时间:2023-03-29 09:18:35
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇无线通信技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
一、概述
电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。
二、无线技术介绍
(一)无线通信技术的概念
目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。
(二)无线通信技术的发展现状
无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。
总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。
1.主流无线通信技术
从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。
2.其他无线通信技术
除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。
(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。
(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。
(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。
(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。
三、无线技术优劣分析
(一)WLAN技术分析
Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。
(二)WiMax技术分析
WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。
(三)WMN技术分析
WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。
(四)3G技术分析
3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。
(五)LMDS技术分析
本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。
其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。
(六)MMDS技术分析
MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。
(七)集群通信技术分析
数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。
数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。
(八)点对点微波通信技术分析
微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。
(九)卫星通信技术分析
利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。
但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。
四、无线技术综合比较
目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。
首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。
从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。
从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。
从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。
从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。
1.2仿真分析采用MATLAB仿真工具,对矿井巷道时变多径信道模型自相关函数仿真。图1描述了传统信道模型,带宽为500Hz和1000Hz的时变多径信道模型下接收信号的自相关谱,其中,横坐标表示延时,纵坐标表示自相关函数。分析发现,时变多径信道模型与实际接收信号自相关谱较为符合,此信道模型适合矿井无线通信。
2系统性能分析
根据多径时变信道模型,假设接收天线总功率与发射总功率相等,且等于Pe,信道噪声是加性白高斯噪声,每根接收天线的噪声功率为σ2,则信噪比SNR:ξ=Pe/σ2。
2.1系统容量分析实际的无线信道是时变的,受到衰落的影响。对于单天线系统,即单输入单输出(SISO)系统的信道容量可用下式计算。图2给出了单输入单输出(SISO)系统和多输入单输出(MISO)系统的信道容量与发射天线数目之间关系的仿真结果,横坐标表示信道容量,纵坐标表示概率。其中,仿真参数设定为信噪比10dB,迭代次数为1000,接收天线为1,发射天线数目分别为1,2,3。仿真结果表明,SISO系统信道容量最小,发射天线数目从1依次增加时,信道容量也依次增加。图3给出了MIMO系统的信道容量与发射天线数目之间关系的仿真结果,横坐标表示信道容量,纵坐标表示概率。其中,仿真参数的设定同上,发射天线数目分别为2,3,4,接收天线对应为2,3,4。从仿真结果可以看出,MIMO系统信道容量随着收发天线数目的增加而增加。对比图2与图3发现,MIMO系统的信道容量显然比SISO系统的信道容量有了较大增加。
