁可采用等截面、变截面等形式。材质可采用Q235普碳钢,也可采用Q345低合金钢。设计时应尽可能采用高强度等级的材料,比如采用Q345钢比采用Q235钢就可节约钢材15%-25%,用于受拉或受弯构件节约比例较大。设计时要选用经济截面型材,比如热轧H型钢、T型钢等。在某些情况下,采用热轧H型钢柱、梁可能比采用焊接H型钢用钢量稍多,但从加工成本、施工进度等方面综合考虑,其造价可能更有优势。

3、结构体系方面工程造价控制

不同的结构体系和平、立面布置对工程造价的影响较明显。在设计阶段只有根据建筑物的使用功能要求,确定合理的平、立面布置和结构体系,才能有效控制工程造价,做到经济适用。列举如下:

(1)根据有关资料测算分析,对于多层建筑,不同层数对土建工程造价的影响为10%-25%;不同层高对土建工程造价的影响为1.5%-12%。

(2)门式刚架轻钢结构厂房设计,同样存在经济跨度和刚架最优间距。在工艺要求允许的情况下,尽量选择小跨度的门式刚架较为经济。一般情况下,门式刚架的最优间距为6m-9m,当设有大吨位吊车时,经济柱距一般为7m-9m,不宜超过9m,超过9m时,屋面檩条、吊车梁与墙架体系的用钢量也会相应增加,造价并不经济。下表(表3.3)是按《门式刚架轻型房屋钢结构技术规程》(CECS102:98)进行设计的厂房主钢用钢量,通过横向、纵向比较,可以看出各影响因素在设计阶段合理确定的意义。设计荷载取值:恒载0.3KN/m2、活载0.5KN/m2、基本风压0.55KN/m2、不考虑吊车及悬挂荷载。

柱距7.5m

檐高6.0m

用钢量

(kg/m2)

柱距7.5m

檐高6.0m

用钢量

(kg/m2)

柱距7.5m

檐高6.0m

用钢量

(kg/m2)

跨度

Q345

Q235

跨度

Q345

Q235

跨度

Q345

Q235

1×18.0m

7.20

8.72

2×18.0m

7.16

8.92

3×18.0m

7.38

8.95

1×21.0m

8.41

9.90

2×21.0m

8.45

10.28

3×21.0m

8.43

10.12

1×24.0m

9.22

11.43

2×24.0m

9.68

11.75

3×24.0m

9.29

11.36

1×27.0m

10.54

12.72

2×27.0m

10.86

13.12

3×27.0m

10.35

12.96

1×30.0m

11.57

13.95

2×30.0m

11.92

14.53

3×30.0m

11.35

13.54

1×33.0m

12.86

15.10

2×33.0m

13.21

16.58

3×33.0m

12.46

15.61

(3)在多、高层钢结构中,楼板结构体系的工程量占有较大比重,对结构的工作性能、造价都有重要影响。在确定楼板结构方案时,主要考虑要保证楼板有足够的平面整体刚度,能减轻结构的自重及减小结构层的高度,有利于现场安装方便及快速施工,还要有较好的防火、隔音性能,并便于管线的敷设。常用楼板做法有:压型钢板组合楼板、预制楼板、叠合楼板和普通现浇钢筋混凝土楼板等。目前最常用的做法为压型钢板组合楼板和普通现浇钢筋混凝土板。当采用这两种做法时,考虑现浇板与钢梁组合成为共同受力的组合梁,能有效降低钢梁高度,较多地节约钢材。

(4)在高层钢结构中,框架柱采用圆形钢管混凝土柱,梁、板采用钢-砼组合结构,总用钢量比普通钢结构用钢量有大幅度减小,能有效降低工程造价。

4、结束语

钢结构建筑所具有的优点决定其必将具有强大的生命力。设计阶段技术创新、选材配套、设计优化是控制造价、促进建筑钢结构走向产业化的关键阶段。为此,强调以下几点:

篇(3)

最为现代最重要的建筑材料,钢是在19世纪被引入到建筑中的,钢实质上是铁和少量碳的合金,一直要通过费力的过程被制造,所以那时的钢仅仅被用在一些特殊用途,例如制造剑刃。1856年贝塞麦炼钢发发明以来,刚才能以低价大量获得。刚最显著的特点就是它的抗拉强度,也就是说,当作用在刚上的荷载小于其抗拉强度荷载时,刚不会失去它的强度,正如我们所看到的,而该荷载足以将其他材料都拉断。新的合金又进一步加强了钢的强度,与此同时,也消除了一些它的缺陷,比如疲劳破坏。

钢作为建筑材料有很多优点。在结构中使用的钢材成为低碳钢。与铸铁相比,它更有弹性。除非达到弹性极限,一旦巴赫在曲调,它就会恢复原状。即使荷载超出弹性和在很多,低碳钢也只是屈服,而不会直接断裂。然而铸铁虽然强度较高,却非常脆,如果超负荷,就会没有征兆的突然断裂。钢在拉力(拉伸)和压力作用下同样具有高强度这是钢优于以前其他结构金属以及砌砖工程、砖石结构、混凝土或木材等建筑材料的优点,这些材料虽然抗压,但却不抗拉。因此,钢筋被用于制造钢筋混凝土——混凝土抵抗压力,钢筋抵抗拉力。

在钢筋框架建筑中,用来支撑楼板和墙的水平梁也是靠竖向钢柱支撑,通常叫做支柱,除了最底层的楼板是靠地基支撑以外,整个结构的负荷都是通过支柱传送到地基上。平屋面的构造方式和楼板相同,而坡屋顶是靠中空的钢制个构架,又成为三角形桁架,或者钢制斜掾支撑。

一座建筑物的钢构架设计是从屋顶向下进行的。所有的荷载,不管是恒荷载还是活荷载(包括风荷载),都要按照连续水平面进行计算,直到每一根柱的荷载确定下来,并相应的对基础进行设计。利用这些信息,结构设计师算出整个结构需要的钢构件的规格、形状,以及连接细节。对于屋顶桁架和格构梁,设计师利用“三角剖分”的方法,因为三角形是唯一的固有刚度的结构。因此,格构框架几乎都是有一系列三角形组成。 钢结构可以分成三大类:一是框架结构。其构件包括抗拉构件、梁构件、柱构件,以及压弯构件;二是壳体结构。其中主要是轴向应力;三是悬挂结构。其中轴向拉应力是最主要的受力体系。

网架结构 这是刚结构最典型的一种。多层建筑通常包括梁和柱,一般是刚性连接或是简单的通过沿着提供稳定性的斜向支撑方向在端部连接。尽管多层建筑是三维的,但通常某个方向即某一维度要比其他维度刚度更大,所以,其有理由被当做是一系列的平面框架。然而,如果一个框架中某一平面上的构建的特性可以影响其他平面的特性,这个框架就必须当做一个三维框架来考虑。

网壳结构 在这类结构中,壳体除了参与传递荷载外,还有其他实用功能。许多壳体结构中,框架结构也会与壳体一起组合使用。再强和平屋顶上“外壳”构件也和框架结构一起承担压力。

悬挂结构 在悬挂结构中,张拉索是主要的受力构件。屋面也可以有索支撑。这种形式的结构主要是吊桥。这种结构的子系统,是有框架结构组成,就像加劲桁架支撑索桥。由于这种张拉构建能够最有效的承担荷载,结构中的这种设计理念被越来越广泛的应用。

很多不寻常的结构,是由框架、壳体以及悬挂结构的不同组合形式建造。

在美国,钢结构的设计主要依据是美国钢结构协会颁布的规范。这些规范是很多学者和一线工程师的经验所得。这些研究成果被综合处理成一套既安全又经济的设计理念的设计程序。设计过程中数字计算机的出现促使更加精妙可行的设计规则产生。

