时间:2023-03-24 15:06:26
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇数字信号论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
1.2解码电路作为HCTL_2020的改良版,HCTL_2021在稳定性和抗干扰方面都有着突出的表现。交流伺服电机的光电编码器接入解码芯片HCTL_2021。解码芯片内部具有计数功能,当HCTL_2021捕捉到光电编码器输出正电平时计数值加1。解码以后的数据经8位数据线,依次将高8位和低8位输出至DSP。同时为了节省引脚,本系统设计时将4块HCTL_2021并联后接入DSP的GPIO端口。DSP通过软件设置分时读取解码芯片的数据。
2全自动信封包装机控制系统软件设计
2.1PID控制算法简介按偏差的比例、微分、积分进行控制的控制器叫PID控制器。数字PID控制器的原理框图如图3所示。其中,r(k)为系统给定值,e(k)为误差,u(k)为控制量,c(k)实际输出。PID控制器解决了自动控制理论所要解决的最基本问题,即系统的稳定性、快速性和准确性。调节PID的参数,可以实现在系统稳定的前提下,兼顾系统的带负载能力和抗干扰能力。Kp为比例系数;ki=(kp×T)/Ti为积分系数;kd=(kp×Td)/T为微分系数;Ti为积分时间常数,Td为微分时间常数,T为积分周期。当进行PID调节时,系统在运行初期由于偏差过大,会导致调节量u(k)过大,从而导致超调过大给系统带来很大的冲击。故需要对(1)式中的e(k)做一定的限幅处理。另外,当系统进入稳定状态以后,必然会产生一定的稳态误差,该误差在一个很小的范围内波动,如果控制器反复对其进行调节势必造成系统的不稳定。所以,系统必须设定一个输出允许带e0,即当采集到的偏差|e(k)|<e0时,不改变控制量。PID控制程序流程图如图4所示。
2.2PID算法在系统中的实现由于本系统的同步控制由一主多从的模式来实现,所以,2、3、4号伺服电机的转速和位置信号必须跟随1号伺服电机的转速和位置信号的变化。DSP中事件管理器模块的定时器产生频率可控的PWM波来控制伺服电机,PWM波的频率控制电机的转速,PWM波的个数控制电机的位置。设多伺服电机轴编码器输出脉冲数偏差值为e(k),在k时刻电机的实际反馈转速分别为u1(k)、u2(k)、u3(k)、u4(k)。各伺服电机轴同步速度偏差值。根据不同的生产工艺要求可以设定允许偏差值的最大变化范围max,当e(k)≤eM时,系统不需要进行调节控制,当e(k)>eM时,需要进行调节控制。本系统以TMS320F2812为控制器实现PID控制。在软件中设置定时中断,在中断程序中,计算各从伺服电机的转速和位置并与1号伺服电机的转速与位置信号进行比较,求出偏差值e(k)。经PID调节,对于偏差做出快速反应和补偿。本系统的软件处理采用增量式调节。(3)式中,u(k)为1号伺服电机控制量增量,其中i=2,3,4;u1(k)、ui(k)、ui(k-1)、ui(k-2)分别是k、k-1、k-2时刻1号伺服电机及i号电机轴的编码器输出脉冲采样值;Kp是比例系数;Ki是积分系数;Ki=KpT∑i;Kd是微分系数,Kd=KpT∑d;T是采样周期;∑i是积分时间常数;∑d是微分时间常数。
3系统设计中遇到的问题及解决方法
1同步启动为了保证4台伺服电机的位置相同,本系统设计了同步启动程序。由于伺服电机每次转到其固有零点时会发出一条高电平信号Z,将该信号接入DSP的捕获引脚。当DSP捕获引脚捕捉到高电平跳变时,立即PWM波的输出,使伺服电机停止在固有零点处。当4台伺服电机都停止后,延迟一定时间,再同时启动4台电机,这样就实现了同步启动。2数据的分时读取每台伺服电机反馈的QEP编码信号通过HCTL_2021解码后都会产生8路数据输出信号,4台伺服电机将会产生高达32路的数据输出信号,如果直接连到DSP的I/O,将会极大地占用DSP的I/O口,不利于DSP的充分利用。此时,DSP分时读取4块解码器HCTL_2021的数据输出信号成为有效的解决办法。实验中,伺服电机在运转过程中每转一圈将输出2500个QEP编码脉冲,将每一路编码脉冲经过光耦隔离后送入到HCTL_2021的信号输入端进行解码。本系统在软件上采用中断方式分时读取GPIO上4块芯片的解码结果。并将1号伺服电机的信息保存到变量date1中。2、3、4号伺服电机的信息分别存放在变量date2、date3、date4中。通过分时读取,作者解决了DSP引脚不足的问题,最大限度的利用了DSP的引脚资源。特别需要注意的是:由于数字电路的电平转换需要一定的时间,所以在改变控制信号的电平后需要延迟一定时间,等其真正稳定。分时读取程序的流程图如图6所示。
在实际设计时应根据具体的应用选择合适的DSP。不同的DSP有不同的特点,适用于不同的应用,在选择时可以遵循以下要点。
算法格式
DSP的算法有多种。绝大多数的DSP处理器使用定点算法,数字表示为整数或-1.0到+1.0之间的小数形式。有些处理器采用浮点算法,数据表示成尾数加指数的形式:尾数×2指数。
浮点算法是一种较复杂的常规算法,利用浮点数据可以实现大的数据动态范围(这个动态范围可以用最大和最小数的比值来表示)。浮点DSP在应用中,设计工程师不用关心动态范围和精度一类的问题。浮点DSP比定点DSP更容易编程,但是成本和功耗高。
由于成本和功耗的原因,一般批量产品选用定点DSP。编程和算法设计人员通过分析或仿真来确定所需要的动态范围和精度。如果要求易于开发,而且动态范围很宽、精度很高,可以考虑采用浮点DSP。
也可以在采用定点DSP的条件下由软件实现浮点计算,但是这样的软件程序会占用大量处理器时间,因而很少使用。有效的办法是“块浮点”,利用该方法将具有相同指数,而尾数不同的一组数据作为数据块进行处理。“块浮点”处理通常用软件来实现。
数据宽度
所有浮点DSP的字宽为32位,而定点DSP的字宽一般为16位,也有24位和20位的DSP,如摩托罗拉的DSP563XX系列和Zoran公司的ZR3800X系列。由于字宽与DSP的外部尺寸、管脚数量以及需要的存储器的大小等有很大的关系,所以字宽的长短直接影响到器件的成本。字宽越宽则尺寸越大,管脚越多,存储器要求也越大,成本相应地增大。在满足设计要求的条件下,要尽量选用小字宽的DSP以减小成本。
在关于定点和浮点的选择时,可以权衡字宽和开发复杂度之间的关系。例如,通过将指令组合连用,一个16位字宽的DSP器件也可以实现32位字宽双精度算法(当然双精度算法比单精度算法慢得多)。如果单精度能满足绝大多数的计算要求,而仅少量代码需要双精度,这种方法也可行,但如果大多数的计算要求精度很高,则需要选用较大字宽的处理器。
请注意,绝大多数DSP器件的指令字和数据字的宽度一样,也有一些不一样,如ADI(模拟器件公司)的ADSP-21XX系列的数据字为16位而指令字为24位。
DSP的速度
处理器是否符合设计要求,关键在于是否满足速度要求。测试处理器的速度有很多方法,最基本的是测量处理器的指令周期,即处理器执行最快指令所需要的时间。指令周期的倒数除以一百万,再乘以每个周期执行的指令数,结果即为处理器的最高速率,单位为每秒百万条指令MIPS。
但是指令执行时间并不能表明处理器的真正性能,不同的处理器在单个指令完成的任务量不一样,单纯地比较指令执行时间并不能公正地区别性能的差异。现在一些新的DSP采用超长指令字(VLIW)架构,在这种架构中,单个周期时间内可以实现多条指令,而每个指令所实现的任务比传统DSP少,因此相对VLIW和通用DSP器件而言,比较MIPS的大小时会产生误导作用。
即使在传统DSP之间比较MIPS大小也具有一定的片面性。例如,某些处理器允许在单个指令中同时对几位一起进行移位,而有些DSP的一个指令只能对单个数据位移位;有些DSP可以进行与正在执行的ALU指令无关的数据的并行处理(在执行指令的同时加载操作数),而另外有些DSP只能支持与正在执行的ALU指令有关的数据并行处理;有些新的DSP允许在单个指令内定义两个MAC。因此仅仅进行MIPS比较并不能准确得出处理器的性能。
解决上述问题的方法之一是采用一个基本的操作(而不是指令)作为标准来比较处理器的性能。常用到的是MAC操作,但是MAC操作时间不能提供比较DSP性能差异的足够信息,在绝大多数DSP中,MAC操作仅在单个指令周期内实现,其MAC时间等于指令周期时间,如上所述,某些DSP在单个MAC周期内处理的任务比其它DSP多。MAC时间并不能反映诸如循环操作等的性能,而这种操作在所有的应用中都会用到。
最通用的办法是定义一套标准例程,比较在不同DSP上的执行速度。这种例程可能是一个算法的“核心”功能,如FIR或IIR滤波器等,也可以是整个或部分应用程序(如语音编码器)。图1为使用BDTI公司的工具测试的几款DSP器件性能。
在比较DSP处理器的速度时要注意其所标榜的MOPS(百万次操作每秒)和MFLOPS(百万次浮点操作每秒)参数,因为不同的厂商对“操作”的理解不一样,指标的意义也不一样。例如,某些处理器能同时进行浮点乘法操作和浮点加法操作,因而标榜其产品的MFLOPS为MIPS的两倍。
其次,在比较处理器时钟速率时,DSP的输入时钟可能与其指令速率一样,也可能是指令速率的两倍到四倍,不同的处理器可能不一样。另外,许多DSP具有时钟倍频器或锁相环,可以使用外部低频时钟产生片上所需的高频时钟信号。
存储器管理
DSP的性能受其对存储器子系统的管理能力的影响。如前所述,MAC和其它一些信号处理功能是DSP器件信号处理的基本能力,快速MAC执行能力要求在每个指令周期从存储器读取一个指令字和两个数据字。有多种方法实现这种读取,包括多接口存储器(允许在每个指令周期内对存储器多次访问)、分离指令和数据存储器(“哈佛”结构及其派生类)以及指令缓存(允许从缓存读取指令而不是存储器,从而将存储器空闲出来用作数据读取)。图2和图3显示了哈佛存储器结构与很多微控制器采用的“冯·诺曼”结构的差别。
另外要注意所支持的存储器空间的大小。许多定点DSP的主要目标市场是嵌入式应用系统,在这种应用中存储器一般较小,所以这种DSP器件具有小到中等片上存储器(4K到64K字左右),备有窄的外部数据总线。另外,绝大多数定点DSP的地址总线小于或等于16位,因而可外接的存储器空间受到限制。一些浮点DSP的片上存储器很小,甚至没有,但外部数据总线宽。例如TI公司的TMS320C30只有6K片上存储器,外部总线为24位,13位外部地址总线。而ADI的ADSP2-21060具有4Mb的片上存储器,可以多种方式划分为程序存储器和数据存储器。
选择DSP时,需要根据具体应用对存储空间大小以及对外部总线的要求来选择。
开发的简便性
对不同的应用来说,对开发简便性的要求不一样。对于研究和样机的开发,一般要求系统工具能便于开发。而如果公司在开发下一代手机产品,成本是最重要的因素,只要能降低最终产品的成本,一般他们愿意承受很烦琐的开发,采用复杂的开发工具(当然如果大大延迟了产品上市的时间则是另一回事)。
因此选择DSP时需要考虑的因素有软件开发工具(包括汇编、链接、仿真、调试、编译、代码库以及实时操作系统等部分)、硬件工具(开发板和仿真机)和高级工具(例如基于框图的代码生成环境)。利用这些工具的设计过程如图4所示。
选择DSP器件时常有如何实现编程的问题。一般设计工程师选择汇编语言或高级语言(如C或Ada),或两者相结合的办法。现在大部分的DSP程序采用汇编语言,由于编译器产生的汇编代码一般未经最优化,需要手动进行程序优化,降低程序代码大小和使流程更合理,进一步加快程序的执行速度。这样的工作对于消费类电子产品很有意义,因为通过代码的优化能弥补DSP性能的不足。
使用高级语言编译器的设计工程师会发现,浮点DSP编译器的执行效果比定点DSP好,这有几个原因:首先,多数的高级语言本身并不支持小数算法;其次,浮点处理器一般比定点处理器具有更规则的指令,指令限制少,更适合编译器处理;第三,由于浮点处理器支持更大的存储器,能提供足够的空间。编译器产生的代码一般比手动生成的代码更大。
不管是用高级语言还是汇编语言实现编程,都必须注意调试和硬件仿真工具的使用,因为很大一部分的开发时间会花在这里。几乎所有的生产商都提供指令集仿真器,在硬件完成之前,采用指令集仿真器对软件调试很有帮助。如果所用的是高级语言,对高级语言调试器功能进行评估很重要,包括能否与模拟机和/或硬件仿真器一起运行等性能。
大多数DSP销售商提供硬件仿真工具,现在许多处理器具有片上调试/仿真功能,通过采用IEEE1149.1JTAG标准的串行接口访问。该串行接口允许基于扫描的仿真,即程序员通过该接口加载断点,然后通过扫描处理器内部寄存器来查看处理器到达断点后寄存器的内容并进行修改。
很多的生产商都可以提供现成的DSP开发系统板。在硬件没有开发完成之前可用开发板实现软件实时运行调试,这样可以提高最终产品的可制造性。对于一些小批量系统甚至可以用开发板作为最终产品电路板。
支持多处理器
在某些数据计算量很大的应用中,经常要求使用多个DSP处理器。在这种情况下,多处理器互连和互连性能(关于相互间通信流量、开销和时间延迟)成为重要的考虑因素。如ADI的ADSP-2106X系列提供了简化多处理器系统设计的专用硬件。
电源管理和功耗
DSP器件越来越多地应用在便携式产品中,在这些应用中功耗是一个重要的考虑因素,因而DSP生产商尽量在产品内部加入电源管理并降低工作电压以减小系统的功耗。在某些DSP器件中的电源管理功能包括:a.降低工作电压:许多生产商提供低电压DSP版本(3.3V,2.5V,或1.8V),这种处理器在相同的时钟下功耗远远低于5V供电的同类产品。
b.“休眠”或“空闲”模式:绝大多数处理器具有关断处理器部分时钟的功能,降低功耗。在某些情况下,非屏蔽的中断信号可以将处理器从“休眠”模式下恢复,而在另外一些情况下,只有设定的几个外部中断才能唤醒处理器。有些处理器可以提供不同省电功能和时延的多个“休眠”模式。
c.可编程时钟分频器:某些DSP允许在软件控制下改变处理器时钟,以便在某个特定任务时使用最低时钟频率来降低功耗。
d.控制:一些DSP器件允许程序停止系统未用到的电路的工作。
不管电源管理特性怎么样,设计工程师要获得优秀的省电设计很困难,因为DSP的功耗随所执行的指令不同而不同。多数生产商所提供的功耗指标为典型值或最大值,而TI公司给出的指标是一个例外,该公司的应用实例中详细地说明了在执行不同指令和不同配置下的功耗。
成本因素
在满足设计要求条件下要尽量使用低成本DSP,即使这种DSP编程难度很大而且灵活性差。在处理器系列中,越便宜的处理器功能越少,片上存储器也越小,性能也比价格高的处理器差。
封装不同的DSP器件价格也存在差别。例如,PQFP和TQFP封装比PGA封装便宜得多。
TheDevelopmentandApplicationsofDigitalSignalProcessing(DSP)-chip
Abstract:Duetothelimitationofoperationspeed,realtimeperformanceofdigitalsignalprocessing(DSP)systemisfarfromthatofanalogsignalprocessingsystemindecadesago.Sinceearly80’s,DSPchipshavebeengreatlyimprovedinthefollowingaspects:operationspeed,computationprecision,fabricationtechnics,cost,chipvolume,operationalpowersupplyvoltage,weightandpowerconsumption.Furthermore,developmenttoolsandmethodshavebeendevelopedgreatly.ModernDSPchipscanbeoperatedveryfast,whichmaketheimplementationofmanyDSPbasedsignalprocessingsystempossible.NowDSPchipshavebeenwidelyappliedsuccessfullyincommunication,automaticcontrol,aerospaceandmedicine.DSPbasedtechnologyhasverypromisingfutureinmannedspaceflightarea.
Keywords:digitalsignalprocessing(DSP);chip;development;application
数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好:当处理方法和参数发生变化时,处理系统只需通过改变软件设计以适应相应的变化。2.精度高:信号处理系统可以通过A/D变换的位数、处理器的字长和适当的算法满足精度要求。3.可靠性好:处理系统受环境温度、湿度,噪声及电磁场的干扰所造成的影响较小。4.可大规模集成:随着半导体集成电路技术的发展,数字电路的集成度可以作得很高,具有体积小、功耗小、产品一致性好等优点。
然而,数字信号处理系统由于受到运算速度的限制,其实时性在相当长的时间内远不如模拟信号处理系统,使得数字信号处理系统的应用受到了极大的限制和制约。自70年代末80年代初DSP(数字信号处理)芯片诞生以来,这种情况得到了极大的改善。DSP芯片,也称数字信号处理器,是一种特别适合进行数字信号处理运算的微处理器。DSP芯片的出现和发展,促进数字信号处理技术的提高,许多新系统、新算法应运而生,其应用领域不断拓展。目前,DSP芯片已广泛应用于通信、自动控制、航天航空、军事、医疗等领域。
DSP芯片的发展
70年代末80年代初,AMI公司的S2811芯片,Intel公司的2902芯片的诞生标志着DSP芯片的开端。随着半导体集成电路的飞速发展,高速实时数字信号处理技术的要求和数字信号处理应用领域的不断延伸,在80年代初至今的十几年中,DSP芯片取得了划时代的发展。从运算速度看,MAC(乘法并累加)时间已从80年代的400ns降低到40ns以下,数据处理能力提高了几十倍。MIPS(每秒执行百万条指令)从80年代初的5MIPS增加到现在的40MIPS以上。DSP芯片内部关键部件乘法器从80年代初的占模片区的40%左右下降到小于5%,片内RAM增加了一个数量级以上。从制造工艺看,80年代初采用4μm的NMOS工艺而现在则采用亚微米CMOS工艺,DSP芯片的引脚数目从80年代初最多64个增加到现在的200个以上,引脚数量的增多使得芯片应用的灵活性增加,使外部存储器的扩展和各个处理器间的通信更为方便。和早期的DSP芯片相比,现在的DSP芯片有浮点和定点两种数据格式,浮点DSP芯片能进行浮点运算,使运算精度极大提高。DSP芯片的成本、体积、工作电压、重量和功耗较早期的DSP芯片有了很大程度的下降。在DSP开发系统方面,软件和硬件开发工具不断完善。目前某些芯片具有相应的集成开发环境,它支持断点的设置和程序存储器、数据存储器和DMA的访问及程序的单部运行和跟踪等,并可以采用高级语言编程,有些厂家和一些软件开发商为DSP应用软件的开发准备了通用的函数库及各种算法子程序和各种接口程序,这使得应用软件开发更为方便,开发时间大大缩短,因而提高了产品开发的效率。
目前各厂商生产的DSP芯片有:TI公司的TMS320系列、AD公司的ADSP系列、AT&T公司的DSPX系列、Motolora公司的MC系列、Zoran公司的ZR系列、Inmos公司的IMSA系列、NEC公司的PD系列等。
通用DSP芯片的特点1.在一个周期内可完成一次乘法和一次累加。
2.采用哈佛结构,程序和数据空间分开,可以同时访问指令和数据。
3.片内有快速RAM,通常可以通过独立的数据总线在两块中同时访问。
4.具有低开销或无开销循环及跳转硬件支持。
5.快速中断处理和硬件I/O支持。
6.具有在单周期内操作的多个硬件地址产生器。
7.可以并行执行多个操作。
8.支持流水线操作,取指、译码和执行等操作可以重叠进行。
DSP芯片的应用
随着DSP芯片性能的不断改善,用DSP芯片构造数字信号处理系统作信号的实时处理已成为当今和未来数字信号处理技术发展的一个热点。随着各个DSP芯片生产厂家研制的投入,DSP芯片的生产技术不断更新,产量增大,成本和售价大幅度下降,这使得DSP芯片应用的范围不断扩大,现在DSP芯片的应用遍及电子学及与其相关的各个领域。
典型应用(1)通用信号处理:卷积,相关,FFT,Hilbert变换,自适应滤波,谱分析,波形生成等。(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。(6)仪器仪表:函数发生,数据采集,航空风洞测试等。(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。
在医学电子学方面的应用如同其它数字图像处理一样,DSP芯片已在医学图像处理,医学图像重构等领域,如CT、核磁成象技术等方面得到了广泛的应用,已取得了令人满意的效果。在助听,电子耳涡等方面也取得了相当的进展(文献[1,2])。国内、外也有关于脑电、心电、心音和肌电信号处理方面基于DSP芯片系统的报道(文献[4~7]),我们对1996年以前国外生物医学工程的部分核心期刊,如IEEETransactionsonBiomedicalEngineering,ComputersandBiomedicalResearch等核心期刊进行检索,有关基于DSP芯片处理系统的报道很少。对国内生物医学工程的核心期刊,如《中国医疗器械杂志》、《中国生物医学工程杂志》、《生物医学工程学杂志》和《中国生物医学工程学报》等刊物进行检索,未见有关基于DSP芯片系统方面的报道。对我所的光盘数据库进行检索,未见有关在航天医学方面应用的报告。
我们认为在生理信号处理领域基于DSP芯片的技术可以解决我们在实际工作中遇到的某些问题,如当生理信号数据量很大(如脑电,肌电等)且处理算法相对复杂时,现有的微机在实时采样、处理、存储和显示方面往往不能满足实际应用要求,而基于DSP芯片的高速处理单元和微机构成主从系统可以较好地解决这类问题。
载人航天领域中信号传输带宽的限制需要对生理数据进行实时压缩;大型实验中对庞大的数据进行实时处理依赖于数字处理系统的构成;载人航天中对数据处理精度,可靠性要求以及功耗、工作电压、体积、重量等方面的限制需要我们在构造处理系统中选择性能优良的芯片。我们认为将DSP技术应用于载人航天领域具有十分重要的意义。
结束语
以DSP芯片为核心构造的数字信号处理系统,可集数据采集、传输、存储和高速实时处理为一体,能充分体现数字信号处理系统的优越性,能很好地满足载人航天领域设备测量精度、可靠性、信道带宽、功耗、工作电压和重量等方面的要求。目前,DSP芯片正在向高性能、高集成化及低成本的方向发展,各种各类通用及专用的新型DSP芯片在不断推出,应用技术和开发手段在不断完善。这样为实时数字信号处理的应用——尤其是在载人航天领域中的应用提供了更为广阔的空间。我们有理由相信,DSP芯片进一步的发展和应用将会对载人航天信号处理领域产生深远的影响。
[参考文献]
[1]李小华,李雪琳,徐俊荣.基于DSP的数字助听器的研究.95年生物电子学[C],医学传感器等联合学术会议文集,北京,1995:438~439
[2]候刚,徐俊荣.用于植入式多道电子耳涡的一种数字实时语音特征分析系统的研究[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:471~476
[3]邱澄宇,何宏彬.用于心电信号数据压缩的数字信号处理器[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:463~466
在当前计算机信息技术不断发展的形势下,数字信号作为其中的一部分,与之相对应的数字信号课程也同样占据着非常重要的地位。数字信号是以算法作为主体核心的课程,其自身的理论性非常强,在数字信号的学习过程中,由于书本中的知识点或者是一些概念大多都以一种比较抽象的方式呈现,再加上教学方法和教学手段单一,具有一定的局限性。在这种形势下,数字信号课程的教学质量和水平一直停滞不前,并没有取得良好的成效。在这种情况下,将LabVIEW引入课程辅助教学中,不仅能够让学生以一种简单化的方式来进行知识的学习,而且能够取得良好的教学效果。
一、LabVIEW与数字信号处理
LabVIEW的程序设计与传统文化程序设计相比,具有明显的差异性。LabVIEW在实际应用过程中,主要是利用图形化语言,通过使用功能节点,与图形化自身的程序流程进行有效结合,这样不仅能够利用流程控制结构来对程序功能进行有效的控制,而且能够促使程序在设计过程中,其自身的形象更加直观化。这样一来,能够从根本上简化内存分配、程序调试以及多线程序等程序设计细节,这样能够促使学生在学习过程中,将精力放到问题的实际解决方面,这样才能够保证最终的教学效果。在程序结构的设计和使用过程中,LabVIEW将一个完整的程序分为前面板和程序框图,在实际操作过程中,将前面板拖入图形控件中,就能够以非常简单便捷的方式,实现程序界面的美观性,将其自身的影响和作用充分发挥出来[1]。对于其中的显示控件,可以根据实际情况,对其进行相应的设置,从而实现丰富的曲线、图形以及图象的整体显示。在实际应用过程中,可以发现LabVIEW在GUI以及程序设计过程中,其自身的形象化与Matlab软件之间有非常大的优势。在数字信号处理教学中,LabVIEW能够从根本上实现测量以及自动化的应用数据分析,其自身有非常强大的数字信号处理函数节点,在实际应用过程中,能够发挥非常有效的作用[2]。在实际操作过程中,其自身按照信号生成、运算、滤波器以及其他功能的提供,有利于对这些内容进行切实有效的查找和分析,这些功能在数字信号处理教学过程中,不仅有利于使用,而且能够取得良好的教学效果。
二、LabVIEW与虚拟仪器
虚拟仪器是一种在计算机基础上的自动化测试仪器系统,在实际应用过程中,能够发挥非常良好的作用。虚拟仪器在实际应用过程中,主要是通过自身的软件,将计算机的一些硬件资源与仪器硬件进行有效结合,这样不仅能够从根本上提升计算机自身的处理能力,而且能够促使其自身与仪器硬件的测量以及控制进行有效结合,从而发挥出更多的功能性作用[3]。这样不仅能够从根本上缩小仪器硬件的成本和体积,而且能够通过软件的应用,实现对数据的显示、储存以及处理,以保证最终的处理结果。LabVIEW是美国一家仪器公司推出的虚拟仪器开发平台软件,主要是利用图形化的编程语言,打破了传统软件的局限性。传统软件在应用过程中,基本上都需要相对应地进行程序代码的编写和应用,但是LabVIEW则主要是利用流程图或者是程序框图来实现。这样不仅能够从根本上让编程者感受到强大的图形化编程语言方式,而且具有一定的灵活性。由于自身在实际应用过程中,被广泛应用到各个行业以及领域中,已经逐渐被视为一个标准的数据采集和仪器控制软件。利用LabVIEW软件有利于建立属于学生自身的虚拟仪器,其自身的图形化界面能够促使学生在接触编程的过程中感受到乐趣[4]。
三、LabVIEW在数字信号处理教学中的应用优势
在实际教学过程中,LabVIEW图形化的语言直觉特性能够让学生保持高度集中的注意力,将注意力全部放在被教授的理论知识上,而不是在文本工程软件应用开发的基础上,将关注点全放在编程的一些细节方面。将LabVIEW应用到数字信号处理教学中,不仅能够促使学生在短时间内对基础理论知识进行深入的了解和学习,而且能够让学生适当地开发出一些复杂的应用程序,对学生的理论知识学习以及动手实践操作能力的提升来说,都有非常重要的作用[5]。在LabVIEW的应用过程中,教师要注重将课本上一些理论性比较强的知识转换成为直观性比较强的知识,这样不仅有利于学生的理解和认识,而且能够加深学生对理论知识的印象。促使学生在保证积极性和学习主动性越来越高的同时,能够取得良好的学习效果,促使数字信号处理教学的整体质量和水平能够有所提升。
四、LabVIEW在数字信号处理教学中的实际应用分析
(一)滤波器的设计与应用
数字滤波器的设计是数字信号处理教学实施过程中的重点教学部分,同时也是教学过程中的难点部分,对学生的学习来说,很容易形成一定的阻碍影响。在对滤波器的设计过程中,由于其自身的整个过程运算量比较大,并且要根据实际情况的不同,对滤波器进行设计,从而达到不同的滤波效果,在实际应用过程中,才能够将其自身的影响和作用充分发挥出来,达到最优的设计水平[6]。在这种形势下,如果利用LabVIEW软件来进行计算机的辅设计,不仅能够从根本上减少计算量,而且能够实现快速有效的滤波器数字设计,帮助学生将一些抽象的知识以一种直观简单的方式呈现出来,在保证学生学习兴趣不断提升的同时,从根本上保证数字信号处理教学的整体质量和水平有所提升。在LabVIEW实际应用过程中,结合滤波器的形成原理,设计的FIR滤波器前面板以及后程序框图,前编面板主要利用在显示方面,对各种控件进行切实有效的操作,对相关的参数进行设置,对滤波器的类型以及窗函数进行选择,在保证滤波器自身的价值充分发挥出来时,能够从根本上起到良好的教学辅助作用。在实际的设计过程中,可以利用控制前面板上开关或者是按钮,通过键盘以及鼠标的操作,将其自身与滤波器的幅频、相频特性进行有效结合,促使其自身能够满足设计的整体需求。在实际设计过程中,可以对参数以及滤波器类型进行切实有效的调整和分析,根据实际情况采取有针对性的措施,在保证能够达到最佳效果的同时,促使学生在学习过程中更容易地接受一些难点[7]。
(二)信号的频谱分析
在数字信号处理教学的实际开展过程中,在对数字信号进行分析的时候,基本上可以从两个方面来进行,其中包括时间域、频率。有些在时间域方面表现出的复杂信号在转换到频率域时可能会比较简单,比如说在实际应用过程中,混合了几种不同频率的正弦信号,在时间域中其自身的波形是没有办法按照科学合理的流程来展示的,经常是以一种没有序列的方式呈现。但是一旦转换到频率域中,就是非常简单的几根谱线,所以在这种形势下可以看出,信号的频谱分析在数字信号处理中占据着非常重要的地位。离散傅里叶变换是对数字信号频谱分析的一种有效工具,吸收LabVIEW语言有利于对离散信号的频谱分析[8]。在整个过程中,学生可以通过对相关参数进行调节,直观地看出离散傅里叶在实际变换过程中的作用。其自身存在的频谱泄露现象以及栅栏效应,能够从根本上加深学生对数字信号处理等相关理论知识的印象。
(三)声音的现场采集
在数字信号处理教学的实施过程中,为了从根本上保证学生在学习过程中的有效性,就需要将LabVIEW应用其中,将其自身的影响和作用充分发挥出来,在保证充分调动起学生积极性和主动性的同时,有效地提高数字信号处理教学的整体质量和水平。在进入课程教学阶段之后,为了说明信号与实际生活之间的密切联系,在LabVIEW的应用过程中,通过对其进行简单的设计和分析,可以利用PC的声卡和麦克风实现在教学课堂现场的声音采集,并且利用多媒体技术将声音采集后的内容显示在投影仪上。在实际应用过程中,由于采集的是实际信号,并且其自身是处于连续动态实时显示的形势下,学生可以直接以枝干的形式看到信号的具体形态特征。这样不仅能够从根本上激发起学生的学习兴趣和学习积极性,而且能够意识到信号在生活中的重要性和必要性。无论是对学生的学习还是数字信号处理教学的整体质量和水平来说,都有非常重要的作用。
综上所述,LabVIEW在数字信号处理教学过程当中的实际应用,不仅能够从根本上调动起学生的学习兴趣和学习积极性,而且能够保证数字信号处理的整体教学质量和水平有所提升。将LabVIEW应用到数字信号处理教学中,能够将原本比较复杂难懂的知识以一种简单的方式呈现出来,让其能够成为数字信号处理教学中非常有效的辅工具,将其自身的影响和作用发挥出来,为数字信号处理教学的质量提升提供保障。
作者:何海浪 黄乘顺 单位:邵阳学院信息工程系
参考文献:
[1]张易知,肖潇,张喜斌,等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2010-02.
[2]谢启,温晓行,高琴妹,等.LabVIEW软件中菜单形式的用户界面设计与实现[J].微计算机信息,2010(9).
[3]谭勇.LabVIEW在数字信号处理课程教学中的应用[J].中国现代教育装备,2012(8).
[4]姜利英,张艳.LabVIEW在数字信号处理教学中的应用[J].中国电力教育,2011(9).
[5]马永力.LabVIEW在数字信号处理中的应用[J].科技广场,2010(7).
1.2强调学生的团队协作性PBL教学模式以学生小组为单位进行,小组成员要积极配合,既有分工又有协作,通过调查和收集资料,疑难问题讨论和意见综合等协作学习,实现知识的共同建构。
1.3具有师生交互性PBL教学模式实施过程中,教师通过设计问题、并创造合适的学习环境,引导学生对问题开展学习活动,师生之间展开密切的交流、探讨,促进和指导学生有效地学习,寻求问题的解决。因此,对于以培养适应地方经济社会发展需要的应用型本科人才为目标的高校,为促进学生解决实际问题的实践能力和团队合作能力,非常适合在电子信息类实验教学中引进PBL教学模式。
2PBL模式在数字信号处理实验教学中的应用
2.1课程情况概述
笔者所在学院的电子信息工程专业所开设的《数字信号处理》课程,总课时为64学时,包含16学时的课内实验。传统的课内实验均为验证性实验,大部分学生只会简单地照搬实验讲义的详细步骤完成固定的实验内容,而对实验内容及结果所反映的原理并不理解。因此,结合教学改革要求,在新的课程实验设置中显著提高了综合性、设计性实验的比例,这些实验项目以问题为导向,教师主要给出实验的要求和技术指标,要求学生自主选择并综合利用学过的理论知识和实践技能去实现一个比较完整的数字信号处理系统,体现了典型的PBL教学法的应用优势。
2.2PBL模式实验教学的具体实施
2.2.1学生分组与基本培训在实验课之前,首先对学生进行PBL教学模式的基本培训,使学生明确PBL教学的目的、方法、要求及评价手段等。同时,在40人的班级中建立10个学习小组,每组4名学生。各组分别推选一名组织能力和责任心较强的同学担任组长,负责本小组成员的组织协调和分工。
2.2.2问题设置问题设置是PBL教学实施中的核心环节。在这一环节中,教师根据教学大纲和实验教学内容,对实验课题设置若干应用问题。围绕我校应用型人才培养的方针,所设置问题尽量贴近应用开发实际,以培养学生的工程应用开发能力为导向。具体来说,问题设置主要遵循的原则为:(1)问题具备真实的工程背景;(2)问题具备开放性和劣构性;(3)问题具有一定的层次性和复杂度。下面以本实验课程中的一个可选的综合设计性实验为例,介绍相关问题的设置。该实验的基本内容为,设计数字心电采集系统,实现含有噪声的心电信号的采集和滤波。实验前,由教师提供一个包含心电传感器和放大电路的实验板,以及一个包含单片机及A/D转换器的接口板。实验要求分为两个阶段:第一阶段为心电信号的采集,与学生正在同时学习的单片机课程相结合,要求学生通过单片机编程控制A/D转换器,将放大后的模拟心电信号转换为数字信号,并通过串口传送至pc机。在这一阶段,设置的主要问题包括:如何根据信号带宽确定合适的采样率等。通过这些问题,引导学生在实践中深入理解采样定理。第二阶段的工作,则是在PC机上通过Matlab对采集到的数据进行读取和滤波,去除工频干扰、高频肌电、基线漂移等。该阶段设置的主要问题包括:有效信号的主要频率范围、主要干扰源的频率范围、线性相位和非线性相位滤波对波形的影响、IIR和FIR滤波器的特点等。通过这些问题的设置,引导学生在实践中加深对IIR和FIR等滤波器各自特点的认识,并根据不同的工作目标选择合适的滤波器类型。
2.2.3分析问题与自主学习在实验项目相关的问题后,要求各学习小组的学生开展自主学习,认真阅读教材,复习已学过的相关知识,同时,利用图书馆、互联网等渠道查阅相关参考书籍和文献,并通过组内的不断交流和探讨以初步分析问题。
2.2.4集中讨论与问题解决在学生对实验所设置的问题进行初步分析的基础上,教师在实验课上组织学生开展问题的集中讨论,引导各学习小组进一步深入理解问题,研究问题的具体解决方法,并明确各人的任务分工。整个讨论过程以学生为主导,教师以共同讨论者的身份进行引导、启发。在自主学习和集中讨论的基础上,各小组最终形成具体的问题解决方案,并通过编程实现对问题的解决,进而完成相应的实验项目。
2.2.5总结与点评学习小组在编写程序实现问题解决的过程中,教师以实时巡视、检查进度、随机提问、验收成果等方式促进小组的工作。由于实验内容及对应问题的设置具有一定的开放性,学生解决问题的思路和方法也相应具有多样性,教师对各小组的问题解决方法进行归纳总结,并在下次实验课做出点评。
2.3PBL模式下的成绩评价
为了客观地评定学生的学习效果,需要采用多层次多角度的评价方法。最终成绩的评定并不仅仅由期末的实验考核所决定,而是突出过程表现,强调过程性评价。最终的实验成绩由以下几部分组成。
2.3.1自主学习表现该部分占总成绩的30%,主要衡量学生在PBL模式下的学习方法、学习态度和学习能力。具体评价点包括:学生是否阅读了相关教材、参考资料;能否有效利用所学的知识分析问题;在学习小组讨论中是否积极发言,发言内容是否与讨论的问题有关且具有一定的深度;小组成员间的互相评价。
2.3.2实验过程与实验报告该部分占总成绩的35%,主要衡量学生在实验中具体解决问题的能力和总结归纳水平。具体评价依据来自于教师巡视及提问的记录以及学生提交的实验报告。
2.3.3实验考试该部分占总成绩的35%。主要衡量经过一学期的PBL训练后学生个人的综合实验能力。具体评价依据来自于实验考试中对所给实验题的完成速度与质量。
2内屏蔽层接续工艺改进
目前内屏蔽层接续工艺主要有2种,一是采用双铜环对屏蔽铜网和内屏蔽层进行压接,此种方式的缺陷在于容易造成芯线“皮-泡-皮”绝缘层的损伤。二是采用一截铜网与待接续的内屏蔽层重叠搭接,再用塑料扎带进行绑扎紧固,该方式不能保证内屏蔽层与铜网之间的可靠连接,尤其是当灌入冷封胶时,冷封胶逐渐渗入到内屏蔽层与铜网之间的接触面形成绝缘层。在这种情况下,如果有外界干扰电流在内屏蔽层上引起较大的纵向电动势,就会在内屏蔽层与铜网的接续处造成发热,甚至产生烧损电缆的严重后果。因此,必须采取技术手段实现内屏蔽层与接续铜网之间的可靠电气连接。为保证可靠接续,采用一种含有低熔点金属的焊锡膏进行快速焊接。具体方案如下:将内屏蔽层剥开2cm,在内屏蔽层与四线组之间缠绕一圈云母纸。在内屏蔽层与接续铜网接头处的接触面上,均匀涂抹一种含有低熔点金属的焊锡膏。将排流线(内屏蔽层与四线组间或在内屏蔽层外有一根铜导线称为排流线)缠绕绑扎在铜网与内屏蔽层的接头处,起到一定的固定作用。4.用电子气焊枪加热使焊锡膏熔化,实现内屏蔽层、接续铜网、排流线三者的可靠接续。经过反复实践操作,得出“锡膏焊接法”的特点:一是焊锡膏可以直接涂抹在屏蔽层与铜网的接触面上,比使用普通焊锡丝操作起来更方便;二是焊锡膏含有助焊剂和焊料粉,与普通焊锡丝相比更易融化,所需加热时间更短,四芯组外包裹云母纸,起到隔热、防火和绝缘的作用,仅这两点就可以避免损坏芯线绝缘层;三是焊锡膏在加热过程中有较强的去氧化膜功能和较好的粘附性能,焊接质量可靠。
3成端工艺改进
内屏蔽铁路数字信号电缆在结构上与普通铁路信号电缆相比,增加了内屏蔽层及排流线。内屏蔽铁路数字信号电缆引入室外信号箱盒进行成端时,要求将内屏蔽层及排流线引出并接地,这就是内屏蔽铁路数字信号电缆成端工艺的关键点。目前,施工单位常用的工艺,是采用铜压接管来压接内屏蔽层、排流线和引出线。然而,内屏蔽铁路数字信号电缆芯线的“皮-泡-皮”绝缘层在外力作用下容易损伤,作业人员难以掌握恰当的压接力度,一旦力度过大就会损伤芯线绝缘层,如果施工时只是破皮而未完全破损,那么这一隐患点就难以及时发现,只会在日后的运营过程中随着列车震动造成的摩擦最终破损而导致芯线对地绝缘不良。因此,解决这一问题的关键在于施工过程中要尽量避免对芯线“皮-泡-皮”绝缘层的挤压。经过大量工程实践摸索,建议采用一种含有低熔点金属的焊接材料进行焊接,来替代原来普遍采用的铜环压接或普通焊锡丝焊接工艺,具体操作如下:首先将内屏蔽层与四线组剥离开,再采用一种基于低熔点金属构成的焊锡膏将7×0.52塑料铜芯线与内屏蔽层进行焊接,焊接完成后认真整理内屏蔽层,可采用棉布隔离内屏蔽层与四线组,以防铜屏蔽层割伤芯线,由此杜绝损伤电缆芯线。
1数字电视广播信号无线定位概述
1.1无线电定位的概念
同时接收多个已知空间坐标和时间基准的无线电发射源的辐射信号,可以确定接收端用户所在的地理位置,即经度、纬度和高程(海拔高度)。
随着超大规模集成电路(VLSI)工艺的进步,基于电缆或卫星传输的数字电视(DTV)系统已在全球范围广为使用。DTV地面广播系统也已开始大规模建设,在全球不同区域逐渐形成以各自广播标准为基础的数字电视和数字声音广播网。与GPS相比,DTV定位有以下优点:定位误差小,可达1m量级;市区定位概率高,还可满足室内定位要求;定位实时性好;信号处理要求低,处理设备少,功耗低;可利用现有的DTV基础设施,无需改变就可用作定位。
1.2数字电视地面广播与标准
数字电视地面广播与数字卫星广播相比较,有容易普及、接收价格低廉的特点;与数字有线电视广播比较,则不易受城市施工建设、自然灾害、战争等因素造成的网络中断影响,因此在传输状况、应用需求等方面,地面传输方式更加复杂,全球各地在地面数字电视传输系统方案的选择上争议也最大。
世界各国对于数字电视地面广播进行了长期研究。基本形成了美国的ATSC,欧洲的DVB-T和日本的ISDB-T三大标准。我国模拟电视采用的是欧洲的PAL制式,因此要向数字电视过渡基于DVB-T标准开发数字电视地面广播系统是切实可行的。
2基于DTV数字电视广播信号无线定位系统方案的实现
2.1系统结构设计
整个系统的组建可以划分为两大部分:发射和接收。发射部分建在DTV地面广播信号发射台。对于按DVB-T标准发射的电视信号来说,首先要为不同发射台分配不同的系统标识码(ID),再将发射台的空间坐标、发射时间和标识码等信息进行信道编码,最后通过DTV数字广播系统实现信号发射。而对于按DMB-T标准发射的信号来说,由于在发射信号中已经加入帧号、基站识别码、起始发射时间,只要将发射台的坐标预先存储在接收机的处理器中即可。
基于数字广播电视信号的无线定位系统特征在于通过接收多个空间坐标已知的数字地面发射台的信号,确定接收者的空间坐标。
2.2系统工作流程
本文定位方法是建立在无线电信号广播发射系统上的,系统的工作步骤如下:
(1)接收信号:由天线接收到的电视信号经射频放大后下变频为中频信号;
(2)通过模拟/数字(A/D)变换完成中频信号的数字化;
(3)在数字信号处理器(DSP)内完成信号的同步跟踪、解调和解码任务,建立信号载波和码同步跟踪回路;
(4)将数字电视系统广播数据帧的时间间隔作为系统观测的基本时间单位,排定以数据帧间隔或其倍数作为观测间隔,确定观测时间序列;
(5)已预先排定的观测序列时间定时从同步跟踪环路提取出一个数字电视发射源的原始伪距观测值,以及通过解调和解码后的数据得到该发射源标识和空间坐标信息;
(6)重复步骤(5)观测跟踪所有在有效测量范围内的数字电视发射台;将所有得到的信息送入伪距解算方程,即从接收跟踪环路提取得到各发射源的伪距值和发射源空间坐标值,计算出最终接收天线的空间位置坐标,并换算为接收系统的定位信息:包括位置、速度和加速度,这些信息为基本导航定位信息;
(7)测量随后各数字电视广播数据帧接收时刻,得到属于该观测时间点所有有效同步帧头的伪距信息;
(8)以步骤(6)得到的基本导航定位信息,依次代入步骤(7)中的伪距信息和接收时间信息,完成基于顺序双滤波器平滑算法的计算,最终输出系统最优定位信息。
2.3软件接收机的流程实现
对于DVB-T标准来说,同步部分利用时域保护间隔和频域导频信号,估计并跟踪时域FFT窗口位置,同时估计由于收发端上下变频引起的频偏;采样时钟同步估计得到收发晶振不能完全匹配带来的采样时钟误差,经数字锁相环使收发采样时钟同步。对于DMB-T标准,将传统的DVB-T系统中的CP由一段PN序列取代,而在IDFT帧体中不插入任何导频。PN帧头既作为训练序列用于同步和信道估计,又在客观上起保护间隔的作用。DMB-T的每一帧采用不同的PN头作为帧标志,在发射端对PN头采用BPSK调制以获得可靠的传输效果;在接收端则通过同样的PN序列发生器产生本地PN序列,并与接收信号的PN码帧头进行时域相关,从而完成帧同步、频率同步、时间同步、信道传输特性估计等一系列同步运算。3数字电视接收机的实现
3.1接受原理
(1)模拟处理部分。
从天线接收到的信号通过调谐器经预选放大抑制镜像干扰、混频后得到中频信号,经中频滤波器滤波抑制邻道干扰后送入中频放大器中得到放大了的中频信号。在中频放大器中设置AGC以稳定信号输出。
(2)符号起始同步与定时粗同步。
利用保护间隔的循环重复特性可获得定时的粗同步和符号起始,提供给FFT。其基本原理是由于保护间隔中的数据是有效数据的部分重复。而相邻符号的数据则完全不同,这样计算差值s(t)-s(t-Tu),并对其进行段积分,则可获得粗同步。
(3)OFDM解调和传输参数(TPS)提取。
为简化接收机方案,可采用流水结构两倍规模的FFT解调。中频信号经抗混叠滤波后进入ADC中进行两倍采样率采样,每1个符号得到2N样点,这2N样点直接送入2N点FFT的ASIC处理器进行FFT。
(4)频率和定时同步。
由定时符号粗同步后,接收机对连续2个符号采样的2N个样点进行FFT,频率估计器按参考序列给出的连续导频地址找到这2个符号的连续导频值。对频率偏移进行估计得到频率误差信号,经D/A变换及环路滤波后控制中频VXCO本振完成频率同步。
定时估计器在当前符号中找到导频后,对定时偏移进行估计得到定时误差信号,经D/A变换和时钟环路滤波器滤波后完成定时的精同步。这一同步过程时间较长,以缓慢调整达到精同步锁定。
(5)信道估计。
①信道校正。信道响应估计器通过对分布和连续导频点响应的估计,利用时/频域内插得到信道在全频段的响应估计值,对各数据载波进行复相均衡后可得到信道校正。
②信道状态估计。信号输出电平的估计可通过对FFT输出信号的能量获得。信号电平估计后通过D/A变换以及AGC环路滤波后可对信号的输出电平进行精确控制;信道在各数据载波点上的状态估计可通过对该点信噪比的估计,给出信道在各数据载波点上的状态量度,与该载波点数据一起送到Viterbi译码器,对每一位提供“可靠性消息”进行软判决译码。
(6)信道译码及码流处理。
①积码的解码。由数据格式化后得到G1、G2格式的3bit码流送入Viterbi译码器进行软判决译码。软判决是根据提供的信道状态估计每比特的可靠性信息进行的。内信道译码后通过串/并转换把比特码流转换成字节码流送入解外交织器。②解外交织。由于发射端采用的是同步卷积交织器,因而解交织时需要同步。在交织过程中,同步字节sync或sync总是从第0路送入,在解交织时只要设置窗口校验同步字节后(即字节码流获得同步后),把同步字节送入第0路解交织即可完成解交织。③RS译码。从解外交织器送来的字节码流送入RS(204,188)译码器进行外信道译码。RS译码是在找到同步字节sync或sync后把同步字节和后面的187Byte为一组进行译码的。译码后的字节码流经并/串转换变成比特码流,同时还给出同步信号送入反随机化处理。④反随机化。RS解码后的数据码流在同步sync后的8个数据包长度内与随机化序列进行异或后即得到反随机化的数据流,反随机化中每遇到同步比特串,即为随机序列的异或禁止。同时若同步字节为sync,即对其求反处理得sync,完成反随机化后的码流送出信道译码器给MPEG-2码流复用器。最后得到TS码流。
3.2信号定位实现
DTV信号定位采用伪距法。这里的伪距是指从数字广播发射机天线至接收机天线信号之间的几何距离加上各种系统误差。位置计算可以在用户终端实现。终端要测量每一个视距范围发射台的伪距,3个发射台的伪距足以解决用户的经度、纬度和时钟偏差,DTV发射台的位置数据可以存储在用户终端。
定位系统所要确定的系统状态一般为系统的动态特性和系统时钟误差项,即:空间位置、速度、加速度和时钟偏差和时钟漂移。系统状态为:
式中[PR,VR,AR]T,[δtR,δtR]T分别为系统位置、速度加速度三维坐标矢量以及接收时钟偏差和漂移矢量。
3.3定位误差分析
定位精度依赖于由电波传播环境、接收机设计、噪声和干扰特性以及采样信号处理的复杂度。在实际的定位系统中,定位误差主要由以下两部分组成:
(1)接收端检测设备带来的误差。如时钟同步误差、检测设备时延带来的误差等。这部分误差随着定时技术及信号检测技术的发展而降低;
(2)主要由多径效应和非视距传播带来的信道误差。主要取决于信道环境,可以利用相应算法减少其对定位精度的影响。非视距传播是无线定位的主要误差源,即使在无多径效应和采用高精度定时的情况下,非视距传播也会引起测量误差。
因此,如何降低非视距传播的影响是提高定位精度的关键。目前降低非视距传播影响的方法有:利用测距误差统计的先验信息将一段时间内的NLOS测量值调节到接近LOS的测量值;降低LS算法中NLOS测量值的权重,在LS算法中增加约束项等。
参考文献
[1]余兆明,余智.数字电视原理[M].北京:人民邮电出版社,2004.
