时间:2022-08-01 01:28:21
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇新能源发电技术论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
0引言
自第三次工业革命以来,人类社会在经济和科技方面取得了空前的发展,伴随而来的是常规化石能源的大量消耗及其引起的环境污染和资源短缺等一系列问题,迫使人类不得不开始寻找清洁的可再生能源,也即新能源。相对于传统的煤、石油、天然气等化石能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界日益严重的环境污染和资源匮乏等问题具有十分重要的意义[1]。资源与环境的压力也给电力系统带来了新的挑战,利用新能源逐步取代传统能源进行发电将是今后电力工业发展的趋势,可见新能源发电具有良好的发展前景和实用价值。
1 新能源发电的类型及其原理特点
新能源发电主要包括太阳能发电、风力发电、生物质能发电、地热发电、潮汐发电等方面。
1.1太阳能发电
太阳能是指太阳内部连续不断的核聚变反应过程所产生的能量,它是一个巨大的能源,据估计,我国陆地面积每年接收到的太阳能辐射能相当于亿吨煤[2]。太阳能发电又叫光伏发电,它的基本原理是利用光伏效应,通过光照产生电动势,进而输出电能,实现光电转换。简单地说,太阳能发电就是通过太阳能电池直接将太阳光转换成电能,太阳能电池是由各种具有不同电子特性的半导体材料薄膜制成的平展晶体,可以产生强大的内部电场[2],主要包括单晶硅电池、多晶硅电池和非晶硅电池三种类型。免费论文参考网。
常见的太阳能发电系统由太阳能电池、控制器和逆变器三部分构成,按其运行方式可分为独立太阳能发电系统和并网太阳能发电系统,其中后者是目前的主流发展趋势,即太阳能电池发出的直流电,通过逆变装置转换成交流,进而并入电网使用。太阳能发电安全可靠,具有许多优点,如能源充足,太阳能无处不在,不受地域限制;建设周期短,运行成本低;不需要消耗燃料,无环境污染;结构简单,维护方便,适合无人值守。但是,太阳能发电受气候条件影响,具有间歇性,且价格昂贵。
1.2 风力发电
风力发电是将风能转换成机械能,再转换为电能,其基本原理是利用风吹动风轮,通过风轮的机械转动驱动发电机转子旋转,进而产生电能。风能是清洁的可再生能源,风力发电与常规发电相比,具有能源充足、不消耗燃料、无环境污染、占地面积小、工程建设周期短、发电技术成熟等优点。在当今世界的新能源开发技术中,风力发电是最成熟、最有商业利用价值的发电方式,其装机容量正在不断扩大,全球风电发电量占总发电量的比例也在逐步增加。
1.3生物质能发电
生物质能是绿色植物通过光合作用,将太阳能转化为化学能而储存在生物质内部的一种能量形式,是一种资源丰富、无污染的能源。生物质能发电包括农林废弃物燃烧发电、生物质燃气发电、城市垃圾焚烧发电、沼气发电等方面。生物质能发电具有电能质量好、可靠性高等优点,具有较高的经济价值。
1.4 地热发电
地球内部蕴藏着巨大的热能,地热能就是地球内部的热释放到地表的能量,地热发电就是将地热能转变为机械能,再将机械能转变为电能,它是利用地下热水和蒸汽为动力源的一种新型发电技术,其原理与火力发电基本一样,即将蒸汽的热能通过汽轮机转变为机械能,然后带动发电机发电[2]。
1.5潮汐发电
潮汐能,顾名思义,就是潮汐所蕴含的能量,同样是一种取之不尽、用之不竭的新能源。潮汐发电,就是利用海水涨落及其引起的水位差来推动水轮机,由水轮机带动发电机进行发电,其原理与一般的水力发电差别不大。即在海湾或有潮汐的河口修建大坝,构成水库,利用坝内外涨潮、落潮时的水位差进行发电。潮汐发电受潮汐周期变化的影响,具有间歇性。
2 中国新能源发电的前景展望
改革开放以来,我国经济高速发展,经济规模跃居世界前列,与此同时,能源消费结构的不合理引起的资源环境问题日益突出,大力发展新能源发电技术,是调整能源结构、促进节能减排、实现可持续发展的要求。我国可再生能源资源丰富,通过近年来的发展,新能源发电已经取得了一定进展,已经形成了一定规模、体系相对完善的新能源产业。中国新能源发电虽然刚刚起步,但是却有着广阔的发展前景。免费论文参考网。
(1)风力发电和太阳能发电发展迅速。中国风能资源丰富且风力发电技术较为成熟,目前正在以“建设大基地,融入大电网”的方式进行规划和布局。太阳能发电同样也具有较好的发展前景,我国的太阳能电池制造水平较高,应该大规模推广太阳能发电。免费论文参考网。根据国家能源局制定的《新能源产业振兴发展规划》,到2011年,新能源在能源结构中的比重达到2%(含水电为10%),新能源发电占电力总装机容量的比重达到5%(含水电为25%)。而风电装机容量将达到3500万千瓦(陆地风电3000万千瓦,海上风电500万千瓦),太阳能发电装机容量将达到200万千瓦[1]。除此之外,《2008年中国风电发展报告》预言,到2020年末,全国风电开发建设规模有望达到1亿kW。
(2)生物质能发电优势明显,前景较好。相对于风力发电和太阳能发电的间歇性特点,生物质能发电具有突出的优点,经济价值较高。2002年,我国可再生能源发电装机容量3234.6万kW,其中生物质能发电装机容量80万kW,在众多新能源和可再生能源发电中仅次于小水电。预计到2020年,可再生能源发电将达0.9~1亿kW,其中生物质能发电为1000万kW;另一种估计结果是2020年可再生能源发电装机容量将达到1.21亿kW,其中生物质能为2000万kW。
(3)在有条件的区域发展地热发电和潮汐发电。受地理条件的限制,地热发电和潮汐发电均具有地域性。目前,中国高温地热电站主要集中在西藏地区,总装机容量为27.18MW,其中羊八井地热电站装机容量25.18MW,其发电量已经占到拉萨电网的40%以上,对缓和拉萨地区电力紧缺的情况起到了重要的作用。今后,可继续在西藏地区大力发展地热发电。我国潮汐能蕴藏量中可开发利用部分的92%集中在经济发达、能源需求迫切的华东沿海地区[3],发展潮汐发电可缓解这些地区的电力不足。但是,潮汐发电由于开发成本较高和技术上的原因,目前发展并不是很快,我国江厦潮汐电站装机容量为3200kW,年发电量1070万kWh[4],今后可视情况适当发展潮汐发电。
3 结语
能源短缺和环境恶化已经成为威胁人类生存的全球化问题,发展新能源是实现人类可持续发展的必经之路,中国应该加快开发利用新能源的步伐,大力发展新能源发电,逐步实现从常规能源向清洁能源转变。目前,我国的新能源发电已经取得了一定的进展,但同时还存在着一些亟待解决的问题,主要表现在技术基础薄弱、相关体制尚不规范等方面。为此,提出一些建议:(1)制定发展目标,科学规划布局。新能源发电必须进行合理规划和布局,有必要将其纳入国家经济社会发展总体规划。(2)加快体系建设,规范行业发展。对于新能源发电的设备要求和并网技术标准,应该尽快制定相关准则。(3)加大投资力度,鼓励自主创新。目前,我国新能源研究力量分散,缺乏跨学科的交流,有必要对各类科研机构进行整合。除此之外,新能源发电是智能电网的一个重要组成部分,必须构建全国统一的新能源电网,以促进我国智能电网的建设。
参考文献
[1] 赵新一. 新能源发展展望[J]. 电力技术,2009,10(10):7-14.