规范包括一系列保证安全性的规则,尽管如此,设计者必须理解规则的适用性,否则,很可能导致荒谬的、非常不经济的、有时甚至是不安全的设计结果。

建筑规则有时等同于规范。这些规则涉及所有有关安全性的方面,例如结构设计、建筑细节、防火、暖气和空调、管路系统、卫生系统以及照明系统。

结构和结构构件必须具有足够的强度、刚度、韧性,以在结构的使用中充分发挥其功能。设计必须提供足够的强度储备,以承当使用期间的荷载,也就是说,建筑物不需承担可能的超负荷。改变某一结构原来的使用用途,或者由于在结构分析中采用了过度简化的方法而低估了荷载作用,以及施工程序的变更会造成结构的超载。即使在允许范围内,构建尺寸的偏差也可导致某个构件低于他所计算的强度。

不管采用哪些设计原理,结构设计必须提供足够的安全性。必需预防超负荷和强度的不足情况。在过去的三十年里,如何保证设计安全性的研究一直在继续。使用各种不同的概率方法来研究构件、连接件或者系统的失效可能性。

此外,由于结构钢构件相当高的造价,与人工安装费用相比,材料采购成本是巨大的。与其他总承包合同中所涉及的混凝土工程、砌筑工程以及土木工程不同,与人工安

装费用相比,钢构件的材料成本是相当大的。

随着钢结构建筑的发展,钢结构住宅建筑技术也必将不断的成熟,大量的适合钢结构住宅的新材料也将不断的涌现,同时,钢结构行业建筑规范、建筑的标准也将随之逐渐完善。相信不久的将来,钢结构住宅必然会给住宅产业和建筑行业带来一声深层次的革命,钢结构的应用前景广阔!

英文翻译:

Steel Structure

Steel in one form or another is now probably the most widely used material in the world for building construction. For the framings it has almost entirely replaced timber, except for rather special work, and it has superseded its immediate predecessors, cast iron and wrought iron, for pidges and structural frameworks in general.

Steel , the most important construction material of modern times, was introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon, had been mad up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large

quantities at low prices. The enormous advantage of steel is its tensile strength; that is, it dose not lose its strength when it is under a calculated degree of tension, a force which, as we have seen, tends to pull apart many materials. New alloys have further increased the strength of steel and eliminated some of its problems, such as fatigue.

Steel has great advantages for buildings. The steel normally used for structures is known as mild steel; compared with cast iron it is resilient and, up to a point known as the “elastic limit” it will recover its initial shape when the load on it is removed. Even if its loading is increased by considerable margin beyond the elastic limit, it will bend and will stay bent without peaking; whereas cast iron, though strong, is notoriously pittle and, if overloaded, will peak suddenly without warning. Steel is also equally strong in both tension (stretching) and compression, which gives it an advantage over the earlier structural metals and over other building materials such as pickwork, masonry, concrete, or timber, which are strong in compression but weak in tension. It is for this reason that steel rods are used in reinforced

concrete—the concrete resisting all compressive stresses while the steel rods take up all the tensile (stretching) forces.

In steel-framed building, the horizontal girders which carry the floors and walls are

themselves supported on vertical steel posts,

Known as “stanchions” , which transfer the whole load of a building down to the

foundations, except for the lowest floor which rests on the ground itself. A flat roof is framed in the same way as a floor. A sloping roof is carried on open steel lattice frames called roof trusses or on steel sloping rafters.

The steel framework of a building is designed from the roof downwards, all the loading, both “dead” and “live” (including wind forces) , being calculated at successive levels until the total weight carried by each stanchion is determined and the foundations designed accordingly. Whih this information the structural designer calculated the sizes and shapes of the steel parts needed in the whole structure, as wall as details of all the connexions. For roof trusses and lattice girders, he uses the method of “triangulation” because a triangle is the only open frame which is inherently rigid. Therefore, lattice frameworks are nearly always built up from a series of triangles.

Steel structures may be divided into three general categories: (a) framed structures,

where elements may consist of tension member, columns, beams, and members under

combined bending and axial load; (b) shell-type structures, where axial stresses predominate; and (c) suspension-type structures, where axial tension predominates the principal support system.

Framed Structures Most typical building construction is in this category. The

multistory building usually consists of beams and columns, either rigidly connected or having simple end connections along with diagonal pacing to provide stability. Even though a multistory building is three-dimensional, it usually is designed to be much stiffer in one direction than the other; thus it may reasonably be treated as a series of plane frames.

However, if the framing is such that behavior of the members in one plane substantially influences the behavior in another plane, the frame must be treated as a three-dimensional

space frame.

Shell-Type Structures In this type of structure the shell serves a use function in

addition to participation in carrying loads. On many shell-type structure, a framed structure may be used in conjunction with the shell. On walls and flat roofs the “skin” elements may be in compression while they act together with a framework.

Suspension-Type Structure In the suspension-type structure tension cables are major supporting elements. A roof may be cable-supported. Probably the most common structure of this type is the suspension pidge. Usually a suspension pidge. Since the tension element is the most efficient way of carrying load, structures utilizing this concept are increasingly being used.

Many unusual structure utilizing various combinations of framed, shell-type, and

suspension-type structure have been built.

Structural steel design of buildings in the USA is principally is principally based on the specifications of the American Institute of Steel Construction (AISC), The AISC

Specifications are the result of the combined judgment of researchers and practicing engineers. The research efforts have been synthesized into practical design procedures to provide a safe, economical structure. The advent of the digital computer in design practice has made feasible more elaborate design rules.

A lot of unusual structure, is made up of frame, shell and different combination forms of hanging structure.

In the United States, the design of steel structure is mainly on the basis of regulations

promulgated by the American association of steel structure. These specifications are a lot of scholars and a line engineer experience. The results of this study was comprehensive

processing into a set of safe and economic design idea of design program. The design process of the digital computer prompted a more sophisticated feasible design rules.

Specification includes a series of security rules, in spite of this, the designer must

understand the applicability of the rules, otherwise, is likely to lead to absurd, very

uneconomical, sometimes even unsafe design result.

Building rules sometimes equated with specification. These regulations cover all aspects relating to the safety, such as structure design, architectural details, fire protection, heating and air-conditioning, piping system, health systems, and lighting systems.

Structure and structural components must have sufficient strength, stiffness, toughness, in order to give full play to its functions in the use of the structure. Reserves of design must

provide sufficient strength to bear the load during use, that is to say, the buildings do not need to bear the possible overload. Change a structure of the original purpose, or because of excessive simplified method was adopted in the structural analysis and underestimated the load, as well as the construction process of change will cause the overload of the structure. Even within the scope of the permit, building size of the deviation can also lead to a

component is lower than the strength he calculates.

No matter what design principle, structure design must provide adequate security. The lack of necessary to prevent overload and intensity. Over the past 30 years, the research of how to ensure the safety design has continued. Use a variety of different probability method to study the components, fittings or system failure probability.

In addition, due to structural steel components are very high cost, compared with the cost of installation of artificial, material procurement cost is huge. With other involved in the general contract of building project and civil engineering, concrete engineering, compared with the manual installation cost, material cost of steel components are considerable.

