时间:2023-03-23 15:06:05
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇监测系统论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
20世纪桥梁工程领域的成就不仅体现在预应力技术的发展和大跨度索支承桥梁的建造以及对超大跨度桥梁的探索,而且反映于人们对桥梁结构实施智能控制和智能监测的设想与努力。近20年来桥梁抗风、抗震领域的研究成果以及新材料新工艺的开发推动了大距度桥梁的发展;同时,随着人们对大型重要桥梁安全性、耐久性与正常使用功能的日渐关注,桥梁健康监测的研究与监测系统的开发应运而生。由于桥梁监测数据可以为验证结构分析模型、计算假定和设计方法提供反馈信息,并可用于深入研究大跨度桥梁结构及其环境中的未知或不确定性问题,因此,桥梁设计理论的验证以及对桥梁结构和结构环境未知问题的调查与研究扩充了桥梁健康监测的内涵。本文结合近十年来桥梁健康监测的研究状况以及大跨度桥梁工程的研究与发展,较系统地阐述桥梁健康监测的内涵,并由此探讨监测系统设计的有关问题。
一、桥梁健康监测系统与理论发展简况
1.监测系统
80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。该系统是最早安装的较为完整的监测系统之一,它实现了实时监测、实时分析和数据网络共享。建立健康监测系统的典型桥梁还有挪威的Skarnsundet斜拉桥(主跨530m)[2]、美国主跨440m的SunshineSkywayBridge斜拉桥、丹麦主跨1624m的GreatBeltEast悬索桥[3]、英国主跨194m的Flintshire独塔斜拉桥[4]以及加拿大的ConfederatiotBridge桥[5]。我国自90年代起也在一些大型重要桥梁上建立了不同规模的结构监测系统,如香港的青马大桥、汲水门大桥和汀九大桥,内地的上海徐浦大桥以及江阴长江大桥等[6~8]。
从已经建立的监测系统的监测目标、功能以及系统运行等方面看,这些监测系统具有以下一些共同特点:
(1)通常测量结构各种响应的传感装置获取反映结构行为的各种记录;
(2)除监测结构本身的状态和行为以外,还强度对结构环境条件(如风、车辆荷载等)的监测和记录分析;同时,试图通过桥梁在正常车辆与风载下的动力响应来建立结构的"指纹",并藉此开发实时的结构整体性与安全性评估技术;
(3)在通车运营后连续或间断地监测结构状态,力求获取的大桥结构信息连续而完整。某些桥梁监测传感器在桥梁施工阶段即开始工作并用于监控施工质量;
(4)监测系统具有快速大容量的信息采集、通讯与处理能力,并实现数据的网络共享。
这些特点使得大跨度桥梁健康监测区别于传统的桥梁检测过程。另外需要指出的是,桥梁健康监测的对象已不再局限于结构本身:一些重要辅助设施的工作状态也已纳入长期监测的范围(如斜拉索振动控制装置[4]等)。
2.理论研究
十多年来,桥梁健康监测理论的研究主要集中于结构整体性评估和损伤识别。由于基于振动信息的整体性评估技术在航天、机械等领域的深入研究和运用,这类技术被用于土木结构中除无损检测技术以外的最重要的整体性评估方法并得到广泛的研究【1,7,9~11】。人们致力于基于振动测量值的整体性评估方法研究的另一个原因是,结构振动信息可以在桥梁运营过程中利用环境振动法获得,因此这一方法具有实时监测的潜力。
结构整体性评估方法可以归结为模式识别法、系统识别法以及神经网络方法三大类【1】。结构模态参数常被用作结构的指纹特征,也是系统识别方法和神经网络法的主要输入信息。另外,基于结构应变模态、应变曲率以及其他静力响应的评估方法也在不同程度上显示了各自的检伤能力[10]。然而,尽管某些整体性评估技术已在一些简单结构上有成功的例子,但还不能可靠地应用于复杂结构。阻碍这一技术进入实用的原因主要包括:①结构与环境中的不确定性和非结构因素影响;②测量信息不完备;③测量精度不足和测量信号噪声;④桥梁结构赘余度大并且测量信号对结构局部损伤不敏感。
另外,从评估方法上,目前对大跨度桥梁的安全评估基本上仍然沿袭常规中小桥梁的定级评估方法,是一种主要围绕结构的外观状态和正常使用性能进行的定性、粗浅的安全评价。
二、桥梁健康监测新概念
桥梁健康监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护潍修与管理决策提供依据和指导。为此,监测系统对以下几个方面进行监控:
·桥梁结构在正常环境与交通条件下运营的物理与力学状态;
·桥梁重要非结构构件(加支座)和附属设施(如振动控制元件)的工作状态;
·结构构件耐久性;
·大桥所处环境条件;等等。
与传统的检测技术不同,大型桥梁健康监测不仅要求在测试上具有快速大容量的信息采集与通讯能力,而且力求对结构整体行为的实时监控和对结构状态的智能化评估。
然而,桥梁结构健康监测不仅仅只是为了结构状态监控与评估。由于大型桥梁(尤其是斜拉桥、悬索桥)的力学和结构特点以及所处的特定环境,在大桥设计阶段完全掌握和预测结构的力学特性和行为是非常困难的。大跨度索交承桥梁的设计依赖于理论分析并过风洞、振动台模拟试验预测桥梁的动力性能并验证其动力安全性。然而,结构理论分析常基于理想化的有限元离散模型,并且分析时常以很多假定条件为前提。在进行风洞或振动台试验时对大桥的风环境和地面运动的模拟也可能与真实桥位的环境不全相符。因此,通过桥梁健康监测所获得的实际结构的动静力行为来验证大桥的理论模型、计算假定具有重要的意义。事实上,国外一些重要桥梁在建立健康监测系统时都强调利用监测信息验证结构的设计。
桥梁健康监测信息反馈于结构设计的更深远的意义在于,结构设计方法与相应的规范标准等可能得以改进;并且,对桥梁在各种交通条件和自然环境下的真实行为的理解以及对环境荷载的合理建模是将来实现桥?quot;虚拟设计"的基础。
还应看到,桥梁健康监测带来的将不仅是监测系统和对某特定桥梁设计的反思,它还可能并应该成为桥梁研究的"现场实验室"。尽管桥梁抗风、抗震领域的研究成果以及新材料新工艺的出现不断推动着桥梁的发展,但是,大跨度桥梁的设计中还存在很多未知和假定,超大跨度桥梁的设计也有许多问题需要研究。同时,桥梁结构控制与健康评估技术的深入研究与开发也需要结构现场试验与调查。桥梁健康监测为桥梁工程中的未知问题和超大跨度桥梁的研究提供了新的契机。由运营中的桥梁结构及其环境所获得的信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。另外,桥梁振动控制与健康评估技术的开发与应用性也需要现场试验与调查。
综上所述,大型桥梁健康监测不只是传统的桥梁检测加结构评估新技术,而是被赋予了结构监控与评估、设计验证和研究与发展三方面的意义。
三、健康监测系统设计
1.监测系统设计准则
两座大型桥梁健康监测系统的测点布置情况可以看出,两个监测系统的监测项目与规模存在很大差异。这种差异除了桥型和桥位环境因素外,主要是因为对各监测系统的投资额和(或)建立各个系统的目的(或者说是对系统的功能要求)不同。因此,桥梁监测系统的设计实际上有意或无意地遵循着某些准则。
显然,监测系统的设计应该首先考虑建立该系统的目的和功能。上节所述的桥梁健康监测三方面的意义也正是桥梁健康监测的目的和功能所在。对于特定的桥梁,建立健康监测系统的目的可以是桥梁监控与评估,或是设计验证,甚至以研究发展为目的;也可以是三者之二甚至全部。一旦建立系统的目的确定,系统的监测项目就可以基本上确定。另外,监测系统中各监测项目的规模以及所采用的传感仪器和通信设备等的确定需要考虑投资的限度。因此在设计监测系统时必须对监测系统方案进行成本一效益分析。成本-效益分析是建立高效、合理的监测系统的前提。
根据功能要求和成本一效益分析可以将监测项目和测点数设计到所需的范围,可以最优化地选择并安装系统硬件设施。因此,功能要求和效益-成本分析是设计桥梁健康监测系统的两大准则。