2.2误码率分析令xm(l)表示第m根天线的第l个子载波上的发射信号(l=0,…,L-1),经历时变多径衰落信道传输和FFT变换后,在t时刻第n根接收天线的第l个子载波上得到的信号yn(t)可由下式得到。采用MATLAB对MIMO-OFDM系统在不同天线数目下进行误码率性能对比,具体实验流程如下:1)初始化过程。给定发射信号及时变多径衰落信道的冲激响应初始值。接收端采用最小均方误差(MMSE)检测算法。2)确定接收信号过程。输入数据经过串/并转换、空时编码、IFFT变换并添加循环前缀后经时变多径衰落信道到达接收方,根据式(5)确定接收信号形式。3)对接收信号去除循环前缀、FFT变换、空时译码及并/串变换后,计算MMSE检测加权矩阵,并进一步得到MMSE判决数据。4)误码率计算过程。根据数据检测与判决结果,与初始输入数据对比,计算系统误码率。基于上述分析与描述,设置的仿真参数如表1所示。仿真在收发天线数目相等的情况下进行,天线数目分别为1,2,3,多径数目假设为2,接收端采用MMSE检测。图4给出了收发天线数目相等,不同天线数目情况下的MIMO-OFDM系统的误码率性能,其中,横坐标表示信噪比,纵坐标表示误码率。从仿真结果可以看出,随着收发天线数目的依次递增,从1增加到3,在BER为0.02处,天线数目选取3相对于选取数目2和1分别有4dB和9.6dB的增益,系统的误码率依次下降且抗多径衰落的能力依次增强。图5反映的是多径对MIMO-OFDM系统性能的影响。图中,横坐标表示信噪比,纵坐标表示误码率。这里假设发射天线数目为2,接收天线数目为2,接收端采用MMSE检测,多径数目取2,4,6。分析发现,随着多径数目的递增,在BER为0.02处,多径数目选取6相对于选取数目4和2分别有4.3dB和9.7dB的增益,给定一定的信噪比值,误码率随着多径数目的递增而递减,此结果与MIMO-OFDM技术对抗多径衰落相符,是一种更适合于矿井巷道通信的无线技术。
1.1适应范围广
蓝牙无线通信技术之所以能够在全球范围内广泛使用就在于其工作频段的范围,由于蓝牙技术研发之时选择在全球统一开发的2.4GHz医学、工业和科学ISM频段,全世界范围内多数国家所使用的SM频段是在2.4到2.4835GHz之间,SM频段包含在全球统一的频段之中,各种在使用蓝牙无线通信技术的时候可以不受限于其所在地区的无线电资源部门的许可与否皆可使用。
1.2可同时传输语音和数据
蓝牙采用的是分组交换和电力交换技术,支持异步数据信道、三路语音信道或者语音和异步数据同时传输的信道。除此之外,蓝牙定义了面向同步链接链路SCO以及异步无连接链路ACL两种链路类型,其中ACL主要负责数据的传输,而SCO主要负责语音传输。也就是说蓝牙无线通信技术可以同时进行语音和数据的传输。
1.3能实现临时性对等链接
蓝牙设备在进行对等连接的时候,主动发起连接请求的一方为主设备,被发起连接请求的一方为从设备。蓝牙的基本网络为由链接通信组成的微微网,当一个微微网形成时有一个主设备和主设备以外的一个或者多个从设备。
1.4抗干扰能力强
蓝牙无线通信技术具备良好的抗干扰能力主要在于其使用跳频的工作方式来进行频谱的扩展。现在很多生活中使用的电器设备、局域网和无线设备等会在ISM频段工作,这就和蓝牙设备所在的频段可能会有冲突,这样的情况下,蓝牙设备将2.402到2.48GHz的频段分割成79个频点,相邻频点之间间隔1MHz,数据分组在任意频点发出之后继续跳到另一个频点发送,并且频点的选择顺序没有规律性,频率改变为1600次/s每个频率只持续625μs,由此,蓝牙设备的工作就不会受到其他设备的频段的干扰。
1.5体积小,功耗小
现在电子设备的更新换代越来越快,体积越来越小越来越薄,所以这些设备中的蓝牙模块的体积也需随之改善,以便更好的集成到各种电子设备中去。蓝牙设备的耗能会根据其工作状态的不同会有所增减,处于工作状态的蓝牙一般耗能不多,而非工作状态下的呼吸模式(Sniff)、保持模式(Hold)、休眠模式(Park)消耗的能量较之更少。也就是说,蓝牙设备的体积比较小而且使用的时候均为低耗能模式。
1.6开放接口标准,成本低廉
在蓝牙无线通信技术推广的过程中,SIG将该技术各种标准向全世界公开,所以,企业在研发和生产产品的时候要是能够兼容SIG的蓝牙产品,那么这样的产品在市场上的适用性就更强,与此同时,蓝牙相关的应用程序也随之得到极大的推广。在这样的背景之下,蓝牙技术得到广范围的普及,制造蓝牙产品所需的投资也很大程度上降低了。
2蓝牙无线通信技术的应用
蓝牙无线通信技术的研发初衷就是要在尽可能多的领域实现数字移动设备之间的非电缆的无线通讯连接和相关数据的传输,很多数字和电子设备之间的联网信息能够实现实时的共享,蓝牙技术让设备的功能得到一定范围内的扩充。加之,蓝牙设备大多是成本比较低且体积比较小的集成模块,将其集成于电子设备中之后有利于形成了一些应用模型的出现。无线键盘和鼠标是以电子计算机为连接中心的无线连接;一台打印机可以覆盖多台计算机的打印任务或者其他资源的共享;掌上电脑、数字照相机、智能手机可以通过打开蓝牙无线连接电脑进行信息数据的传输;办公室多台电脑通过蓝牙形成一个无线网络局域网;以及可以实现无线语音通信的新型的蓝牙扩展技术,如无线耳机的应用;集成蓝牙技术的电子小设备,腕表、车钥匙、电子笔等的应用也涉及到各个领域。这些都是对蓝牙无线通信技术的很好应用。蓝牙技术可以通过网络接入点和拨号上网两种方式连接互联网,拨号上网可以让便携式计算机通过移动电话接入internet,蓝牙无线网络接入还可以作为公用电话交换网的接入点使用,这有利于家用电器的无线组网和网络控制,使得上网更加方便快捷。
3蓝牙技术的应用前景的新思考
3.1蓝牙所产生的电磁波对于人的身体健康不会有伤害
因为蓝牙设备在工作的时候起功率比较低,向对的,移动电话这样的高功率设备一般都会产生有损人体健康的电磁辐射,所以集成蓝牙设备的各种类型的电子装置将有很好的应用市场,比如用蓝牙耳机代替手机听筒进行手机对话将会减少手机辐射对大脑的影响。
3.2红外线技术应用的时候会受制于红外线两个传输口的位置和防线
而蓝牙技术则能够突破这样的限制,将其适用范围拓展到三维立体覆盖的面,能够在一定范围内自动的识别和连接设备。除此之外,蓝牙无线通信的1MB/s的速度比红外线技术快,也就是说蓝牙技术相比较于红外线技术能够适用于更多的场合和更复杂的环境。鉴于这些特征,在工业自动化控制领域很多需要立体空间多方位的移动产品的检索识别、信息采集和数据整合等工作都得应用到蓝牙设备。
3.3在信息技术时代,蓝牙技术在电子传感器的信息传输方面应用广泛。
由于蓝牙技术的短距离数据传输速度快、不受限于方向和位置,所以能够将各类传感电子元件采集到的信息通过布设的线缆传输到处理单元;蓝牙技术可以使得小范围内的设备间视频传输变得更加快捷。从音频到视频的扩展完全可以在众多的应用领域得到实现,完全不受限于多媒体的类型。
二、基于4G通信技术的煤矿无线通信系统
(一)无线移动通信系统架构