With the development of steel structure, steel structure residential construction

篇(4)

2钢架加固

2.1加固设计方案

按照上述工程实例情况,基于目前加固设计标准和操作规范,结合事故检测报告中提及的问题进行分析,本文设计了2种钢架加固方案,进行筛选。方案一:通常厂房荷载计算只选取恒荷载,一般为50年最大风雪荷载量进行计算。这种方案计算所得的轻钢厂房强度并不能满足实际工作需求,也不能达到设计标准。为解决上述问题,本方案对承重梁进行加腋处理,以缓解焊接重量,柱翼缘选择对称焊接,以提高承载能力。该方案所需焊接工作量大,对生产过程的影响也大。方案二:对上述工程实测数据分析可知,厂房悬挂荷载较低,钢架所承受恒荷载为0.3kpa。按照上述数据可知,轻钢厂房外部构件稳定性不达标,在柱翼缘处加入刚性系杆,以缓解这一问题。该加固方案工作量较少,对厂房内部设备生产运行影响也小。对厂房实际工作情况进行分析,在厂房运行过程中不能有灰尘产生,两种方案进行对比分析,选取方案二进行加固处理。

2.2荷载取值范围

在计算过程中确定荷载取值范围,选择轻钢结构设计可以按照相关设计规范选取合理数值。通常情况,雪压、风压选取50年内最大值,本工程分别选取0.5kpa和0.55kpa;恒荷载量取0.3kpa,悬挂荷载量取0.1kpa;房屋自重计算得0.2kpa。按照上述荷载取值范围进行核算,该数值是按照单向刚接计算所得,而实际工作中是双向刚接,应对上述数据进行处理。根据上述数据可见,轻钢结构中主要存在超负荷工作现象,大部分钢架外部稳定应力超过承受限值。经分析可知,保证钢架柱稳定应力不超过1,面部长度应取5.5米进行计算。此外,钢架梁所承受的应力也超极限运行,要保证稳定性达标,面外长度应取3米进行计算。

2.3刚架结构的加固

如图2所示,刚架结果加固处理即在柱间设置刚性系杆,以降低轴面外部的长度,设计规范中规定,面积应小于5.5m2,该工程计算0.9m×5.85m=5.25m2,符合规范条件。

3维护结构的加固设计

3.1檩条的加固设计

在对檩条进行加固设计中,应首先确定檀条部分的荷载数值。参考本次雪灾积雪分布规律进行计算。在进行加固处理时,应轻轻揭开厂房外顶板,为确保厂房能够正常运行,厂房内部环境不受影响,应将厂房内顶板留于厂房顶部,为缓解承载应力作用,应增加檩条数量。檩条加固设计时应结合实际积雪荷载量和分布范围,选择最为经济合理的檩条位置和数量进行加固设计。积雪较少的位置处檩条可以不改变布设位置,在原檩条位置加设2.5毫米厚的C状檀条;在积雪符合较大的区域,在原檩条处加设3毫米厚的C状檀条,加设的C状檀条高度应与原檀条保持一致;在积雪最严重的区域,可利用25a热轧槽或者H型钢檩条焊接到原檀条位置,对受损部位进行焊接修复处理,以加强原檩条的承载能力。

3.2其他结构的加固设计

屋面支撑材料的加固应遵循设计规范中规定的设计方法进行设计,加设刚性系杆以提高屋面整体的承载能力,同时,设计者还应考虑实际加固施工的可操作性,选取最方便可行的设计方案。墙梁加固设计中,可在需要加固的墙梁部位增设一道墙。悬挂梁加固时应在连接处加设刚性系杆,以增强梁的承载力。雨篷加固,可将槽钢焊接在横梁上,增大衡量的抗扭强度。

篇(5)

2不等高梁与柱的刚性连接

不等高梁与柱刚性连接时,如图2所示,当两端梁的高差不大于150mm,根据《多、高层民用建筑钢结构节点构造详图》规定,截面高度度较小一侧的钢梁,其与柱的连接牛腿应按1:3进行放坡,并在转折处设置加劲板。当两端梁的高差大于150mm时,如图3所示,对应于每个梁翼缘的位置,均应设置水平加劲板。截面高度较小一侧的梁还应在牛腿腹板下方设置竖直加劲板。

3梁上起柱

根据结构需要,钢桁架的部分钢柱需在主梁上生根,也就是所谓的梁上起柱。这种节点在深化设计之前应先建立三维模型或进行桁架放样,以便确立钢柱的准确定位。钢柱的柱脚应做靴梁,将柱脚应力均匀扩散至钢梁上翼缘。钢梁上对应钢柱靴梁的位置处也应设置加劲板,使力的传递均匀扩散。

4三维建模在深化设计阶段的应用

本工程由于建筑造型复杂,其结构杆件大多高低起伏,各连接节点均为三个方向连接构件且角度不一。因此,在钢结构部分深化设计的同时,应根据施工图首先建立三维模型。模型中,应将各构件及连接节点按照1:1的比例输入模型。待模型建立完毕后,整个工程的结构杆件便全部呈现于模型当中。三维模型除了能直观的反映各构件之间的连接关系外,还能校核深化设计的准确性。若节点设计出现问题,能立刻从模型中反映出来,避免了传统的二维放样出现错误只能在构件现场安装时才发现的失误,从而大大提高了深化设计的准确性。

篇(6)

失稳和屈曲的概念

Bazant [14]、Farshad [15]、Huseyin [16]等引述和讨论了稳定和屈曲的定义,他们从不同的角度和范围描述了失稳现象,并指出屈曲是众多失稳现象中的一个模式,屈曲是发生在结构中的一种失稳。文献[14]-[18]讨论了结构产生屈曲的原因,可以定义结构的屈曲为处于高位能的结构由平衡临界状态随着能量的释放向处于低位能的结构平衡临界状态转移的过程,发生平衡转移的那个瞬间状态,就是临界状态。这也是目前比较广泛被接受的解释[19]。具体地讲有三种:

1) 、从能量的角度来说,结构失稳就是储存在结构中的应变能形式发生转换。

2) 、从力学要素的性质方面来说,失稳是结构中承载的主要力学要素的性质发生了变化。

3) 、从变形角度来说,失稳在实际上也可以被认为是一种从弹性变形到几何变形的变形转移。

钢结构构件以轴压、压弯构件居多,如上所述,其核心问题是稳定问题。就单个钢结构构件而言,影响稳定的主要因素有残余应力的分布、初始缺陷、截面形状、几何尺寸、材料强度和构件的长度等。【2】张志刚。而近年来,采用新技术设计和建造的大型复杂空间钢结构形式(如网壳结构、拱、弦支穹顶结构等)越来越多,通常这类结构整体上或某些较大区域内承受很大的压力作用,也即某些构件承受很大轴向压力,使得这类结构容易引发整体失稳或某区域内的局部失稳现象。大型复杂结构 的这一力学特征显著不同于传统的小跨度或小规模简单结构,因而,在设计这类结构时,除按常规设计规范验算结构构件的强度及稳定性,结构的刚度外,设计者还要验算结构的整体稳定性。【3】整体结构稳定

在现阶段的钢结构设计中,常以计算长度系数法来进行整体结构的整体稳定性分析。以钢框架为例【3】P94

目前大部分工程师在设计钢框架结构承载力时,常分两步进行。第一步进行结构分析,通过一阶弹性分析确定构件在各种外荷载与作用组合工况下的内力效应;第二步进行构件设计,首先查得采用弹性近似分析法确定的构件计算长度系数,然后按现行《钢结构设计规范》(GB50017-2003)的计算公式求得构件的承载力。如果所有构件的承载力大于外荷载产生的效应,则认为结构体系整体和构件均满足承载力要求。 这种设计方法以通过计算长度系数把构件承载力验算和结构整体稳定承载力验算联系起来,被称为计算长度系数法。

对于一些大跨空间结构杆件的计算长度系数取值,规范缺乏详细的规定,没有提出明确的计算方法。针对实际工程设计时,杆件计算长度系数的取值往往无据可依。为了设计方便,

工程上常通过反推的方法来确定计算长度系数。方法有两种

1) 反推法

为了钢结构设计应用上的方便,可以把各种约束条件的构件屈服荷载Pcr 值换算成相当于两端铰接的轴心受压构件屈曲荷载的形式,其方法是把端部有约束的构件用等效长度为l0

22P =πEI /l cr 0的构件来代替,这样。等效长度通常称为计算长度,而计算长度l0与构件

实际的几何长度之间的关系l 0=μl ,这里的系数μ称为计算长度系数。对于均匀受压的等截面直杆,此系数取决于构件两端的约束。这样一来,具有各种约束条件的轴心受压构件的屈曲荷载转化为欧拉荷载的通式是:

π2EI P cr =(μl ) 2

构件截面的平均应力称为屈曲应力:

P cr π2EI π2E σcr ===2A (μl /i ) 2λ

式中A 为面积,λ为长细比,λ=μl i ;而i

为回转半径,i =关。计算长度系数的理论值可写作:

μ=

其中PE 为欧拉荷载,即两端铰接的轴心受压构件的屈曲荷载。

对两端固接

自由=μ= 0.5,两端铰接μ= 1.0,一端固接,一端铰接μ= 0.7,一端固接,一端μ= 2.0。

2) 反弯点法

通过对整体结构进行屈曲分析,可以得到结构及杆件发生屈曲时弯矩图或变形曲线图。弯矩图和变形曲线图均可以反映出杆件反弯点之间的距离l0。因为反弯点的弯矩为零,因此与铰支点的受力相当。L0可以代表该杆件的计算长度。根据不同的约束条件,反弯点可能落在杆件的实际长度范围之内,也可能在其延伸线上。由于约束条件是多种多样的,有时很难在变形曲线上表示出反弯点之间的距离。反弯点法主要包括以下3个步骤:

1) 由屈曲分析得到结构及杆件的屈曲模态;

2) 提取杆件屈曲模态对应的弯矩图或变形曲线中变形位移曲线;

3) A ) 确定弯矩图中反弯点的位置,从而得出杆件的计算长度及计算长度系数;

4) B) 根据图()中杆件发生屈曲时的变形曲线,可以根据杆件已有的变形拟合出此杆

件在理想铰接状态下的变形曲线。对比两个曲线图,确定杆件变形曲线的拐点(即反弯点)位置,从面可以得出杆件的计算长度及计算长度系数。

计算长度系数的推导方法:

计算长度系数的推导

图4-1 无侧移刚接框架柱的计算简图

图4-1给出的是无侧移多层钢框架的子结构,利用受弯构件和压弯构件的转角位移方程,代入θE =θF =-θB ,θG =θH =-θA ,且θC =-θB ,θD =-θA 建立与节点A 有关的梁端与柱端力矩:

M AG =M AH =

M AB =M AC EI b 22θA (4-1) l EI =c (C θA +S θB ) (4-2) h

其中,C 、S 根据无侧移弹性压弯构件转角位移方程确定:

kl sin(kl ) -(kl ) 2cos(kl ) (kl ) 2-kl sin(kl ) ,S =,k =C =2-2cos(kl ) -kl sin(kl ) 2-2cos(kl ) -

kl sin(kl ) =π根据节点平衡条件:

可得:

EI ⎫EI ⎛EI 2 2b 2+C c ⎪θA +2S c θB =0l h ⎭h ⎝ M AB +M AC +M AG +M AH =0

或 (2K 2+C )θA +S θB =0

(4-3)

式中:

K 2=I b 2/l I c /h

同时,可求出节点B 的弯矩平衡条件为

S θA +(2K 1+C ) θB =0 (4-4)

式中:

K 1=I b 1/l I c /h

由公式(4-3、4-4)组成无常数项的联立程。要得到θA 和θB 的非零解,必须系数行列式等于零。这就是说,子结构失稳时应满足下列条件

2K 2+C

S

即 S =02K 1+C

C 2+2(K 1+K 2) C +4K 1K 2-S 2=0 (4-5)

把式中的C 和S 代入公式(4-5)整理后得,即得下列临界条件:

2⎡⎛π⎫2⎤⎛π⎫⎛π⎫⎡⎤⎛π⎫⎛π⎫⎢ μ⎪⎪+2(K 1+K 2) -4K 1K 2⎥ μ⎪⎪sin μ⎪⎪-2⎢(K 1+K 2) μ⎪⎪+4K 1K 2⎥cos μ⎪⎪+8K 1K 2=0⎢⎥⎥⎝⎭⎣⎝⎭⎦⎝⎭⎝⎭⎢⎣⎦⎝⎭

(4-6)

其中,式中的K 1与K 2分别表示柱下端与上端的梁的线刚度之和与各柱的线刚度之和的比值,说明计算长度系数μ的值取决于K 1与K 2。

对于有侧移框架也可以按以上方法推导,过程从略,得到的临界条件为:

2⎡⎛π⎫⎤

⎢36K 1K 2- μ⎪⎪⎥t ⎢⎝⎭⎥⎣⎦⎛π⎫π⎪a +6(K +K ) =0 12 μ⎪μ⎝⎭

(4-8)

《高层民用建筑钢结构技术规程》第6.3.2条,

指出对于框架柱的计算长度系数可采用下列的近拟公式计算:

1. 有侧移时

μ=

2. 无侧移时 7. 5K 1K 2+4(K 1+K 2) +1. 52 (4-9) 7. 5K 1K 2+K 1+K 2

μ=0.64K 1K 2+1.4(K 1+K 2)+3 (4-7) 1.28K 1K 2+2K 1+K 2+3

K 1与K 2分别表示柱下端与上端的梁的线刚度之和与各柱的线刚度之和的比值 其中有侧移框架常指纯框架体,无侧移结构常指有支撑和(或)剪力墙的体系

4.1 计算长度系数确定方法

《钢结构设计规范》(GB50017-2003)(以下简称“规范”) 对框架柱的计算长度系数有明确的规定。在框架平面内框架的失稳分为有侧移和无侧移两种,有侧移框架的承载力比无侧移的要小得多。因此,确定框架柱的计算长度时首先要区分框架失稳时有无侧移。框架柱的分析方法有两种:一是采用一阶分析方法(计算长度法),即分析框架内力时按一阶理论,不考虑框架二阶变形的影响,计算框架时用计算长度代替柱的实际长度考虑与柱相连的影响;二是采用二阶或近似二阶分析方法求得框架柱的内力,稳定计算时取柱的几何长度。目前国内外大多数国家的规范采用了计算长度法。该方法的计算步骤为:首先采用一阶分析求解结构内力,按各种荷载组合求出各杆件的最不利内力;然后按第一类弹性稳定问题建立框架达到临界状态时的特征方程,确定各柱的计算长度;最后将各杆件隔离出来,按单独的压弯构件进行稳定承载力的验算。验算中考虑了材料非线性和几何缺陷等因素的影响。该方法的最大特点是采用计算长度系数来考虑结构体系对被隔离出来构件的影响。该方法对比较规则的结构可以给出比较好的结果,而且计算比较简单。

柱的计算长度系数与相连的各横梁的约束程度有关。而相交于每一节点的横梁对该节点所连柱的约束程度,又取决于相交于该节点各横梁线刚度之和与柱线刚度之和的比。因此,柱的计算长度系数就由节点各横梁线刚度之和与柱线刚度之和的比确定,常见的钢框架设计方法中均给出了根据框架柱端部约束条件直接查用的计算长度系数表格或曲线。“规范”将框架分为无支撑纯框架和有支撑框架,根据支撑抗侧移刚度的大小,有支撑框架又可分为强支撑框架和弱支撑框架。

根据不同的情况,不同支撑框架柱可分别选用有侧移框架柱和无侧移框架柱的计算长度系数μ[47]。

“规范”有侧移和无侧移框架柱的计算长度系数μ均为根据一定理想化的假定得到。对于需要确定无侧移框架计算长度的柱子以及与之相连的4根梁和上下两根柱的计算模型如图4-1。对有、无侧移框架均采用了理想化的假定[46,48,49]。

无侧移框架柱确定计算长度系数μ时的基本假定[46]:1) 、梁与柱的连接均为刚接;2) 、柱与上下两层柱子同时失稳,即图4-1中,柱AB 与柱BD 、AC 同时屈曲;

