建模技术论文汇总十篇

时间:2023-03-25 10:27:04

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇建模技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

建模技术论文

篇(1)

 

1 引言

“物竞天择,适者生存”是达尔文生物进化论的基本原理,揭示了物种总是向着更适应自然界的方向进化的规律。可见,生物进化过程本质上是一种优化过程,在计算科学上具有直接的借鉴意义。在计算机技术迅猛发展的时代,生物进化过程不仅可以在计算机上模拟实现,而且还可以模拟进化过程,创立新的优化计算方法,并应用到复杂工程领域之中,这就是遗传算法等一类进化计算方法的思想源泉。

2 遗传算法概述

遗传算法是将生物学中的遗传进化原理和随[1]优化理论相结合的产物,是一种随机性的全局优算法。遗传算法不但具有较强的全局搜索功能和求解问题的能力,还具有简单通用、鲁棒性强、适于并行处理等特点数学建模论文,是一种较好的全局优化搜索算法。在遗传算法的应用中,由于编码方式和遗传算子的不同,构成了各种不同的遗传算法。但这些遗传算法都有共同的特点,即通过对生物遗传和进化过程中选择、交叉、变异机理的模仿,来完成对问题最优解的自适应搜索过程。基于这个共同点,Holland的遗传算法常被称为简单遗传算法(简记SGA),简单遗传算法只使用选择算子、交叉算子和变异算子这三种基本遗传算子,其遗传进化操作过程简单,容易理解,是其他一些遗传算法的雏形和基础,这种改进的或变形的遗传算法,都是以其为基础[1]。

2.1遗传算法几个基本概念

个体(IndividualString):个体是遗传算法中用来模拟生物染色体的一定数目的二进制串,该二进制串用来表示优化问题的满意解。

种群(population):包含一组个体的群体,是问题解的集合。

基因模式(Sehemata):基因模式是指二进制位串表示的个体中,某一个或某些位置上具有相似性的个体组成的集合,也称模式。

适应度(Fitness):适应度是以数值方式来描述个体优劣程度的指标,由评价函数F计算得到。F作为求解问题的目标函数,求解的目标就是该函数的最大值或最小值。

遗传算子(genetic operator):产生新个体的操作,常用的遗传算子有选择、交叉和变异。

选择(Reproduetion):选择算子是指在上一代群体中按照某些指标挑选出的,参与繁殖下一代群体的一定数量的个体的一种机制龙源期刊。个体在下一代种群中出现的可能性由个体的适应度决定,适应度越高的个体,产生后代的概率就越高。

交叉(erossover):交叉是指对选择后的父代个体进行基因模式的重组而产生后代个体的繁殖机制。在个体繁殖过程中,交叉能引起基因模式的重组,从而有可能产生含优良性能的基因模式的个体。交叉可以发生在染色体的一段基因串或者多段基因串。交叉概率(Pc)决定两个个体进行交叉操作的可能性数学建模论文,交叉概率太小时难以向前搜索,太大则容易破坏高适应度的个体结构,一般Pc取0.25~0.75

变异(Mutation):变异是指模拟生物在自然的遗传环境中由于某种偶然因素引起的基因模式突变的个体繁殖方式。在变异算子中,常以一定的变异概率(Pm)在群体中选取个体,随机选择个体的二进制串中的某些位进行由概率控制的变换(0与1互换)从而产生新的个体[2]。如果变异概率太小,就难以产生新的基因结构,太大又会使遗传算法成了单纯的随机搜索,一般取Pm=0.1~0.2。在遗传算法中,变异算子增加了群体中基因模式的多样性,从而增加了群体进化过程中自然选择的作用,避免早熟现象的出现。

2.2基本遗传算法的算法描述

用P(t)代表第t代种群,下面给出基本遗传算法的程序伪代码描述:

基本操作:

InitPop()

操作结果:产生初始种群,初始化种群中的个体,包括生成个体的染色体值、计算适应度、计算对象值。

Selection()

初始条件:种群已存在。

操作结果:对当前种群进行交叉操作。

Crossover()

初始条件:种群已存在。

操作结果:对当前种群进行交叉操作。

Mutation()

初始条件:种群已存在。

对当前种群进行变异操作。

PerformEvolution()

初始条件:种群已存在且当前种群不是第一代种群。

操作结果:如果当前种群的最优个体优于上一代的最优本,则将其赋值给bestindi,否则不进行任何操作。

Output()

初始条件:当前种群是最后一代种群。

操作结果:输出bestindi的表现型以及对象值。

3 遗传算法的缺点及改进

遗传算法有两个明显的缺点:一个原因是出现早熟往往是由于种群中出现了某些超级个体,随着模拟生物演化过程的进行,这些个体的基因物质很快占据种群的统治地位,导致种群中由于缺乏新鲜的基因物质而不能找到全局最优值;另一个主要原因是由于遗传算法中选择及杂交变异等算子的作用,使得一些优秀的基因片段过早丢失,从而限制了搜索范围,使得搜索只能在局部范围内找到最优值,而不能得到满意的全局最优值[3]。为提高遗传算法的搜索效率并保证得到问题的最优解,从以下几个方面对简单遗传算法进行改进。

3.1编码方案

因实数编码方案比二进制编码策略具有精度高、搜索范围大、表达自然直观等优点数学建模论文,并能够克服二进制编码自身特点所带来的不易求解高精度问题、不便于反应所求问题的特定知识等缺陷,所以确定实数编码方案替代SGA中采用二进制编码方案[4]。