[2] 孙元章,李裕能. 走进电世界——电气工程与自动化(专业)概论[M]. 北京:中国电力出版社.2009.
[3] 刑运民,张文娟. 新能源与可再生能源发电技术的发展[J]. 西华大学学报,2007,1(26):50-52.
论文关键词:电力生产;自主教学法;学习兴趣;教学效果
“电力生产概论”是高校非电气专业开设的一门全校性选修课。它是为了让工商管理、市场营销及会计学等专业的学生了解一定的电力生产方面的知识,为以后在电力系统从事相关工作做准备。但是经济与管理学院的学生大多是文科类学生,数学、物理基础不扎实,而且大学期间又没有开设电气专业基础课(如“电路”、“电机”、“发电厂电气部分”等),所以学习起来有难度,而且很多学生认为这门课与他们的专业不相关,学习的积极性也不高。针对课程的特点和学生的学习心理,笔者在经过两三年的“电力生产概论”教学后,在重点讲述常规发电、电力生产原理等的基础上,把学生自主教学法成功应用到教学过程中。通过课堂教学效果的验证,本方法是行之有效的。
一、教材内容及教学方法介绍
长沙理工大学选定的“电力生产概论”教材是普通高等教育“十一五”规划教材,李光辉主编。该教材内容全面、难度适中,是一本非常适合非电气类学生学习电力生产方面知识的通用教材。全书共九章,教材前四章先介绍了电力系统与电力生产方面的知识,然后重点讲述了三大常规能源发电:火力发电、水力发电和核能发电。第五章为未来能源发电技术,依次介绍了风力发电、地热发电、太阳能发电、海洋能发电、生物质发电、氢能发电等相关知识。后面四章分别介绍了变电站、电力线路、直流输电以及计算机在电力行业中的应用等与电力生产密切相关的一些专业知识。教材内容安排合理,难度适中。只要学生跟着老师系统地把教材学完,对电力系统及电力生产应该有一个比较全面、系统的了解,收获是很大的。
针对学生数学、物理及电气方面基础不扎实的特点,要在开始就使学生对这门课程的学习感兴趣,并做好心理准备。第一节课在介绍了教材内容后,讲述该课程要采用的教学方法,即采用教师课堂讲述为主、学生自主讲述为辅的创新教学法。前四章常规能源发电等电力生产方面的知识由教师重点在课堂上讲述,让学生切实掌握电力生产过程的特点以及每一种常规能源发电的原理。后面第五章的未来能源发电技术的发电原理与常规能源发电基本是一样的,只是所使用的一次能源不同而已,而且新能源发电技术是现在研究的热点。所以针对教材上所提供的五种新能源发电,可让每个班商量讨论选定一类大家感兴趣的新能源发电技术作为自主讲述的内容。这门课一般是两个或三个行政班级组成,如果是两个行政班级则每班可分两组各选一种新能源发电技术讲述;如果是三个行政班级,则以班为单位各选一种新能源发电技术自主讲述。学生自主讲述的出力情况及讲课效果直接影响学生课程期末考核成绩。
在让每个学生详细了解教学方法之后,又提醒学生,如果前四章的基础内容没学好,要想在自主讲述的内容上面取得好成绩是很困难的。所以第一堂课下来,学生对这门课的学习兴趣就被激发起来了。课间休息时班干部就召集全班同学讨论选择自主讲述的新能源发电方式,最后把选定的结果向全体同学公布,并告诉他们,只有发挥全班同学的合力,共同参与、合理分配任务才能在自主讲述环节取得良好的效果。在时间安排上,为了使学生有充分的时间准备课件,在学生授课前2~3周提前通知他们。 "
二、常规能源发电原理讲述
通过第一节课教学内容、方法的介绍,学生都心中有数,对这门课程的学习也做好了充分的思想准备。因此,在讲述电力系统及电力生产方面基础知识以及三大常规能源发电原理时,首先讲述什么是一次能源、什么是二次能源。怎样把一次能源转换为电能就是学习的重点。电能已成为工业、农业、国防、交通等国民经济各部门不可缺少的动力,所以作为当代大学生,了解电力生产方面的知识以及电力系统的发展方向和动态是完全有必要的。
了解了这门课程的重要性和学习了该课程的必要性之后,学生对后续的授课内容兴趣明显提高了。电磁感应定律是发电的基本原理,这在初中物理课程里面已经学过。1831年法拉第发现了电磁感应定律之后,很快出现了原始的交流发电机、直流发电机和交、直流电动机,为了给用户输送电能,慢慢发展了高压直流和交流输电。以至于到现在的特高压交流、直流输电技术。另外,重点讲述我国的电力发展现状以及在特高压输电领域的一些世界领先技术。学生对该课程的学习兴趣明显提高了。
电力生产就是要把自然界的一次能源转换为电能。火力发电的原理就是把煤、石油、天然气等一次能源中的化学能经过燃烧转化为高温高压水蒸气的内能,然后通过水蒸气膨胀做功推动汽轮机旋转,汽轮机带动发电机转子磁极旋转,在固定不动的定子绕组周围形成变化的磁场,从而在绕组内感应出电动势。若定子中的绕组按一定的绕线规律,与外电路形成回路,则绕组中就会产生相应的电流。在一定的电压下,电流沿输电线路将电能送往用户。水力发电是在水电站中水轮机将水的势能和动能转换为推动水轮机旋转的机械能,水轮机转轮旋转带动发电机发电。而核能发电的原理与火力发电很相似,也就是说核电厂只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能,其能量转换过程是:核能水和水蒸气的内能发电机转子的机械能电能。
二、课程教学现状
1.理论教学
由于本课程集电路、模拟电子技术、数字电子技术、电力电子技术、计算机控制技术等基础知识为一体,理论性和实践性都非常强,再加上电机学本身的理解难度,使得目前课堂教学更注重讲授知识的基础性和系统性。一方面,重点讲授电动机的基本原理、运行特性和控制方法,发电机的基础知识和技术难点课堂教学课时分配较少,针对新能源技术领域的知识讲授更是一带而过;另一方面,当涉及到实际工程应用时,均以系统框图为背景,例如直流双闭环调速系统、三相同步发电机的运行与并网,课堂讲解与工程实际的应用偏差较大,学生普遍感觉比较抽象。总体而言,新能源相关的新知识、新技术在教学中的更新较慢。
2.实验教学
我院的实验教学基本以验证性实验为主,并且由于现有的实验设备高度集成,学生在做实验时往往看不到其内部结构,只要对外部端子进行简单接线,然后手工记录数据即可,整个实验过程无法将理论与实际的元器件联系起来。考虑实验设备的限制,在系统仿真环节,课程多利用MATLAB的SIMULINK工具箱,大多是以控制系统的传递函数为基础进行计算机数字仿真,与工程实际也存在较大的差距。
三、课程教学改革与探索
1.课程教学内容改革
“电机学”与“运动控制系统”是电气工程及其自动化专业的传统经典课程,我院在保留课程主干内容的基础上,适度缩减与工程实际差距较大的理论知识讲授课时,着重加大关于发电机运行原理与控制技术的分析和论述,借此进一步夯实学生关于新能源发电技术的理论基础,并逐步增加“新能源发电技术”、“风力发电与控制技术”、“车用电机原理及控制”、“光伏发电与微网技术”等专业选修课程,通过调整使新的课程体系能满足新能源人才培养需要。
2.课堂教学方式改革