针对当前煤矿生产对无线移动通信系统的需求,利用4G中的TD-LTE通信技术来实现高传输速率的宽带无线网络,建立信息化、自动化、智能化于一体的煤矿安全生产管理系统,打破当前煤矿系统安全生产局面,将煤矿井下传感器、视频等各类业务数据进行统一的网络部署,有效解决信息孤岛的问题,确保煤矿安全生产,从而提高煤矿的生产效率。因此,建立基于分时长期演进(TD-LTE)的宽带无线网络,由于基于4G通信技术的无线移动通信系统可以在频谱带宽20MHz下可以实现上行峰值速率和下行峰值速率分别为50Mb/s,100Mb/s,其接入时延可以小于100ms,如表1所示[3],表示4G通信系统与3G无线通信系统的对比,因此,采用TD-LTE无线通信技术不仅可以满足语音和数据业务的实时传输,也可以有效避免数据丢包、延时等问题。下面对基于4G通信技术的无线移动通信系统进行对比分析:1.基于TD-LTE通信技术的系统架构。TD-TLE煤矿无线通信系统网络总体架构主要由基站、接入网关、BRAS及核心网通信构成,其中,核心网网元可以实现语音通信、数据传输及集群呼叫功能,其主要通过IMS+EPC+DSS集群模式来实现的[4]。2.建立基于TD-LTE通信技术的基站通信系统。将Femto/Pico基站应用于无线通信系统建设中,增强区域的覆盖范围,通过自身的传输网络统一接入到安全网关中,采用IPSEC的方式,以保证网络传输安全。当基站通过提供WLANAP来承载数据业务过程中[5],其也可以通过PDG直接接入网络来承载数据业务,为了确保提高高质量、高传输速率的数据和语音业务,则可以通过直接接入3GPP核心网来满足不同的产品需求,实现统一的业务活动,建立以SmallCell为基站的网管系统,从而实现下层无线网络通信系统与上层网管系统的对接。3.建立基于IMS+EPC+DSS集群模式的核心网[6]。在系统中设置核心网,其主要作用是提供用户连接、系统管理、网络承载等功能,分析该系统的核心网系统AXUNiEPC-5[7],其主要依托电信级EPC核心网的优势来实现网元MME、PGW等功能融为一体的模式,该核心网实现了移动办公、遥感业务、监视控制及电子商务等基本业务,其可以为用户提供安全可靠的LTE接入。另外,核心网系统还利应用了IMS系统,其是一种全新的多媒体业务形式,其不仅可以满足多样化的多媒体业务需求,还可以实现LTE语音业务系统,并且DSS核心网可以实现LTE的集群呼叫功能,DSS与EPC相比,其都采用了ATCA架构,并且都可以实现设备小型化的核心网。4.建立综合应用无线通信系统平台。利用分布式高性能计算机框架架构来建立一个安全、可靠、统一的综合应用系统平台,为了构建灵活、适用强的处理平台,应在软件处理平台基础上增加分析处理数据的专用支持工具,如支持LTE、Wi-Fi网络和终端的基站系统[8],实现数据传输、视频及语音等各类业务,提供统一的数据存储及应用接口,从而实现自动化管理的应用系统。
(二)无线移动通信系统功能概述
1.调度功能。调度系统是煤矿生产的重要通信手段,生产调度员通过利用调度功能来统筹调度所有资源,并对煤矿生产中各种突发状况进行处理,以保证煤矿生产顺利进行。调度功能主要包括生产进程管理、煤矿生产流程整合及资源分配等功能。2.语音业务。其主要包括以下几种业务:第一,移动电话,其可以提供语音通信功能;第二,紧急呼叫业务,当煤矿井下的集群用户发起紧急呼叫,呼叫中心将会做出答复,其类似与电话业务,具有简单方便、快速的特点;第三,主叫号码识别显示业务,其主要功能是提供主叫用户号码给被叫用户。3.集群通信。为了实现用户之间的通信,利用无线集群通信系统来实现自动化的信息共享功能,与公众无线移动通信相比,无线集群通信系统不仅可以提供系统内部的全呼、组呼之外,还可以提高双向通话功能,通过建立优先等级呼叫和紧急呼叫功能,以满足煤矿生产安全部门指挥调度的需求。4.增殖数据服务。在增殖数据业务中,主要包括提供视频通话、物联网接入、手机终端定位、多种数据等业务,其中,对于视频通话,通过手机实时进行无线视频业务,以便于井上工作人员的判断和决策;数据网接入,通过利用3G通信技术来实现终端及无线传感器等接口的采集,并利用物联网提供终端接入;手机终端定位,即利用4G无线通信技术来实现语音通话及矿用无线通信手机终端定位,即通过操作人员携带的手机与基站之间的信号传输来获得操作人员在井下的信息,这样地面上的工作人员则可以通过计算机来了解井下工作人员的信息,其可以确保煤矿井下的安全生产,同时也可以提供实时信息;数据业务,为了满足煤矿井下多种业务对宽带的需求,实现高速分组无线数据业务,并通过智能手机绑定内部系统,实现信息、视频监控及安全生产实时监控等功能,将综合自动化系统应用于系统中,实现组态软件实时显示功能,当煤矿井下出现异常情况,系统将会提供自动报警提示功能。
Wi-Fi作为主流短距离无线传输技术,标准完善、技术成熟、稳定易用、兼容性好,已经成为智能家电网络化方案的主流互联技术,一些家电企业已开始在电视机、空调、冰箱、热水器、酒柜中大规模采用嵌入式Wi-Fi模块,将分散在家中的各个家电产品联成一个整体控制系统,改变单一的被动控制。值得一提的是,面对家庭对各种视频内容的消费所带来的网络流量爆发式增长,第5代Wi-F(i802.11ac)应运而生,为家庭网络提供了更高的带宽、更快的传输速度,为智慧家庭实现提供更有力的支持。通过第5代Wi-Fi进行无线连接,网络带宽可以达到千兆级别,可顺畅、无间断地播放流视频及下载高带宽应用程序,比现有网络增速10倍。ZigBee多用于家庭自动化、安全保障系统等。在利用Zigbee技术搭建的无线传感器网络中,通过在无线门磁/窗磁报警器、红外感应闯入探测器、保险柜/抽屉振动监测器等防盗报警器以及燃气、烟雾、氧气、温度、湿度等传感器内安装Zigbee模块,可实现数据的无线传输、分析和报警。此外,ZigBee在灯光控制、家用智能开关、门禁系统、智能抄表等应用中,也发挥了良好的作用。
随着技术的不断发展,UWB以其高质量的近距离通信能力,成为智能家庭数据传输领域的中坚力量之一。UWB可以运用于机顶盒和DVD播放机到数字电视的无线连接,PDA、手机和数码相机与PC机的同步等家庭设备音视频数据传输等方面。NFC技术的传输速率较低,并不适合直接用于传输音视频等需要较高带宽的应用,但是,NFC技术允许电子设备在不到0.1s的时间内闪电建立连接,加之其良好的保密性能,成为了在不同场合、不同应用领域中其他无线通信技术的最佳拍档。例如,将NFC和蓝牙技术配合使用,可以先通过NFC技术近距离快速建立连接,再利用蓝牙技术在手机、电脑、音频设备或打印机之间进行数据传输,将会给用户带来前所未有的体验。对于设备制造商而言,未来智慧家庭中家居产品的开发,除了在功能和外观上的创新以外,采用什么样的通信协议以及如何将通信模块与主系统集成在一起也将是需要重点考虑的内容。
一、概述
电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。
二、无线技术介绍
(一)无线通信技术的概念
目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。
(二)无线通信技术的发展现状
无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。
总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。
1.主流无线通信技术
从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。
2.其他无线通信技术
除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。