3.2 适应度函数

采用基于顺序的适应度函数,基于顺序的适应度函数最大的优点是个体被选择的概率与目标函数的具体值无关,仅与顺序有关[5]。构造方法是先将种群中所有个体按目标函数值的好坏进行排序,设参数β∈(0,1),基于顺序的适应度函数为:

(1)

3.3 选择交叉和变异

在遗传算法中,交叉概率和变异概率的选取是影响算法行为和性能的关键所在,直接影响算法的收敛性。在SGA中,交叉概率和变异概率能够随适应度自动调整,在保持群体多样性的同时保证了遗传算法的收敛性。在自适应基本遗传算法中,pc和pm按如下公式进行自动调整:

(2)

(3)

式中:fmax为群体中最大的适应度值;fave为每代群体的平均适应度值;f′为待交叉的两个个体中较大的适应度值;f为待变异个体的适应度值;此处,只要设定k1、k2、k3、k4为(0,1)之间的调整系数,Pc及Pm即可进行自适应调整。本文对标准的遗传算法进行了改进,改进后的遗传算法对交叉概率采用与个体无关,变异概率与个体有关。交叉算子主要作用是产生新个体,实现了算法的全局搜索能力。从种群整体进化过程来看,交叉概率应该是一个稳定而逐渐变小,到最后趋于某一稳定值的过程;而从产生新个体的角度来看,所有个体在交叉操作上应该具有同等地位,即相同的概率,从而使GA在搜索空间具有各个方向的均匀性。对公式(2)和(3)进行分析表明,适应度与交叉率和变异率呈简单的线性映射关系。当适应度低于平均适应度时,说明该个体是性能不好的个体数学建模论文,对它就采用较大的交叉率和变异率;如果适应度高于平均适应度,说明该个体性能优良,对它就根据其适应度值取相应的交叉率和变异率龙源期刊。

当个体适应度值越接近最大适应度值时,交叉概率和变异概率就越小;当等于最大适应度值时,交叉概率和变异概率为零。这种调整方法对于群体处于进化的后期比较合适,这是因为在进化后期,群体中每个个体基本上表现出较优的性能,这时不宜对个体进行较大的变化以免破坏了个体的优良性能结构;但是这种基本遗传算法对于演化的初期却不利,使得进化过程略显缓慢[6]。因为在演化初期,群体中较优的个体几乎是处于一种不发生变化的状态,而此时的优良个体却不一定是全局最优的,这很容易导致演化趋向局部最优解。这容易使进化走向局部最优解的可能性增加。同时,由于对每个个体都要分别计算Pc和Pm,会影响程序的执行效率,不利于实现。

对自适应遗传算法进行改进,使群体中具有最大适应度值的个体的交叉概率和变异概率不为零,改进后的交叉概率和变异概率的计算公式如式(4)和(5)所示。这样,经过改进后就相应地提高了群体中性能优良个体的交叉概率和变异概率,使它们不会处于一种停滞不前的状态,从而使得算法能够从局部最优解中跳出来获得全局最优解[7]。

(4)

(5)

其中:fmax为群体中最大的适应度值;fave为每代群体的平均适应度值;f′为待交叉的两个个体中较大的适应度值;f为待变异个体的适应度值;pc1为最大交叉概率;pm1为最大变异概率。

3.4 种群的进化与进化终止条件

将初始种群和产生的子代种群放在一起,形成新的种群,然后计算新的种群各个体的适应度,将适应度排在前面的m个个体保留,将适应度排在后面m个个体淘汰数学建模论文,这样种群便得到了进化[8]。每进化一次计算一下各个个体的目标函数值,当相邻两次进化平均目标函数之差小于等于某一给定精度ε时,即满足如下条件:

(6)

式中,为第t+1次进化后种群的平均目标函数值,为第t次进化后种群的平均目标函数值,此时,可终止进化。

3.5 重要参数的选择

GA的参数主要有群里规模n,交叉、变异概率等。由于这些参数对GA性能影响很大,因此参数设置的研究受到重视。对于交叉、变异概率的选择,传统选择方法是静态人工设置。现在有人提出动态参数设置方法,以减少人工选择参数的困难和盲目性。

4 结束语

遗传算法作为当前研究的热点,已经取得了很大的进展。由于遗传算法的并行性和全局搜索等特点,已在实际中广泛应用。本文针对传统遗传算法的早熟收敛、得到的结果可能为非全局最优收敛解以及在进化后期搜索效率较低等缺点进行了改进,改进后的遗传算法在全局收敛性和收敛速度方面都有了很大的改善,得到了较好的优化结果。

参考文献

[1]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999:66-68.

[2]王小平,曹立明.遗传算法理论[M].西安交通大学出版社,2002:1-50,76-79.

[3]李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用[M].科学出版社, 2002:1-16.

[4]涂承媛,涂承宇.一种新的收敛于全局最优解的遗传算法[J].信息与控制,2001,30(2):116-138

[5]陈玮,周激,流程进,陈莉.一种改进的两代竞争遗传算法[J].四川大学学报:自然科学版,2003.040(002):273-277.

[6]王慧妮,彭其渊,张晓梅.基于种群相异度的改进遗传算法及应用[J].计算机应用,2006,26(3):668-669.

[7]金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69.