2.监测项目
不同的功能目标所要求的监测项目不尽相同。绝大多数大跨度桥梁监测系统的监测项目都是从结构监控与评估出发的,个别也兼顾结构设计验证甚至部分监测项目以桥梁问题的研究为目的[5]。文献[12]通过对国内多座运营中的斜拉桥进行大量病害调查与检测分析,提出了用于斜拉桥状态监控与评估的颇具代表性的监测项目。
如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所须要的信息。因此,对于大跨度余支承桥梁,须要较多的传感器布置于桥塔、加劲梁以及缆索/拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测。另外,在支座、挡块以及某些连结部位须安设传感器拾取反映其传力、约束状况等的信息。
目前,某些监测系统以开发结构整体性与安全性评估技术为目的之一。结合桥梁问题研究的监测系统虽不多见,但有些系统也有监测项目是专为研究服务的。与理论研究相关的监测项目可以根据待研究问题的性质来确定。从目前桥梁工程的发展状况看,以下几方面的问题可以借助桥梁健康监测进行深入研究或论证。
·抗风方面:包括风场特性观测、结构在自然风场中的行为以及抗风稳定性。
·抗震方面:包括研究各种场地地面运动的空间与时间变化、土-结构相互作用、行波效应、多点激励对结构响应的影响等。通过对墩顶与墩底应变、变形及加速度的监测建立恢复力模型对桥梁的抗震分析具有重要的意义。
·结构整体行为方面:包括研究结构在强风、强地面运动下的非线性特性,桥址处环境条件变化对结构动力特性、静力状态(内力分布、变形)的影响等。这对于发展基于监测数据的整体性评估方法非常重要。
·结构局部问题:例如边界、联接条件,钢梁焊缝疲劳及其他疲劳问题,结合梁结合面(包括剪力键)的破坏机制,等等。索支承桥梁缆(拉)索和吊杆的振动与减振、局部损伤机制等也值得进一步观察研究。
·耐久性问题:桥梁结构中的耐久性问题尚有许多问题须要深入研究。缆(拉)索与吊杆的腐蚀、锈蚀问题尤须重视。
·基础:大直径桩的采用也带来一些设计问题,直接套用原先用于中等直径桩的计算方法不很合理。借助大型桥梁监测系统调查大直径桩的变形规律、研究桩的承载力问题,也是设计部门的需要。
四、小结
(1)桥梁结构健康监测不只是传统的桥梁检测技术的简单改进,而是运用现代传感与通信技术,实时监测桥梁运营阶段在各种环境条件下的结构响应与行为,获取反映结构状况和环境因素的各种信息,由此分析结构健康状态、评估结构的可靠性,为桥梁的管理与维护决策提供科学依据。同时,大型桥梁结构健康监测对于验证与改进结构设计理论与方法、开发与实现各种结构控制技术以及深入研究大型桥梁结构的未知问题具有重要意义。因此,健康监测为桥梁工程的发展开辟了新的空间。
0引言
近年来,随着信息和网络技术的高速发展以及政治、经济或者军事利益的驱动,计算机和网络基础设施,特别是各种官方机构的网站,成为黑客攻击的热门目标。近年来对电子商务的热切需求,更加激化了这种入侵事件的增长趋势。由于防火墙只防外不防内,并且很容易被绕过,所以仅仅依赖防火墙的计算机系统已经不能对付日益猖獗的入侵行为,对付入侵行为的第二道防线——入侵检测系统就被启用了。
1入侵检测系统(IDS)概念
1980年,JamesP.Anderson第一次系统阐述了入侵检测的概念,并将入侵行为分为外部滲透、内部滲透和不法行为三种,还提出了利用审计数据监视入侵活动的思想[1]。即其之后,1986年DorothyE.Denning提出实时异常检测的概念[2]并建立了第一个实时入侵检测模型,命名为入侵检测专家系统(IDES),1990年,L.T.Heberlein等设计出监视网络数据流的入侵检测系统,NSM(NetworkSecurityMonitor)。自此之后,入侵检测系统才真正发展起来。
Anderson将入侵尝试或威胁定义为:潜在的、有预谋的、未经授权的访问信息、操作信息、致使系统不可靠或无法使用的企图。而入侵检测的定义为[4]:发现非授权使用计算机的个体(如“黑客”)或计算机系统的合法用户滥用其访问系统的权利以及企图实施上述行为的个体。执行入侵检测任务的程序即是入侵检测系统。入侵检测系统也可以定义为:检测企图破坏计算机资源的完整性,真实性和可用性的行为的软件。
入侵检测系统执行的主要任务包括[3]:监视、分析用户及系统活动;审计系统构造和弱点;识别、反映已知进攻的活动模式,向相关人士报警;统计分析异常行为模式;评估重要系统和数据文件的完整性;审计、跟踪管理操作系统,识别用户违反安全策略的行为。入侵检测一般分为三个步骤:信息收集、数据分析、响应。
入侵检测的目的:(1)识别入侵者;(2)识别入侵行为;(3)检测和监视以实施的入侵行为;(4)为对抗入侵提供信息,阻止入侵的发生和事态的扩大;
2入侵检测系统模型
美国斯坦福国际研究所(SRI)的D.E.Denning于1986年首次提出一种入侵检测模型[2],该模型的检测方法就是建立用户正常行为的描述模型,并以此同当前用户活动的审计记录进行比较,如果有较大偏差,则表示有异常活动发生。这是一种基于统计的检测方法。随着技术的发展,后来人们又提出了基于规则的检测方法。结合这两种方法的优点,人们设计出很多入侵检测的模型。通用入侵检测构架(CommonIntrusionDetectionFramework简称CIDF)组织,试图将现有的入侵检测系统标准化,CIDF阐述了一个入侵检测系统的通用模型(一般称为CIDF模型)。它将一个入侵检测系统分为以下四个组件:
事件产生器(EventGenerators)
事件分析器(Eventanalyzers)
响应单元(Responseunits)
事件数据库(Eventdatabases)
它将需要分析的数据通称为事件,事件可以是基于网络的数据包也可以是基于主机的系统日志中的信息。事件产生器的目的是从整个计算机环境中获得事件,并向系统其它部分提供此事件。事件分析器分析得到的事件并产生分析结果。响应单元则是对分析结果做出反应的功能单元,它可以做出切断连接、修改文件属性等强烈反应。事件数据库是存放各种中间和最终数据的地方的通称,它可以是复杂的数据库也可以是简单的文本文件。
3入侵检测系统的分类:
现有的IDS的分类,大都基于信息源和分析方法。为了体现对IDS从布局、采集、分析、响应等各个层次及系统性研究方面的问题,在这里采用五类标准:控制策略、同步技术、信息源、分析方法、响应方式。
按照控制策略分类
控制策略描述了IDS的各元素是如何控制的,以及IDS的输入和输出是如何管理的。按照控制策略IDS可以划分为,集中式IDS、部分分布式IDS和全部分布式IDS。在集中式IDS中,一个中央节点控制系统中所有的监视、检测和报告。在部分分布式IDS中,监控和探测是由本地的一个控制点控制,层次似的将报告发向一个或多个中心站。在全分布式IDS中,监控和探测是使用一种叫“”的方法,进行分析并做出响应决策。
按照同步技术分类
同步技术是指被监控的事件以及对这些事件的分析在同一时间进行。按照同步技术划分,IDS划分为间隔批任务处理型IDS和实时连续性IDS。在间隔批任务处理型IDS中,信息源是以文件的形式传给分析器,一次只处理特定时间段内产生的信息,并在入侵发生时将结果反馈给用户。很多早期的基于主机的IDS都采用这种方案。在实时连续型IDS中,事件一发生,信息源就传给分析引擎,并且立刻得到处理和反映。实时IDS是基于网络IDS首选的方案。
按照信息源分类
按照信息源分类是目前最通用的划分方法,它分为基于主机的IDS、基于网络的IDS和分布式IDS。基于主机的IDS通过分析来自单个的计算机系统的系统审计踪迹和系统日志来检测攻击。基于主机的IDS是在关键的网段或交换部位通过捕获并分析网络数据包来检测攻击。分布式IDS,能够同时分析来自主机系统日志和网络数据流,系统由多个部件组成,采用分布式结构。