(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。
(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。
(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。
(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。
三、无线技术优劣分析
(一)WLAN技术分析
Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。
(二)WiMax技术分析
WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。
(三)WMN技术分析
WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。
(四)3G技术分析
3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。
(五)LMDS技术分析
本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。
其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。
(六)MMDS技术分析
MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国-七)集群通信技术分析
数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。
数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。
(八)点对点微波通信技术分析
微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。
(九)卫星通信技术分析
利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。
但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。
四、无线技术综合比较
目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。
首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。
从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。
从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。
从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。
从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。
2无线通信技术在电力系统监控中的具体应用
在电力系统中设置监控系统,利用监控系统进行数据的收集处理,实现对远程设备的操作,能大大提高电力系统的工作效率,满足人们的生活需要。因此,在电力系统监控中应用无线通线技术已成为社会发展的需要。
2.1在电力用户和线路设备等方面的应用
利用无线通信技术可以把电力用户、设备、线路等监控系统联结起来,建立一定范围的局域网,通过远程集抄终端,定时抄传电力用户的电表信息并进行存储,避免了因系统异常导致的数据缺失;无线集抄终端还可以智能判断电路设备是否出现故障,并把发现的问题传送到服务器,及时发出警告。通过无线通信技术可以实现远程操作,如抄表、查询、统计、浏览、分析、打印等,避免了人为因素导致的数据不准确等弊端,提高了电力系统的工作效率和电力系统的自动化水平。
2.2在电力服务方面的应用
通过无线通信技术实现对电力系统的监控,把用电系统和移动终端实现网络连接,既满足了电力部门向电力用户及时发放用电信息的需要,也满足了电力用户根据个人需要自行定制信息查询的需要。利用无线通信技术,通过移动终端,采用SMS、WAP、PUSH等形式,实现办公自动化和监控职能,电力部门可以根据通知的重要程度采用自动语音通知的形式,并通过设定系统得到回复结果。同时,通过对电力系统的网络监控实现电力部门和电力用户的信息沟通,及时解决出现的问题,提高电力部门的服务效率,满足电力用户的需要。电力用户可以通过无线网络利用EMAIL、SMS、WAP_PUSH等形式,让手机等终端进行信息查询和信息定制,提高了电力用户的满意度,完善了电力部门的服务职能。
2.3在电力系统内部的应用
随着电子技术的发展,使无线通信技术在电力系统监控中的应用得到了进一步的发展,通过无线通信技术的定位功能可以对电力系统工作人员的工作情况进行监控。随着智能机的出现,利用手机终端还可以实现信息共享,提高工作效率。如,工作人员在野外工作时,可以通过手机终端进行信息查阅,及时处理和解决遇到的新问题,提高其工作效率。
当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。
资料显示,在全球电信市场普遍低调的背景下,移动通信依然保持了较好的增长态势。统计显示,2003年全球移动用户数增长率在17%以上,总计达到13.54亿户。在市场值方面,全球移动业务市场在2003年已达到4680亿欧元,比上年增长了11.3%以上。
尽管全球移动市场在增长,但这种增长也呈现出很大的不均衡性。从用户数来看,在北美、欧洲等发达国家和地区,由于移动用户普及率已经很高,因此新增用户数日益减少;而在亚洲、非洲等地区,特别是像中国这样的发展中国家,移动用户数增长迅猛。从用户创造的价值来看,欧美发达国家的ARPU值远远超过了新兴的发展中国家。从数据新业务市场的增长来看,韩国、日本呈现爆发态势,已成为全球移动通信发展的新热点。
目前,我国的移动通信市场呈现持续快速增长的局面,截至4月底,移动用户总数达到2.96亿,用户普及率达到20.9%。考虑闲置的充值卡和一人双机的情况,我国移动通信由于用户普及率相对还比较低,仍有相当巨大和持久的增长空间。但我国的移动通信领域已进入了全面竞争的时代,GSM、CDMA乃至小灵通等网络激烈争夺用户,这已导致了资费下降,用户ARPU值下降的情况。目前我国的GPRS、CDMA1X等2.5G数据业务发展态势不错,并已逐步培育了用户群。而3G还处在技术试验阶段,政府依然保持谨慎态度。
除传统的公众移动通信外,全球的宽带无线接入领域近期研究和应用十分活跃,热点不断出现,给无线通信业界带来了清新的空气。这包括宽带固定无线接入技术、WLAN技术、WiMAX技术、UWB技术等等,呈现百花齐放的局面。这些技术的出现和发展,给整个无线通信产业注入了勃勃生机。
二、热点解析:五大技术引领应用模式各展所长
前文对全球无线通信领域的发展情况作了概要性介绍,以下将重点就当前无线通信领域的焦点问题和热点技术展开较深入的介绍和分析。主要包括3G、3.5GHzMMDS、WLAN、WiMax、UWB等五大热点。
1.举世瞩目的3G
今天,第三代移动通信3G格外引人瞩目,成为无线通信产业的最大热点。
首先,从技术角度来看,3G主流技术已经基本成熟。cdma2000由于技术本身的平滑演进特性,进入3G的障碍不大。WCDMA以前受版本不断更新的影响,阻碍了商用进程,但目前主体标准已经定型,具备了规模商用的基础。TD-SCDMA技术要相对滞后一些。
总的说来,当前的3G技术已经能够支持规模化的商用网络部署。
其次,目前欧美等运营商已经进入了3G网络部署阶段。3G网络的商用部署正在全球一步步地铺展开来。截至2004年3月底,就WCDMA而言,全球已经发放了120份牌照,签署了91份商业部署合同,目前已有二十多家网络投入商用,预计到2004年年底总数将超过40家。目前两家韩国运营商STK和KTF在使用cdma20001xEV-DO,日本KDDI也开始了EV-DO网络的商用,而Verizon也即将参与该制式下3G网络的部署。
应该说,2004年已经进入了全球3G的商用部署年。
第三,部分运营商的3G用户数量开始呈现快速增长的局面。最早推出3G商用业务的NTTDoCoMo近期宣布,在距离突破200万用户仅仅两个月的时间内,他们的3G用户总数就增长至300万大关。5月中下旬,和记黄埔表示,在过去两个月中,3G用户数出现了快速增加,目前在全球范围内已经达到了173万。截至2004年1月1日,全球使用cdma2000(包括CDMA1X)系列和WCDMA标准制式的3G用户数已经达到了7300万。
从全球来看,3G商用在部分地区已取得了初步成功。
第四,我国3G处在黎明的前夕。我国对3G一直采取积极稳健的态度,目前,我国正在进行第二阶段的网络技术试验,或称外场测试。自今年3月起,开始启动WCDMA、cdma2000和TD-SCDMA的测试工作,由6大运营商分别在北京、上海、广州三地进行。测试的重点包括:3G网络覆盖、容量等性能试验;不同3G技术之间、3G和2G技术之间的干扰、共存;各种3G业务及业务兼容性试验;3G终端和系统之间互操作试验;3G和2G之间的互操作试验。
预计此阶段试验将在今年10月份完成,试验将对我国对3G的决策工作起到重要的参考作用。由于此次试验由运营商参与,且属于网络试验。因此,预计若此次试验结果令人满意的话,我国的3G牌照发放工作有可能顺势展开。
趋势分析3G一波三折,曾经有一段时间,人们对3G的前途失去了信心,并在今天留下了心理阴影。对3G问题,我国应如何把握呢?笔者认为,目前,3G已处在商用的爆发阶段,由于3G技术和产品的成熟,3G的商用已不容置疑地摆在了我们面前。欧美等国运营商加紧部署3G网络以及日韩等国3G用户的快速增长,表明3G已经成为全球移动通信领域新的成长点,我国需要当机立断,尽快开展3G牌照的发放工作和商用部署工作。这样才不至于坐失机遇,在本来领先的移动网络建设中落后。同时,3G也为国内的电信制造商提供了绝佳的机遇,这也是我国移动通信产业的一次发展良机。
应该说,目前3G还存在一些问题,主要表现在市场还处在启蒙阶段,杀手级的业务还没有呈现,终端还不够多。在我国,政府将考虑对市场竞争度的把握,涉及3G网络发放几张牌照的问题,同时,还将考虑设备国产化问题。这些问题已经属于次要矛盾,目前最重要的是要选择恰当时机尽快推动3G网络平台的建设,这才是解决以上矛盾的关键环节和引导环节。
这主要是因为我国3G网络建设不同于西方发达国家,我国移动话音用户市场还有很大的成长空间,这就能够避免出现因为发展初期新应用新业务不足无法支撑网络生存的状况。同时,我国有迫切需要进入移动市场的“新”运营商,中国电信和中国网通如果被允许经营移动通信业务,其网络建设必然会选择3G,这从中远期的网络成本上要远远低于2G技术。此外,尽快发放3G牌照,对解决现有的小灵通(PHS)的矛盾,也有重要的战略意义。目前,日本都已经弃PHS而转攻3G,其目的十分明显,即要纠正自己早期大上带有强烈本土化特征的PHS导致失去移动领域国际领先地位的失误,重新用全球性的先进技术武装自己的移动通信产业,实现在该领域的战略性崛起。如果我国反其道而行之,将是不明智的,这关键还是政府的决策引导问题,而不能抱怨运营商。总之,3G不是一蹴而就的,如果迟迟不进行网络的建设,其他的矛盾将继续积聚,难以得到根本性的解决。
2.3.5GHz宽带固定无线接入的推广应用
3.5GHz宽带固定无线接入技术MMDS,是工作于3.5GHz无线频段上的中宽带无线接入技术。今年4月份,第三批3.5GHz宽带固定无线接入频率评选(招标)工作在我国进行,使MMDS技术在我国的应用进一步扩大,这也使3.5GHz固定无线接入技术成为今年业界的热点之一。
在此次评选(招标)工作中,中国电信、中国网通、中国移动、中国联通、中国铁通五大运营商分别获得河北、山西、内蒙古等27个省(区)的3.5GHz频段2×30MHz频率使用权,并将获准经营相应电信业务。加上此前的两次3.5GHz频率使用权分配,我国3.5GHz频段已在绝大部分地区分配完毕。这表明,我国的3.5GHz宽带固定无线接入进入了规模商用。
前一段时间,无线电管理局副局长刘岩率领由无线电管理局、电信管理局、电信研究院共同组成的调研组,对第二批3.5GHz中标企业的工作情况进行了调研。通过调研发现,在第二批中标的9家企业中有7家建设开通了网络,这7家企业在一半以上的中标城市建设了自己的网络。目前运营商倾向于提供的业务包括:语音接入业务(本地和IP电话),数据专线业务,Internet接入业务等。调研中还发现,如果将3.5GHz网络作为单一网络来经营,盈利困难比较大,特别是对于大型企业。调研中,运营企业对进一步获得3.5GHz频率资源表现出了很大热情。
趋势分析宽带固定无线接入技术因为其高带宽、建设速度快、接入方式灵活等特点,受到了业界的关注。但这项技术也有其局限性,比如高频段26GHz的LMDS技术受天气影响较大,而3.5GHzMMDS技术在我国又受到了带宽不足等因素的限制。因此,对于宽带固定无线接入技术,我们应该回归理性的认识。它具有自身的优势,但也有其固有的缺陷,因此在应用中要实事求是。
就目前重点推广的3.5GHz技术来看,运营商的经营经验表明,若单独把MMDS技术作为一个独立网络来运作,由于其技术、用户规模和频率带宽的限制,较难实现盈利。因此,我们应该进一步放宽眼光,把它推广至更大的应用领域。比如可以考虑像现在某些运营商所采用的,将之作为移动基站的回路。
对于3.5GHzMMDS技术,我们一方面要积极推动其综合业务的应用,比如数据增值业务的开发和经营。同时也要从全局的角度考虑,使之成为移动通信网络的有效补充手段。这样才能充分发挥3.5GHz频段的效率。未来,随着3G技术的商用,3.5GHz将有望成为移动网络重要的接入补充手段,并对3G网络的搭建起到支撑作用。
3.沸沸扬扬的WLAN标准之争
无线局域网技术WLAN(Wi-Fi),其技术标准为802.11,可实现十几兆至几十兆的无线接入。我国目前发展的主要是802.11b标准的WLAN网络,支持11Mbps的无线接入。作为近年来的一项新技术,WLAN在欧美等国快速发展,在我国近两年也得到了几大运营商的追捧。而自去年开始的WAPI标准之争,吸引了全球的关注目光。
2003年5月12日,由中国宽带无线IP标准工作组负责起草的无线局域网两项国家标准(即WAPI标准),由国家信息产业部报送国家标准化管理委员会正式颁布。2003年12月1日,国家认证认可监督管理委员会2003年第113号公告,宣布对无线局域网产品实施强制性产品认证,要求所有产品都要加载我国拥有自主知识产权的安全保密协议WAPI,从2004年6月1日起,不符合WAPI标准的无线局域网产品不得出厂、进口、销售或者在其他经营活动中使用。但2004年4月22日,国务院副总理吴仪表示中国已经同意美方提出的要求,不在2004年6月1日最后期限到来之时强制实施WAPI标准。2004年4月29日,国家质检总局、认监委、国标委联合了2004年第44号公告。公告强调:WAPI标准实施时间只是推迟,并没有取消,也没有取消标准的强制性属性。
笔者认为,之所以出现WAPI标准之争,除了国家出于自身信息安全的考虑外,我国无线通信设备厂商希望成长壮大,占领新兴技术市场的渴望也是重要因素。但该标准的无限期推迟,也暴露出一些问题。那就是,我国的无线技术的核心能力,与国际水平相比还有一定差距,还难以撼动国际主流的技术集团。同时,我国通信技术标准的制订策略,还存在封闭性的问题,这也是其受到国际社会普遍攻击的重要原因。当然,WAPI标准的推迟执行,也是出于更大的国家利益的考虑。
趋势分析WAPI标准之争,表明WLAN技术在全球的重要战略地位。其战略意义不只在于网络的部署、用户的发展、业务的经营范畴,更在于其对IT通信产品领域的巨大拉动力量,特别是对计算机芯片的突出贡献。因此,我国应该积极推进WLAN核心技术的研究工作,这不仅涉及通信产业,而且涉及IT领域的巨大利益。
抛开WAPI标准之争,我们如何把握WLAN技术的发展趋势呢?应该说,WLAN在我国目前的工作,陷入了低潮阶段。这主要是受制于WLAN技术自身的限制,比如其漫游性、安全性、如何计费等等,还没有得到妥善的解决。另外,高端商业用户的不足,使网络建设的投资收益比较低,因此也影响了运营商的积极性。未来,随着技术的进一步成熟,WLAN技术将在特定的区域和范围,特别是热点区域和高速信息接入领域,发挥对移动通信网络的重要补充作用。3G网络商用后,WLAN将成为弥补3G固定区域高速覆盖的不足。总体来看,WLAN具有很强的生命力,但其在运营领域的发展速度估计会低于过去的预期。
4.宽带无线技术新宠WiMAX
有资料显示,“WiMAX”已经成为近期互联网上搜索量最大的通信关键词,该项技术以其远覆盖和高带宽特性,成为无线业界的新宠。
WiMAX全称为WorldInteroperabilityforMicrowaveAccess,即全球微波接入互操作系统,其技术标准为IEEE802.16。WiMAX也组织了自己的联盟。目前这个联盟已经发展了数十家会员,该联盟由Intel牵头,我国中兴通讯也名列其中。WiMAX的目标是促进IEEE802.16的应用。
WiMAX相对于Wi-Fi的优势主要体现在Wi-Fi解决的是无线局域网的接入问题,而WiMAX解决的是无线城域网的问题。Wi-Fi只能把互联网的连接信号传送到300英尺远的地方,WiMAX则能把信号传送31英里之远。Wi-Fi网络连接速度为每秒54兆,而WiMAX为每秒70兆。有专家认为,WiMAX的覆盖范围和传输速度将对3G构成威胁。在成本等各个方面的优势使得业内人士将WiMAX技术看作是一项打破产业格局的技术。
近期,英国电信(BT)、法国电信、Qwest通信公司、Reliance电信和XO通信加入了WiMAX论坛,目前WiMAX论坛已经拥有98个成员,运营商占25%。今年初,Intel也宣布,下半年开始将会在其生产的芯片中部分采用WiMAX标准。
趋势分析对于今天异常火热的WiMAX技术,我们该如何看待?它会成为3G技术的终结者吗?笔者认为,这种观点不尽正确。首先,从技术自身角度来看,WiMAX还不具备公众移动通信网络的广域漫游、安全特性、终端便携等移动特性。其次,WiMAX标准还不成熟,因此预计商用还需要至少两年以上的时间,规模普及还要五年左右的时间。其三,WiMAX的特点是高速的数据传输能力,但其还没有对实时话音业务的高效支持能力,这将限制其作为公众移动通信的应用。其四,WiMAX的产业规模以及技术和设备成熟性还远远难以和3G相抗衡,其推广期也将滞后于已经开始启动的3G技术。其五,WiMAX技术有可能受到传统移动通信运营商或制造商的抵制,从而限制其发展。
对于WiMAX技术,笔者认为它具有巨大的潜力,但尚处在襁褓阶段,目前还难以对当前的全球无线通信格局产生重大的影响。由于3G的实施,WiMAX将可能成为未来3G网络的补充手段,在高速信息接入领域发挥其特性。但受其自身移动性和话音支持能力的限制,WiMAX不大可能杀死3G。
5.超宽带无线接入技术UWB
无线技术领域的活跃除表现在新技术不断涌现外,还表现在其传输能力的不断拓展。近两年,一项超高速的无线接入技术受到了大家的关注,那就是UWB。
UWB是一种时域通信技术,它采用超短周期脉冲进行调制,把信号直接按照0或1发送出去,而不使用载波,这与此前的无线通信截然不同。脉冲调制产生的信号为超宽带信号,谱密度极低,信号的中心频率在650MHz~5GHz之间,平均功率为亚毫瓦量级,抗干扰和多径的能力强,具有多个可利用信道。与CDMA系统相比,时域通信系统结构简单,成本相对较低。UWB技术具有高速率、低成本、低功耗的显著特性。
UWB最引人注目的特点是具有很高的数据传输速率。XtremeSpectrum公司预测,他们即将开发出的产品具有在10米内传输约100Mbps的能力,Intel则把目标定在了500Mbps。
趋势分析对于UWB技术,我们应该这样看待,它以其独特的速率锋芒以及特殊的应用范围,也将在无线通信领域占据一席之地。由于其高速、窄覆盖的特点,它很适合组建家庭的高速信息网络。它对蓝牙技术具有一定的冲击,但对当前的移动技术、WLAN等技术的威胁不大,甚至可以成为其良好的能力补充。
三、走势把握:接入多元网络一体综合布局代表方向
以上,就当前无线通信领域的热点和焦点问题进行了叙述和讨论。那么,我们该如何把握中期未来无线领域的发展趋势呢?