在理论教学过程中,学生始终是教学活动的主体,而教师发挥着重要的主导作用,需要充分调动学生的积极性,激发学生的学习兴趣。例如更多采用多媒体动画演示、MATLAB/SIMULINK软件搭建仿真模型、新能源技术视频展示和项目小组讨论等多种形式,对工程实际系统进行深入的研究性学习。同时注意增加学生新技术实验与实践成绩占课程总成绩的比重,鼓励学生更注重探索新知识、掌握新技能,适度降低课程期末考试成绩的比重,以避免学生疲于应付考试。在实验教学过程中,充分利用我院大学生实践创新训练计划,采用CDIO工程教育培养模式,在授课班级中开展项目小组讨论的形式,围绕新能源相关课题进行项目构想、设计、实施、改进以及答辩讨论。每个项目小组中的学生都需要至少一次作为项目负责人,提升学生的个人技能和团队写作能力。针对众多新能源相关课题,学生自由组合、自主选题,在课题开始阶段,学生充分利用图书馆文献数据库及网络资源,查阅相关文献并进行整理和提炼,形成项目的整体推进思路;在课题推进过程中,课题负责人对课题进行子课题分解,对课题中的具体工程实现进行设计、实施和改进;在课题答辩讨论阶段,项目负责人将课题进展结果在课堂上以PPT的形式加以阐述,班级同学均可就其结论和观点展开讨论,最后以指定的论文格式要求上交纸质论文或样机实物,教师对课题成果进行综合评定,并计入课程总成绩中。
3.实践教学分层次能力提升
在实践教学过程中,按照项目设计—系统实现—实施改进三个层次的渐进过程。在项目设计阶段,学院组织教师结合企业新能源方面的需求和教师的科研课题进行命题,学生分小组选题,并根据课题进行协作设计。设计完成后,学院组织专门的评审委员会进行设计的评讲活动,学院对于设计成果有创新的进行奖励。在系统实现阶段,充分利用我院大学生创新训练计划专项经费,解决学生理论与实际脱节的问题,利用MATLAB的电力系统工具箱(SimPowerSystem)和Pspice软件,开展了系统仿真,工具箱在元件库中提供的电气元器件能够反映相应实际元器件的电气特性,激发了学生独立动手实践的积极性。在实施改进阶段,学院组织评审委员对系统的实现进行再评讲活动,提出实施改进意见,让学生对自己的设计、实现成果进行完善性改进,从而进一步提高成果的层次和质量水平。2009年我院购置“电机学”与“运动控制系统”两门课程的成套实验教学设备,2010级电气国际课程实验班的实验内容就进行了相应的调整,减少数字仿真的内容,增加工程实践训练内容。新的实验指导书要求学生认真预习,根据实验内容、原理图和实验装置设计实验控制系统的具体接线图,列出实验步骤;能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题,能够综合实验数据,解释实验现象,编写实验报告,实施了从构思、设计、实施到运行的一个全CDIO过程,达到培养学生全面的专业、个人、职业、团队、交流及社会意识与能力。
中图分类号:TU852文献标识码:A文章编号:1007-9599 (2010) 14-0000-01
Power Electronics and New Energy Power Generation Technology
Yang Lin
(Institute of Electrical Engineering,Northwest University for Nationalities,Lanzhou730030,China)
Abstract:This paper discusses several new forms of energy generation and integrated power supply system transformation,control,intelligence management and safety issues,and hope in the future development of new energy power,we can overcome difficulties and achieve electronic power of new development.
Keywords:Power electronics;Energy management system;Power quality control
我们已进入21世纪,这是一个全新的时代,经济的高速发展给人们的生活带来了很多的便利,但随之而来的却是能源的耗竭,原本丰富的能源如今已变得匮乏,并危及到人们未来的生产生活。与此同时,毫无顾忌的能源利用还造成了大气的严重污染,从而又引发能源危及,这样的恶性循环会直接危及到人类的发展,甚至威胁人类的健康和繁衍。因此,开拓新能源,减少能量源浪费成为当今世界最为关注的话题。
一、新能源的发电方式
(一)太阳能发电
太阳能发电开始于上世纪50年代,当时,第一块实用的硅太阳电池研制成功,如今,太阳能发电技术已经经历了半个世纪的发展,其技术也在日益成熟。目前,占主流的太阳电池仍然是硅太阳电池,主要分为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池。典型的太阳能供电系统结构如图1所示,太阳电池阵列进行光电转换,把太阳能变为电能,再由功率变换器将太阳电池输入到直流电中,最后转换成用户所要使用的电源模式。根据用户的需求,功率变换器可以选择直流斩波器进行DC/DC变换,或采用逆变器进行DC/AC变换。而功率变换装置还应包括蓄电池系统,主要是为了平衡电流。如果太阳光充足,可以利用太阳能,并利用蓄电池充电;如果在夜晚或者阳光不充足时,就可以使用蓄电池供电。
(二)风力发电
如今,风力的主要运用方式就是风力发电,它的发展速度最快,也最受全世界关注。风力发电主要有3种运转方式:
1.独立运行方式,利用一台小型的风力发电机向需要的用户提供电能,它还可以通过蓄电池充电,预防无风时影响发电效果;
2.风力发电与其他发电方式相结合的联合供电方式,主要向交通不便或偏远山区供电,以及地广人稀的草原牧场提供电力;
3.并网型风力发电运行方式,将风力发电网安装在条件较好的地区,常常是一处风场安装几十台甚至几百台风力发电机,这也是风力发电的主要发展方向。风力发电机组在不同风速的条件下运行,其发电机输出的电压的幅值和频率是变化的,所以,通常要配置电力电子功率变换器,通过这种装置控制电流,保证输出的电压是平衡稳定的。
(三)燃料电池发电系统
燃料电池(Fuel Cell)是将反应物如氢气等的化学能直接转化为电能的电化学装置。它通过燃料(通常是氢气)和氧气结合所发生的光电反应来发电。燃料电池发展了这么久,根据电介质的不同,主要分为5种燃料电池:碱性燃料电池(Alkaline Fuel Cell,AFC);质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,PEMFC);磷酸燃料电池(Phosphoric Acid Fuel Cell,PAFC);熔盐燃料电池(Molten Car-bonate Fuel Cell,MCFC);固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)。
实际上,燃料电池也有其优点,例如:发电效率高:发热少;噪音低,污染小;功率密度高。目前,燃料电池发电主要集中在以下几个方面:燃料电池特性研究;燃料电池发电系统结构和高效功率变换的研究;能量管理技术;孤岛检测和保护技术,并网电流控制;并网运行与独立运行之间的无缝切换控制技术。
燃料电池所输出的电压会随着电压的变化,发生较大范围的变化。燃料电池的输出电压在负载发生突变时还要经过一段时间才能停止反应,对于质子交换模燃料电池响应延迟达2秒。因此,燃料电池一般与负荷动态的具体要求无法很好的匹配。
二、电力储能技术