3) 、刚架屈曲时,同层的各横梁两端转角大小相等,方向相反;4) 、横梁中的轴力对梁本身的抗弯刚度的影响可以忽略不计;5) 、柱端转角隔层相等;6) 、各柱

的这里P 是柱子的轴力,P E 是柱子计算长度系数为1时的欧拉临界力;7) 、失稳时各层层间位移角相同;8) 、材料为线弹性材料。

有侧移框架柱确定计算长度系数μ时同无侧移框架柱的基本假定大体相同,只是在第3点:刚架屈曲时同,同层的各横梁两端转角大小相等但方向相同。

4.1.2 网壳规程的规定

《网壳结构技术规程》(JGJ61-2003)根据节点的型式,规定了构件的计算长度。对于双层网壳杆件计算长度应按表4-1采用,单层网壳按表4-2采用。

表4-1 双层网壳杆件的计算长度l 0

节 点

杆件

螺栓球

弦杆及支座腹杆

腹 杆 l l 焊接空心球 0.9l 0.9l 板节点 l 0.9l

表4-2 单层网壳杆件的计算长度l 0

节 点

弯曲方向

焊接空心球

壳体曲面内

壳体曲面外 l l 毂节点 0.9l 0.9l

“规范”及网壳规程的这些规定有很大的局限性:对于其它节点型式,特别

是大型网壳结构,杆件规格多、截面尺寸大、构造复杂,采用上述节点型式将很不合理,导致无法采用现成的规范条文;而且本章后续的研究表明:网壳规程所取的计算长度系数,特别是单层网壳,存在较大的安全隐患,不能直接运用于设计中;构件的计算长度系数也不仅仅简单地与节点型式相关;当前规范针对大跨空间结构构件的计算长度取值,缺乏明确的规定,更没有提出计算方法,导致结构设计人员无据可依。实际工程设计中,通常将需要稳定设计的构件近似为轴压构件,通过欧拉公式反推的方法来确定计算长度系数,常见的各种方法如本章4.4节所述。

4.4.1 工程设计常用的方法

欧拉荷载的推导:

加图:(P31)【5】陈骥的书

所图所示两端铰接的挺直的轴心受压构件,按照小挠度理论求解中性平衡状态时弹性分岔弯屈屈曲荷载。

如图所示,两端铰接的轴心受压杆件,在压力P 的作用下,根据构件屈曲时存在微小弯曲变形的条件,先建立平衡微分方程,再求解构件的分岔屈曲荷载。在建立弯曲平衡方程时作如下基本假定:

(1) 构件是理想的等截面挺直杆。

(2) 压力沿构件原来的轴线作用。

(3) 材料符合胡克定律,即应力和应变呈线性关系

(4) 构件变形之前的平截面在弯曲变形后仍为平面。

(5) 构件的弯曲变形是微波的。曲率可以近似地用变形的二次微分表示,即()

可取如图隔离体,列方程:(EIy``+PY=0)推导得出:P=n2pi()2EI/l2,其中式中n=1时为构件具有中性平衡状态时的最小荷载,即分岔屈曲荷载Pcr ,又称为欧拉荷载Pe=pi^2EI/l2

采用计算长度系数进行稳定设计的原因:

的概念:

稳定问题具有多样性、整体性及相关性三个问题:【5】陈绍蕃P94

1) 多样性:轴性受压杆件有弯曲屈曲、扭转屈曲、弯扭屈曲等多种形式。

2) 整体性:构件作为结构的组成单元,其稳定性不能就其本身去孤立地分析,而

应当考虑相邻构件对它的约束作用。这种约束作用显然要从结构的整体分析来确定。稳定问题的整体性不仅表现为构件之间的相互约束作用,也存在于围护结构与承重结构之间的相互约束作用中,只不过在通常的平面结构(框架和桁架)的分析中被忽略了。

3) 相关性:具体体现在不同失稳模型之间有耦合作用、局部屈曲与整体屈曲互有

影响、组成构件的板件之间发生屈曲时有相互约束用等。

【5】P169

结构和构件丧失稳定属于整体性问题,需要通过整体分析来确定它们的临界条件。不过,为了计算简便,目前在设计工作中的做法是所计算的受压构件(或压弯构件)从整体结构中分离出来计算,计算时考虑结构其他部分对它的约束作用,并用计算长度来体现这种约束。

计算长度的概念:

计算长度的概念来源于理想轴心压杆的弹性分析。其把端部有约束的压杆化作等效的两端铰接的杆件,等效条件为两者的承载力相同。

构件在荷载作用下的变形曲线图可以反映出了反弯点之间的距离,此距离代表了该构件的计算长度;因为反弯点的弯矩为零,因此与铰支点的受力相当。根据不同的约束条件,反弯点可能落在构件的实际长度范围之内,也可能在其延伸线上[46]。

常见的结构形式的受压构件的计算长度系数在相应的规范及规程中都有所体现。将规范涉及到的可以直接使用的规范例举如下:

1) 钢结构设计规范第5.3条:桁架:含弦杆、单系腹杆(用节点板与弦杆连接)、交叉腹杆,

均分平面内与平面外的计算长度考虑;

框架:依据侧移刚度将框架分为无支撑、弱支撑和强支撑框架三种,分别按照本规范的附录D 的表格D-1至D-2查找框架柱的计算长度系数;

单层厂房的阶形柱(单阶柱及双阶柱):按本规范附录D-3至D-6查找相应的计算长度系数

2) 钢高规:第6.3.1及6.3.2条规定了钢框架柱的计算长度取值

指出1)重力荷载作用下的稳定计算,应按钢结构设计规范相应条文进行,并指出相应的近似公式:。。。。

2)结构在重力和风力或多遇地震作用组合下的稳定计算相应的计算长度系数。

网壳结构技术规程:第5.1条,根据钢壳的分类及其节点的做法形式,分别定义其计算长度系数

3) 空间网格结构技术规程:第5.1条,根据网架、双层网壳、单层网壳、立体桁架及其杆

件分类和节点形式,分别定义其计算长度系数

对于梁-柱钢框架结构体系,可直接采用规范查表的方法或实用公式确定构件的计算长度系数。但对于大多数不规则(非梁-柱钢框架结构体系)的大跨空间结构构件的计算长度取值,如上所述,规范不可能包含所有的结构类型,也缺乏明确的规定,没有提出计算方法,导致结构设计人员无据可依。

因此为了设计方便,工程上通常将其近似为轴压构件,通过反推的方法来确定计算长度系数。

大跨度结构及其杆件的稳定问题都是一个整体问题,各杆件互相支承、互相约束,任何一个构件的屈曲都会受到其他构件的约束作用,影响因素较多。而对于空间钢结构杆件的计算长度系数,规范(桁架体系、网壳结构)根据杆件位置规范一般规定在0.8~1.0范围内取值。有学者的研究资料表明:对于复杂结构体系中部分杆件,采用低于1.0的计算长度系数取值可能偏于不安全。因此,工程上常从整体结构稳定性角度出发,取重力荷载(自重+附加恒载+活荷载)标准值工况组合作用作为初始态,根据计算长度系数的物理意义,通过整体结构线性屈

曲分析来研究各主要杆件的计算长度系数,主要包括以下3个步骤[56]:

1) 、由线性屈曲分析得到结构的各阶屈曲模态以及屈曲临界荷载系数;

2) 、检查各阶屈曲模态形状,确定该杆件发生屈曲时的临界荷载系数,乘以相应的初始态轴力,得到该构件的屈曲临界荷载P cr ;

3) 、由欧拉临界荷载公式反算各杆件的计算长度系数,即:

π2EI P cr =

2(μl )

μ=式中:EI 为杆件发生屈曲方向的弹性抗弯刚度;P cr 为杆件对应的屈曲临界荷载;l 为杆件的几何长度;μ为杆件计算长度系数。

由4.3.2节可知,当某个方向的荷载(如水平荷载)较大时,确定计算长度系数的初始态应采用各工况的组合,这样,根据不同的荷载组合下(初始态)反推出来的计算长度系数是不同的。

