光纤通信论文汇总十篇

时间:2023-03-24 15:07:02

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇光纤通信论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

光纤通信论文

篇(1)

2光纤通信技术发展特点

2.1扩大了单一波长传输的容量

当今社会仅单一波长传输的容量就高达40Gbit/s,并且相关部门在这个基础上已经开始研究160Gbit/s的传输技术。在研究40Gbit/s以上的传输技术时,应该对光纤的PMD做出具体的要求。2002年,美国优先在LTU-TSG15会议中提出了将新的光纤类别引入40Gbit/s系统的倡议。并且认为在PMD传输中一些问题有待探讨。我们坚信在不久的将来,举世瞩目的专门的40Gbit/s的光纤类型将会出现。

2.2超长距离的传输

在传输网络的骨干中,理想的传输形式莫过于无中继的传输。迄今为止,一部分公司正在采用的技术是色散齐理,它能够实现:最短2000千米至最长5000千米的无电中继类型的传输。另一部分公司正在不断改进,提升完善光纤指标,应用拉曼光,放大光传输距离的延长。

2.3适应DWDM运用

普遍应用的是32×DWDM系统,64×和32×10Gbit/s的系统正在研发中,已经取得了不小的进展。DWDM技术得到了广泛的应用,各研究机构必须加强光纤非线性标准的严格控制。最新推出的ITU-T技术很好地针对光纤制定了测试方法标准,完成了非线性属性的标准。明确非线性的测试指标,提出有效面积的相应指标,尤其要完善光纤的非线性的特性。

3光纤通信发展现状

3.1普通光纤发展现状

我们最常见的光纤就是普通光纤。光通信技术的进步,系统逐步发展,单一波长信息容量和光中继距离的加大G652光纤的性能产生了进一步提升的可能,表现在不同的区域,一种符合ITUTG654规定截止波长的单模光纤,还有符合G653规定的单模光纤,做出了发展性完善。

3.2核心网发展现状

我国的几大干线已经全面地采用了光缆,多模的光纤遭到合理淘汰,全面实施单模光纤。常用的有G652和G655两种光纤。G653在我国初步使用后,今后不会继续发展。G654也因为不能实现该种通信方式系统容量的大幅度增加,因此从来没有使用到我国陆地光缆中。干线光缆主要在室外,多数使用分立光纤,这些光缆中的旧式结构已经停用。

3.3接入网光缆发展现状

接入网的光缆具有分支多、距离短、分差频繁等特点,通常通过增多光纤芯数的方法来增加网容量。由于市内管道的管道内径一定,结合光纤的芯数增多和集装密度的增大减轻光缆重量,缩小光缆直径十分重要。接入网通常采用的是G652单模光纤或者是G652C低水峰的单模光纤。后者在我国只有少量投入使用。

3.4室内光缆发展现状

室内光缆通常需要能够满足不同的要求,具备多种功能。比如说数据、话音以及视频信号的传送,还可能在遥控和传感器中得到应用。IEC的电缆分类中,指出了室内光缆。它至少要包括两大部分,即局内光缆与综合布线。综合布线的光缆一般布放在室内的用户端,主要用途就是供用户使用,因此必须要全面考虑到它的易损性。局用光缆主要布放在中心局以及其他各类电信机房内,布放的位置相对固定。

3.5通信光缆在电力线路内

光纤只是一种介电质,光缆却可以是一种全介质,而且是完全无金属的。这种全介质的光缆将会成为电力系统中最理想的线路。在电线杆的敷设中普遍应用两种全介质光缆的两种主要结构:一种是用于架空地线的缠绕式的结构,另一种是全介质自承式的结构。因为全介质自承式的结构可以单独地布放,适应范围广,在我国当下的电力系统改造过程中得到了广泛实施。国内已经生成许多种类达到市场要求的ADSS光缆,但是在其产品的结构和性能等方面还需要更进一步的完善。

4光纤通信的主要应用形式

在光纤通信的各种应用形式中,最普遍最常见的就是电子公文。当代社会的信息化逐渐发达,网络用户需求不断上涨,无纸化办公成为一种时尚。这就出现了电子公文。

4.1电子公文与纸质公文的共性和差别

纸质办公是一种传统的办公模式,在历经了多年的传承之后,在为人们传递信息的同时也暴露出了许多的问题,类似于容易流失,耗费资源,流转较慢等。电子公文的产生就有了很大的区别。虽然两者都是信息流传的载体,但是电子公文具有显而易见的优越性。现代化信息社会必须有无纸化,在此基础上朝着网络化、信息化、科学化、自动化、智能化的趋势快速发展。

4.2电子公文的必要性

传统观念认为电子公文要应用计算机操作,十分不便,更加依赖于直观的纸质公文,但是纸质公文存在严重的资源浪费、信息遗失和字迹模糊等缺陷,所以,电子公文代替纸质公文始终是必然的趋势。相对于纸质公文在日常工作中的收文登记,承办传阅过程中对手工以及腿功的依赖,以及在领导外出时,公文传递的不便,电子公文只需要一台电脑和一根网线就能够轻松地解决问题,而且保证省时省力,可复制,可粘贴,可备份,超值又有效。利用空间小,保存时间久,受外界因素影响小。

4.3电子公文技术问题

电子公文要想能够实现无纸化的办公条件,必须依靠人们的共同努力,制造出一套良好的、完善的、实用的管理制度,保证电子公文的高效性和安全性,避免公文的非法泄露。电子公文是信息传播的载体,是传递讯息的渠道,随着现代化办公水平的提高,电子公文的质量也必须精益求精。所以,必须明确电子公文的几项专业技术,抓住进步的空间。电子公文不能满足于现有的硬件配置。在软件设计方面存在功能上、安全性、操作中的缺陷。实际应用过程中,计算机操作人员的技术掌握和应用能力不到位。软件的后续升级不及时,其他软件系统的兼容性存在问题。

5光纤通信的发展与展望

就光纤通信的具体应用的详细分析,让我们更好地了解了光纤通信技术。光纤通信技术已经成为现代化信息时代的必要性存在。现在从关键点回复到光纤通信的全局考虑,光纤通信的未来发展趋势十分可观。可发展的趋势涉及很多领域,下面就让我们进入深入详细的探讨。

5.1光网络智能化

光网络智能化的实现是在光纤通信技术当中十分关键的研发方向,在光纤通信技术将近40年的发展历程中,传输一直占据着主要地位,成为光通信技术的干线。伴随着计算机技术的连续进步和发展,完美地将通信技术与计算机技术结合起来,促使网络技术发生更高层次的发展和进步。现代光网络在实现传输的同时,结合了连续控制技术、自动发现能力和更加完善实用的保护和恢复功能系统,真正实现了光网络的智能化。

5.2全光网络

全光网络是光纤通信技术在发展过程中的最高层次,是光线技术发展到顶端的最理想阶段,也是未来通信网络将要发展成为的最终目标,也就是说未来的通信网络就是属于全光的时代。原始的全光网络对于实现节点处的全光化虽然是可操作的,但是在各网络节点处采用的仍然是电器件,这就会阻碍光纤通信容量的稳步提升,所以,全光网络就是光纤通信网络不断发展的终极目标。

5.3光器件集成化

在光电子器件发展的过程中,追求的就是光器件集成化的真正实现。考虑到全光通信网络实现过程中的关键点,器件的集成十分重要,器件的集成更是全光网络通信技术的核心技术。将检测器、激光器、调制器和其他类型的集成芯片集成到一个芯片中才能完成光子集成芯片的制造。这些集成是通过往不同材料的各种薄膜介质表层上的连续沉积来实现的,主要应用的材料有磷化铟和砷化铟镓等等。这是一种十分复杂的技术,但是由于传统互联网接入技术有限,接入带宽不足,以及现代互联网多媒体的发展需求,单纯地通过改良设备来扩大宽带,提高速度的做法是很不现实的,我们必须实现光器件的集成,从而保证光纤通信的发展核心坚固扎实。

篇(2)

[1]张国鸿.浅谈光纤设备通信原理及其布线技术[J].港口科技.通信与导航,2007.

[2]潘远翠.浅谈光纤通信市场的发展[J].达州职业技术学院学报,2006.

[3]高小梅.光纤通信技术的发展与展望[J].青年科学,2010.

[4]李文娟.光纤通信新技术探究[J].信息技术与信息化,2015,03:87-88.

[5]肖宏.关于光纤通信新技术的应用与研究[J].硅谷,2013,01:253+251.

[6]林海彬.探讨光纤通信新技术的应用与研究[J].中国新技术新产品,2014,14:25.

[7]王小龙.浅谈光纤通信新技术的应用与研究[J].计算机光盘软件与应用,2012,01:75+78.

光纤通信论文参考文献:

[1]夏坚.浅析现代光纤通信传输技术的应用[J].信息通信,2011(04):40-41.

[2]李彬,赵静娟.现代光纤通信传输技术的应用探讨[J].通信技术,2013(07):14-15+18.

[3]李刚.光纤通信传输技术的应用和发展趋势[J].中国新通信,2015(11):65-66.

[4]张越.光纤通信传输技术的应用[J].民营科技,2012(09):102+208.

[5]陈晓岚.现代光纤通信传输技术的应用分析[J].数字技术与应用,2016(03):34.

光纤通信论文参考文献:

[1]孙捷,杨佳,任德昊,谭毅.光纤通信实验教学的改革实践[J].实验技术与管理,2009,26(7):122

[2]陈琳,施正一,朱武,杨俊杰.光纤通信课程实验教学改革和研究[J].电气电子教学学报,34,(4):73-77.

[3]李书旗,朱昌平,陈小刚.光纤通信实验教学的改革与探索[J].中国电力教育,2010,(36):132-133。

[4]曹雪,李新营.光纤通信实验教学的优化探讨[J].实验科学与技术,2013,11(1):97-99.

篇(3)

一、光纤通信网保护系统概述

实现网络生存性一般有两种方法:保护和恢复。

保护是指利用节点间预先分配的容量实施网络保护,即当一个工作通路失效时,利用备用设备的倒换,使工作信号通过保护通路维持正常传输。保护往往处于本地网元或远端网元的控制下,无需外部网管系统的介入,保护倒换时间很短,但备用资源无法在网络范围内共享,资源利用率低。

恢复则通常利用节点间可用的任何容量,包括预留的专用空闲备用容量、网络专用的容量乃至低优先级业务可释放的容量,还需要准确地知道故障点的位置,其实质是在网络中寻找失效路由的替代路由,因而恢复算法与网络选用算法相同。使用网络恢复可大大节省网络资源,但恢复倒换由外部网络操作系统控制,具有相对较长的计算时间。

通常认为保护是一种能够提供快速恢复、适用特定拓扑的技术(例如线形和环形);而恢复通常主要适用网状拓扑,能最佳的利用网络资源。

二、光纤通信网自动保护系统方案选择

随着WDM系统的广泛使用,在光层上实现对点到点系统的保护倒换就成为一个非常重要的课题。许多光网络的保护结构与SDH是极其相似的。对于点对点的线路系统,经常考虑1+1和1:1的线路(光复用段OMS)保护倒换方案。

线路保护倒换的工作原理是当工作链路传输中断或性能劣化到一定程度后,系统倒换设备将主信号自动转至备用光纤系统来传输,从而使接收端仍能接收到正常的信号而感觉不到网络已出现故障。该保护方法只能保护传输链路,无法提供网络节点的失效保护,因此主要适用于点到点应用的保护。

(一)1+1光保护层

对于1+1光链路保护,只能对链路故障中的业务进行保护。这种方法是利用光滤波器来桥接光信号,并把同样的两路信号分别送入工作光纤和保护光纤的通道中。保护倒换完全是在广域网内实现。当遇到单一的链路故障时,在接收端的光开关便把线路切换到保护光纤。由于在这里电层的复制和操作,所以除了当发射机和接收机发生故障时会丢失业务外,一切故障都可以恢复。

(二)1:1光保护层

(1:1)的光层保护方案与(1+1)的光层保护方案很类似,都是利用备用的路由链路来避免链路故障对业务的影响。业务流量并不是被永久地桥接到工作和保护光纤上,相反,只有出现故障时,才在工作光纤和保护光纤之间进行一次切换。

在双向通道中,当有故障事件出现时,使用APS信令信道来协调交换机的保护倒换动作。在(1+1)的SONET网络中的保护恢复结构中,在头和尾之间有一个APS信道,保护倒换的实现既使用了保护光纤又使用了一条APS信令信道。而在(1:1)的光层保护结构中,在保护光纤中不必存在相互通信的通道,因为这种结构没有在电层上被复制信号。只有当发射端和接收端都切换到保护光纤中,这个通信通道才建立起来。当出现故障时,如果接收端不知道发射端是否切换到保护光纤上时,接收机端就经由保护光纤给发射端发出一个消息。因此,当接收机最初倒换到保护光纤上时它并不能接收到任何信号。而如果发射端已切换到保护光纤上了,那么利用上述过程就可完成对业务的保护和恢复。否则,业务流量就会丢失。如果再由一个独立的“带外”光业务通道来支持保护倒换的信令,那么这种发射机与接收机在协调工作方面的困难就可以避免掉。

(三)1:N光保护层

(1:N)的光层保护结构与(1:1)的保护结构类似。然而在这里,N个工作实体共享同一个保护光纤。如果有多条工作光纤出现故障,那么只有其中的一条所承载的流量可以恢复。最先恢复的使具有最高优先级的故障。

通过以上几种点到点的光层保护倒换方案的比较可以看出:1:1光层保护技术有更高的恢复率和可靠性。

三、城域网光纤通信自动保护系统的组成结构

城域网光纤通信自动保护系统采用三级分层控制结构,第一级为远层监控中心,负责各监控站的监测、通信和控制的授权,通常由网络通信设备和计算机组成;第二级为监测站,向上一级的远程监控中心反映系统工作状态,往下一级实现对各条线路进行整体地集中监测和管理,通常由主控盘和显示器组成;第三级为多个光保护盘,实现对各条通信线路的监控和管理,并和上一级进行通信,反映系统工作状态光保护盘是线路监测和切换的直接执行者,同时又完成向监测站的数据传输和状态显示,它主要由光信号发送部分和接收两部分组成。Sin为发送端光端机发出信号的输入端,光端机输入的信号从该接口进入光保护盘,当系统工作在主路时,通过光开关从Sout1主发端送到主路通信光纤中;在系统工作在备路时,则从Sout2备发端送入通信线路的备路光纤中。Rin1为主路光信号的输入端,系统工作在主路状态时光纤线路输入的信号从该接口进入光保护盘,经过分光器分出3%的光信号用于检测,另外的97%的光信号从Rout发端送到接收光端机中;在系统工作于备路时,光纤线路输入的信号则从Rin2备送入光保护盘,从Rout发送到接收光端机。另外光保护盘还备有主/备线路工作状态指示灯、本盘复位按钮、RS-485计算机接口和电源接口。

在本系统的结构设计中,采取模块化的方式进行设计,容易的实现功能扩展。系统设计时充分体现构件化的思想,小到功能点,大到子系统,甚至整个系统贯穿“构件”的概念。

四、城域网光纤通信自动保护系统的工作原理

城域网光纤通信自动保护系统采用光纤的备份使用机制,用一条主路光纤,一条备路光纤来保证传输系统的稳定性、可靠性。在主线路出现故障或阻断时,用备用线路代替主线路继续工作、从而保障整个通信正常进行的实时监测系统。它对通信线路的监控功能主要体现在如下三个方面:

(一)主路在用光纤正常运行时

自动保护系统的各光保护盘对主路在用光纤实时地进行收光功率监测,自动建立参考,自动分析,时刻与监测站和远程监测中心保持通信,响应各种指令。

(二)主路光纤发生故障时

当系统收到的光功率值小于绝对告警门限(认为系统无光时的光功率值),或者收到的光功率值与系统参考光功率值(正常通信时的光功率值)之差大于相对告警门限(和正常通信时的收光功率相比较,光功率衰减到致使通信不稳定或不能正常进行的光功率变化值)时,系统控制模块就判定通信光纤处于阻断状态,自动将通信从主路光纤切换到备路光纤。

(三)主路光纤修复后

对主路光缆进行测试,确认线路没有问题后,在远程控制中心受权下,通过对光纤自动保护系统的复位操作使通信系统从备路光纤切换到主路光纤。

参考文献:

篇(4)

二、矿山通信的制约因素

矿山通信企业的特点主要是设备更新速度慢、建设时间长等。由于每个时期的通信设备都一起运行,所以会有信息孤岛现象的问题存在。且其内部系统有不少不同来源的信息。例如矿山系统和外部环境间有信息流动和交换的现象,其中包括矿产品销售、人力供应、电力供应等。这类信息相互制约、相互影响。矿山井下施工建设中,由于井下结构复杂、空间狭小、接收不到信号等因素,急需先进的矿山通信技术,以便在施工过程中能准确、及时的传输信息,为优化方案提供参考的依据。

三、光纤通信与矿山通信系统建设的实际应用

(一)矿区网络连接系统中的应用

光纤的高宽带、低成本等特点能满足矿山信息传输日益增长的需求[2]。国家已经制定了光缆使用的相关标准,很多矿山企业也投入生产使用。目前一些普通光缆线、架空地线复合光缆以及阻燃光缆等都被矿山企业利用,以连接各矿山建筑设施和采矿点。这类光缆的使用大大提高了施工的便捷性和线路的稳定性,同时还能有效节约施工建设的成本。因为增加光纤芯数并对光纤价格的影响不大,所以在需要光纤芯数的基础上再适当预留一点,以免日后需要时能及时提供,以满足业务多样性的需求。由于光纤通信技术具有一致性传输系统介质的特点,所以,现代矿山通信系统的建设中,可以将光纤以太网作为介质,其传输距离远,损耗低,承载力强,其接入方法即介质转换,光纤两端都是光猫,从光猫出来有的需要接入光端转换设备,把光纤带的光信号转换成网线携带的数字信号,有些光猫集成的转换功能,可以直接转换输出数字信号。利用光纤线路构建一个矿山骨干通信网,再加入无线设备和该通信网配合使用,为矿区提供无线设备或有线光缆的双重信息传输和接收口。图2矿业光纤以太网结构模型例如,某矿业根据矿区的实际情况,经过建设和相关系统的整合,建立了光纤以太网,该组网可以全面覆盖整个矿区的建筑。其中工业环网的整个线路连接选用变电所、两个大车间以及办公楼,矿区的地表到井下被全部覆盖;其分支线路覆盖了所有生活区域。光缆可以传输人员定位、电力调度、视频监测、环境监测、有线电视等业务数据,实现一条光缆线的多种业务同时使用,既节约施工费用又节约工程建设的成本。关于该矿山企业的光纤以太网的构建结构见图2。将光纤通信技术运用到矿山企业工程中,建设完整的光纤骨干网,为各种业务传输信息数据,以解决数据传输过程中的链路问题。

(二)矿区电力中的应用

当前,矿山电力系统中很多自动化设备只应用于漏电保护、防爆开关和配电网等相关功能,它们之间没有互相连接的网络系统,都是单独运行的状态。矿井复杂的内部结构对供电系统的工程量提出更高要求,配电供电服务系统以及变电所建设的主要目的是保障开挖采掘运输的过程是畅通的。但在实际井下挖掘作业时,由于井下复杂的地质条件,供电系统经常会出现故障,一旦失去电力服务,井下的挖掘工作就没有办法进行,这将严重影响施工进度,从而降低矿井开采的生产量。利用特种光纤技术能有效改善井下的供电现状,在矿山供电系统中应用复合电线可以为井下施工的机械设备提供源源不断的稳定电力,保证这些设备的正常操作和运行,利用光纤技术建立完整的网络系统,合理使用和分配电力资源,确保矿山施工区域供电的稳定性。同时,还可以在一定程度上节省建设供电系统的成本,在电力系统运行的过程中,也能有效缩减成本,从而有效提高矿山企业工程建设的整体经济效益。在完成网络系统的建设基础上,再采用以太网络技术,构建更加完善的网络监测系统。除此之外,光纤技术还可以结合多媒体显像技术,对井内的实际运行状况进行实时监控,在很大程度上提高了矿井开采的工作效率。工作人员通过监测系统可以充分掌握矿井内部的实际施工情况。如果井下有设备故障等问题,监测系统可以及时准确地反映故障的实际情况和具置,并第一时间切断故障发生的局部电源,同时发出警报,提示工作人员,以便在第一时间实施具体可行的解决措施,并在最快时间内恢复井内供电,将故障带来的影响和损失降到最低。

篇(5)

1.2光纤复合相线光纤复合相线指的是输电线路相线复合光纤单元的一种电力光缆,是电力通信线路中一种必不可少的光纤类型,光纤复合相线与光纤复合地线结构相似,但是在设计、安装和运行方面有本质的区别。光纤复合相线的接线盒与其他光缆使用的接线盒也不相同,分为终端接线头和中间接线头。光纤复合相线在设计时需要计算挂点,考虑档距、配盘和弧垂张力等问题,安装时需要利用光电子分离技术和光纤接续技术将运行相线中的光纤单元分离出来,光纤复合相线安装时对光纤接续技术的要求很高,在安装过程中还要确保高压绝缘。一根光纤复合相线和两根导线形成的三相电力系统可以解决电网的通信、调度和自动化的问题,大大提高了电网传输的数量和质量。光纤复合相线是电力通信中的新型光缆,它有效地避免了在电磁兼容、路由协调和频率资源方面与外界的矛盾,避免了雷击的发生,满足了架空线路的要求,同时,光线组合相线充分利用了电力通信系统的线路资源,确保了地线绝缘式的运行方式,还起到了节约电能的作用。

2电力通信中光纤通信技术的发展趋势

2.1新型光纤的使用随着IP业务量的不断增加,传统的单模光纤已经不能满足高质量、长距离的数据传输,因此,电力通信必须向新的发展阶段迈进,新光纤通信技术的研究与开发就成为了电力通信建设的关键,关系到整个电力系统的发展。无水吸收峰光纤和非零色散光纤等新兴光纤已经得到了技术上的支持和认可,使用新型光纤一定会促进电力通信的发展。

篇(6)

2光纤通信技术的应用现状

20世纪70年代,我国就电信光纤通信技术进行了研究,同时取得了显著的成绩。目前我国电信光纤通信技术已经实现了光同步数字传输,同时应用领域也在不断的扩大,而本文主要针对电信光纤通信技术在几个领域的应用情况进行详细的介绍和深入的解析。主要有广播电视、电力通信、智能交通等方面。(1)光纤通信技术在广播领域得到了广泛的应用,同时其发展的规模越来越大。目前,我国以光缆为基础的网络建设在不断的发展,因此光缆网已经成为我国传输数据以及数字电视最主要的链接方式,其可靠性较高。现在光缆不仅仅能够传输电视台、发射台、卫星站、有限电视网等信号,同时其传输信号的质量较好,因此电信光纤通信技术在广播电视领域的应用范围在不断的扩大,也得到了民众的认可。此外电信光纤通信技术还是广播电视网、计算机网、通信网等传输系统首先的传输数字自豪的最佳介质,同时也是高性能通信网络中不可或缺的组成部分,因此目前我国当前光纤通信技术的主要目标是光纤宽带干线的传输以及接入。(2)电信光纤通信技术在电力通信领域的发展进程也在不断的加快。电力系统的自动化控制是电网的市场化运营基础,电力通信的主要功能是为实现现代化管理提供优质的服务。在电力通信领域中,早已经建立了光纤通信系统,开始建立时,主要通过沿用传统管道、架空等方式进行光缆的铺设,同时最为目前我国输配率是覆盖面最广的网络基础设施,光纤同喜系统能够实现长距离、跨区域输送电能,从而满足人们对电能的需求。此外电信光纤通信技术能够有效的提高电力通信的可靠性,其中在改领域已经开始采用了专用的特种光纤,比如复合地线、复合相线、全介质自承光缆等。(3)智能交通领域中也应用了光纤通信技术。目前我国高速公路运营管理逐渐朝着智能化的方向发展。与此同时,为了在输出话音、图像、数据等信息时都需要一条专用通道,因此建立与完善光纤通信系统已经成为提高高速公路运营效率以及智能管理的重要方式之一。目前高速公路管理系统与智能交通建设的发展也离不开光纤通信技术,该技术为联网收费以及管理提供了坚实的技术支持。在信息化时代中,智能交通建设就是以光纤通信技术为基础发展起来的,而智能交通系统本质上看实际就是交通领域的信息化。在智能交通领域应用光强通信技术,能够有效构建实时高效、安全的综合交通管理系统。

3电信光纤通信技术发展趋势的优势分析

光宽网在建设过程中,我国为其发展提供良好的外在条件。随着我国经济宏观政策跳着我国城镇经济,我国每年的旧城改造与新屋建设分别已经高达20多亿平方米,能够将2000万户新居或数百万个企业包含在内,从而为电信业务提供更多的机会。随着我国科技水平的稳步提升,我国电信光纤通信技术提供的服务质量也在一定程度上得到了提高,从而满足人们不同的需求。电信光纤通信技术不仅传输的速度快,传输容量大,并在长距离的基础上还能过实现信息容量的提升,还能过完善全光网络系统。电信光纤技术在我国经济发展中有着十分重要的意义。(1)全光网络。电信光纤通信技术中最为关键的组成部分指的就是全光网络,这是电信光纤通信技术发展的核心在路由以及信令的控制全光网络能够完成自动交换连接的功能。它在传送网中引入信令与选路,并利用智能的控制层面从而建立呼叫和链接,并完成实现路由设置、端到端业务调度以及网络的自动恢复功能的工作。为了加强电信光纤通信技术全面发展,可以从全光网路特点角度入手,对电信光纤通信技术进行深入的研究,并对技术发展模式不断的创新。伴随国务院《“宽带中国”战略及实施方案》的推进,联通等通信运行商为了更好的完成宽带中国的目标,加大了“城乡一体化”光网改造工程的推行力度,从根本上满足社会对网络光纤通信技术的需求。(2)多业务承载能力。改革创新电信市场的发展模式,有利于促进我国电信市场的发展,同时对运营模式进行重组改制,进一步实现电信业务的多元化发展。网络系统光纤接入技术的应用一方面能够承载更多的业务项目,另一方面可以强化基础性承载业务水平,而多业务承载能力提供的重点有移动基站回传、语音等服务。电信用提高光业务的解决方案代替原来的提高传输通道的解决方案,起到了提高多种高质量的带宽应用与服务的作用。其中主要包括了:;业务;带宽出租、带宽批发、带宽贸易、实时计费;流量工程;分布式恢复;(软永久连接)/(交换连接)/(永久连接)。对接式网络结构是传统接入网系统常用的模式之一,这种模式会从根本上提高运营系统管理的成本,从而影响网络系统建设的经济效益。而在使用了高接入带宽接入网后,可以讲系统与网络进行有效的融合,提高网络系统的运行效率,并建立统一系统的应用平台。电信光纤接入技术除了加强了多业务承载能力之外,还提高了系统客户应用的安全性,在业务发展得到保障的基础上,也保证服务质量的水准。此外,在承载更多系统业务的同时,电信光纤通信技术针对个人系统应用进行了一定的强化。与此同时电信光纤通信技术能够提供高精度时钟、有效满足针对移动基站的回传业务。

篇(7)

2电力系统中光纤通信的特点

光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。

3光纤通信在电力系统中的应用领域

光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。

4光纤通信在电力系统中的发展前景

现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:

4.1光纤传送网新技术

目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。

4.2光纤通信接入网新技术

在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。

4.3光纤通信光交换新技术

对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。

篇(8)

光纤通信技术之所以在铁路通信系统里发挥重要作用,是因为当前对光纤通信技术的划分十分精细,在各个铁路通信系统里都会使用相应的光纤通信技术,达到最理想的通信效果。PDH光纤通信作为十分重要和关键的方面,能有效清除铁路通信系统里存在的隐患以及漏洞,确保铁路通信系统的正常与稳定。但PDH存在标准不一、复用结构过于复杂以及网络管理功能较弱的问题,所以其难以得到长远、有效的发展。

1.2SDH光纤通信在铁路通信系统中的应用

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.3DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

篇(9)

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网[2]。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.2DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

篇(10)

2光纤通信课程理论教学

针对同学们反映本课程中难懂的理论知识、课前我补充了一些基础知识.比如光波导理论、高等数学、光电子技术、电磁学等知识在该课程中要用到的重要理论.列出一些参考书目供学有余力的同学选读,比如杨祥林编著的《光纤通信系统》,北京邮电大学出版社出版的顾畹仪编著《光纤通信系统》教材.我们采用多种方法分析一些抽象概念,逐步阐述.例如,光纤传输的波动理论是光纤通信理论中的一个重要内容,通常采用的方法就是波动方程和电磁场表达式求解,其过程繁杂,同学们很难将推导出的理论结果和实际上的物理意义对应.因此在该部分的教学中采用先引入并重点讲解波导、导波等概念的方法,然后解释传输模式,不同的模式对应不同的传播角,产生不同的离散模式是由于光波在芯区和包层分界面上发生反射时产生相位移动引起的,在理解概念的基础上,再运用特征方程理论推导出结论.充分利用多媒体的优势,多媒体PPT教学与传统教学模式相结合,以便提高教学质量.结合该学科的实际,作者制作了适合实际情况的PPT课件,课件的教学效果良好,比如在讲解数字光纤通信系统组成的时候,结合PPT课件图,直观、形象生动的看出了系统由光发射机、光纤光缆、中继器与光接收机等基本单元组成.此外还包括一些互连与光信号处理器件,如光纤连接器、隔离器、调制器、滤波器、光开关及路由器、分插复用器ADM等.

3光纤通信实训教学环节

本课程的实训环节除了安排常规的8个实验,模拟信号电—光、光—电转换传输实验、数字信号电—光、光—电转换传输实验、光发送、接收模块实验、光纤无源器件特性测试实验、数字光发送接口指标测试实验、光纤传输特性测量实验波分复用(WDM)光纤通信系统实验等.另外,笔者引入了OpticSimu仿真实训软件,该软件恰好可以克服以上硬件实验平台的不足,可以方便地配置各种光纤通信系统和网络,形象地得到仿真实验结果,配置各种光纤通信系统和光网络,仿真其传输性能,方便、形象地获得系统和网络中各点的光谱、波形、眼图、光信噪比和接收灵敏度.软件界面如图2所示.图3是利用原子功能器件搭建的光分插复用器(OADM)和光交叉连接(OXC)结构.运用OADM和OXC,构建WDM光网络,并对其进行传输性能仿真,为光网络的设计和规划提供参考.

上一篇: 计算机与教育论文 下一篇: 药学院本科毕业论文
相关精选
相关期刊