首先,无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围,不同的适用区域,不同的技术特点,不同的接入速率。比如3G和WLAN、UWB等,都可实现互补效应。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。因此,在政策上我们应该综合推进各种无线接入的发展,推进组网的一体化进程,通过建网的接入手段多元化,实现对不同用户群体的需求覆盖,达到市场细分和业务的多元化,解决移动通信发展不均衡的状况。
其次,我国政府应该给企业配置更多的无线频率资源,推进不同技术相关频谱的规划和应用工作。这样才有利于不同的企业根据不同的发展策略和市场需求,综合地规划自己的无线通信网络,实现资源的有效配置和利用。当然,政府也需要加强对有限频率资源的管理,对于企业闲置不用的频率占用,考虑适当的手段予以收回。
其三,从公众移动通信网络发展来看,3G已经成为全球包括中国移动网络演进的主要进程。从欧美发达国家的经验来看,由于其移动话音用户的普及率高,通过发展用户实现增长的模式已成为历史。因此,他们期望通过3G搭建更大的业务平台,从而实现利润的新来源。由于3G技术的成熟,目前3G商用网络部署已经在全球范围内启动。就我国而言,也要借鉴欧美的经验,在用户数量增长放缓之前,就应提前培育新兴移动市场。目前,政府应该开始积极考虑3G牌照发放和商用问题,把握住这个移动业界的巨大历史机遇。
其四,从宽带无线接入技术来看,全球该领域发展十分火热。该领域的发展呈现出向高带宽快速跃进、覆盖范围逐步扩张的趋势。未来,该领域还可能出现更强大的新技术,从另一个角度对整个无线通信产业起到推进作用。但从近期来看,我们对宽带无线接入技术发展应该有一个理性的态度和科学的把握。目前的宽带无线接入技术主要集中在固定环境下的高速接入,其移动性和话音支持能力无法和公众移动通信网络抗衡。在发展中,我们应该从全局的观点来把握,使之成为与移动网络互补的重要技术手段,这样既可以充分发挥其技术个性,又防止出现不必要的资源竞争和浪费。
其五,未来的无线通信网络应该是怎样的呢?专家认为,未来的无线通信网络将是一个综合的一体化的解决方案。各种无线技术都将在这个一体化的网络中发挥自己的作用,找到自己的天地。从大范围公众移动通信来看,3G或超3G技术将是主导,从而形成对全球的广泛无缝覆盖;而WLAN、WiMAX、UWB等宽带接入技术,将因其自己不同的技术特点,在不同覆盖范围或应用区域内,与公众移动通信网络形成有效互补。
其六,更远的未来,按当前专家们的预想,通信信息网络将向下一代网络NGN融合。在未来NGN概念中,固定网络将形成一个高带宽、IP化、具有强QoS保证的信息通信网络平台。在这一平台上,各种接入手段将成为网络的触手,向各个应用领域延伸。而3G、宽带固定无线接入、各种无线局域网或城域网方案,都将成为大NGN平台的延伸部分。从而形成集固定无线手段于一体,各种接入方式综合发挥效用,各种业务形成全网络配置的一体化综合网络。当然,这一进程将是漫长的,也必将遇到很多挫折。
目前,铁路常用的数字无线电台主要有450MHz、400MHz数字无线电台。450MHz数字无线电台主要用于普速铁路列车无线调度通信、调度命令和无线车次号校核信息传送,400MHz数字无线电台主要用于站场常规无线通信。国家规定给铁路的450MHz、400MHz频点有限,需要各铁路局申请额外频点才能满足站场无线对讲业务需求。铁路总公司铁运函[2014]31号要求,货车列尾装置可采用GSM-R/400MHz双模列尾装置,在非GSM-R铁路区段,列尾无线通信使用400MHz频率;站场无线调车继续使用铁路专用的400MHz频段频率。在编组站,规划分配的400MHz专用频率资源不足,无法满足运用需求时,由各铁路局无线电主管部门负责向属地省级无线电管理部门申请400MHz额外的频率。对于当前使用450~470MHz频段频率用于铁路养护维修、生产组织、监控监测、公安保卫、应急保障等各类区域性普通无线电对讲通信业务,应结合更新改造退出450~470MHz频率。需要继续使用的业务,由铁路局统一向属地省级无线管理部门申请400MHz、150MHz、160MHz的频率。铁路总公司规定,对涉及车地人员之间相互通信的业务,为简化终端设备的配置,宜优先规划申请400MHz频率,以便与总公司规划的跨局通信业务频率工作在同一频段。站场所有业务采用无线电台通信,则会造成无线设备设置分散、数量多、无法集中维护和管理。而且,无线电台通信不适应高速率、高带宽的车地数据信息业务传送,不能满足未来站场的自动化、智能化、高带宽业务发展需求。
1.2数字集群无线通信技术应用
集群通信,即无线专用调度通信系统,早期,集群通信从“一对一”的对讲机形式、同频单工组网形式、异频双工组网形式以及进一步带选呼的系统,发展到多信道用户共享的调度系统,并在政府部门、警务、铁路、地铁、电力、民航等各行各业的指挥调度中发挥了重要作用。国际上数字集群调度系统主要有TETRA、iDEN和FHMA3种较为先进的技术体制,由于这3种技术体制构成的无线通信系统互通性不太理想,主要用于地铁、航空、公安等专网应用,未在铁路领域获得推广应用。近年来,随着数字移动无线电标准(DMR)制定,我国无线设备供货商根据数字移动无线电标准(DMR)为各企业用户提供DMR数字集群系统设备。DMR标准是完全公开的标准,国内拥有众多供应商支持,国内设备厂家生产的400MHz的DMR数字集群系统已在部分铁路站场获得应用。铁路使用的400MHz的DMR数字集群系统主要采用403~470MHz频段的专用频点,通过数字通道实现基站与IP控制服务器间的连接,控制台、运用服务器与IP控制服务器连接,构成站场无线通信平台,可提供同频单工或异频双工方式,根据站场业务特性要求进行业务与频点绑定,也可以各业务采用公共频点通信。400MHz的DMR数字集群无线通信系统主要功能是实现移动人员间点对点对讲功能,以及移动终端与固定终端或移动终端与移动终端间的点对点低速率数据信息传送。站场所有业务采用400MHz集群无线通信,其无线设备可以集中设置、减少设备数量、并能集中维护和管理,最适用于解决站场平面调车业务和无线对讲业务,以及综合自动化SAM系统车地信息传送。但是,不适应高速率、高带宽的车地数据信息业务传送,频点也受限于国家规定给铁路的400MHz频点,系统能提供的业务容量有限。
1.3GSM-R移动通信技术应用
GSM-R数字移动通信技术作为中国铁路列车无线通信主要采用的技术,铁路总公司已建立了一整套相关标准和规定。在中国高速铁路、客运专线、重载铁路、城际铁路或部分普速铁路均选择GSM-R数字移动通信技术构建铁路无线通信系统,主要用于列车无线调度语音通信,以及调度命令、车次号校核、列控信息、机车同步操控等数据信息传送。GSM-R系统包括移动交换子系统(SSS)、移动智能网子系统(IN)、通用分组无线业务子系统(GPRS)、无线子系统(BSS)、无线终端、运营与支撑子系统(OSS)等部分。其中,移动智能网子系统(IN)由铁路总公司统一设置2套,互为冗余,作为全路GSM-R系统共用。在铁路总公司各铁路局设置移动交换子系统(SSS)、通用分组无线业务子系统(GPRS)、运营与支撑子系统(OSS)各1套设备,根据用户需求在铁路沿线、车站、枢纽设置无线子系统(BSS),配置相应的无线终端设备。虽然,GSM-R数字移动通信系统可以实现铁路沿线和车站统一的综合无线通信系统平台,提供列车无线调度通信、站场常规无线通信语音和低速数据信息传送,设备能集中维护和管理。但是,由于GSM-R数字移动通信系统的频点有限,站场所有业务采用GSM-R的系统实现会造成信道占用很大,现有的频点不够使用,当站场靠近正线铁路或通过正线列车时,会对列车调度指挥系统产生影响。因此,GSM-R数字移动通信系统未被全面应用于站场常规无线通信业务。目前,只能适用于解决站场部分语音业务,以及低速率、时延要求不高的数据信息传送。
1.4WLAN无线局域网技术应用