确定计算长度系数主要是确定欧拉临界荷载P cr 。

本文以确定一平面无侧移框架柱的计算长度为例,详细地介绍工程设计中。如图4-6所示的有侧移,横梁与柱均为刚接,柱的截面为H500×400×12×20, I c =1.019×109mm 4,为保证柱先于梁发生屈曲,设梁的截面为1000×400×30×30, I b =9.80×109mm 4,钢材采用Q235。作用在梁上的荷载标准值q=60kN/m,柱高l c =6m,梁长度l b =6m。

图4-6 无侧移刚架

按规范的设计方法,由K 1i =i b

c EI b /l b I b l c 9.80⨯109⨯6000====9.6173,EI c /l c I c l b 1.019⨯109⨯6000

K 2=0根据钢结构规范附录D 表D-1,采用插值法μ=0.7341, 或采用实用公式的方法:

μ=0.64K 1K 2+1.4(K 1+K 2) +31.4⨯9.6173+3==0.7404 1.28K 1K 2+2(K 1+K 2) +32⨯9.6173+3

.3.2 整体屈曲法

通过整个结构的屈曲分析确定该构件的计算长度,其方法是将该构件放在整体模型中,进行屈曲模态分析,从而得到欧拉临界力和屈曲系数的方法。整体模型的屈曲分析具有较为直观的屈曲模态,可以直接看到结构整体的屈曲变形,通过判断各阶屈曲模态对应的变形来判断具体结构构件是否发生屈曲,从而得到其对应的屈曲临界力[57]。该方法较难判断具体构件应对应的屈曲模态,常导致计算结果偏于保守;但该方法考虑了诸多计算长度系数的影响因素,与实际情况也相符合,较为合理。

本文采用SAP2000做钢框架的屈曲分析。在荷载q 的作用下,钢框架的轴力如图4-7(a)所示,图(b)为构钢框架的第一阶屈曲模态,从变形图可以看出,柱子发生了屈曲。 -180-180

(a) q作用下的轴力(kN) (b) 第一阶屈曲模态(η=784.547)

图4-7 荷载作用下的轴力及屈曲模态

所以,柱子的临界荷载为:

P cr =ηP =180⨯784.547=141218.46kN

由欧拉临界荷载公式反算各杆件的计算长度系数:

μ===0.638

由此可见,两者非常接近。工程中的一系列对比,也说明这些做法是正确的,下面以笔者的一个实例来说明些方法在工程实践中的运用。

本算例取决于某工程的施工顶升架,顶模钢平台由桁架层、支撑柱和支撑钢梁组成,钢平台桁架层由主桁架、次桁架、三级桁架和边桁架及内部小次梁、吊架梁等构件组成。桁架层高2.05m ,支撑柱高12.6m ,两层支撑钢梁间距4.5m 。顶模钢平台设计采用SAP2000软件,图2.1.1至图2.1.3为顶模钢平台sap2000计算模型。

图2.1.1顶模钢平台三维图

图2.1.2 顶模钢平台立面图

图2.1.3 顶模钢平台平面图

荷载考虑:恒荷载、活荷载、风荷载(考虑三种情况:施工状态及提升状态下遭遇八级风、

施工状态下遭遇十级风、施工状态下遭遇台风荷载)、顶升不同步位移、施工电梯荷载。

1.1 边界约束条件

根据边界约束条件的不同,钢平台分为两种计算模型。施工状态时,假定两道支撑梁两端为铰接,如图2.3.1所示;顶升状态时,忽略支撑梁的约束作用,将千斤顶与支承柱的连接简化为铰支座,如图2.3.2所示。

图2.3.1施工状态支承柱的约束边界

下列仅以施工状态 图2.3.2顶升状态支承柱的约束边界

1.1.1.1 支承柱计算长度取值(根据屈曲分析)

采用十级风施工状态模型:

以结构整体模型为基础,对结构进行特征值屈曲分析。正常施工状态下取D+L计算屈曲工况,圆管柱及格构柱在Mode98的屈曲模态下首次发生屈曲。其屈曲变形及屈曲荷载如下:

圆管柱在D+L工况下的最小轴力值为:-2634kN ,则根据屈曲分析结果,施工阶段的支承柱的一阶弹性屈曲临界荷载为2634×11.05=29105.7kN,根据欧拉公式可以反推得到理论计算长度系数:

μ=π2EI

P cr l 23. 142⨯2. 06⨯105⨯5. 355⨯109==1. 40 29105. 7⨯103⨯138002

1.1.1.1 钢结构构件计算应力比

将各计算长度系数值手工输入模型中,应力比计算结果如下图所示:

具体各构件应力比数值可在模型中查看,圆管柱最大应力比为0.378,格构柱应力比均小于0.95,满足规范要求。

整体稳定性计算步骤如下【3】P61

钢结构系统整体稳定性理论分析的主要步骤包括:

(1) 建立完善结构力学模型

按理论设计结构构型建立完善结构计算模型,包括确定结构几何模型、构件单元模型、构件规格尺寸、构件材料特性、结构边界条件等。

确定整体稳定性验算的荷载组合

荷载组合常采用标准组合。对于活荷载需要按不同的分布模型分别进行组合; 对于风荷载需要按不同的风向分别进行组合。

结构线性整体稳定性分析

对每一种荷载组合,通过对稳定特征方程的分析,分别计算结构线性整体稳定的临界荷载因子()及相应的屈曲模态矩阵()

确定结构的初始几何缺陷模型

对每一种荷载组合,确定相应的初始几何缺陷模式及幅值,可采用“一致缺陷模态法”模拟。若第一临界点为重临界点,应选用与临界荷载因子()相应的所有模态。对于第一临界点附近频率密集的结构,应多选用几个模态。

结构大位移几何非线性整体稳定性分析

包括完善结构和有缺陷结构分析,获得相应的整体稳定最小临界荷载因子()和()

判断构件是否出现屈服变形现象

判断在几何非线性分析过程中,当荷载达到整体稳定最小临界荷载因子()之前,主要构件是非否屈服,若未屈服,则转第(8)步,进行结构整体稳定性评定,否则,进入第(7)步。

结构大位移弹塑性整体稳定性分析

篇(7)

2钢柱拼接节点

圆管柱的工地拼接,采用全熔透坡口对接焊缝,焊缝质量等级为一级。根据《多、高层民用建筑钢结构节点构造详图》规定,下段圆管柱成品应在现场拼接节点位置设置内衬垫管,并在钢管的四个方向上设置安装耳板。待上段钢柱吊装就位后,用安装螺栓将耳板链接,使待拼接的上、下两段圆管柱对接固定后,进行现场焊接作业。焊接部位上下各100mm范围的区域内,不得涂刷防腐油漆。

3梁、柱连接节点

梁、柱的连接节点构造应与连接类别的受力特征假定相符,根据强柱弱梁的原理,通常采用柱贯通的形式。梁、柱的连接构造主要有以下几种形式:全焊接节点、栓焊混合节点及全螺栓连接节点。全焊接节点的缺点在于焊接工作量过大,并且在同一节点处焊缝数量过多的话,宜造成节点区焊接应力过大,甚至变形,影响其他钢构件的连接。全螺栓连接节点,螺栓的数量可通过梁柱连接节点产生的内力来计算螺栓的数量。采用此方法,首先应先确定梁柱连接节点所产生的内力,包括弯矩、剪力、轴力,再根据内力来计算节点区螺栓的数量。全螺栓连接往往需要大量的连接螺栓,因此大量的螺栓孔洞会对母材强度产生削弱。并且对螺栓孔位的精度要求较高,孔位稍有偏差既可能影响多个构件的连接。本工程采用栓焊混合节点,梁翼缘与柱采用剖口全熔透焊,主要承担节点弯矩;梁腹板与柱采用高强螺栓连接,主要承担节点剪力及轴力。栓焊混合节点的优点是既减少了工地焊接的工作量,又避免了由螺栓承担弯矩的弊端,因此被广泛采用。