按照分析方法分类
按照分析方法IDS划分为滥用检测型IDS和异常检测型IDS。滥用检测型的IDS中,首先建立一个对过去各种入侵方法和系统缺陷知识的数据库,当收集到的信息与库中的原型相符合时则报警。任何不符合特定条件的活动将会被认为合法,因此这样的系统虚警率很低。异常检测型IDS是建立在如下假设的基础之上的,即任何一种入侵行为都能由于其偏离正常或者所期望的系统和用户活动规律而被检测出来。所以它需要一个记录合法活动的数据库,由于库的有限性使得虚警率比较高。
按照响应方式分类
按照响应方式IDS划分为主动响应IDS和被动响应IDS。当特定的入侵被检测到时,主动IDS会采用以下三种响应:收集辅助信息;改变环境以堵住导致入侵发生的漏洞;对攻击者采取行动(这是一种不被推荐的做法,因为行为有点过激)。被动响应IDS则是将信息提供给系统用户,依靠管理员在这一信息的基础上采取进一步的行动。
4IDS的评价标准
目前的入侵检测技术发展迅速,应用的技术也很广泛,如何来评价IDS的优缺点就显得非常重要。评价IDS的优劣主要有这样几个方面[5]:(1)准确性。准确性是指IDS不会标记环境中的一个合法行为为异常或入侵。(2)性能。IDS的性能是指处理审计事件的速度。对一个实时IDS来说,必须要求性能良好。(3)完整性。完整性是指IDS能检测出所有的攻击。(4)故障容错(faulttolerance)。当被保护系统遭到攻击和毁坏时,能迅速恢复系统原有的数据和功能。(5)自身抵抗攻击能力。这一点很重要,尤其是“拒绝服务”攻击。因为多数对目标系统的攻击都是采用首先用“拒绝服务”攻击摧毁IDS,再实施对系统的攻击。(6)及时性(Timeliness)。一个IDS必须尽快地执行和传送它的分析结果,以便在系统造成严重危害之前能及时做出反应,阻止攻击者破坏审计数据或IDS本身。
除了上述几个主要方面,还应该考虑以下几个方面:(1)IDS运行时,额外的计算机资源的开销;(2)误警报率/漏警报率的程度;(3)适应性和扩展性;(4)灵活性;(5)管理的开销;(6)是否便于使用和配置。
5IDS的发展趋
随着入侵检测技术的发展,成型的产品已陆续应用到实践中。入侵检测系统的典型代表是ISS(国际互联网安全系统公司)公司的RealSecure。目前较为著名的商用入侵检测产品还有:NAI公司的CyberCopMonitor、Axent公司的NetProwler、CISCO公司的Netranger、CA公司的Sessionwall-3等。国内的该类产品较少,但发展很快,已有总参北方所、中科网威、启明星辰等公司推出产品。
人们在完善原有技术的基础上,又在研究新的检测方法,如数据融合技术,主动的自主方法,智能技术以及免疫学原理的应用等。其主要的发展方向可概括为:
(1)大规模分布式入侵检测。传统的入侵检测技术一般只局限于单一的主机或网络框架,显然不能适应大规模网络的监测,不同的入侵检测系统之间也不能协同工作。因此,必须发展大规模的分布式入侵检测技术。
(2)宽带高速网络的实时入侵检测技术。大量高速网络的不断涌现,各种宽带接入手段层出不穷,如何实现高速网络下的实时入侵检测成为一个现实的问题。
(3)入侵检测的数据融合技术。目前的IDS还存在着很多缺陷。首先,目前的技术还不能对付训练有素的黑客的复杂的攻击。其次,系统的虚警率太高。最后,系统对大量的数据处理,非但无助于解决问题,还降低了处理能力。数据融合技术是解决这一系列问题的好方法。
(4)与网络安全技术相结合。结合防火墙,病毒防护以及电子商务技术,提供完整的网络安全保障。
6结束语
在目前的计算机安全状态下,基于防火墙、加密技术的安全防护固然重要,但是,要根本改善系统的安全现状,必须要发展入侵检测技术,它已经成为计算机安全策略中的核心技术之一。IDS作为一种主动的安全防护技术,提供了对内部攻击、外部攻击和误操作的实时保护。随着网络通信技术安全性的要求越来越高,入侵检测技术必将受到人们的高度重视。
参考文献:
[1]putersecuritythreatmonitoringandsurveillance[P].PA19034,USA,1980.4
[2]DenningDE.AnIntrusion-DetectionModel[A].IEEESymponSecurity&Privacy[C],1986.118-131
0引言
监测监控系统是融计算机技术、通信技术、控制技术和电子技术为一体的综合自动化产品,当将其作为一种安全预防技术设施应用到工业生产和社会生活中时,就称其为安全监测监控系统。在我国的工业安全事故中,煤炭工业的安全事故较为频发且性质严重,尤其以生产矿井瓦斯爆炸事故最为突出。为此,国家有关安全生产监督管理部门专门制定了“先抽后采,监测监控,以风定产”的十二字指导方针,由此可见,煤矿安全环境监测监控系统在煤矿安全生产中的重要地位。
1煤矿安全环境监测监控系统组成
根据所述及概念,监测监控系统的功能一是“测”,即检测各种环境安全参数、设备工况参数、过程控制参数等;二是“控”,即根据检测参数去控制安全装置、报警装置、生产设备、执行机构等。若系统仅用于生产过程的监测,当安全参数达到极限值时产生显示及声、光报警等输出,此类系统一般称为监测系统;除监测外还参与一些简单的开关量控制,如断电、闭锁等,此类系统一般称为监测监控系统。
煤矿安全生产监测控系统层次上一般是分为两级或三级管理的计算机集散系统,一般包含测控分站级和中心站级。每个测控分站负责某几路传感器信号的采集和某个执行机构的控制,实现了采集、控制分散;中心站负责数据的处理、储存、传输,实现了管理的集中。中心站与分站和计算机网络之间的通信、传感器到测控分站的数据传输、测控分站到执行或控制装置信号的传输,是通过传输信道实现的。
监测系统一般由地面中心站,井下工作站,传输系统三部分组成。地面中心站一般有传输接口装置和若干台计算机,电源,数据处理及系统运行软件,存贮、打印、显示等装置组成。为了计算机稳定工作,一般还配备了机房恒温调节,不间断电源等辅助设施。
井下分站和传感器构成井下工作站。井下分站的作用是,一方面对传感器送来的信号进行处理,使其转换成便于传输的信号送到地面中心站;另一方面,将地面中心站发来的指令或从传感器送来应由分站处理的有关信号经处理后送至指定执行部件,以完成预定的处理任务,如报警、断电、控制局扇开启等;并向传感器提供电源。
传输系统是用来将井下信息传输至地面和将地面中心站监控指令传输至井下分站的信息媒介。信道,信息传输的通道,监测系统大多采用专用通讯电缆作为信道。
传感器与分站之间一般采用直接传输方式。我国国家标准规定传感器的输出信号应满足以下几种信号:模拟量信号有三种,频率输出(5~15HZ);电流输出为0~5mA;电压输出为0~100mV;开关量信号输出一般有±0.1mA、±5mA和200~1000HZ等。
2煤矿安全环境监测监控系统技术指标
根据安全监测监控系统的组成,其主要技术指标,主要是以组成系统的各个子系统的技术指标为特征。
2.1测控分站容量:是输入、输出量的个数及类型。例如,模入8,开入4个接点信号、4个电流形式信号等;开出4个TTL电平、4个继电器触点输出等。
接配传感器:是指所接配传感器的种类、型号、测量范围、输出信号形式、供电电压、精度等。
检测精度:是反映分站性能优劣的主要指标之一,一般用满量程的相对误差来表示。数值越小,则检测精度越高。
另外,还有分辨率、转换时间、传输距离等指标。
2.2中心站主机型号及配置:CPU型号,内存容量,硬盘容量,软驱数量、规格,配置外设的种类、型号、数量等,另外,还有备用主机的情况。
容量:即系统可带分站的数量,例如,井下100个分站,地面10个分站。
传输速率:数字传输的波特率,例如,600bit/s,1200bit/s。波特率越高,传输效率越高。
另外,还有传输距离、可靠性等指标。
2.3系统信息管理软件开放性好:组态软件数据库提供了开放数据访问接口,可以实现数据库的二次开发。