可再生能源发电装置所产生的电能主要还存在无法预测的周期性变化,例如风能、光伏发电等,如果将其电能直接输入普通电网,将会对电流带来不良影响,而电力储备装置就可以平衡能源发电输入与电网之间的矛盾。电力储能技术有蓄水蓄能、压缩空气储能、飞轮储能、电池储能等它们都各具特点,各有优势,但它们的正常运行主要是依靠电子电力技术。
蓄水储能与压缩空气储能主要是对电力高峰期进行调节,但是对地理条件的要求较高。电池储能的精密性高,需要在技术成熟的条件下进行,理论上可以用于电力调峰,单电池使用寿命有效,这成为蓄电技术的难点。飞轮储能的储能量有限,运行复杂,一般用于电能质量调节。
三、电能质量控制
(一)电源谐波检测和分析技术
谐波的测量和分析都是以思想谐波治理为前提条件的,精准的谐波测量和分析可以为谐波的治理提供准确的依据。自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量得到了普遍应用。然而基于傅里叶变换的谐波测量要求整周期同步采样,不然就会严重影响其效果。因此,怎样减少因同步偏差而引起的测量误差成为电子电力技术人员迫切要解决的难题。
(二)电能质量控制和管理
首先,电能质量的控制和管理主要包含功率因数校正和滤波器设计,由于传统的无源滤波器体积和重点都很大,还需要对不同的频率进行设计,而功率因数较技术正是提高功率因数和降低谐波污染的重要途径。如今,电能质量控制和管理的研究重点在与PFC控制技术上,比如:单开关、多开关以及软开关三相PFC电路的研制,软开关技术与PFC技术的融合已经成为未来的发展趋势,虽然目前的PFC产品受到功率的限制,但应用于分布式新能源发电系统却是重要机遇。
四、总结
综上所述,随着科技的发展,新能源的开拓和使用技术越来越成熟,但是,要真正做好新能源发电技术,还需要从解决先存的各种问题,因此,电子电力技术人员应在在电气、电子、控制和信息等工程技术领域加强合作研究,通过系统集成和技术融合,实现各种技术的突破,我相信,我们一定可以克服各种困难,迎来新能源造福人类的灿烂明天。
参考文献:
[1]Rechten H.可再生能源技术[A].中美清洁能源技术论坛论文集[C],2001
[2]汤天浩.新能源与变换:系统集成、技术融合及应用展望[J].电源技术学报,2004,2,1
[3]李俊峰,高虎,王仲颖.中国风电发展报告[M].北京:中国环境科学出版社,2008
风力发电
目前,我国已超过美国,成为全球风电装机容量最大的国家,同时也成为风能设备最大的生产国。随着国内风电产业链日臻完善、研究规模不断扩大,成本下降非常显著,竞争力也逐渐增强,但是在产业链最上游的新型材料及半导体器件(控制芯片、电力电子器件等)研究方面仍较落后,主要研究工作集中在中下游的风电整机制造、关键零部件配套(发电机、电控、传动系统等)以及并网技术领域。
沈阳工业大学在风电整机制造方面具有很强的实力,是我国最早从事风力发电技术研究的少数高校之一,设置有风能技术研究所,师资力量完善,先后承担过多项大型横、纵向课题,成果显著。其设计的具有自主知识产权的1.5MW风电机组实现了产业化,占据一定的市场地位,产学研结合能力很强。
华北电力大学作为教育部直属高校中唯一的以电力为学科特色的大学,成立了国内首家“可再生能源学院”,下设风能与动力工程专业,未来还将筹备生物质发电和太阳能利用专业。研究内容以大容量风力发电接入,对电力系统安全、稳定运行的影响为主,主要研究包括:风电场建模与仿真、风能资源测量与评估、风力发电机组状态监测与故障诊断、风力发电机组只能控制与优化运行、低速风能利用策略与先进风力发电理论,充分发挥了其在电力系统方面的优势。
重庆大学机械传动国家重点实验室,借助其在机械传动领域的优势,在风电机组齿轮箱设计、动态特性研究、工作模态测量及制造工艺方面有深入的研究,并且产学研结合。
汕头大学新能源研究所在大型风电机组空气动力学、结构强度及结构动力学研究方面颇有作为,自行开发了大型风力机优化设计系列软件。
浙江大学流体传动及控制国家重点实验室对风力发电系统中的液压技术有深入研究,包括风机制动系统、定桨距控制和变桨距控制等。
同济大学机械工程学院在风电机组叶片动力学分析、结构优化设计、刚柔耦合系统模型分析方面经验丰富。
东南大学在风力发电机研究、设计方面走在前列。近期又集合学校优势学科,建立了风力发电研究中心,致力于以风力发电为核心的可再生能源发电及应用技术的基础研究。
电控方面,清华大学、北京交通大学、中科院电工所都有很强的实力。清华大学电机工程与应用电子技术系原名电机工程系,历史悠悠,师资力量雄厚,在风电接入对电力系统影响、风电机组建模仿真、风电变流器设计及控制等方面有深入研究。北京交通大学电气工程学院早期隶属于铁道部,主要服务于我国轨道交通电传动装备产业,在大功率电力电子技术领域积累了丰富经验,研究实力在国内高校处于领先地位。新能源研究所成立后从事大功率风电机组(直驱或双馈)并网变流器、中大功率光伏发电逆变器、风电机组仿真及主控系统、微网技术研究,产学研结合能力很强。中科院电工所新能源发电技术研究组是国内最早研究风力发电、太阳光伏发电的单位之一,其大型并网风电机组控制及变流技术、变桨距控制技术以及风电场集中和远程监控技术等较成熟,还有一些特色研究工作包括:风/光互补、风/柴系统及其控制逆变技术、控制逆变技术等。
光伏发电
光伏发电具有系统简单以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电。太阳能发电主要分为并网电源系统和离网电源系统,目前大规模使用的主要是并网系统,一般包括光伏电池组件、光伏逆变器、配电柜、监控系统等。其中光伏电池组件将太阳能转化成电能,光伏逆变器与风能变流器类似,可以将光伏电池组件产生的不稳定电能变成稳定的电能并入电网。
我国光伏业正处在爆发式增长期,中国大陆和台湾的光伏电池厂商占全球总电池产量59%的份额。与风电产业链类似,除了最上游的化合物、硅片提纯、加工外,我国已形成了较完整的光伏产业链,包括晶体硅、薄膜电池片及组件加工、光伏逆变器、系统集成、能源投资商等。
国内高校对于光伏系统研究主要集中于工程应用方面,合肥工业大学教育部光伏系统工程研究中心是我国迄今为止唯一的专门从事光伏系统技术研究的国家重要的科学研究基地,挂靠合肥工业大学电气与自动化工程学院,主要从事光伏组件建模及仿真、光伏逆变器设计及控制、工程化应用等研究工作,产学研结合较好,承担多个大型光伏电站设计工作。
海外院校
由于新能源行业涉及领域多、范围广,以及我国新能源行业开始起步,人才的缺乏已经成为极为突出的问题,国家、社会、高校、企业都在积极努力培养这方面的人才,学生的择校就业也因此变得十分灵活。同时,也因为刚刚起步,目前面临的多是工程应用技术类问题,因此我们的相关研究工作主要分布在中下游,从前面的介绍也可以看出,在新能源上游高端领域,由于技术壁垒很高,国内的研究工作相对较少,但是可以选择留学欧美高校,得到更进一步的提高。
澳大利亚新南威尔士大学光伏研究中心,由有着“太阳能之父”之称的马丁·格林教授领导,专注光伏电池的研究,自上世纪80年代起,30年间毕业于新南威尔士大学光伏中心的中国留学生已经撑起了中国光伏产业的半壁江山。如今,在屈指可数的几大领头光伏企业中——尚德、中电光伏、英利、赛维LDK都有新南威尔士大学毕业生的身影,其科研实力可见一斑。
在欧洲,各国都十分重视新能源的开发利用。作为生态村理念的首创国,丹麦是能源问题解决得最好的国家之一。早在2006年,我国就与丹麦签署了“可再生能源”合作项目,国内许多高校分别与丹麦高校开展联系。丹麦奥尔堡大学能源技术学院在风力发电、分布式发电、电力系统、电力电子及控制技术等领域有深入研究经验,并且与许多国家和组织开展合作,产学研实力很强。特别是在风力发电领域优势突出,核心研究领域包括:风力发电机组及风电场的控制与监测、仿真、设计、优化。
随着新能源技术发展以及各项政策效应的逐步显现,开发利用新能源的成本将明显下降,为人类清洁能源利用和产业结构升级带来历史性机遇,新能源终将成为今后世界上的主要能源之一。
Tips:新能源材料与器件专业优势院校
文/南京航空航天大学 郭栋梁
该专业重点是研究与开发新一代高性能绿色能源材料、技术和器件(如通讯、汽车、医疗领域的动力电源),发展“新能源材料”(新型锂离子电池材料、新型燃料电池材料和新型太阳能电池材料)的学术研究方向。
新能源材料与器件专业设置,主要依托化学化工学院,跨能源科学、材料科学、化学等多个学科,拟培养能掌握新能源材料专业基本理论、基本知识和工程技术技能,掌握新能源材料组成、结构、性能的测试技术与分析方法,了解新能源材料科学的发展方向,具备开发新能源材料、研究新工艺、提高和改善材料性能的基本能力的新能源材料专门人才。毕业生可在化学能源、太阳能及储能材料等新能源材料领域从事科学研究与教学、技术开发、工艺设计等方面工作,也可继续攻读新能源材料及相关学科高层次专业学位。
新能源技术是21世纪世界经济发展中最具有决定性影响的五个技术领域之一,新能源材料与器件是实现新能源的转化和利用以及发展新能源技术的关键。新能源材料与器件本科专业是适应我国新能源、新材料、新能源汽车、节能环保、高端装备制造等国家战略性新兴产业发展需要而设立的,是由材料、物理、化学、电子、机械等多学科交叉,以能量转换与存储材料及其器件设计、制备工程技术为培养特色的战略性新兴专业。
高校特色:
华东理工大学
以半导体材料技术、化学电源技术、太阳电池技术等为特色。未来就业集中在光伏太阳能、新能源开发和利用以及半导体材料器件的设计、化学电池开发等。
东南大学
依托电子科学与技术大类专业背景,专业内容侧重光电子材料及其应用方面,主要针对太阳能材料制备、检测和应用,可以拓展到生物能等其他新能源。
四川大学
与此同时,与太阳能有关的、相关的、无关的产业都冠以“太阳能”的桂冠遍地开花,导致国家在进行宏观调控时给这个产业整体“降了温”。叫停了部分具有一定污染的电石产业,但真正环保并可持续发展的光电产业仍可享受国家补贴。
在国家将节约能源确定为基本国策,大力提倡节能减排、发展可再生能源的今天,如何推动我国太阳能聚光式热能发电产业更好更快地健康发展是我们面临的亟待解决的重要问题。热能发电只需要太阳的光和水,是唯一可与化石燃料抗衡的技术,美国eSolra公司的技术做到了实质性的商业运行。
山东蓬莱电力设备制造有限公司于1987年成立,是为火力发电厂做辅机配套的民营企业,有自营进出口权。公司为高新技术企业,拥有多项专利,同时也美国硫化床锅炉配套的进口设备。公司国际部经过一年多的努力,将这项全球能源领域的先锋已商业化运行的热能技术成功地引进中国,此作为中国的总并在本厂制造,实现真正的国产化。
太阳能聚光热力发电技术的引进者王韬博士,身兼山东蓬莱电力设备制造有限公司国际部副总裁,曾担任美国斯坦佛大学的客座讲师,其论文曾在美国人类遗产学杂志、科学、美国科学院院报及多家专业周刊发表。
浙江大学、河海大学组成的联合课题组针对风力发电、太阳能光伏发电等新能源发电技术的应用对电力系统潮流分布的影响,现有潮流计算方法难以准确描述现代电力系统潮流分布的变化规律等问题,深入研究电力系统潮流计算方法,结合风能、太阳能、地区电网电力用户特点和概率分析方法,提出了动态随机变量,建立风力发电功率、太阳能光伏发电功率、负荷功率的动态概率模型和基于半不变量和Gram-Charlier级数的地区电网动态概率潮流计算方法。实际应用效果表明该方法能够同时计及风能、太阳能、电力用户的规律性变化和随机变化对地区电网潮流分布的影响,并提高概率潮流的计算效率,该研究对新能源的推广应用及智能电网的分析与控制具有十分重要的理论意义和工程应用价值。
该研究内容来源于国家自然科学基金资助项目“基于多和多模型技术的智能城市电网自愈控制理论研究”(课题编号:51077043)和新世纪优秀人才支持计划资助项目“含风电场的分布式电力系统动态经济调度的智能建模与优化算法研究”(课题编号:NCET-07-0745),在《中国电机工程学报》(Proceedings of the CSEE)2011年1月第31卷1期的论文《含分布式电源的地区电网动态概率潮流计算》中得到了全面阐述。
发展绿色能源、建设智能电网是经济、社会和电网发展的必然选择,对于充分发挥电网在资源优化配置、服务国民经济发展中的作用,对于经济社会全面、协调和可持续发展具有十分重要的意义。近年来,世界各国都在加快建设风力发电、太阳能光伏发电等清洁、可再生能源发电,这些绿色能源的发电比例大大提高,而风能、太阳能等能源具有随机性和间歇性,大量的风力发电、太阳能光伏发电的应用对电力系统安全稳定运行提出了新的挑战。另一方面,各国都相继展开了智能电网方面的研究,期望现代电力系统变得更加智能。上述两方面的研究都要求对电力系统潮流分布的规律性和随机性进行研究,以此为基础进行控制对电力系统的安全稳定运行具有重要的现实意义。
该文主要针对上述问题,考虑地区电网中越来越多的分布式电源(Distributed Generation)如风力发电、太阳能光伏发电等分散接入在不同位置、以及地区电网的负荷性质与负荷运行特性,通过在风速变化规律、太阳能日照强度变化规律、电力负荷变化规律等确定性规律变化曲线基础上叠加相应的随机波动曲线来建立动态随机变量的概率模型,以此模型来描述地区电网潮流分布中既有规律可循又带有随机性的物理现象。如图1所示的一天中电力负荷的变化曲线,可由图2所示的两条曲线叠加构成,其中一条曲线具有明显的规律,传统的确定性潮流计算中只考虑了这部分内容,另一条曲线无规律可循,具有随机变化特性,长期以来,在概率潮流计算中,都是将各个时刻的随机特性用相同的概率模型来表示,也就是说将图2中无规律可循的曲线向上平移来建立概率模型,淹没了电力负荷变化的峰谷现象。然后将动态随机变量解耦为确定性基础函数和随机变量两部分,采用传统确定性潮流计算方法由前一部分内容求出地区电网潮流分布的基础函数,利用随机变量的统计数字特征半不变量的特点以及厄密(Hermite)多项式与无穷级数的关系由后一部分内容求出地区电网潮流分布的随机变化部分,最后将两部分内容叠加得到最终的地区电网潮流分布规律。
专业定位。新能源科学与工程专业围绕浙江大学“以人为本、整合培养、求是创新、追求卓越”的教育理念,以“培养知识、能力、素质俱佳,具有国际视野的新能源科学与工程专业拔尖创新人才和未来行业领导者”为宗旨,以新能源的开发、储运、利用为特征,紧密结合学科前沿和行业发展需要,积极培养满足国家战略性新兴产业的创新型人才。
培养目标。培养具备热学、力学、电学、机械、自动控制、能源科学、系统工程等宽厚理论基础,掌握可再生能源和新能源专业知识,能从事清洁能源生产、可再生能源开发利用、能源环境保护、新能源开发、工程设计、优化运行与生产管理的跨学科复合型高级人才。
课程设置。专业课程设置按照浙江大学“通识课程+大类课程+专业课程”体系进行构建,其中专业课程包含专业基础课、专业核心课和专业实验实践课。专业基础课的安排上,设置了如工程流体力学、工程热力学、传热学、能源与环境系统工程概论等基础课程,使学生具有热学、力学、机械、能源科学和系统工程等宽厚理论基础。专业核心课程开设了包括生物质能源、太阳能、风能、氢气大规模制取的原理和方法、新型液体燃料能源等课程,旨在让学生掌握新能源领域相关科学原理、工艺以及新技术研究发展趋势方面的知识。在专业实验实践课程上,安排了新能源实验、认识实习、风电风机课程设计、生物质发电系统课程设计等,使学生掌握新能源的有关实验,掌握现场运行,工程设计和生产管理等知识,为今后从事新能源开发利用工作打下基础。
专业建设特色
依托动力工程及工程热物理国家重点一级学科平台,浙江大学新能源科学与工程专业建设体现出鲜明的科研与教学相长的教学特色。
强大的学科平台。能源系拥有国内一流的学科与科研优势,具备国际竞争的实力。现有国家重点一级学科1个,一级学科博士点1个,国家重点实验室1个,国家工程研究中心2个。设博士点8个、硕士点8个、博士后流动站1个。连续5年科研经费超过亿元。依托强大的学科与科研优势,以及不断在学科交叉领域取得的创新型研究进展,为学生直接参与项目研究、在实践中培养创新精神创造了条件;同时为优秀大学生继续深造提供了宽广的平台。能源系在新能源领域已有大量的研究积累,开展了大量新能源的研究方向,如太阳能热利用发电技术,生物燃料电池,微藻制油等,并已承担了新能源方向的973项目2项,863项目多项。
一流的师资力量。能源系拥有一批在国际上具有竞争力的中青年人才,其中院士1人,“973计划”项目首席科学家3人,长江学者奖励计划特聘教授6人,国家杰出青年基金获得者5人,浙江省特级专家2人,国家百千万人才工程人选7人,教育部跨世纪和新世纪优秀人才5人。全系教师队伍具有博士学位比率达93.1%,已形成了一支知识结构、学历结构和学缘结构优化、年龄结构合理、教育教学能力和研究能力突出、具有国际竞争力的教学团队。在新能源专业方向上,已形成了由院士牵头,5位长江学者和一大批教授为核心的新能源研究队伍。
先进的教学模式。专业建设以拓宽专业基础、专业知识面为宗旨,制订与国家发展需求相适应的本科教学计划和课程体系。科研成果通过教学改革、课堂教学、大学生科技创新活动、毕业论文(设计)等途径,转化为教学资源,实现教学科研互动,为学生创新能力的培养提供了平台。能源系积极开展本科教学改革,“结合国家重大需求,创建能源与环境复合型人才培养新体系”获2009年国家级教学成果二等奖;《工程热力学》、《热工实验》课程获国家级精品课程称号;“国家级能源与动力实验教学示范中心”2012年通过专家验收。
开放的实践体系。经过多年的建设,能源系建立和发展了与学科前沿及行业发展紧密结合的能源与动力创新型人才培养实验实践教学体系。依托动力工程及工程热物理国家重点一级学科、能源清洁利用国家重点实验室,以能源与动力国家级实验教学示范中心建设为契机,通过实验课程精品化、建设学生创新实验室和节能减排实践基地、开展以全国大学生节能减排竞赛为代表的各类学生科技创新活动、与行业领军企业共建创新实践教学基地等形式,构建了多层次训练、多学科交叉、全方位辐射的立体创新实践平台。
专业建设成效
学科资源与科学研究成果及时、有效地引入本科教学建设中,为本科教育提供了大量优质资源,有效地提升了教学质量。本科生对该专业的认同度高,目前该专业已经成为最受学生欢迎的热门专业之一,学生主修专业确认平均绩点在4以上,在工科专业中排名第三。
核心课程精品化建设。专业依托教师在新能源领域的前沿研究方向,将科研方法、体验与成果引入课程,推进核心课程精品化建设。2013级培养方案修订中,确定《太阳能》、《生物质能源》2门专业核心课程建设,并增设了《非常规天然气和合成气开发与发电技术》、《生物质直燃发电技术》、《新型液体燃料能源》等课程,优化了课程结构,体现了专业特色。
专业教材高质量建设。近年来,教师总结多年科研和教学经验,出版了《能源与环境系统工程概论》、《能源工程管理》等2部“十一五”国家级规划教材。出版了《热学基础》、《核电与核能》、《热能专业英语阅读与写作》、《燃烧理论与污染控制》、《多孔介质燃烧理论与技术》、《二氧化碳捕集封存和利用技术》、《生物质液化原理及技术应用》等专业课程指导教材。
实验教学创新性建设。教师结合新能源领域的科研项目研究成果和科研项目实验台开展新开实验课程项目的建设与研究,开设了“硫碘热化学循环制氢”、“流动和雾化的激光测量”、“生物能源实验”等实验项目,同时充分利用学科实验室的设备为学生提供优质的实验环境。
实习基地全面性建设。在校外实践教学基地建设中,与东方电气集团东方锅炉股份有限公司、上海锅炉厂、浙能集团等9家企业签订了校企合作协议,并根据行业面向与专业培养目标,对校企合作的课程进行了合理的规划,注重实习企业的交叉互补。如东方锅炉、上海锅炉厂等企业提供热能转化设备的实践实习;深圳东方锅炉控制有限公司提供热能设备控制方面的实习;蓝天环保等提供燃烧污染控制方面的实习;华电电力科学研究院提供测试方面的实习;广州瑞明电力股份有限公司提供电厂整体的实习。上海锅炉厂有限公司、东方电气集团东方锅炉股份有限公司成为首批国家级工程实践教育中心。
学生科技创新活动开展。能源工程学系打破教学、科研、学科实验室界限,学生通过自主立项或参加教师的科研项目,自定实验方案、自主完成大学生科研训练计划、节能减排竞赛等课外科技创新活动。目前,新能源科学与工程专业本科生已获得SRTP立项31项,浙江省大学生科技创新活动计划项目3项,全国大学生创新创业训练计划项目1项;获校级大学生节能减排学科竞赛奖项15项,获国家级大学生节能减排竞赛三等奖1项。
未来专业建设的方向
2011年11月24日至12月2日,由国网技术学院组织率领的电网运行专业考察学习小组赴德国GridLab GmbH(欧洲电力系统安全研究与培训中心)进行学习,目的是掌握电力企业岗位培训的理念和方式方法,促进国网公司培训基地向国际化、现代化方向迈进。笔者有幸作为其中的一员,随团参加了此次学习考察活动。在德国培训期间,我们重点利用仿真系统对电网运行的监控、操作以及调度等岗位职责进行了培训体验;对德国电网的建设、改革概况,市场运营模式,新能源发展态势等进行了深入的了解。德方共安排了9位专家及技术人员为我们进行了详细地讲解和介绍。同时我们还到德国50Hertz 输电公司(德国四大输电公司之一,负责德国东北部电网输电业务)的控制中心(TCC)和所属的一座220kV/110kV变电站进行了参观考察。
此次赴德考察学习感触深刻,收获极大,对其管理模式和运行方式印象深刻,对强力推进新能源的发展政策和技术领域的创新能力,更是叹服不已。在广泛地考察、学习和了解中,领会和理解了德国供电企业的培训模式和培训理念,拓宽了视野,开拓了思路,对今后开展岗位培训与练兵具有积极的借鉴意义,为创新培训奠定了基础。
一、德国电力企业发展概况
1.德国新能源发展概况
在学习期间,9位培训师的讲课内容中有5位涉及到了新能源的发展。主要原因:一是新能源在德国以立法形式促进其发展,发展力度大;二是新能源的开发得到了广大民众的支持,环保意识强;三是新能源的发展也开放了发电企业的竞争市场,投资积极性高;四是新能源的发展对电网运行的稳定性提出了更高的要求,因为没有坚强而稳定的电网作支撑,新能源的发展就只能停留在设想上。
为促进新能源的发展,德国于2000年出台了新能源法(《可再生能源法》),2004年又做了修改,极大提升了新能源的开发力度。大体上主要包含以下几个方面:
一是明确新能源要安全投入电网。新能源法同样对可再生能源入网的安全进行了明确规定,这一方面促进了新能源的发电企业在电力设备技术上创新的速度,另一方面也对电网的安全稳定运行提供了保证。
二是明确了新能源必须优先入网。新能源法明确规定了必须首先保证可再生能源优先入网,并且给出了相应补贴措施,这从真正意义上开放了发电企业的竞争市场,促进了新能源的快速发展,同时也促进了德国电网改造和欧洲联网的进程。
三是对新能源的入网制定了相关鼓励政策。对新能源入网的补贴方法做出了相关规定,如制定高于常规能源的入网价格,以鼓励更多的投资者参与到新能源发电市场的竞争中。
四是规划了未来新能源发电量的比重。受日本福岛核电站泄漏的影响以及民众的意愿,德国政府要求在2022年之前,关闭境内的所有核电站,同时对新能源所占能源消耗的比例做出了初步规划,即2020年新能源要达到总能源消耗的35%以上,2030年要达到50%以上,至2040年达到65%,而至2050年则要求达到80%以上。可见德国政府在发展新能源方面的决心和信心。
五是不断降低新能源的发电成本。新能源入网初期(2004年之前),德国政府对新能源入网给出了几乎10倍于常规能源的入网价格,但经修改后,对新能源入网规定和加大了入网电价逐年递减的幅度。从而强力促进了新能源发电企业不断进行科技创新、降低发电成本,以保证未来方便、快捷、灵活以及廉价地应用新能源。
新能源法的出台和实施,激活了许多投资者的热情,使德国许多可再生能源发电企业特别是风力发电企业如雨后春笋,发展势头“旺盛”。目前,德国的陆上风力发电能力基本已趋饱和,已转向海上风力发电。尽管海上风力发电技术最复杂、建设难度最大,但因其发电能力远远大于陆上风力发电,所以德国很早就已经致力于海上风电的开发。目前已有位于德国北海离岸45公里处海域的12台风机60MW的海上风电场已经并网发电,并建造了世界上第一条±400kV的海底电缆工程。德国的海上风电未来将占整个风力发电的25%。
2.德国电网企业的改革概况
受历史及地缘政治等因素的影响,以及电网新能源的发展需求,德国的电网建设以及电力企业的运营也经历了一次大的改革,主要表现在:
一是发电企业市场化运营的改革。在1998年之前,德国的电力市场也是由几家发电企业所垄断,形成这种垄断局面的主要原因是,发电企业只在某个固定区域供电,用户没有更多选择的可能。1998年至2005年,经过几年改革的起伏变化,最终实现了发电与电网的真正分离,形成了电力企业有序竞争的局面。
二是电网发展模式的改革。提出了欧洲联网的规划格局,实现大区域、跨地区(国家)联网是为了实现清洁能源的远距离输送。需要说明的是,德国作为发达国家,经济发展基本达到稳定阶段,所以用电负荷基本处于平稳状态,几乎没有增容扩销的电网扩张工程,所以网架结构相对简单、变化较小。对德国来讲,电网工程改造的重点主要是更新设备和实现跨区域联网。
三是电网运行设备的改造。至2005年,德国境内电网中的大小变电站,全部完成了自动化改造。过去分散控制的变电站,全部实现了集中控制。以德国50Hertz输电公司为例,全公司只有1个控制中心(TCC,相当于调度中心)和6个区域集控中心,共监控69个变电站,变电站全部实现了无人值班。 二、德国输电系统企业员工岗位培训概况
德国电力企业员工培训随着新能源的发展所引起电网结构变化及设备的更新改造而不断改变培训的形式和内容,运用仿真系统对员工进行培训虽然从2005年之后才开始,但是在培训理念上,却有许多可借鉴之处,主要表现在:
一是把对员工的安全培训作为第一重点来抓。在德国,对员工的安全培训被作为一项法律条件来要求企业。比如,某员工一旦出现人身伤害事故,有关调查人员要检查该员工是否有接受企业组织进行的安全培训的记录,否则将追究企业的责任。不仅是电力企业,政府或工会组织也对安全培训极其重视。多项监督的合力作用,使得安全培训成为自觉自愿、必不可少的常规性培训。其培训形式(以过去变电运行人员的培训为例),既有个人操作的模拟演练和讲解示范,也有实际操作的视频录像,还有非正常操作引起的事故仿真画面,通过增强视觉上的冲击感,以此来增加印象。
二是培训的方式更加注重角色的扮演。以我们所体会的调度人员培训为例,学员接受培训的主要内容通常是模拟出一项工作任务,每个学员扮演不同的角色。按照工作流程,行使各自角色的岗位职责。在角色扮演中明确自己的工作任务,掌握每项工作的技术要点和可能存在的危险点。
三是培训内容更加注重能力的培养。在德国人的培训理念中,培训更加注重的是一种有针对性的行为能力的培养。仍以电网调度人员或变电运行人员为例。按照他们的培训思路,一定或尽量要让培训学员能面对自己岗位所熟悉的系统网络或对应的设备,培训中注重每个细节的训练,包括每句话的规范性以及每个动作的标准性等等。
四是培训的师资更加注重聘请具有实践经验的培训师。对于某些专业性很强,需要综合能力的技术岗位,德国的培训机构,更倾向于聘请具有丰富实践经验的兼职培训师或来自学员所在公司的技术专家,承担重要技术岗位的培训任务。这对于学员来说,更能够有针对性的掌握本企业的综合情况,按照本企业的特点,进行专项技术技能的训练,达到学以致用的目的。
三、学习考察后的思考与启示
1.掌握企业发展动态,创新开发培训项目
从德国乃至欧洲对新能源发展规划的目标,可以看出未来世界新能源发展的方向。我国目前能源结构虽然仍以煤炭资源为主,但是随着“十二五”能源发展规划的逐步落实和新能源政策的出台,逐年增加可再生能源的比例,已势在必行。而对供电网络来讲,则要应对各种新能源发电中不稳定因素对电网冲击所带来的挑战;要应对大区域大范围联网对系统稳定性、设备自动化、智能化和快速反应能力的挑战;要应对事故紧急情况下系统协调调度、安全运行的考验。所以,在目前国网公司建设智能电网的强劲势头下,创新开发适应新形势下的培训项目,是提升人员素质,做好能力储备的必要条件。可探索和开发:(1)电网运行调控一体化的培训项目;(2)新能源入网的协调联合调度、监控电网稳定运行的培训项目;(3)电网事故状态下应急处理培训项目;(4)智能电网综合性培训项目;(5)智能用电侧的需求管理培训项目;(6)可再生能源发电入网仿真系统监控运行、紧急状况预案处理等等。
2.跟进企业发展脚步,强化岗位技能练兵
电力企业的职业特点是:技术工作的标准性和规范性要求高,需要时刻保持高度的安全意识。结合德国考察的体会,主要启示是:一是应加强安全行为的专项训练。特别是生产类的运行、调度、检修与试验等岗位,对人员的安全意识、规范动作、标准要求的强化训练是至关重要的。二是应加强岗位工作标准化流程和标准化作业的练兵。按照标准化流程进行作业训练,有利于学员养成良好的安全行为习惯,同时提升完成任务的工艺水平、综合质量和工作速度等。三是应加强岗位工作角色扮演的模拟训练。按照实际工作的角色分别进行模拟强化练兵,有利于提高培训的针对性和实效性。
Abstract:In recent years,The photovoltaic power generation has become an important form of distributed generation,Step-by-step into the civilian。In order to meet the family,Focuses on the use of photovoltaic power generation system,Lithium energy storage systems,Discharge management system,User side of the power situation,City of electrical intervention and control management system integrated the run design content。By Photovoltaic power、The friendly intervention of electrical,storage of energy storage systems and home power grid,To achieve the photovoltaic and Mains complementary support load, Effectively play the energy-saving effect。
Keywords:photovoltaic power generation;lithium energy storage;a mixed supply management;bidirectional inverter
中图分类号:S611 文献标识码:A 文章编号:
0引言
太阳能具有资源丰富、开发方便、清洁无污染等优点,光伏发电作为太阳能发电的主要应用形式,已成为一种重要的分布式发电技术。随着光伏、风电等可再生能源发电技术的发展,分布式发电日渐成为满足负荷增长需求、提高能源综合利用效率、提高供电可靠性的一种有效途径,并在配电网中得到广泛的应用。
但分布式发电的大规模渗透也产生了一些负面影响,如单机接入成本较高、控制复杂、对大系统的电压和频率存在冲击等。这限制了分布式发电的运行方式,削弱了其优势和潜能。混合动力型系统设计为发电技术及可再生能源发电技术的整合和利用提供了灵活、高效的平台。
光伏发电受光照和温度等外界条件的影响较大,其功率输出具有较强的波动性与间歇性,给电能质量和电网调度带来了很大的挑战,因此在家庭应用中配备一定的储能装置组成光伏-蓄电池混合发电系统,改善系统动态和静态特性特性。
本文首先介绍含锂电池储能的光伏发电和市电混合供电设计系统的详细方案,其特征是:
集光伏、市电和锰酸锂电池供电为一体;具有逻辑控制功能;逆变输出纯正的正弦波;同时具有电压调整功能,输出电压稳定可靠。通过光伏发电、储能和市电控制管理系统研究和设计,完成独立光伏储能发电接入工程总体技术方案,为实现绿色光伏电源无障碍介入提供技术指导。
1总体方案设计
光伏发电阵列通过充电控制连接锂电储能系统,锂电储能经由一个双向DC/DC 换流器通过充放电系统接入逆变单元,同时连接市电。市电输出控制电路和隔离逆变都连接AC输出接口。该系统以光伏发电用电为主,光伏发电不足时由市电介入,在没有市电和光伏发电不足时采用蓄电逆变支持负载工作的先后顺序。
2光伏发电系统设计
2.1 光伏电池阵列设计
系统的光伏组件选用功率为195 Wp 的单晶硅太阳电池组件,工作电压约为36.5 V,开路电压约为41 V。根据家庭用电情况满足室内照明、冰箱、电视、电脑等用电设备。系统电压DC48V,双向逆变器功率为2KW,光伏方阵为4块195Wp组件,采用2串2并方式连接。
光伏电池是光伏发电系统中最基本的电能产生单元,单体电池的输出功率较小,需经串并联形成光伏阵列以获得较高的输出电压和较大的输出功率。
太阳电池的输出特性
光伏性能图
3蓄电系统设计
3.1 储能装置选择
综合比较各种储能技术在新能源发电领域的应用特点,锂电池作为新型绿色储能产品,具有寿命长、体积小、容量大等特点,在该项目中我们选用锰酸锂电池,在功率配比、循环使用寿命、使用费用等各个方面,均比较适合本项目的设计要求。
3.2 储能装置充放电系统
对于储能系统,设计采用双向逆变器实现光伏发电、锂电池储能系统与市电的能量交互。双向逆变器采用逆变/充电一体机可以实现纯正弦波输出交流电压,以及在交流逆变器中集合了蓄电池充电功能、交流自动切换开关等。该储能系统配置的监控系统监控范围覆盖充电电流、蓄电池容量等各方面。充、放电电流实时测量,系统同时实时监控电压值,以保证系统运行在最佳状态下,延长系统使用时间。
4市电接入及控制管理系统设计
4.1市电介入工作模式
该工作模式为当光伏不处于发电状态或光伏发电不能满足负载用电时,由市电(交流)输入经隔离变压器隔离降压后,经整流器进行整流滤波,由逆变器逆变后给负载提供纯正弦波电能。同时市电通过整流后可以为蓄电进行充电。
4.2整体控制管理系统设计原理
具体工作原理如下:
1)、当日照充足,系统光伏输入功率大于负载功率时,保持长期由光伏输入经逆变DC-AC转换,输出交流电向负载提供电能,同时对逆变器后备锂电电池进行充电,直至锂电电池组电压充到设定的过高压保护点Vch值。
2)、当日照不充足或光伏输入功率小于负载功率时,当锂电电池组电压降低到设定点Vb时,由蓄电逆变转为市电交流供电,并且交流电经由逆变控制单元和光伏发电同时向锂电电池组进行充电。当逆变器后备电池组电压恢复到Vch时,断开交流供电,重新由光伏输入或逆变器后备电池组对负载提供电能。
3)、当光伏电池处于不发电状态时,该系统将处于交流市电供电模式,同时由交流供电经由双向逆变单元向后备锂电电池组进行充电。只有当具有光伏发电时转至1和2状态。
4)、该系统供电由三路供电组成,分别为市电供电模式,后备锂电电池提供供电模式以及光伏发电供电模式。根据工作环境按1)、2)、3)的逻辑模式工作。
系统原理图
5结论
本系统设计具有真正包含光伏发电、蓄电储能和市电接入的实际运行能力,能够真正实现分布式光伏发电、蓄电储能和市电供电之间的混合式供电。通过光伏发电和市电接入有效的保证系统供电的稳定可靠,可体现分布式光伏发电、市电接入及储能系统智能协调工作,有利于光伏分布式发展和提高光伏发电经济效益。
参考文献
[1]王志群,朱守真,周双喜. 分布式电源对配电网电分布的影响[J]. 电力系统自动化,2004,28(16):55-60. WANG Zhi-qun,ZHU Shou-zhen,ZHOU Shuang-xi.Impact of distributed generation on distribution system voltage profile[J]. Automation of Electric Power Systems,2004,28(16):55-60。
[2]李安定. 太阳能光伏发电系统工程[M]. 北京:工业大学出版社,2001:10-20.
LI An-ding. Solar photovoltaic generation system project[M]. Beijing : Industrial University Publishing House,2001:10-20.
[3] Chan H L, Sutanto D. A New Battery Model for use with Battery Energy Storage Systems and Electric Vehicles Power Systems[C]//Power Engineering Society Winter Meeting. 2000: 470-475.
[4] 胡立业.分散发电与分布式供能系统[J].上海电力,2005, 1: 28-31
[5] 王斯成.光伏发电的前景和问题.国际电力,1997 第四期