[2]何峰,吴乐南.基于数字广播电视信号的无线电组合定位方法[P].发明专利公开号:CN1776448A.
而关于DVB-T,是指利用开路地面传输媒介进行MPEG-2数字电视传输的标准,使用COFDM码分正交频分复用的信道调制技术,同时伴随着强大的纠错码,达到频谱利用效率与传输可靠性的平衡。COFDM信道调制编码技术提供两种子载波数量(2k和8k模式)、3种调制方式、4种保护间隔。DVB-T系统的信号以68个OFDM字符为一帧,每四帧构成一个超帧。每一个OFDM字符在8k模式下有6817个载波,在2k模式下有1705个载波,定义传输时间为TS,它由两部分构成,一部分为有用传输时间TU,另一部分为保护间隔Δ,每一帧中的字符由0〜67按序排列,每一帧中发送有用数字电视数据、导频(离散导频和连续导频)和传输参数信令(TPS)。表1列出了几种制式的OFDM符号的外部射频特征。
2基于OFDM符号特征的数字电视制式识别
在几种地面无线数字电视标准的帧结构中,OFDM符号作为最基本的单元承载着可以区别的一些外部特征。正交多载波调制技术把高速的数据流通过串/并变换,分配到速率相对较低的若干个频率子信道中进行传输,分别调制一路独立的数据信息,调制之后将若干个子载波的信号相加同时发送。每个OFDM符号是多个经过相移键控(PSK)或正交幅度调制(QAM)的子载波信号之和。根据表1列出的几种制式的外部特征,明显地在导频部分区别最大。对不同的数字电视制式,连续导频在OFDM符号中的子载波具有不同的位置,而离散导频则具有不同的子载波间隔特点。如DVB-T标准的OFDM符号中,离散导频等间隔为12,其功率为16/9,而传输数据的功率为1,而且离散导频数目很多,因此还可根据功率特性判断符号制式类型。与此类似,CMMB制式中离散导频间隔则为8等。
另外,由于CMMB标准中用于承载广播系统控制信息的控制逻辑信道采用BPSK进行调制,因此,若OFDM子载波中有BPSK信号,则可归类为CMMB标准。而DTMB标准和DVB-T标准可根据是否存在4QAM调制进行区分,因为在DTMB中信号帧的帧头采用的是4QAM调制,在DVB-T中不存在这种调制。OFDM复等效基带信号可以利用离散傅立叶逆变换(IDFT)的方法来实现。由于在数字调制信号中,星座图与调制类型有一一对应的关系,能同时反映PSK和QAM调制信号及其调制阶数的差别。得到OFDM子载波的调制信息后,可根据3种无线数字电视标准载波的调制特点,结合连续导频和离散导频的位置与幅度信息,对所测信号进行归类。基于OFDM符号的上述基本特征,我们在一个硬件实验平台上把相应的处理算法代码写入FPGA和DSP,成功地实现了对3种地面数字无线电视制式的识别。
线性调频信号具有非线性相位谱,能够获得较大的时宽带宽积;与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟;所用的匹配滤波器对回波信号的多卜勒频移不敏感,因而可以用一个匹配滤波器处理具有不同多卜勒频移的回波信号。这将大大简化信号处理系统,因此它在工程中得到了广泛的应用。采用这种信号的雷达可以同时获得远的作用距离和高的距离分辨率。
一、线性调频信号的产生方法
随着数字技术的发展,以前由模拟方法完成的许多功能逐渐被数字方法所取代,复杂的雷达信号的产生也基本完成了由模拟技术到数字技术的质的转变。因为与模拟方法相比,数字方法具有灵活性好、可靠性高、失真补偿方便,及易于实现相参等明显优越性,现己成为产生高性能线性调频信号的主要方法。数字方法产生线性调频信号的方法主要包括两种,波形存储直读法和直接数字合成法(DDS)。
波形存储直读法是一种经典的基带信号产生方法。它是预先根据采用频率、基带带宽、时宽等信号参数,通过线性调频信号的数学表达式分别计算出两路正交信号的采样值,按照顺序预先写入高速内存中。通过对采用时钟进行计数而顺序产生高速内存译码地址,依次从高速内存中读出预先写入的两路正交信号的采样值。I、Q两路分别经过数模变换、低通滤波产生两路正交线性调频基带信号。这种方法具有原理简单、成本低廉、对器件依赖小等优点,并具有较好的幅相预失真补偿能力,但是存在电路结构比较复杂、需要高速控制电路配合,也增加了软件的复杂度。经正交调制和倍频器,对基带信号进行带宽扩展和频谱搬移,输出所需带宽和频段的线性调频信号。直接数字合成(Direct Digital Synthesis,简称DDS)方法。用这种方法产生的线性调频信号的技术日益受到重视并广泛应用,它是根据线性调频信号的频率线性变化、相位平方变化的特点而设计的。直接数字合成法采用两级相位累加结构来得到线性调频信号的二次变化的相位,然后根据相位值查存储在ROM里的正弦、余弦表,将查得的值经D/A转化得到相应的I、Q两路基带线性调频信号。这种方法通过数控电路能对DDS输出波形、频率、幅度、相位实现精确控制,可在调频带宽内对雷达系统的幅度和相位进行校正,产生近乎理想的线形调频信号。只要改变某些电路的参数设置,就可以改变线性调频信号的时宽和带宽。但由于DDS的全数字的全数字结构,杂散电平高是其自身固有的缺陷。
二、线性调频脉冲信号压缩的实现方法
线性调频脉冲信号的压缩通常有两种方式:模拟压缩和数字压缩。目前模拟式脉冲压缩器件有:具有大带宽、小时宽的声表面波(SAW)器件;中等时宽和中等带宽的体声波反射阵列压缩器等。随着高速、大规模集成电路器件的发展,对于大时宽大带宽信号的脉冲压缩通常采用数字方式压缩。
数字脉冲压缩系统较之模拟方法具有一系列优点:数字法可获得高稳定度、高质量的线性调频信号,脉冲压缩器件在实现匹配滤波的同时,可以方便地实现旁瓣抑制加权处理,既可有效地缩小脉冲压缩系统的设备量,又具有高稳定性和可维护性,并提高了系统的可编程能力。科技论文,压缩方法。因此,数字处理方法获得了广泛的重视和应用。
1、线性调频脉冲信号的时域数字压缩实现
线性调频信号的时域数字脉冲压缩处理,通常在视频进行,并采用I、Q两路正交双通道处理方案,以避免回波信号随机相位的影响,可减少约3dB的系统处理损失。中频回波信号经正交相位检波,还原成基带视频信号,再经A/D变换形成数字信号,进行数字脉冲压缩处理。I、Q双路数字压缩按复相关运算(即匹配滤波)进行,双路相关运算输出经求模处理、D/A变换,输出模拟脉冲压缩信号;I、Q双路相关输出的数字信号还可送后级信号处理。
2、线性调频脉冲信号的频域数字压缩实现
由于高速A/D变换器、大规模集成电路技术以及快速傅立叶变换技术的应用,使宽带信号的实时处理成为可能。科技论文,压缩方法。采用DSP及FPGA的频域数字脉冲压缩处理的优点是处理速度高、工作稳定、重复性好,并且具有较大的灵活性。
3、线性调频脉冲压缩方案
根据线性调频信号的特点及其脉冲压缩原理,数字脉冲压缩系统首先要将回波信号经A/D采样变成数字信号,再进行脉冲压缩。时域数字脉冲压缩实际上是将回波数据与匹配滤波器进行复卷积,而频域数字脉冲压缩则是通过对回波数据进行FFT后,与匹配滤波器的系数进行复数乘法运算,然后再经过IFFT得到压缩脉冲的数字数据。对于N点长度的信号,在时域实现数字脉压,需要进行L2次复数乘法运算,而频域卷积法仅需2L1og2L次复数乘法运算,大大减小了运算工作量。另外,考虑到抑制旁瓣加权函数,若在时域实现数字脉压,不仅要增加存储器,而且运算量将增加一倍,在频域实现抑制旁瓣加权函数,不需增加存储器和运算量。
三、线性调频脉冲信号的加权处理