安全性良好:所有的设计方案都充分考虑了系统的安全性,使用采集系统对监控系统的影响达到最小。
数据容量大:采用虚拟内存管理技术,理论上数据存储是无限制的(受硬盘空间和内存大小的影响)。
另外,还有响应速度、运行是否稳定、扩展性是否强、兼容性好等衡量指标。
2.4防爆及防爆标志根据国家标准的规定,爆炸危险环境用电设备分为2类。有瓦斯爆炸危险的矿井使用的电气设备为I类,除瓦斯矿井以外的爆炸危险场所使用的电气设备为II类。II类电气设备又分为A、B、C三级,这是根据使用场所的爆炸性混合物最大试验安全间隙或最小点燃电流来分的。II类电气设备还按最高表面温度的不同,分为T1-T6共6组。防爆型设备在外壳上的总标志为:“Ex”。
防爆型电气设备按防爆结构的不同,可以分为以下几种类型:增安型、隔爆型、本质安全型、通风充气型、充油型、无火花型、特殊型等等。
3煤矿安全环境监测监控系统的种类
监测系统按工作侧重点分为环境监测系统和工况监测系统两大类。每种系统又可能包含若干子系统。如环境监测系统可能配备瓦斯突出预报子系统、顶板监测子系统;工况监测系统可能配有综采监控、胶带监控等各类子系统。
环境监测系统一般侧重于监测采掘工作面、机电硐室、采区主要进回风道等自然环境的参数,其主要功能为监测低浓度沼气(4%以下)、高浓度沼气(4%~100%)、一氧化碳、二氧化碳、氧气、温度、风量、风速、负压、矿压、地下水、通风设施、煤尘、烟雾等参数,除实时显示检测数据外,还应按《煤矿安全规程》的要求及各矿井实际情况,在一定地点及工作场所设置报警(灯光、音响)和执行装置,以便防止和预报灾害。
工况监测系统一般侧重于监测机电设备,其主要监测参数有采区产量、井下煤仓煤位、采煤机机组位置、运输机械、提升机械监控、设备故障监测及效率监测等等。但生产工况监测信息并非全部要传输到集中监控系统之中。
一些大的监控系统通常包括环境监测与工况监测两大功能,适应性更为广泛。
4煤矿安全环境监测监控系统的结构
煤矿安全生产监控系统的系统结构分为集中式和分布式。
4.1集中式集中式控制是一种中心计算机直接控制被控对象的系统。其特点是信息采集、分析处理、信道管理,控制功能均由地面中心站计算机完成。数据传输量大、负担繁重,中心站计算机是系统关键性节点,当中心站和传输通道发生故障时,将导致整个系统的瘫痪。:
集中式控制系统大多为星型结构,其特点是结构简单,将多个节点连接到一个中心节点即可;增加、扩展节点十分方便。中心节点是整个系统的“瓶颈”,该系统的可靠性很大程度上取决于中心节点。
1汽轮机监测保护系统概述
汽轮机热工监视和保护系统以及由其所组成的信号报警系统和保护控制系统,是保护汽轮机安全运行的重要设备。随着机组容量的增大,汽轮机安全监视和保护就显得更加重要,同时对汽轮机的安全监视和保护装置动作的准确性和可靠性也提出了更高的要求。原有及早期设计的保护系统大多为继电器及硬件逻辑搭接的,可靠性较差,维护量较大。汽轮机振动及监控保护系统是为了监视汽轮机在运行过程中主轴和轴承的振动状况及大轴弯曲而设计的,它由振动监视组件,速度监视组件和偏心监视组件三部分组成,每个部分可由用户的需要提供若干组件,以完成用户需要监视的测点。其中监视振动组件和偏心监视组件配涡流传感器,用来监视主轴的振动状况,涡流传感器的输出信号大小为-4—-20V,它是一个含有直流分量的交流信号,速度监视组件配电磁式传感器,用来监视轴瓦的振动情况。
2汽轮机监测保护系统监视组件
振动监视组件是以单片机为核心研制的,为了对输入信号进行有效的处理,要求所选用的CPU速度快,集成度高,指令系统简单,根据目前世界上在线控制发展的趋势和市场上提供的产品,监视组件选用8098单片机。8098单片机为准16位单片机,外接芯片简单,具有16位处理速度,典型指令的执行时间为2μs,它的主要特性:十六位中央处理器;具有高效的指令系统;集成了采样保持器和四路十位A/D转换器;具有高速输入口HSI,高速输出口HSO和脉宽调制输出PWM;具有监视定时器,可以在产生软硬件故障时,使系统复位,恢复CPU工作。监视保护系统的设计方法和步骤分为:系统总体设计,硬件设计,软件设计。它是指根据测量系统的功能要求和技术特性,反复进行系统构思,综合考虑硬件和软件的特点,原则:能用软件实现的就不用硬件,但值得一提的是软件会占用CPU的时间。为了缩短研制周期,尽可能利用熟悉的机型或利用现有的资料进行改进和移值,并采用可利用的软硬件资源,然后根据系统的要求增加所需要的功能,在完全满足系统功能的同时,为提高系统工作的可靠性和稳定性,还必须充分考虑到系统的抗干扰能力。
3汽轮机监测保护系统的硬件设计
主要是指单片机的选择和功能扩展,传感器的选择,I/O口的选择,通道的配置,人机对话设备的配置。振动监视组件由三个相互联系的部分组成,分别是显示板模块,主板模块,继电器板模块。矢量监视组件原理图如下:
模拟通道设计:
8098内有一个脉冲宽度调置器PWM可用来完成数字信号至模拟信号的转换。我们将PWM用于产生键相输入比较电路的界限电压。同时8098单片机的HSO也可以软件编程构成脉冲调宽输出,我们利用HSO.0、HSO.1构成两路脉冲调宽输出,用于通频振幅及1信频振幅模拟量输出.脉冲调宽输出信号TTL电平的调制脉冲,经CD4053缓冲电平变换.使信号振幅变为0-5V,再经过RC滤波,得到直流电压信号,再经过一级同相跟随,实现阻抗变换,得到要求的0-2.5V或1-5V的直流电压信号输出,其输出阻抗R0=0.电压信号经V/I转换,便可得到0-10mA或4-20mA电流输出。显示接口:
显示接口采用8279芯片,可直接与8098单片机相连,其工作方式可通过编程设定。接口电路采用了通用的可编程键盘,显示器接口器件8279,它是键盘显示控件的专用器件,与单片机接口简单方便,其工作方式可通过编程设置。8279的监测输入线RL0-RL7工作再选通输入方式,可输入8个拨动开关信号,以选择该系统的工作方式。
I/O通道扩展:
8098单片机本身只有32根I/O线,其中16根作为系统地址、数据总线,8根HIS/HSO线,4根模拟量输入线,还有4根多功能线,可用作TXD、RXD以及外中断输入、脉宽调制输出,这些I/O口各有用途,监视组件为了进行参数设定及响应系统监视组件信号,必须进行I/O功能扩展。当单片机提供的I/O接口不够用时,需要扩展I/O接口以实现TSI功能。8098有四个端口即p0、p2、p3、p4,共32根I/O线,监视保护系统设计时,p0一部分作为模拟量输入线;p2一部分作为串行口,另有一部分作为脉冲宽度调制输出;p3作为数据总线和地址总线低八位复用;p4的一部分提供地址总线的高八位。I/O通道扩展电路:一种以8155作为接口,另一种以8255作为接口。接口主要有8155,8255,8279,EPROM选用的是2764,掉电保护用的是EPROM2864。8155和8255是作为普通的输入和输出口使用的,它们主要用于设定开关状态的输入及报警状态的输出。8279是显示接口,用来控制显示器的显示,监控保护系统显示部分采用的是由128根发光二极管组成的两根光柱,每根光柱对应一根通道。8279的回扫线RL0-RL7用作选通输入方式。
4汽轮机监测保护系统的软件设计
主要是应用软件的设计。根据系统功能要求设计。在设计应用软件时,必须考虑到单片机的指令系统和软件功能,并与硬件统筹考虑。单片机的系统开发,其软件设计不可能相对于硬件而独立,其软件总要与硬件结合在一起,实现要求的功能。当应用系统总体方案一经审定,硬件系统设定基本定型,大量的工作将是软件系统的程序设计与调试。振动监视组件软件的设计采用模块编程法,模块法的优点是把一个较为复杂的程序化为编制和装配几个比较简单的程序,使程序设计容易实现。由于块与块之间具有一定的独立性,如果其程序模块需要修改或变动时,将只影响模块内部程序,而对其它程序模块的影响很小,或基本没影响就很方便,它主要由下面几个部分组成:标准的自检程序模块;采样以及通道计算程序模块;设定值调整程序模块,报警程序模块。