WLAN无线局域网是指利用无线通信技术在一定的局部范围内建立的网络,属于计算机网络与无线通信技术相结合的产物。WLAN无线局域网技术使用户摆脱各种线路的束缚,可以随时随地接入网络。WLAN(Wi-Fi)无线通信可采用2.4GHz或者5.8GHz通信频段。在铁路领域,WLAN无线局域网技术主要应用在编组站综合自动化车地数据信息无线传送。采用2.4GHz频段和IEEE802.11g、IEEE802.11n标准的设备进行组网,实现综合自动化CIPS调机业务等信息传送需求。综合自动化WLAN无线局域网系统主要由WLAN终端设备、接入点设备(AP)、接入控制点设备(AC)、PORTAL服务器、RADIUS认证服务器、用户认证信息数据库、业务运营支撑系统等组成。由于WLAN无线局域网频点是公众频点,将会受到外界终端设备的干扰,列车遮挡物影响,以及缺乏站场无线对讲业务、无线调车等业务的终端设备支持。因此,WLAN无线局域网不适用于涉及行车安全的铁路调车业务,不适应未来站场业务发展需求。
1.5LTE移动通信技术应用
LTE移动通信技术是铁路下一代宽带无线通信技术发展方向,比较适用于宽带数据信息无线传输。LTE有TD-LTE与FD-LTE两种不同的制式,虽然总体上都满足大带宽的数据通信需求,但也存在很多不同。FD-LTE是在分离的两个对称频率信道上进行接收和发送,依靠频率来区分上下行链路。TD-LTE是用时间来分离接收和发送信道,接收和发送使用同一频率载波的不同时隙作为信道的承载,可以根据上下行的数据大小动态进行分配,对于频率信道的利用率更好。未来铁路移动通信采用TD-LTE的概率较大。目前,在朔黄铁路已引入TD-LTE集群技术应用于列车同步操控、列车无线调度通信系统构成;在部分铁路局站引入TD-LTE集群技术应用于站场货检、车号等无线对讲和作业信息传送;在郑州地铁引入TD-LTE集群技术用于车地间PIS信息和视频监控图像传送。工信部根据《中华人民共和国无线电频率划分规定》及我国频谱使用情况,确定使用1447~1467MHz频段建设时分双工(TDD)工作方式的宽带数字集群专网系统。而1785~1805MHz频段,则主要用于本地公众网接入,对确有需要的本地专网也可用于无线接入,具体频率指配和无线电台站管理工作,由各省、自治区、直辖市无线电管理机构负责。在同一地区给一具有无线接入业务经营权的公众网运营商或专网单位指配的频率宽带一般不超过5MHz。未来,在铁路领域,可以考虑申请使用1785~1805MHz频段的5MHz带宽用于站场无线通信业务。TD-LTE支持1.8G/1.4G/400M专用频段,覆盖增强算法、高增益定向天线、高终端发射功率,多方式天线组网。TD-LTE移动通信系统移动性好,支持350km/h,具有完善的QoS业务保障,可二次开发定制终端、调度台、无线通信模块等;可提供调度通信语音业务、低速率或高速率数据信息传送业务,是一个比较完善的综合无线通信系统解决方案。LTE移动通信技术在铁路调度通信业务中的应用正在研究开发阶段,在站场或编组站中的无线调车、无线对讲、综合自动化信息无线传送系统中尚未被应用开发。
2未来站场综合无线通信系统技术选择
站场或编组站作业范围比较独立,技术作业业务较多,综合上述几种无线通信技术应用介绍,以及应用于站场多种业务情况下的可适用性进行分析,结合无线通信技术发展,选择TD-LTE移动通信技术作为未来站场综合无线通信技术。TD-LTE移动通信技术已在铁路和地铁领域获得应用,具有技术实用性和先进性,系统安全可靠,具备集中监测和维护管理,能满足站场各类业务综合承载能力和未来各业务信息化、智能化发展需求。铁路局可以申请使用1785~1805MHz频段的5MHz带宽合法频点用于站场无线通信业务。站场无线通信使用TD-LTE数字集群系统,可将公网MME、HSS、S-GW以及P-GW等多个网元合并为一个网元eCN,使其小型化,降低核心网成本,可以有效的节约近期工程投资,为将来铁路正线引入LTE移动通信系统应用预留互联互通条件。TD-LTE数字集群通信系统主要由核心网节点、无线子系统和无线终端组成。其中,核心网节点设置TD-LTE核心网设备,核心网设备通过交换机等设备与各种业务应用服务器相连;无线子系统根据站场覆盖和业务需求在铁路站场内设置,无线子系统设备包括LTE基站设备BBU(BasebandUnit)和RRU(RadioRemoteUnit)设备;根据需要配置相应的无线终端。
一、概述
电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。
二、无线技术介绍
(一)无线通信技术的概念
目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。
(二)无线通信技术的发展现状
无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。
总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。
1.主流无线通信技术
从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。
2.其他无线通信技术
除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。
(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。
(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。
(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。
(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。
三、无线技术优劣分析
(一)WLAN技术分析
Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。
(二)WiMax技术分析
WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。
(三)WMN技术分析
WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。
(四)3G技术分析
3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。
(五)LMDS技术分析
本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。
其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。
(六)MMDS技术分析
MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。
(七)集群通信技术分析
数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。
数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。
(八)点对点微波通信技术分析
微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。
(九)卫星通信技术分析
利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。
但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。
四、无线技术综合比较
目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。
首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。
从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。
从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。
从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。
从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。