线性调频信号通过匹配滤波器后,输出脉冲的包络近似Sinc(x)形状。其中最大的第一对旁瓣为主瓣电平的一13.2dB,其他旁瓣电平随其离主瓣的间隔x按1/X的规律衰减,旁瓣零点间隔是1/B。在多目标环境中,这些旁瓣会埋没附近较小目标的主信号,引起目标丢失。为了提高分辨多目标的能力,必须采用旁瓣抑制的措施,简称加权技术。科技论文,压缩方法。加权可以在发射端、接收端或收、发两端上进行,分别称为单向加权或双向加权。科技论文,压缩方法。其方式可以是频率域幅度或相位加权,也可以是时间域幅度或相位加权。科技论文,压缩方法。此外,加权可在射频、中频或视频级中进行。科技论文,压缩方法。为了使发射机工作在最佳功率状态,一般不在发射端进行加权。目前应用最广的是在接受端中频级采用频率域幅度加权。
引入加权网络实质上是对信号进行失配处理,所以它不仅使旁瓣得到抑制,同时使输出信号包络主瓣降低、变宽。换句话说,旁瓣抑制是以信噪比损失及距离分辨力变差为代价的。如何选择加权函数这涉及到最佳准则的确定。考虑到信号的波形和频谱的关系与天线激励和远场的关系具有本质上的共性,人们应用天线设计中的旁瓣抑制原理,曾提出海明加权、余弦平方、余弦四次方加权等几种最佳加权函数。但是这些理想的加权函数都较难实现。因此,只能在旁瓣抑制、主瓣加宽、信噪比损失、旁瓣衰减速度以及技术实现难易等几个方面进行折衷的考虑选取合适的加权函数。
结语:随着数字技术和大规模集成电路技术的飞速发展,数字脉冲压缩(也称脉压)技术以其性能稳定、抗干扰能力强、控制方式灵活以及硬件系统更小型化等优点,逐步取代早期的模拟脉压技术,成为现代脉压系统的发展趋势。特别是近年来高性能通用数字信号处理器的出现,为雷达脉冲压缩处理的数字化实现提供了一种工程实现途径。数字脉压系统的实现可以满足体积小、功耗低和成本低等条件,其相关问题的研究成为国内外广大学者研究的热点问题之一。
参考文献:
1、王世一《数字信号处理(第1版)》[J]北京:北京理工大学出版社1997;
2、任培红《脉冲压缩信号的特点、产生、及压缩方法》[J]电讯技术1999(2);
一、数字通信系统
数字通信是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后在传输的通信方式。它的主要技术设备包括发射器、接收器以及传输介质。数字通信系统的通信模式主要包括数字频带传输通信系统、数字基带传输通信系统以及模拟信号数字化传输通信系统三种。
数字信号与传统的模拟信号不同,它是一种无论在时间上还是幅度上都属于离散的负载数据信息的信号。与传统的模拟通信相比其具以下优势:首先是数字信号有极强的抗干扰能力,由于在信号传输的过程中不可避免的会受到系统外部以及系统内部的噪声干扰,而且噪声会跟随信号的传输而进行放大,这无疑会干扰到通信质量。但是数字通信系统传输的是离散性的数字信号,虽然在整个过程中也会受到的噪声干扰,但只要噪声绝对值在一定的范围内就可以消除噪声干扰。其次是在进行远距离的信号传输时,通信质量依然能够得到有效保证。因为在数字通信系统当中利用再生中继方式,能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,这样一来数字通信的质量就不是因为距离的增加而产生强烈的影响,所以它也比传统的模拟信号更适合进行高质量的远距离通信。此外数字信号要比模拟信号具有更强的保密性,而且与现代技术相结合的形式非常简便,目前的终端接口都采用数字信号,同时数字通信系统还能够适应各种类型的业务要求,例如电话、电报、图像以及数据传输等等,它的普及应用也方便实现统一的综合业务数字网,便于采用大规模集成电路,便于实现信息传输的保密处理,便于实现计算机通信网的管理等优点。
要进行数字通信就必须进行模数变换,也就是把由信号发射器发出的模拟信号转换为数字信号。基本的方法包括:首先把连续形的模拟信号用相等的时间间隔抽取出模拟信号的样值。然后将这些抽取出来的模拟信号样值转变成最接近的数字值。因为这些抽取出的样值虽然在时间进行了离散化处理,但是在幅度上仍然保持着连续性,而量化过程就是将这些样值在幅度上也进行离散化处理。最后是把量化过后的模拟信号样值转化为一组二进制数字代码,并最终实现模拟信号数字化地转变,然后将数字信号送入通信网进行传输。而在接收端则是一个还原过程,也就是把收到的数字信号变为模拟信号,通过数据模变换再现声音以及图像。如果信号发射器发出的信号本来就是数字信号,则不用在进行数据模变换的过程,可以直接进入数字网进行传输。
二、数字通信系统的应用
数字通信系统的关键性技术包括编码、调制、解调、解码以及过滤等。其中数字信号的调制以及解调是整个系统的核心也是最基本、最重要的技术。
数字调制是通过对信号源的编码进行调制,将其转换成为能够进行信道传输的频带信号,即把基带信号(调制信号)转变为一个高频率的带通信号(已调信号),而且由于在传输过程中为了避免信息失真、传输损耗以及确保带内特性等因素,在进行信号进行长途传输以及大规模通信活动时必须对数字信号进行载波调制。现阶段的数字信号调制主要分为调幅、调相以及调频三种。调幅是根据信号的不同,通过调节正弦波的幅度进行信号调制,目前最常见的数字信号是幅度取值为0和1为代表的波形,即二进制信号;调相是由于载波的相位受到数字基带信号(调制信号)的控制,通常情况下载波相位和基带信号是保持一致的,例如二进制基带信号为0时,载波相位相应也为0;调频是利用数字信号进行载波频率的调制。解调就是讲载波信号提取出来并经过还原得到信息的过程,它是调制的逆过程也被称为反调制。目前解调的类型分为相干解调和非相干解调两大类。数字通信的质量通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。对于数字通信系统的性能指标通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。
通信系统向数字化时代的转变就是要从有线通信想无线通信,从公用移动网络到专用网络,从而实现全球化的数字通信理念。而且通过现有的综合业务数字网络为基础,通过一个多用途的用户网络接口就可以轻松实现信号发出端到接收端全程数字传输与交换的新型通信网。利用这种新型技术可以扩充通信业务的范围,而且还具有更加经济以及灵活的特点,能够与现有的计算机互联网、多媒体信息网、公共电话网以及分组交换数字网等进行任意转换。随着数字通信设备的发展和不断完善,利用微处理技术对数字通信系统的信号进行转变,还能够使设备更加灵活的应用到各种长途以及市话当中。由于长途通信线路的投资远大于终端设备,为了提高长距离传输的经济性,未来高度、大容量的数字通信系统也将成为主流趋势,而且随着数字集成电路技术的发展,数字通信系统的设备制造也越来越容易,成本更低、可靠性也更高。
三、结束语
数字通信系统是一种全新的利用数字信号进行消息传输的通信模式,伴随着社会的不断发展,数字通信的应用也已经越来越广泛,在我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输的,而且由于社会的发展人们对各种通信业务的需求量也在逐渐增加,在光纤传输媒介还没有完全普及以前,数字通信系统主要是利用电缆、微波等有限的媒介进行传输,但目前光纤技术的发展无疑将会推动数字通信的发展。随着数字通信系统也正在向智能化化、高速度以及大容量的方向迅速发展,相信在未来数字通信系统将会取代传统的模拟通信系统而成为主导。
参考文献:
[1]张英.微处理机实现的数字通信[j].电子技术应用,2005.
[2]张晓林.电视数字通信[j].图书馆杂志,2005.