自检程序模块:该模块检查系统的电源电压是否正常,系统将以故障码的形式提示用户:系统电源出现故障,并指出哪一路电源处于故障状态。系统得自检功能由上电自检,循环自检和用户请求自检三部分组成。在自检过程中,系统解除所有形式的保护。如果自检过程中发现故障,那么监视保护系统一直处于自检状态,直至用户排除了故障为止。
采样及通道值计算程序模块:本程序模块首先对监视保护系统处于的状态进行判断,这些状态是指监视保护系统是否处于通道旁路和危险旁路,如果监视保护系统某一通道处于旁路状态,那么解除继电器报警,系统正常灯熄,旁路灯亮,同时通道指示值为0。如果监视保护系统某一通道没有被旁路,则启动该通道的A/D转换,随后将采集的数字信号进行滤波,计算得到通道值。模拟量输出通道输出代表该通道值的标准电流值0-10mA.DC或4-20mA.DC。
设定值调整程序模块:设定值包括警告设定值和危险设定值两个,它存放在EPROM2864中,即使断电,存放在其中的值也不会丢失,显示面板上的“警告”或“危险”键按下,棒状光柱上将显示警告或危险设定值,如果要对设定值进行调整,还需要按下主线路板上的设定开关,再按下面板上的“警告”或“危险”键,最好按下系统监视面板上的“?”或“?”,即可对设定值调整。在软件中,当设置点调整后,AF标志置零,程序根据AF标志判断是否需要将条调整值重新写入2864。
报警程序模块:如果两通道的测量值之差即差值超过警告或危险设定值,那么监视保护系统将处于警告或危险状态,这时显示面板上的警告或危险报警灯亮,同时将驱动警告或危险继电器,如果处于危险旁路状态,那么仅仅是两个通道的危险灯亮而危险继电器则不动作。如果监视组件处于通电抑制状态,那么将解除所有形式的报警。
显示程序模块:显示程序模块执行显示双通道的测量值、报警值以及四种故障代码。在8098内部RAM中,开设一个具有16个寄存器单元缓冲区,如80H-8FH。将缓冲区对半分成两部分,每一部分的寄存单元寄存一个通道的显示代码。将显示代码送到8279的显示缓冲区,8279可以自动扫描显示。
中断程序模块:T1的溢出周期作为输出脉冲信号的宽度,改变HSO高低电平的触发时间就可以改变方波的占空比,从而改变输出电流大小。
“大型汽轮发电机组性能监测分析与故障诊断软件系统”在仿真机上运行,能对仿真机运行工况进行监视,也能通过实时数据库与实际机组的计算机联网,对实际运行机组工作状况进行监测和分析等。
参考文献
[1]周桐,徐健学.汽轮机转子裂纹的时频域诊断研究[J].动力工程,2002,(9).
[2]刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].汽轮机技术.2004,(12).
1.1传感器质量和性能较差
传感器作为安全监测监控系统的重要组成部分,保证其质量和性能是高效运用安全监控检测系统的关键之一。但事实上,目前我国大多数煤矿开采中所应用的安全监测监控系统就存在传感器质量和性能较差的情况,传感器质量和性能较差具体表现为载体催化元件的应用效果差,容易影响传感器的正常使用;传感器制作工艺技术比较落后,会降低传感器的使用性等。因各种因素而促使传感器的质量和性能降低是安全监测监控系统当前存在的问题之一,需要通过有效的措施来调整和优化,才能够保证传感器合理而有效的应用。
1.2通信协议不规范
所谓的安全监测监控系统通信协议不规范是指其缺乏符合矿井电气防爆等特殊要求的总线标准,所以现有生产厂家的监控系统的通信协议几乎都采用各自专用的,互不兼容。此种情况的存在使得我国安全监测监控系统的通信协议表现出不规范这一特点。而通信协议不规范的情况将会无法实现资源贡献,相应的安全监测监控系统的更新和升级就会受到一定的影响和阻碍,安全监测监控系统的应用效果受到一定程度的抑制。所以说,煤矿安全监测监控系统通信协议不规范也是导致此系统无法高效运用的因素之一。
2增强煤矿安全监控监测系统运行效果的有效措施
煤矿开采是一项危险性较大的工作,在进行煤矿开采作业的过程中存在很多危险因素,一旦危险因素未得到有效的控制,很容易导致安全事故发生,不仅影响煤矿正常开采,还会导致人身受损。安全监测监控系统合理而有效的运用能够大大改善此种现状,当然是是以保证安全监测监控系统高效运用为前提。如何才能够实现煤矿安全监测监控系统高效运用?作者结合相关的资料,提出以下几点建议。
2.1研发高质量、高性能的传感器
传感器作为煤矿安全监控监测系统的重要组成部分之一,其合理而有效的应用能够提高安全监测监控系统的运行效果。而我国目前所应用的安全监测监控系统的传感器质量和性能不佳,直接影响安全监测监控系统的合理应用。针对此种情况,作者建议应当充分利用不断创新的科学技术来研发高质量,高性能的传感器,将其安装在安全监测监控系统中,以此来提高监控系统的应用性,为安全高效的煤矿开采创造条件。
2.2统一化规范化通信协议
上文中已经充分说明当下我国煤矿安全监测监控系统通信协议不规范,通信协议不规范将造成设备重复购置、系统补套受制于人和不能随意进行软硬件升级改造等后果。为了尽量避免此种情况出现在安全监测监控系统中,应当对安全监测监控系统通信协议进行调整和约束,促使其规范化和统一化,从而保证我国所应用的安全监测监控系统能够实现资源共享,升级安全监控检测系统,使其合理而有效的应用。当然,实现通信协议统一化和规范化并不是非常容易的,需要我国推出很多规范性规程和标准对通信协议进行规范化处理。只有推出统一的。规范的通信协议,才能够保证安全监测监控系统能够采用统一的数据库、统一的数据格式、统一的升级模式、统一的系统资源,促使煤矿安全监测监控系统能够更加高效的应用。
2.3专家诊断、决策系统的优化
尽管目前应用于煤矿开采中的安全监测监控系统具有良好的应用性,但同时它也存在不可忽视的问题,只有有效的处理安全监测监控系统存在的问题,才能够真正意义上实现系统的优化,促使其性能更强,应用效果更好。如何才能够实现煤矿安全监测监控系统的优化?作者建议有此方面的专家对安全监测监控系统进行详细的、深入的、全面的诊断,准确的诊断出煤矿安全监控监测系统存在的质量问题,并针对煤矿安全监测监控系统存在的问题进行详细的分析,制定合理的改善措施,改变系统功能单一、简单的情况,使其性能、质量等方面得到良好的优化,更加合理的应用于煤矿开采中。
1.1检测信息的输入
电磁兼容检测需要输入的主要信息包括:(1)被测件的名称、型号、编号、生产厂家;(2)被测件供电情况,被测件的供电类型及供电电压大小,包括直流还是交流,若是交流,则输入供电频率;(3)被测件电缆情况,被测件的电缆的类型,包括电源线、信号线等;(4)委托单位名称和地址;(5)检测依据的技术文件的名称、编号,包括被测件电磁兼容检测所依据的试验大纲;(6)被测件描述,被测件工作状态、被测件敏感判据;(7)检测说明,被测件在检测过程中需要说明的内容,例如一些同标准测试不同的地方,或被测件整改后的情况等;(8)报告编号、密级;(9)检测项目及检测结论,每个检测项目符合要求与否的结论;(10)检测费用及结算情况等。根据所输入的信息,并进行数据校验,校验正确后存入数据库。
1.2软件配置
为了提高软件的使用效率,通过配置ComboBox控件的下拉列表,可大大提高软件信息输入的效率,例如委托单位的名称,一般一个委托单位会多次对个产品到电磁兼容实验室进行电磁兼容检测,那么,提前配置好委托单位名称的下拉列表,实际使用时,只需要通过点选即可,提高了数据录入的速度和准确性,大大节省输入的时间,提高输入效率。
1.3报告自动生成