篇(2)

2.丰富教学方法

由于实用经济数学教学的目的和特点,就决定了运用传统的,比较单一的授课模式,即讲授式,是不可能达到理想的教学目标的。所以,在教学的过程中,要多种教学方法并用,尤其是能够促进学生思考,激起学生兴趣的教学方式,如讨论式教学法、启发式教学法等等,对于实用经济数学教学中融入建模思想都是非常有益的。

3.改革学生成绩评价机制,为社会输送应用型专门人才

由于当下的教育中,对于考试成绩的重视程度极高。然而,在实用经济数学的考试中,却在很大程度上侧重于推理以及推理过程中的计算。这就使得教师以及学生在教学以及学习的过程中都过度的重视推理与计算。所以要想提高数学建模思想的在课堂中的渗透,必须要改变学生的成绩评价机制,从而为我国培养更多的具有高强度思维能力的人才。

4.加强师资队伍建设,培养应用型专门数学教师

由于现在的经济数学教师在大学时接受的都是传统的数学教育,依据他们现有的教育观念和知识结构,很难真正实现上述三条措施,因此应大力加强经济数学师资队伍的建设。要加强教师的数学教育哲学、现代教育理论的学习,从根本上转变教师的数学教学观,要专门培养一批精通数学建模方法和数学软件的使用、掌握经济学基本知识、了解经济问题。要想将数学建模思想很好的应用在实用经济数学中,需要从教学的多个方面进行考虑。然而,以上也仅仅是实用经济数学建模思想的几个方面的探索,且这些研究都还比较浅显。而仅仅凭借这些研究来提高实用经济数学的教学质量,并且将数学建模思想很好的应用在实用经济数学中,显然是远远不够的。所以,对于实用经济数学中融入数学建模思想的研究还需要数学教育领域的研究人士进行进一步的研究和思考。

篇(3)

概率论以及数学统计这门课程具有较强的实践性,因此,在教学课程上,教师需要在教学的基本内容中加入更多的实例教学,帮助学生理解这门学科的基本知识点,加深学生对基本理论的记忆。例如:在讲概率学中最基本的加法公式时,加入数学建模的基本思想,利用俗语“三个臭皮匠”的相关内容作为教学实例。俗语中有三个臭皮匠的想法能够比的上一个诸葛亮,意思就是说多个人共同合作的效果比较大,可以将这种实际中的问题引入到数学概率论的教学中,从科学的概率论中证明这种想法是否正确。首先需要根据具体的问题建立相应的数学模型,想要证明三个臭皮匠能否胜过诸葛亮,这个问题主要是讨论多个人与一个人在解决问题的能力上是否存在较大的差别,在概率论中计算解决问题的概率。用c表示问题中诸葛亮解决问题的能力,ai表示其中(ii=1,2,3)个臭皮匠解决问题的能力,每一个臭皮匠单独解决问题存在的概率是P(a1)=0.45,P(a2)=0.6,P(a3)=0.45,诸葛亮解决问题存在的概率是P(c)=0.9,事件b表示顺利解决问题,那么诸葛亮顺利解决问题的概率P(b)=P(c)=0.9,三个臭皮匠能够顺利解决问题的概率是P(b)=P(a1)+P(a2)+P(a3)。按照概率论中的基本加法公式得P(b)=P(a1+a2+a3)=P(a1)+P(a2)+P(a3)-P(a1a2)-P(a2a3)-P(a1a3)+P(a1a2a3)解得P(b)=0.901。因此,得出结论三个臭皮匠顺利解决问题存在的准确概率大于90%,这种概率大于诸葛亮独自顺利解决问题的概率,提出的问题被证实。在解决这一问题过程中,大部分学生都能够在数学建模找到学习的乐趣,在轻松的课堂氛围中学到了基本的概率学知识。这种教学方式更贴近学生的生活,有效的提高了学生学习概率论以及数学统计这一课程的兴趣,培养学生积极主动的学习。

2.课设数学教学的实验课

一般情况下,数学的实验课程都需要结合数学建模的基本思想,将各种数学软件作为教学的平台,模拟相应的实验环境。随着科学技术的不断发展,计算机软件应用到教学中已经越来越普遍,一般概率论以及数学统计中的计算都可以利用先进的计算机软件进行计算。教学中经常使用的教学软件有SPSS以及MABTE等,对于一些数据量非常大的教学案例,比如数据模拟技术等问题,都能够利用各种软件进行准确的处理。在数学实验的教学课程中,学生能够真实的体会到数学建模的整个过程,提高学生的实际应用能力,促进学生自发的主动探索概率论以及数学统计的相关知识内容。通过专业软件的学习和应用,增强学生实际动手以及解决问题的能力。

3.利用新的教学方法

传统数学说教式的教学方法并不能取得较高的教学效果,这种传统的教学也已经无法满足现代教学的基本要求。在概率论以及数学统计的教学中融入数学建模的基本思想并采用新的教学方法,能够有效的提高课堂教学效果。将讲述教学与课堂讨论相互结合,在讲述基本概念时穿插各种讨论的环节,能够激发学生主动思考。启发式教学法,通过已经掌握的知识对新的知识内容进行启发,引导学生发现问题解决问题,自觉探索新的知识。案例教学法,实践教学证明,这也是在概率论中融入数学建模基本思想最有效的教学方法。在学习新的知识概念时,首先引入适当的教学案例,并且,案例的选择要新颖具有针对性,从浅到深,教学的内容从具体到抽象,对学生起到良好的启发作用。学生在学习的过程中改变了以往被动学习的状态,开始主动探索,案例的教学贴近学生的生活学生更容易接受。这种教学方法加深了学生对概率论相关知识的理解,发散思维,并利用概率论以及数学统计的基本内容解决现实中的实际问题,激发了学生的学习兴趣,同时提高了学生解决实际问题的综合能力。在运用各种新的教学方法时,应该更加注重学生的参与性,只有参与到教学活动中,才能够真正理解知识的内涵。