4梁、梁连接节点

主、次梁的连接主要有两种连接方式,即刚接和铰接。当采用铰接连接时,次梁可视为简支梁,设计时主要考虑次梁腹板所承受的剪力,并根据螺栓等强连接的模型计算所需螺栓数量。常见的梁梁铰接节点如下图1、图2所示。图2所示的连接节点,螺栓孔对主梁易产生偏心距使主梁局部承受扭矩,且外伸的连接板在构件的运输过程中易损坏、变形。因此建议将梁梁连接的铰接节点采用图1的节点形式。

篇(8)

随着我国钢结构建筑的迅速发展,轻钢结构的发展也是如火如荼,特别在工业厂房的建设中则更为迅猛。其特点有:其整体刚度和抗震性能好、施工速度快、自重轻、承载力高,在大跨度及超高层建筑中代替了钢筋混凝土结构,本文拟就轻钢结构的优点、材料选择和设计中的注意点、在设计中根据其特点扬长避短才能更好地发挥钢结构的作用,就钢结构工业厂房在设计中的几个问题作简单阐述。

一、轻钢结构及其适用范围

所谓轻钢结构通常是指由下列钢材所构成的结构:①冷弯薄壁型钢结构;②热轧轻型钢结构;③焊接或高频焊接轻型钢结构;④轻型钢管结构;⑤板壁较薄的焊接组合梁及焊接组合柱而构成的结构。

1. 适用范围

根据我国目前情况来看,这种结构由于其用度广、优势明显,已大量应用于单层工业厂房、多层工业厂房、办公楼以及高层建筑中的非承重构件等。对单层工业厂房而言,通常以H型钢,采用焊接连接作为梁柱,以C形或Z形轻钢板作檩条,屋盖系统或楼面系统用压型彩色钢板作面层,上面可浇混凝土,压型钢板既可作为钢筋,必要时也可以再配钢筋。墙面围护也可采用单层或夹层压型钢板,夹层板内部可充填各种保温层。

2. 主要优点

⑴施工周期短:轻钢结构的最大优点是所有构件均可以由工厂制作现场拼接安装,对一般规模较小的工业厂房仅需2个月左右。

⑵综合经济效益好:由于施工周期短,可以提前投入使用,提前获取投资效益;更由于采用色彩鲜艳的彩色压型钢板,美观华丽,改善了周边环境的动态感;因为建筑物本身的自重轻,一般情况下不需要做桩基,可以节省投资;由于采用了聚苯已烯泡沫夹心板或单板加保温棉等措施后,使保温、隔热和隔章等效果良好。彩色钢板是以镀锌为基板又用硅酮作为表面,经两除两烘加工而成,耐久性也较好,根据目前我国的市场价格,轻钢结构的造价已经低于钢筋混凝土结构,当厂房的跨度越大时,其优势更为明显,这也是它赖以竞争的一大优势。

⑶抗震性能好:由于钢结构属于柔性结构、自重轻,因而能有效地降低地震响应及灾害影响程度,极有利于抗震。我国是一个多地震区国家,在地震区建筑中应多多推广应用钢结构,必可大大减少地震灾害和人员伤亡。唐山地震的惨痛教训应予记起。目前,天津市已正式启动轻钢结构住宅。

⑷宜于拆卸搬迁:一旦业主对所造厂址不满意或外界环境发生意想不到的变化,则整个建筑可在很短时间内拆迁,损失极小,而所有这些是钢筋混凝土建筑所无法具备的。

正是由于轻钢结构的诸多优点,而且随着近年来防火、防腐新产品的不断出现,已较好地解决了轻钢结构抗腐蚀性差的缺点,使得它在工业厂房以及民用设施中获得了广泛的应用。

二、材料选择和设计中的注意事项

轻钢结构作为普通钢结构的衍生结构,以提高构件的截面刚度和整体稳定承载力,为此,不得不突破钢结构设计规范中对板件宽厚比限值的规定,允许板件产生局部失稳,进而利用屈曲后强度的提高。

轻钢结构门式刚架是主要的承重结构,一般是采用实腹型变截面的柱和梁组成。门式刚架的形成可以单坡、双坡和多坡,多跨建筑的中间柱多采用较接的摇摆柱。门式刚架工字截面钢构件中腹板以受剪为主,抗弯作用不如翼缘有效,增大腹板的高度,可使翼缘抗弯能力发挥得更为充分。但是,在增大腹板高度的同时,如果厚度增之过大,则腹板耗钢量太多,也是不经济的。因此,先进的设计方法是采用高而薄的腹板,而是还有相当可观的屈曲后强度可以利用。在主要为均布荷载起控制作用的结构中,在允冲击、疲劳、振动等荷载的条件下,可充分利用结构受力板件的屈曲有效截面来分析压弯杆件腹板的稳定性,从而使其腹极高厚比限值可以大幅度提高。根据天津大学所作的试验证明,当荷载超过理论计算的屈曲临界载限多时腹板才呈现凸曲变形,且凸曲变形都不大,故适当利用屈曲后强度是可行的。

当前,我国钢结构(含轻钢结构)发展的形势很好, 21世纪是钢结构快速发展时期,长期以来,由混凝土结构、砌体结构一统天下的格局将被打破,从事钢结构制造、施工企业前景宽阔,建筑设计技术人员也面临着新的机遇和挑战。笔者认为,以下几点仍需我们加以重视。

1.钢材的保温隔热与防火

钢材具有很高的导热性能,其导热系数为50w(m.℃),当受热达到100℃以上时,其抗拉强度就会降低,塑性增大;温度达到250℃时,钢材抗拉强度会稍提高,但塑性却降低,出现蓝脆现象;温度达到500℃时,钢材强度降至很低,会致使钢结构塌落。所以当钢结构所处环境温度达到150℃以上时,就必须做隔热防火设计。其做法一般为:钢结构外侧包耐火砖、混凝土或硬质防火板材。或者钢结构刷厚涂型防火涂料,厚度按《钢结构防火涂料技术规程》计算。

2.屋面支撑系统及屋面设计

屋盖支撑系统的布置应根据厂房跨度、高度、柱网布置、屋盖结构形式、吊车吨位和所在地区的抗震设防烈度等条件来决定。一般情况下无论有檩或无檩体系的屋盖结构均应设置垂直支撑;在无檩体系中,大型屋面板有三点和屋架焊接,可起到上弦支撑作用,但考虑到施工条件的限制和安装需要。无论有檩或无檩体系屋盖均应在屋架上弦和天窗架上弦设置上弦横向支撑。对于屋架间距不小于12m的厂房或厂房内设有特重级桥式吊车或厂房内有较大振动设备的均应设置纵向水平支撑。

屋面的排水及防水设计在屋面设计中需重点考虑,根据《屋面工程技术规范》的规定,屋面坡度最小为5%,在积雪较大的地区,坡度应适当加大。单坡屋面的长度主要取决于所在地区的温差以及降雨所形成的最大水头高度。根据工程设计经验,单坡屋面长度宜控制在70m以内。目前,市场上钢结构屋面的做法常用的有两种:①刚性屋面:双层彩色压型钢板内夹保温棉;②复合柔性屋面:由屋面彩钢板内板、隔气层、保温层、卷材防水层组成。

3.温度伸缩缝的设置

温度变化将引起钢结构厂房的变形,使结构产生温度应力,当厂房平面尺度较大时,为避免产生较大的温度应力,应在厂房纵横两个方向设置温度伸缩缝,区段的长度可以根据钢结构规范来执行。温度伸缩缝一般采用设置双柱的方法来处理,对纵向温度伸缩缝可在屋架支座处设置滚动支座。

4.防锈处理

钢结构表面直接暴露在大气中就会锈蚀,当钢结构厂房空气中有侵蚀性介质或钢结构处在潮湿环境中时,钢结构厂房锈蚀就会更加明显和严重。钢结构的锈蚀不仅会使构件截面减小,还会使钢构件表层局部产生锈坑,当构件受力时将引起应力集中现象,使结构过早破坏。因此,对钢结构厂房构件的防锈蚀问题应予以足够的重视,并应根据厂房侵蚀介质情况和环境条件在总图布置、工艺布置、材料选择等方面采取相应对策和措施,以确保厂房结构的安全。一般钢结构的防腐常采用防锈底漆和面漆,涂装层数及厚度常根据其使用环境和涂层性质来决定。一般室内钢结构在自然大气介质作用下,要求涂层厚度100μm,即底漆两道,面漆两道。露天钢结构或在工业大气介质作用下的钢结构,要求漆膜总厚度为150μm~200μm。且在酸环境中的钢结构要求使用氯磺化防酸漆。钢柱柱脚在地面以下部分要用不低于C20的混凝土包裹,其保护层厚度不小于50mm。

5.立面设计

篇(9)

2混凝土水池设计

在分析完混凝土水池荷载情况之后,在水池结构设计时需要考虑这些荷载作用.下面我们以矩形钢筋混凝土水池为例做结构设计分析.首先,完成长高比池壁的计算假定.侧向荷载作用下,水池不同长高比受力情况有所差异,根据池壁单向与双向受力情况做划分。水池结构的布置要符合设计原则,像矩形水池均为长方形,布置时要考虑地形.基础形式为挡土墙水池基础多采用池壁下设置带形基础,地板采用铺砌式结构,地板做成整体式,水池基础为水平框架式和双向板式.伸缩缝的设置上要考虑建造位置,比如土基中矩形水池,伸缩缝间隔情况如下:普通≤20m,温度区间段≤20m,岩基中间隔≤15m;比如建造在土基中的钢筋混凝土矩形地下式水池,伸缩缝间隔情况如下:普通≤30m,岩基中间隔≤20m.水池池壁结构形式的选择情况如下:开敞式水池宜选择变厚池壁,池底厚度为池壁的1.5倍;挡土墙式选择等厚池壁;水平框架式池壁选择变厚池壁.遵照以上设计原则,水池的结构设计将会保持合理性与稳定性,利于施工.

3钢筋混凝土水池施工要点

钢筋混凝土水池施工中要注意施工缝、混凝土浇筑与养护等施工要点.像施工缝,在底板浇筑完成后,池壁与底板的施工缝要在八字以上1.5m与2m处,底板和柱的施工缝在表面.池壁竖向浇筑要一次浇到施工缝处,并对柱身、柱帽等做两次浇筑,以确保稳定性.对施工缝还要做凿毛处理,将不密实表面或者浮浆凿掉,还要避免损及混凝土棱角,避免剔出粗集料.钢筋绑扎时可使用板凳筋做法或者排架法.混凝土浇筑过程中要保持池壁模板的稳定,避免变形或硬化失败.至于施工缝要提前清理,保持合理湿润度,在浇筑前铺与混凝土配比相同的水泥砂浆,浇筑部分分层完成,每层厚度≤4m,间隔时间不宜过长,均匀摊铺.在浇筑顶部时,要暂停1h,在混凝土下沉后做二次震动,消除可能因沉降造成的裂缝,浇筑完成后及时洒水养护.养护根据季节不同有不同注意要点,比如夏季因高温干燥或者多雨等混凝土强度会受影响出现收缩裂缝后,必须在初凝后联系养护两周才能拆模,养护期间还要及时洒水,保证湿润到位.完成养护拆模时表面还要添加超时的覆盖层,及时回填土,保证混凝土水池的施工质量.

4钢筋混凝土水池施工实例分析

篇(10)

1.1结构不合理、性能缺少验证。在高层建筑设计中同时要考虑多种因素,保证结构承载力的前提下尽量减少造价成本,需要将建筑结构从总体至细节进行优化。优化工作多数是将设计图纸中的一些参数进行计算分析,适当的加固墙体厚度,常出现缺少对地基承载力的实际考察情况。高层建筑的抗震能力规定在中等强度地震时建筑物不会产生高危裂缝,并可通过修补达到预期效果,在发生高强度的地震时建筑物保证结构不出现坍塌。地震发生的几率很小,一旦发生具有极大的毁灭性,高层建筑抗震性能只停留在设计层面,从数据上分析已经达到了国家要求,但各施工地点基层土壤矿物质组成存在差异,松软程度也就不同,缺少验证,真正发生危险时其稳定性很难保证。

1.2结构设计缺少创新。高层建筑结构复杂,设计过程中受多种因素限制,为同时满足多种需求,工程设计师都施行保守方案,缺少创新精神。钢筋混凝土材质的墙体承载能力与结构有很大联系,在剪力墙设计方案中,应充分借鉴国外先进技术,基于传统结构进行创新,解决承载力不足的问题,同时使高层建筑整体结构更符合大众审美,减少造价支出。概念设计在结构优化上的运用还受很多施工技术以及设备使用方面的限制,阻碍建筑工程行业进步。

1.3受力分布不均匀。高层建筑上下层的结构是不同的,为保证自身重力不会对建筑物造成破坏,基层修筑中会应用到大量的钢筋混凝土材料,加固底层的同时削弱上层,可减轻对地基的压力,同时建筑物承受风力和地震破坏的能力更强。进行概念设计过程中,没有充分考虑转换层占据的空间和对受力平衡的影响,承重柱满足了承载上层压力的要求,但墙体产生的剪力不能与内部的应力平衡,作用在水平方向时形成了破坏力。概念设计中缺少优化环节导致这一现象的产生,很难保障整体结构的稳定性。

1.4概念设计中常见问题的解决方案。设计过程中不可脱离实际情况,在前期准备工作中对建筑场地进行详细的测量,将地区可能出现的自然灾害进行模拟实验,根据测试结果对设计结构进行优化。充分考虑建筑物的自重,满足对抗震性能的要求,同时在结构上进行改进,应用力学知识,节省建筑过程中的原材料使用。合理修筑剪力墙,结构在成体建筑中起到承重作用,但不能破坏空间整体性,注重格局的设计,将各单元的楼梯间进行分别设计,根据不同区域的需求,可将方案进行更改,保证整体结构统一又各有特点。在楼体外观的设计中加入符合当地人文特色的元素,使建筑物更具有中国特色。应用概念设计法时加强后期的优化工作,注重从宏观到细致的过渡,设计方案要具有灵动性,应对施工进展过程中的突况工程师要及时进行探讨,对原有结构做出更改,保障施工连续进展。设计测量工作中会涉及到很多变量,对这些数据进行反复测量,确定合理的浮动范围,作为施工开展的有力依据。

2结构选型的问题

2.1结构的超高。在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑。因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚至超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

2.2控制柱的轴压比与短柱问题。在钢筋混凝土高层建筑结构中,往往为了控制柱轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎。柱的塑性变形能力小,则结构延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在结构中若能保证强柱弱梁设计,且梁具有良好延性,则柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。

3结构计算与分析

3.1计算模型的选取。对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。在使用中可根据工程经验和工程实际情况灵活应用,以最少的计算工作量达到预期的分析精度要求,既不能不分情况一概采用刚性楼板模型,造成小墙肢计算值偏小,不安全;也没必要都采用弹性楼板模型,无谓地增大计算工作量。

3.2抗震等级的确定。对常规高层建筑,可按《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)第4.8节规定确定抗震等级,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于复杂高层建筑还应符合第10章的规定;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。

3.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑地震作用和风荷载较大,必须严格按照新规范中增加的非结构构件的处理措施进行设计。

上一篇: 文化市场管理论文 下一篇: 计算机行业论文
相关精选
相关期刊