通常一个产品的电磁兼容实验涉及到多个电磁兼容项目,而每个电磁兼容项目都需要原始记录和检测报告。而不少信息是需要重复输入的,例如原始记录的表头信息,完全可以通过编程的方法来自动生成。事先分别建立每个电磁兼容项目的报告模板,把这些报告模板放在一个文件夹下以方便软件调用。在自动生成某产品电磁兼容检测报告时,根据产品所检测的电磁兼容项目在报告模板文件夹中选择相应的模板,并根据已经输入的信息,根据报告模板中的书签和表格等样式定位位置,自动生成电磁兼容检测报告。这样可以避免由于人工书写检测报告时由于个人因素编制不慎出现的错误,也提高了报告编制的工作效率。通过电磁兼容检测报告自动生成功能,可以避免由于人员水平参差不齐导致的检测报告不规范,从而满足检测报告的质量要求。
1.4检测仪器设备管理
电磁兼容检测仪器设备的基本信息包括名称、型号规格、编号、测量范围、准确度、计量的有效期、安放位置、保管人、设备状态等。在出具电磁兼容检测报告时,可方便地调用,选择某仪器设备后可自动显示该仪器设备的详细信息,同时根据被测件的具体检测日期同该仪器设备的计量有效期进行比较,可方便快捷的提示哪些仪器设备的计量有效期需要更新,以免在最终的电磁兼容检测报告中出现计量有效期过期的低级错误。同时,根据仪器设备的校准周期,计算下次校准日期,制定送检计划,实验室人员定时检查仪器设备情况,填写校准记录。
1.5查询与统计
提供电磁兼容检测的基本查询和统计功能。可根据客户进行查询统计,研究系统中委托单位、被测件信息和检测项目的关系,分析不同的客户群体,方便采取不同的市场开发策略、不同折扣等级,提供更个性化服务;可根据原始的测试费用来统计电磁兼容实验室的产值情况;可根据实际收到的测试费用统计电磁兼容实验室的实际创收情况;统计检测费用的结算情况,可根据此做好年底时的催款、请款工作;根据检测人员所检测的被测件,统计不同检测人员的工作量,方便实验室的管理和考核。
今年4月起,武汉大学、华中科技大学、中南财经政法大学、武汉理工大学、华中师范大学、中国地质大学(武汉)、武汉工程大学也引进了这一检测系统。
万航回忆说,当时着实有些紧张,提交前反复修改了几次。她所在的文法与经济学院同年入学的两年制硕士生纷纷庆幸:他们上半年已完成学位论文答辩。
和她一起参加检测的十几名硕士生,除她和另外一人复制率低于1%外,其他在3%至百分之十几不等。
待检测车辆需要经过检测通道,如图1所示。将红外摄像头放置于通道中间,获得车底部热感应图像。为了获取较广的视角以及较小形变的图像,红外摄像头安放的仰角为40°。由于监控室与检测通道的距离较远,且通道数较多,因此需要通过光端机将所获取的视频传输给监控室控制台PC机。检测软件根据本文提出的检测算法对捕获到的图像进行分析,若判断车辆底部藏人则向系统发出报警信号,以便其通过控制安全杆做出相应拦截措施。视频传输示意图,如图2所示。
软件设计
软件设计采取的基本实现策略是先定位后检测。首先进行运动车辆检测,其次根据车辆的自身特征,定位可疑目标在车辆底部可能的藏匿部位。当区域定位完成后,对该区域进行感兴趣区域(RegionOfInterest,ROI)的选取。最后对ROI进行检测,判断是否藏人。检测系统流程图如图3所示。通过对车辆的扫描检测过程,查出藏匿于车底的可疑目标,实现自动检测。
1图像去噪
图像去噪是图像预处理的一个环节,也是整个图像预处理中的关键一步。在对运动车辆定位的过程中,针对车辆与环境对比度大、信息丰富,受噪声影响较小等特点,只需对图像采用常规的均值滤波进行处理。而在检测目标时,为了在去除噪声的同时,最大程度的保存目标的边缘信息,采用了基于开关控制的组合滤波。滤波器的基本思路是将图像划分为三类区域:孤立噪声点区、平坦区和边缘信息区。其主要处理原则为:孤立噪声点区的灰度与其邻域往往有较大的差异,可按照椒盐噪声进行处理,选用中值滤波器;平坦区往往包含高斯噪声,可采用加权均值滤波器加以消除;边缘信息区包含了图像的细节信息,应作为保留区域不做处理。将处理后的三个区域加以合成,即得到了去噪后的图像。
滤波器性能的关键在于分类开关的设计,借用顺序统计滤波的思路,将滤波器设计成N×N的掩模算子,N为奇数,使该掩模在整个图像上滑动,对它所覆盖的图像中的像素点xi进行排序,得到序列x(1),x(2)……x(N^2),利用排序结果设计下面的分类规则:a、b为排序后的位置偏移量,Ta和Tb为阈值。基于开关控制的组合滤波算法就包括这么几个步骤:(1)对掩模覆盖的图像像素点进行排序;(2)利用分类规则进行三个区域划分;(3)对孤立噪声点区进行中值滤波,对平坦区进行均值滤波;(4)将处理后的区域合成,得到去噪图像。
2车辆检测及目标区域的定位
2.1运动车辆检测
对于实时性要求较高的场合,运动目标的检测一般用背景差分法和帧间差分法。背景差分法是利用序列中当前帧图像与背景图像的差分来消除背景、提取运动目标区域的一种技术。背景差分法可根据实际情况设定差分阈值,所得到的结果直接反映了运动目标的大小、形状和位置,可以得到比较精确的运动目标信息,但该方法应用于红外目标检测时易受环境温度、天气等外界条件变化的影响。帧间差分法是利用视频序列中连续的两帧或多帧图像的差异来检测和提取运动目标。该方法对场景的变化不太敏感,适用于动态环境,稳定性好。不足之处是:1)无法抽取完整的运动目标,仅能得到运动目标的边界;2)运动目标提取效果依赖于帧间时间间隔的合理选择。本文针对待检测目标所处背景在短时间内为静态背景,而较长时间内背景会发生动态变化的特点,并结合两种方法的优点,设计出改进的背景差分法。算法原理图如下:其中F(K)为当前帧,B为通过隔帧帧差法求得的当前背景图像,D为差分结果图,R为二值化图像。
该算法继承了帧间差分法对场景变化不太敏感的优点,能准确更新背景差分法所需要的当前背景图,进而提取出完整的运动目标。下面是采用基本背景差分法和改进后背景差分法,在不同时候背景更新保存的背景图片。基本背景差分法在系统长时间运行之后,会出现背景更新出错,检测流程紊乱,从而产生检测系统失效现象。而采用改进的背景差分法,即使是经过长时间运行,系统也能确保背景更新的准确。
2.2目标区域定位
由于运动车辆特性已知,在其运动的过程中,可以通过对目标局部图像进行特征提取,定位可疑区域。目标的一般特征包括点、边缘、区域和轮廓。点特征对图像的分辨率、旋转、平移、光照变化等有很好的适应性,常用的点特征描述算子如SIFT、SURF等都具有很高的精度,但这些算法复杂度高,难以满足实时检测的要求,并且红外图像特征点往往较少,采用点描述算子并不能达到令人满意的效果。因此本文根据实际目标的特性,采用了对线、面特征进行描述的方法来标注运动车辆。运动的车辆受车底传动抽、燃烧室以及空间限制,目标一般躲藏于车厢后轮位置。
为了准确定位目标区域,目标区域进入视场之前的运动车辆局部特征需要重点描述。车厢底部进入摄像头视场时如图6(a)所示。为了提取车辆的直线特征,需要对车底图像进行边缘提取。常见的边缘检测算子有:Laplace、Sobel以及Canny等。由于Laplace算子常常会产生双边界,而Sobel算子又往往会形成不闭合区域,对后面直线检测都会产生不利的影响。
Canny算子克服了上述算子的缺陷,能够尽可能多的标识出图像中的实际边缘,并且能够将较小的间断点进行连接,因此能够形成较为完整的边界线。Canny算子是最优的阶梯型边缘检测算法,本文采用选用Canny算子进行图像的边缘检测。边缘检测结果如图6(b)所示,较为明显且具有特征不变性的为直线边缘。当可能藏人的区域进入摄像头视场时,车底图像的直线特征随之消失(如图6(c)),因此可以利用图像的直线特征来定位后轮检测区域。Hough变换检测直线是较为理想的直线检测方法,由PaulHough于1962年提出。经过Hough变换后,根据已知的目标直线位置、角度、长度,选取符合条件的直线。图6(b)、(c)中白色粗线为所检测出的目标直线。
受环境因素的影响,车底直线特征可能并不明显,因此单一的直线特征提取难以满足检测精度要求,如图7所示情况。实验发现车底面特征不易受到周围环境、温度的影响,因此可以进行面特征提取。选定区域为图6(b)中虚线框内,满足要求的特征为梯度小于一定阈值,即具有平滑特征,判断方法是计数虚线框内边缘点数,判断其是否小于给定阈值。采用Sobel内核计算图像差分其中src为输入图像,dst为输出图像,xorder为x方向的差分阶数,yorder为y方向的差分阶数。