4.有效的学习方式

对于概率论以及数学统计的相关内容在教学的过程中不能只是照本宣科,而数学建模的基本思想并没有固定不变的模式,需要多种技能的相互结合,综合利用。在实际的教学中,教师不应该一味的参照课本的内容进行教学,而是引导学生学会走出课本自主解决现实中的各种问题,鼓励学生查阅相关的资料背景,提高学生自主学习的能力。在教学前,教师首先补充一些启发式的数学知识,传授教学中新的观念以及新的学习方法,拓展学生的知识面。在进行课后的习题练习时,教师需要适当的引入一部分条件并不充分的问题,改变以往课后训练的模式,注重培养学生自己动手,自己思考,在得到基本数据后,建立数学模型的能力。还可以在教学中加入专题讨论的内容,鼓励学生能够勇敢的表达自己的想法和见解,促进学生之间的讨论和交流。改变以往教师传授知识,学生被动接受的学习方式,学会自主学习,自主探究,勇于提出自己的看法并通过理论知识的学习验证自己的想法。有效的学习方式能够调动学生学习的积极性,加深对知识的理解。

5.将数学建模的基本思想融入课后习题中

课后作业的练习是巩固课堂所学知识的重要环节,也是教学内容中不可忽视的过程。概率论统计课程内容具有较强的实用性,针对这一特点,在教学中组织学生更多的参与各种社会实践活动,重在实际应用所学的知识。对于课后习题的布置,可以将数学建模的思想融入其中,并让这种思想真正的解决现实中的各种问题,在实践中学会应用,不仅能够巩固课堂学到的理论知识,还能够提高学生的实践能力。例如:课后的习题可以布置为测量男女同学的身高,并用概率统计学的相关知识分析身高存在的各种差异,或者是分析中午不同时间段食堂的拥挤程度,根据实际情况提出解决方案,或者是分析某种水果具体的销售情况与季节变化存在的内在关系等。在解决课后习题时,学生可以进行分组,利用团队的合作共同完成作业的任务,通过实践活动完成训练。在学生完成作业的过程中,不仅领会到了数学建模的基本思想,还能够将概率统计的相关知识应用到实际的问题中,并通过科学的统计和分析解决实际问题,培养了学生自主探究以及实际操作的综合能力。

篇(4)

作者:罗宗富 孟云鹤 汤国建 单位:国防科技大学航天与材料工程学院

航天器在平面型轨道上运行时,除受到地球、月球和太阳的引力作用外,地球扁率、太阳光压甚至大行星的引力也会产生影响,而近旁转向能够将这些影响剧烈放大,可能引起航天器与月球或地球相撞。Carrico等考虑到平面型轨道的敏感性,提出了一种基于B平面理论的牛顿迭代思路,称为“浮动终点打靶法(FloatingEnd-PointTargeting)”[29]。给出了B平面的原理示意图。算法设计的目标量为内圈或外圈飞行时间和指向等参数,建立了B平面参数与内外圈轨道参数之间的关系,如(式略)面向地/月系统逃逸或捕获的平面型轨道除应用于空间环境监测外,平面型轨道还能够辅助航天器在较低能耗情况下逃逸地-月系统或从日心轨道返回地-月系统实现捕获[4,31]。ISEE-3任务中最先采用平面型轨道进行地-月系统逃逸,但未利用弱稳定边界理论节约燃耗。Hanson等分析了利用单次和多次月球近旁转向进行火星探测能够增加的有效载荷,提出了将带机动冲量的地球近旁转向与平面型轨道相结合来设计火星转移轨道的思路,并阐述了其能耗和窗口问题[32]。弱稳定边界(WeakStabilityBoundary,WSB)理论最先是Belbruno为解决HITEN直接减速进入环月轨道的燃耗不足而提出来的,利用其设计的地-月低能转移轨道比传统的霍曼转移方式燃耗更低,尤其是可以大幅降低月球捕获段的制动能耗(计算表明:月球入轨能耗可以节约近40%),代价是需要较长的转移时间[31,33-34]。与此类似,通过设计航天器在WSB区域受到的太阳引力摄动和施加辅助小冲量(起“杠杆作用”),能够较大程度上改变其角动量方向和总能量,同时利用月球近旁转向作用(单次或多次)将上述能量变化进行适当放大,可以得到一类低能地-月系统逃逸或捕获轨道。Uphoff在研究上述低能转移轨道时,利用能量参数C3(定义为逃逸速度大小的平方)分析了太阳引力的变轨能力,计算表明:采用这一思路能够将发射能量C3低于5km2/s2的航天器加速到9.5km2/s2[35]。计算结果表明:在远离地球的WSB区域仅需施加数米每秒的冲量就能较大幅度地改变地心轨道的能量。Nozomi是首颗采用这一方法进行任务设计的航天器。Kawaguchi等设计了其两次月球近旁转向的时机以及逃逸时的太阳方向角,得到了1998年执行火星探测任务的窗口,结果表明:航天器的能量参数C3额外增加2km2/s2[39]。Belló等也给出了类似结论,指出将这一思路应用于火星快车(MarsExpress)类任务时,可以降低大约150kg的燃耗,同时也带来一些新问题,如飞行时间增加,操作复杂度提高等,但可以作为应急情况下的备选方案[31]。

基于二体拼接模型的Backflip型轨道求解方法Uphoff在文献[40]中阐述了Backflip型轨道的形成原理,指出对于图1(b)中所示的轨道,两次月球近旁转向时的月球位置相差180°,那么白道面外轨道的飞行时间与月球的飞行时间必须一致。由Lambert飞行时间定理可知:近旁转向后航天器的地心速度大小必须与月球绕地球运动的速度相同,且其地心偏心率与月球公转轨道的偏心率一致,即图2中满足|Vout|=|VM|。又易知:Vout终端除位于图中以Vin为圆心的小圆上外,还需位于以VM为半径的球面上,那么Vout矢量在小圆上的位置得以确定,由此可得Vout相对白道面的倾角为(式略)Uphoff进一步指出:航天器在外圈轨道运行时主要受到四种摄动力作用,包括扁率、太阳引力摄动和三体引力摄动作用,尤其是月球的引力摄动,尽管量级较小,但作用时间长,飞行过程中航天器与月球的相位基本一致,其累积效果将影响第二次近月时的轨道参数,特别是倾角I较小时,月球的摄动影响更加明显[40]。除图1(b)给出的轨道类型外,Uphoff还提出了多种改进形式,如反射Backflip型轨道,并给出了一组归一化的初始参数[40](参数略)遗憾的是上述反射轨道的近月距为766km,位于月面以下,无法加以利用。Uphoff在文献[40]中给出了另一类倾角I接近135°的反射Backflip型轨道,可以用于发射近地小天体探测器。另外,Uphoff提出了一类外圈超过一圈的调节轨道,可以作为物质和燃料的储藏仓库或执行空间交会对接任务[40]。需要说明的是:给出的轨道与图1(b)中轨道不完全相同,区别在于白道面内轨道部分,这是针对具体任务的灵活处理,未改变Backflip型轨道的本质。如任务需要也可以让两次近旁转向的面内轨道部分分别运行在月球轨道内侧和外侧,以便衔接近地和远地空间。

在多个工程任务中得以应用。因此,开展相关方面的研究工作能够为我国未来的深空探测任务(如嫦娥、夸父和萤火计划)提供一种新的手段和方式。今后还可以在如下几方面开展工作:(1)多体环境下各种摄动对双月旁转向轨道设计和稳定性的影响分析;(2)小推力转移和变轨方式在双月旁转向轨道设计、制导和控制中的应用;(3)双月旁转向轨道在我国深空探测中的应用。

篇(5)

2救生舱氧气系统数学模型

为了估测救生舱氧气系统的性能,首先需得到救生舱氧气系统压力P、气体温度T和氧气系统参数的时间差t。依据氧气系统结构该中含有一个压力传感器,可通过瓶体氧气压力进行读数。由于该系统不含温度传感器,因此对正常气密性下的某飞机1个月的108个数据点进行采集,完成对上述数据点氧气压力值、外界环境温度以及驾驶舱内温度的偏相关分析,从而得到瓶体内气体的温度。偏相关性分析通常应用于各种相关的变量中,清除其中的变量干扰后,得到两两变量之间的简单相关关系。采用偏相关来分析消除氧气系统本身的渗漏率干扰后,外界环境温度与驾驶舱温度对气瓶压力的相关性。通过偏相关对其进行研究可知,驾驶舱内温度、外界环境温度以及氧气系统压力参数和氧气压力的相关性。氧气压力值主要受外界温度以及驾驶舱温度的影响,并且受外界环境温度的影响更大一些。基于来自空客的资料,可将瓶体内气体温度拟合公式描述成T=(TAT+Tc)/2,其中TAT表示外界温度、Tc表示驾驶舱温度。在通过点与点相比得到压差的过程中,为了使点和点在同一标准下完成比较,通过理想气体方程P1/T1=P2/T2,将压力转变成相同环境温度下的压力PS,各点的压力值均具有可比性,从而可得航段渗漏率PL=PS/t=(PS1-PS2)/(t2-t1),其中t1表示飞机着陆时间,t2表示为飞机起航时间。上述理想气体方程还可应用于任一温度下机组氧气系统压力的预测,从而降低了由于冬季航行前后温差较大而引起的需频繁更换氧气瓶的工作量,提高了工作效率。因为飞行航段时间间隔较短,系统压力值波动不大,易受到外界温度拟合精度以及压力传感器探测精度的干扰,造成最终得到的压力值变化很大。通过比较两个间隔超过24小时的点的压力值来解决上述问题,假设间隔24小时的渗漏率用PL24表示,为了清除采样过程中数据坏点的干扰,需完成对其的3天滚动平均,最终即可得到能够体现系统性能特性的24小时3天滚动平均渗漏率ΔPLavg24。ΔPLavg24=∑I=nI=1(PL24-1+…+PL24-n)/n(1)其中,n表示3天中点的总量。经以上处理后可基本得到研究机组氧气性能的有关数据。而对氧气系统效果的分析,和对氧气使用时间的估计则可采用一元线性回归法,其方法仅分析一个自变和一个因变量之间的统计关系。主要通过其分析标态氧气压力值PS和气瓶安装时间To的统计关系。假设PS和To的关系满足式(2):PS=U1+U2*To+_(2)其中,PS表示被解释变量,To表示解释变量,U1、U2表示待估计参数,_表示随机干扰项,其主要体现了PS被To解释的不确定性。通过普通最小二乘法对一元线性回归进行求解,具体的求解公式如下:Toavg=∑nI=1(To1+…+Ton)/n(3)PSavg=∑nI=1(PS1+…+PSn)/n(4)其中,Toavg表示解释变量均值,PSavg表示被解释变量均值。U2=∑[(To-Tovag)*(PS-PSavg)]/∑(To-Toavg)2(5)U1=PSavg-U2Tovag(6)氧气系统固有的气密性能随U2的降低而降低。U1值主要和各时间段有关,对性能分析不产生任何影响。该方法可完成氧气系统性能的机队排序,但是不能识别单机的性能恶化,仅可实现对未更换氧气瓶以及充氧数据的监控。而对于时间段较长的机组氧气性能改变的监测只能采用相互独立样本T检验的方法来完成,该方法能够分析短期机组氧气性能恶化的状态。该方法先采集前后两个时间段的PLavg24数据样本,通过比较上述两组数据的变化程度对机组氧气系统出现恶化的时间段以及恶化程度进行判断,该种方法不能完成整个机队的氧气系统性能排序。具体公式如下F=S21/S22(7)其中,S21表示上一时间段n项数据PLavg24的方差,S22表示下一时间段m项数据的方差,式(7F(n-1,m-1)分布,可采用差找F分布的方法得到F值,依据F对两组数据的差异性进行判断,若检测出两组数据相似概率低于2.5%,则可判断这两组数据有显著差异,从而基于两组数据的均值对氧气系统渗漏率的改便程度进行判断。

3自抗扰控制器氧气系统参数优化数学模型

遗传算法是一种依据生物遗传以及进化机制的适用于复杂系统改进的自适应概率改进算法。其模拟自然及遗传时产生的选择、交叉及变异等现象,从一个初始种群开始,在经过随机选择、交叉及变异处理后,得到一群更适应环境的个体,通过这样不停的进行繁衍进化,最终可获取到一群最适合环境的个体,从而得到失事飞机救生舱氧气系统控制问题的最优解。

3.1考虑控制约束的自抗扰控制器参数优化设计目标函数的建立评价失事飞机救生舱氧气系统性能的过程中,一般情况下会采用一个以失事飞机救生舱氧气系统瞬时误差e(t)为泛函的积分为目标函数,通过时间乘绝对误差积分准则(ITAE)对系统的动态性能进行评价,以时间乘与误差成绩绝对值的积分为性能指标,用式(8)描述JITAE=∫#0t|e(t)|dt(8)如果只考虑失事飞机救生舱氧气系统的动态特性,则给定的参数通常会造成氧气控制过大,不能实现预期的控制效果。由于氧气控制能量有限,所以将umax与umin作为一项重要的指标进行加权,则有Ju=umax-umin×∫#0|u(t)|dt(9)通过氧气控制能量受限以及氧气浓度误差泛函评价标准,采用权重系数法获取一个失事飞机救生舱氧气系统性能的评价指标,用式(10)描述J=Je+Ju=∫#0t|e(t)|dt+wk|umax-umin|×∫#0|u(t)|dt(10)通过上述过程可以得到目标函数的最优极小值,需要将其转化成极大值问题,因为J>0,故取g=1=J。遗传算法是一种自由选择的算法,在进行迭代时一定会出现很多不可行染色体,为了使算法能够高效的识别同时越过不可行染色体,需使系统的输出误差不超过给定范围。对于不可行染色体,通过惩罚策略赋予其一个很小的惩罚值,融入惩罚策略的遗传算法适应度函数可描述成:maxf=1/Ju<Umax,u>Umin,|e|<EPuUmax,u"Umin,|e|{E(11)其中,Umax与Umin分别表示氧气浓度控制量的惩罚上限及下限,符合UmaxUsatmax,UminUsatmin,其中Usatmax与Usatmin分别表示氧气浓度饱和输入的上下限,|e|表示氧气浓度控制误差允许范围,P表示很小的一个罚值。

3.2改进遗传算法自抗扰控制器氧气系统参数整定过程在实际应用时遗传算法会出现早熟收敛以及收敛效率低的现象,导致其不得不用很长的时间去寻找最优解。为了避免上述弊端,采用一种改进自适应混沌遗传算法完成失事飞机救生舱氧气系统参数的优化。该算法通过浮点数编码,依据个体适应度值的排序完成对父体的选择,并且结合了自适应交叉、自适应变异以及混沌移民,对失事飞机救生舱氧气系统得参数整定,其遗传算法整定流程图用图1描述。

3.2.1失事飞机救生舱氧气系统参数的编码通过经验设定法整定跟踪微分器、扩张状态观测器中饱和函数的幂指数a以及线性区域的边界d。进行简化操作后,遗传算法的搜索区域以及不可行染色体的个数均降低了,效率得以提高。变量的数量越多,计算精度越高,二进制编码的速度就越低,对于精度要求高,搜索范围大的遗传算法,可采用浮点数编码。而自抗扰控制器涉及到的参数很多,同时区间分布广,不适合采用二进制编码,所以在确定失事飞机救生舱氧气系统的参数时采用浮点数编码。

3.2.2失事飞机救生舱氧气系统参数初始种群的选取通过经验设定法确定一组失事飞机救生舱氧气系统参数。其中跟踪微分器参数r可通过对象的响应速度来确定,和扩张状态观测器有关的各种参数可通过提到的动态失事飞机救生舱氧气系统参数确定法来确定,非线性误差状态反馈失事飞机救生舱氧气系统参数可通过PD控制器控制一个积分串联型对象的参数来确定。失事飞机救生舱氧气系统参数需符合下式:u<Umax,u>Umin,|e|<E(12)在失事飞机救生舱氧气系统参数附近大范围随机搜索符合式(12)的个体,直至得到的个体数目与遗传算法中群体大小相同,从而防止了很多的不可行个体的出现,提高了失事飞机救生舱氧气系统参数整定的效率,如图1所示。

4实验验证

为了验证本文模型的有效性,需要进行相关的实验分析。实验将飞机失事后气体压力为150Pa,气体温度为28℃的救生舱氧气系统作为仿真验证对象。传统控制模型与本文控制模型调节阶跃响应仿真结果对比用图2描述。传统控制模型与本文控制模型氧气浓度信号跟随仿真结果对比用图3描述。图2分析图2和图3可得,本文控制模型与传统控制模型相比,调节效率高,超调量小,达到了一个很好的控制效果。在系统运行的初始阶段,本文控制模型的响应速度很快,在时间为25s左右时,舱内氧气即达到人体能够适应的安全范围内,在300s内即达到稳定状态;超调最大值也在18%—23.5%安全范围内。在系统连续变动已知的时,本文控制模型与传统控制模型相比,调节效率更高,超调幅值更小,可以稳定的保持在人体可接受范围内。在系统达到稳定后,在400s—450s之间加入3.6V电压,本文控制模型可以以更短的时间,更小的超调达到稳定状态,动态响应效果好。救生舱是一个多参数、强耦合的复杂系统。在系统运行过程中,任意参数的变化都会影响氧气系统的模型结构,如飞机失事后救生舱气体压力变为180Pa,气体温度为30℃,则氧气系统模型发生改变,此时传统控制模型和本文控制模型阶跃响应仿真结果对比用图4描述。传统控制模型与本文控制模型信号跟随仿真结果对比用图5描述。分析图4和图5可得,当氧气系统模型改变后,本文控制模型变化不大,控制效果仍旧很好,而传统的控制模型动态性能下降,超调量升高同时调节速度更慢。通过上述仿真结果可以看出,本文控制模型的调节速度快,超调量小,达到了很好的效果。在救生舱系统参数改变后,本文控制模型与传统控制模型相比,有更好的自适应能力,使得系统氧气浓度可以一直保持在人体可承受范围内,有着更好的稳定性以及更高的调节效率。

篇(6)

建模比赛的一般分工是数学模型的建立、程序编写与拟合、论文的叙述。其中论文是评定参赛队伍成绩的好坏、高低、获奖级别的唯一依据,并且也是每组参赛期间成果的结晶,这是相当重要的一部分。那么今天我们就来分享一下有关建模论文的写作的一些注意事项。

首先

论文的评阅原则是

假设的合理性 ;建模的创造性;

结果的合理性 ;表述的清晰性。

在写作的时候可以按照这些要点来给自己一个大概的估计。

我们在写论文的时候,一般是按如下的结构:

1.摘要

2.问题的叙述,问题的分析,背景的分析等

3.模型的假设,符号说明

4.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)

5.模型的求解

6.模型检验:结果表示、分析与检验,误差分析,……

7.模型评价:特点,优缺点,改进方法,推广……

8.参考文献

9.附录:计算框图、详细图表,……

摘要是整篇论文最精华的部分,也是评阅人最关注的部分。在写摘要时,我们首先要对这个模型进行数学归类,并且通过之前和队友一起进行建模过程中对整体思路有着比较清楚的了解,然后阐述模型的优点、算法特点等,最后对主要结果进行说明,即回答题目所问的全部问题。

对于模型的建立,基本原则是实用、有效,因为我们建立模型是为了解决实际问题的,而不是追求单纯理论数学上的“高大上”。能用初等方法解决就不用高级方法;能用简单方法解决就不用复杂方法;能用被更多人看懂、理解的方法就不用只能少数人看懂、理解的方法。

篇(7)

在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期

一、数学经济模型及其重要性

数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。

数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。

二、构建经济数学模型的一般步骤

1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例

商品提价问题的数学模型:

1.问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。

2.实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为X元。提价后的商品单价为(25+x)元

提价后的销售量为(30000-1000X/1)件

则(25+x)(30000-1000X/1)≥750000

(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性

经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:

1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。

3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。

篇(8)

摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)

关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录

1。问题重述

2。问题分析

3。模型假设与约定

4。符号说明及名词定义

5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);

6。进一步讨论(参数的变化、假设改变对模型的影响)

7。模型检验 (使用数据计算结果,进行分析与检验)

8。模型优缺点(改进方向,推广新思想)

9。参考文献及参考书籍和网站

10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)

小经验:

1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。

2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。

篇(9)

ABCD分值: 5分 查看题目解析 >88.设抛物线的焦点为,点为上一点,若,则直线的倾斜角为( )ABC或D或分值: 5分 查看题目解析 >99.已知函数,为图像的对称中心,若该图像上相邻两条对称轴间的距离为,则的单调递增区间是( )ABCD分值: 5分 查看题目解析 >1010.已知双曲线,其一渐近线被圆所截得的弦长等于,则的离心率为( )ABC或D或分值: 5分 查看题目解析 >1111.某四面体的三视图如图,则该四面体四个面中的面积是( )

ABCD分值: 5分 查看题目解析 >1212.设函数是定义在上的函数的导函数,.当时,,若,则( )ABCD分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313.设复数满足,则 .分值: 5分 查看题目解析 >1414.若满足约束条件则的值为 .分值: 5分 查看题目解析 >1515.的内角的对边分别为若,则面积的值为 .分值: 5分 查看题目解析 >1616.在直角梯形中,的面积为1, , ,则 .分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。17已知数列的前项和,其中为常数,17.求的值及数列的通项公式;18.若,求数列的前项和.分值: 12分 查看题目解析 >18为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:

19.记评分在以上(包括)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;20.根据表中数据完成下面茎叶图;

21.分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.分值: 12分 查看题目解析 >19如图,在四棱锥中,四边形为矩形,为的中点, ,,

22.证明:平面;23.若求三菱锥的体积.分值: 12分 查看题目解析 >20已知点P,点、分别为椭圆的左、右顶点,直线交于点,是等腰直角三角形,且.24.求的方程;25.设过点的动直线与相交于、两点,当坐标原点位于以为直径的圆外时,求直线斜率的取值范围.分值: 12分 查看题目解析 >21已知函数26.设函数当 时,讨论零点的个数;27.若过点恰有三条直线与曲线相切,求的取值范围.分值: 12分 查看题目解析 >22在直角坐标系中,圆的方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.28.写出圆的参数方程和直线的普通方程;29.设点位圆上的任一点,求点到直线距离的取值范围.分值: 10分 查看题目解析 >23已知函数.30.求不等式的解集;31.设的最小值为,若的解集包含,求的取值范围.23 第(1)小题正确答案及相关解析正确答案

详见解析.解析

解: ,当时,由得,解得,所以,当时,由得,所以无解,当时,由得,解得,所以,所以的解集为或.考查方向

本题考查了绝对值不等式的求法、分类讨论的数学思想,属于基础题.解题思路

将绝对值函数展开成分段函数再分类讨论函数解的可能性即可.易错点

在讲绝对值不等式展开时出现错误.23 第(2)小题正确答案及相关解析正确答案

详见解析.解析

解:由绝对值不等式得,当时,取得最小值2,即,因的解集包含,即在上恒成立记,其在上单调递减,当时,取得值1,所以,所以的取值范围是.考查方向

篇(10)

首先,建设工程的项目技术负责人应该具备一定的技术专业知识,能够看懂图纸,且对施工过程中的技术内容能够发表自己的意见,同时技术负责人应该仔细审查图纸,对图纸中模糊的地方进行标记,为二次审图提供便利。第二,技术人员在审图时还应对图中存在的问题进行快速掌握,然后开讨论会进行共同商量,并针对问题提供可行的解决方案。第三,建筑工程技术人员应对高度和尺寸进行初步设计,并针对项目编制专项施工方案。第四,规模较大的支模方案应经过技术专家进行论证并通过,方案应经技术负责人最后审批在进行实施。

1.2施工人员准备

高支模板施工前应做好施工人员准备,应做到项目部管理人员合理有效分工。具体人员准备应做到以下几点。第一,项目技术负责人应根据获得批准和通过的方案与项目管理和施工人员及时对技术要求进行沟通交流,同时还应对项目部的技术水平进行考核,以确保质量达标。第二,项目木工长应对工程中涉及的技术进行相关传授并对工程的实施进行监督;工程竣工时应考察是否达到验收标准。第三,项目专职质检员要及时检查工程质量,质量不合格的应勒令其施工人员及时修改,尤其是要对项目中使用的材料进行严格考核以确保其达标。第四,项目测量员认真负责工程的测量工作。第五,项目专职安全员应对将要竣工的项目及时履行检查职责,对项目不合格地方尽快做出调整。如果项目中存在支架时安全员也应对其进行检查,以免漏掉。

1.3施工材料准备

一般而言,高支模板施工选用的建筑胶合板为18毫米,且为扣件式钢管支撑。相关负责人在对施工材料进行购买前,应对材料的出产厂家进行仔细考察,同时进场检验钢管、扣件的规格,确保其规格与施工设计方案一致,高要求地保证施工质量。

2、建筑工程模板支撑体系构造设计要求

2.1一些经常被忽略设计要求

第一,设置的立杆间距难以保证水平横杆贯通。设计模板支撑系统的时候,要按水平构件的尺寸大小对荷载进行计算,再分别对立杆间距进行准确的确定。如果板下立杆间距和主、次梁不一致时、纵横不成行时,因为构造上的不足,水平横杆不能纵横贯通,就会削弱架体整体的稳定性。但是如果在设计方案时,依据荷载的大小,主、次梁下的立杆排距做到一致,并对梁下每排立杆的间距和根数进行核定,对于板下的立杆间距,应选为梁下的整数倍,这样才可做到水平横杆的完全贯通,提高架体的整体稳定性。第二,边梁下的模板系统缺乏有具体详细且具有针对性的节点图。高层建筑框架梁下的模板系统边缘多为临空面,一旦在设计方案时不充分重视,会导致施工工人把支撑杆联接到外脚手架上,对模板支撑系统和外脚手架和带来一定的安全隐患。第三,连墙杆的结构特点和设置方式不符合要求,给实际操作带来不便。大部分工程的几个面或某一面没有剪力墙,多数没根据工程特点设计方案,不具有针对性的,应对连墙杆的连接措施和连接部位进行规定。第四,容易对后浇带结构特点进行忽略,对主体结构施工质量和安全带来影响。对高支模施工方案进行编制时,应对浇带的结构特点进行综合考虑,并在后浇带处设置独立的支撑带,同时在进行连续施工时,逐一对应设置上下层的立杆。第五,忽略顶部支撑点的设计要求。立杆顶部最好设置支托板,且与支架层顶横杆高度距离最好不要大于400毫米。当顶部支撑点在顶层横杆时,应向立杆靠近,最好不要超过200毫米。

2.2高支模板施工时应注意的构造要求

高支模板施工时应注意两方面的构造要求。第一,应全面对支撑架搭设的要求进行了解并掌握。搭设时应严格按照设计尺寸进行,水平杆和立杆的接头应在不同的框格层中全部错开进行设置;对于横杆的水平偏差和立杆的垂直偏差应确保小于扣件架的规范要求;对于钢管和扣件的质量应该和扣件架规范要求符合;设计地基结构层支座时应该符合承载力要求。第二,应注意整体性构造层的构造要求。如果支撑架的横向高与宽比大于或等于6或高度大于或等于20米时,应该对双向水平加强层或整体性单向进行设置;对单向水平加强层设置剪刀撑或水平斜杆时应按照每4至6米沿水平结构层进行设置;在支撑的中部和顶部每隔10至15米设置双向水平加强层;时刻确保高支撑架的底部和顶部必需设置水平加强层。

上一篇: 安全方面毕业论文 下一篇: 艺术设计教学论文
相关精选
相关期刊