由于当车底藏人时,其进入摄像头视场会阻断车底原有的平滑特征如图6(d),因此当平滑特征消失时,这时判断是否符合定位位置特征,若符合即可进行定位检测;若车底没有藏人时,车底平滑特征会持续到车尾部位才结束,这时只需判断到达车尾就可以结束检测流程。
实验表明,基于这种车箱底部中间区域光滑特征去定位检测对环境适应能力强,而基于两侧直线特征定位的方法又能够比较准确的定位到目标区域。综合上述两种思路,设计出的定位流程如下图8所示:应用中是否满足直线以及平滑特征是通过检测连续多帧图像来实现的,这样可以尽量减少偶然因素导致的定位失败。
3藏人的检测
3.1基于高亮度特征的ROI的选取
如图9为定位之后的待检测目标图。为了排除车底本身热源的干扰(如车轮)缩小检测范围,必须对原图进行ROI的选取。行进过程中的车轮一般在红外图像中会呈现高亮度特征。基于此特征,从图片左右两侧分别搜索列像素平均灰度值最高的部分(最可能为车轮内钢圈),加上一定偏移量即可求出ROI左边界位置(PositionofLeft,PL)。ROI下边界线也采用同样的方法,上边界采用默认值。当车轮不明显时采用默认感兴趣区域即可下面图9为采用固定ROI选取和基于高亮度特征的ROI提取结果对比。实验表明,这种基于具体特征的感兴趣区域提取方法,对于车轮出现的偏差具有良好的适应性,即使车辆行驶时发生较大的偏移也能做出正确的ROI选取。
3.2目标的检测
对于已知形状、外貌以及姿态等特征目标检测采用特征匹配、直方图反向投影等方法都能取得较为理想的效果。但对于躲藏姿势未知并且本身形状较为模糊的红外目标,采用匹配的方式效果并不明显。
红外目标与目标区域的周围存在一定的灰度差异,改变了原有区域梯度小、较为平滑的特征。针对这种改变采用评价函数f(x,y)对目标区域进行评估,若达到一定的阈值,即可预判车底藏人。评价函数依据不同区域可疑信息权重不一样而选定(ROI内中间部位权重较高、四周权重较低),表示如下其中T为警戒阈值,Warnflag为预警标志。具体检测步骤如下:
1)对原图的感兴趣区域进行组合滤波处理;
2)对感兴趣区域进行边缘梯度检测(图10);
3)采用评价函数对目标区域进行评分并判断是否超过给定阈值;
4)重复步骤1-3,若连续三帧超出阈值则发出报警指令,否则表示无人。对应的报警截图如图11所示
实验结果
嵌入式控制器一般是由ARM9处理器、SDRAM、FLASH、电源及复位模块、人机接口LCD触摸屏及相关电路组成。笔者选用的S3C2440处理器,是SAMSUNG公司开发的一款基于ARM9内核的微处理器。S3C2440是基于ARM920T内核,0.13UmComs标准单元和存储单元复合体。它的特点是功耗低、简单、稳定、功能强大、性价比相对高,并且还具有丰富的扩展功能接口,便于构建电路,如图3所示。嵌入式控制器作为数据信息收集处理的主节点,通过SPI总线与ZigBee模块通信,用于和无线传感器节点进行数据传输,该ZigBee模块作为ZigBee网络协调器负责整个网络的组建和给加入节点分配地址;嵌入式控制器通过UART串口与GPRS模块通信,用于接入Internet网络实现数据上传web服务器,同时可以接入GSM网络,实现手机信息收发功能。在传感器节点发来的数据存在温湿度异常时,启动报警信号。嵌入式控制器上植入linux操作系统、驱动程序和监控程序,系统启动后依次加载各种驱动程序,并运行监控程序,
1.2基于Internet的远程在线客户访问服务平台
数据管理级远程综合服务平台基于B/S(Browser/Sever),形成所谓前端Browser浏览器、中间层应用程序(Application)、后端数据库(Database)的3层3-Tier结构。主要事务逻辑在服务器端(Server)实现,极少部分事务逻辑在前端(Browser)实现,用户工作界面是通过www浏览器来实现。实现不同的用户,从各自的所在地点,以各自的接入方式(比如Internet/Intranet,LAN,WAN等)访问和操作共同的数据库。从而简化客户端电脑载荷,减轻了系统维护与升级的工作量,节省了用户的总体成本,同时它还能有效地保护数据平台嵌入式控制器软件结构图和管理访问权限,服务器数据库也很安全。
2温湿度监控系统在设施温室的应用
2.1设施蔬菜温室中温湿度监控设备的应用
所选温室为天津应用广泛的温室之一,覆盖范围广,此设备是一套集温湿度为一体的无线网络监控设备,有着监控点分布广泛、实时收发数据的特点,用户可根据自身需要设定收发间隔,可广泛应用在大棚生产、温室生产、特殊环境监测等。即使遇到恶劣天气,信号收发功能也能清楚地接收监控设备的信号,实用性和适用性都符合天津现阶段的要求,在农户应用中口碑很好,而且设备占用空间小,在温室本来就有限的面积内,有着良好的空间优势。操作简单,只要简单培训,农户就可以上手,不需要专业的知识背景,界面人性化设计,可语音报数,提供良好的服务功能。
2.2设施食用菌温室中温湿度监控设备的应用
天津市北辰区下河头食用菌种植专业合作社是以工业化厂房为标准规模的大型食用菌种植基地,主要以生产白灵菇为主,其他食用菌为辅,现占地面积3.3hm2,共建5个大型的工厂化车间。在已开发的温湿度监控器基础上可以增加光照和二氧化碳传感器,实现温室内温度、湿度、光照、二氧化碳、氧气的实时数据在远程电脑端显示,实现温室环境因子监控的阈值报警功能,实现3个温室的统一监测管理平台等实用功能的专业性管理系统。可有效地节约管理资源,提高业务产能,规避操作风险。
一、美国房地产市场的监测机构
(一)政府机构
美国从事房地产市场监测的政府机构主要是普查局(USCensusBureau)。
普查局除了每十年进行一次人口普查外,每五年还要对经济活动和州以及地方政府进行一次普查,每年普查局还要进行100多项其他调查。普查和调查的目的是为了从个人和单位收集统计信息,汇总成统计数据。普查局的局长由总统任命,同时还需得到参议院的确认。
(二)行业组织与协会
1.全美房地产协会(NationalAssociationofRealtors,NAR)。全美房地产协会在20世纪70年代初就拥有40多万名会员而成为美国最大的贸易协会。现在该协会的会员总数已超过85万,在50个州及关岛、波多黎各等托管地建有州协会(stateassociation),在全国1500多个地方建有地方协会(localassociation)。
2.全美住房建筑商协会(NationalAssociationofHomeBuilders,NAHB)。全美住房建筑商协会公布的数据主要包括住房市场指数(HousingMarketIndex,HMI)和住房机会指数(HousingOpportunityIndex,HOI)等。该协会总部位于华盛顿,首要的目标是为所有的消费者提供拥有安全、体面和负担得起的住宅的机会,改善房地产行业和建筑行业的经营环境。
3.按揭银行家协会(MortgageBankersAssociation,MBA)。按揭银行家协会公布的数据主要包括周按揭贷款调查(WeeklyApplicationsSurvey)和各种住房按揭贷款的利率等。该协会是代表雇佣50名员工以上、分布在全国每个社区的房地产金融业的国家级协会,总部位于首都华盛顿。按揭银行家协会的最高决策层是其董事会,由21人组成,负责管理协会的一般事务。
二、各监测机构公布的房地产市场数据
1.建筑支出。建筑支出统计的是在特定时段安装或建设的建筑的价值,包括原材料成本、劳动力成本、建筑设备租金、建筑商利润、建筑设计和工程成本、项目管理成本、建筑期间的利息与税金支出。
建筑支出报告中的数据分为总建筑支出、私人建筑支出与公共建筑支出三部分,其中总建筑支出统计的是在特定时段内某工程所有项目的价值总和,而不管个体项目何时开始或工程款何时支付给建筑商。
2.新房开工。普查局每月公布新住宅建筑报告,报告的内容主要包括新房开工许可数量、已经许可但尚未开工的数量、新房开工数量、在建数量和完工数量。新住宅建筑报告不包括旅馆、大学宿舍等集体居住建筑以及移动住宅。
当住宅的奠基工作开始时即计入当月的新房开工统计,该项统计始于1992年9月,包括在原宅基基础上的完全重建项目。美国并非各地都需新房开工许可,但新房开工数量包括那些不需要许可的住宅项目。
3.住房空置率和自有住房比率。住房空置率和自有住房比率被公共和私人部门广泛运用,从而判断是否需要增加新的房地产项目,此外,出租用房空置率还是用于预测未来经济走势的先行指数的组成部分。
住房空置率和自有住房比率季度报告于每季度结束后下月的最后一周公布,年度数据在四季度报告发表后公布。
4.签约未交付房屋销售。全美房地产协会从大房地产经纪商处获得签约未交付房屋销售数据,样本数量达到旧房销售统计样本的一半,相当于所有交易数量的20%。目前有一些住房数据被视为房地产市场的先行指标,如新房开工、住房按揭贷款申请和新房销售等。但这些指标与旧房销售的统计关系并不令人满意。例如,新房销售占所有房地产交易的15%左右,由于其基于上月签订的购房合约,因此被视为先行指数,但新房销售样本规模较小,数据的波动性大,要多个月的数据才能看出趋势。
因签约未交付房屋销售反映的是实际旧房销售,因此PHSI是未来房屋销售活动的准确和可靠的指标,经全美房地产协会统计,超过80%的签约未交付房屋销售在两个月内结算交付,剩下的20%中决大多数在3—4个月内结算交付。
以2001年的签约未交付房屋销售平均数量计算的指数值为100,全美房地产协会在每月的第一周公布两月前的PHSI,除全国的指数外,还包括四个地区的指数。
5.新房销售。新房销售报告每月由普查局公布,目的是提供私有、单家庭住宅销售的统计数据,报告的内容包括:新单家庭住宅的销售数量、新单家庭住宅待售的数量和已销售新房的中位价格与平均价格。
一旦签订销售合同或接受定金,该新房就被认为已销售,而不管房屋是处于尚未动工、在建或已完工阶段。新房销售调查并不跟踪至房产最终交付,即使最终交易未完结,该房屋也被认为已销售。
新房销售调查中的价格是买卖双方在第一次合同签署时或交付定金时约定的价格,不包括订单变化或其他因素引发的价格变化。新房销售的历史数据起始于1963年,除公布全国的总量外,还公布东北部、中西部、南部和西部的地区数据。
普查局的当地统计人员访问样本建筑许可办公室,抽取建筑许可样本,并跟踪这些建筑是否开工、完工和出售。
6.旧房销售。旧房销售占美国房地产销售总量的85%,因此,全美房地产协会公布的旧房销售数据是衡量住宅市场发展趋势的主要依据。每月的25日左右,全美房地产协会公布全国和四个地区的单家庭独立住宅(SingleFamilyHouse)旧房的销售数量和价格数据。NAR网站上公布的旧房销售报告包括最近12个月的月度数据以及最近三年的年度数据,其他历史数据需要付费购买。
地方协会每月向NAR的研究部报送旧房销售数据,调查占旧房销售总量的30%~40%,并且只有已交付的旧房才被纳入统计范围。全美房地产协会每季公布的各州旧房销售报告是基于所有700多家地方协会的调查数据,而每月公布的旧房销售指标是基于160家地方协会的样本调查数据。
旧房销售数量数据要经过季节调整并折算成年度数字以利于月度和季度之间作出比较。特定月份的年率数据代表如果该月的销售速度能够连续维持12个月的总销售数量。
7.全美住房建筑商协会调查。全美住房建筑商协会(NAHB)通过调查公布的指数主要包括:NAHB-WellFargo房地产市场指数(NAHB-WellFargoHousingMarketIndex,HMI)、NAHB-WellFargo住房机会指数(NAHB-WellFargoHousingOpportunityIndex,HOI)和房屋改建市场指数(RemodelingMarketIndex,RMI)。
HMI基于全美住房建筑商协会每月对其会员的调查,特别是单家庭住宅部门,反映房地产业的脉搏,调查让会员对总体经济状况和房地产市场状况进行评级。HMI是对不同扩散指数(diffusionindices)的加权平均,包括当前新房销售、未来6个月的新房销售和可能购新房的交易。前两项的评级分为好、一般和差三等,后一项的评级分为非常高、高、平均、低和很低五等。当前新房销售的权重为0.5920,未来6个月新房销售的权重为0.1358,可能购新房的交易的权重为0.2722。中国-HOI的定义为当地中等收入的家庭按照标准按揭贷款条件可以买得起的住房销售比重。因此构成HOI的两大因素为收入和住房成本。收入方面,NAHB住房与城市发展部公布的都市地区家庭中等年收入估计,NAHB假设家庭能承担将28%的总收入用于供房,这是按揭行业的传统假设,该估计值再除以12可以得到每月的数据。住房成本方面,NAHB每月从第一美国不动产经纪公司(FirstAmericanRealEstateSolutions)处获得交易记录数据,包括各州、县的房产销售时间和价格等。房主每月需偿还的本金和利息按照30年期固定利率按揭贷款和10%的首期假设来计算。在本金和利息之外,住房成本还包括当期的物业税和物业保险。HOI即是都市地区每月可供房的收入超过月住房成本的记录比重。中国
2001年住宅改建市场规模达到了1530亿美元,相当于GDP的2%和住房总支出的2/5。未来十年,住宅改建市场的年增长速度至少将达到5%,在此期间该市场的规模甚至将超过新房市场的规模。NAHB的房屋改建市场指数基于对房屋改建商的调查,并正成为该行业的衡量标准。NAHB通过向15000个房屋改建商发放调查问卷,最终选中约2000家改建商作为样本。NAHB的调查产生两个指数来描绘住宅改建市场状况,一是现期市场条件指数(CurrentMarketConditionsIndex),二是未来预期指数(FutureExpectationsIndex)。
8.周按揭贷款申请调查。周按揭贷款申请调查由按揭银行家协会进行并向订阅者公布详细的调查数据,该调查共包含15项指标,覆盖固定利率和可调整利率的购房及再融资常规和政府贷款申请情况。报告的内容还包括与前一周、前一月和前一年相比按揭贷款的数量和金额的百分比变化,此外还有平均贷款规模、平均合约利率水平、再融资和浮息按揭贷款数量与金额占按揭贷款总量的比重等数据。报告公布的指数分别为经过季节调整和未经季节调整的市场指数(MarketIndex)、购买指数(PurchaseIndex)、再融资指数(RefinanceIndex)、固定利率按揭/可调整利率按揭指数(FRM/ARMIndex)、常规指数(ConventionalIndex)和政府指数(GovernmentIndex)。
周按揭贷款申请调查报告每周三公布,反映此前一周的按揭贷款申请情况,历史数据可以一直追溯到1990年。
9.按揭贷款利率。按揭银行家协会为让其会员和业内人士了解房地产金融的市场环境定期公布和更新一系列的按揭贷款市场利率数据,主要包括:1990年至今的30年期固定利率按揭贷款月平均利率、1990年至今的15年期固定利率按揭贷款月平均利率,房迪美公司通过主要按揭贷款市场调查(FreddieMacWeeklyPrimaryMortgageMarketSurvey,PMMS)后公布的数据,分别为1971年至今的30年期固定利率按揭贷款月平均利率、1991年至今的15年期固定利率按揭贷款月平均利率、1984年至今的1年期可调整利率按揭贷款月平均利率、1999年至今的每周常规按揭贷款利率和1984年至今的月度可调整利率按揭贷款指数(ARMIndexes)。
房迪美公司的主要按揭贷款市场调查始于1971年4月,通过对全国各按揭贷款发放机构的调查来计算30年期固定利率按揭贷款的平均利率。
参考文献: