混凝土结构论文汇总十篇

时间:2023-04-03 09:45:20

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇混凝土结构论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

混凝土结构论文

篇(1)

1腐蚀混凝土结构的因素:

1.1素混凝土结构

素混凝土的基本组成材料是水泥、砂、石和水。影响素混凝土结构的耐久性的主要因素为碱-集料的反应(混凝土中碱含量超标,暴露在水或潮湿环境使用时,其中的碱与碱活性集料间发生反应,引起膨胀)。

1.2钢筋混凝土结构

钢筋混凝土结构材料是混凝土与钢筋的复合体,它的腐蚀形态可分为两种:一是由混凝土的耐久性不足,其本身被破坏,同时也由于钢筋的、腐蚀而导致整个结构的破坏;二是混凝土本身并未腐蚀,但由于外部介质的作用,导致混凝土本身化学性质的改变或引入了能激发钢筋腐蚀的离子,从而使钢筋表面的钝化作用丧失,引起钢筋的锈蚀。从化学成分来看,钢筋的锈蚀物一般为Fe(OH)3、Fe(OH)2、Fe3O4·H2O、Fe2O3等,其体积比原金属体积增大2~4倍。由于铁锈膨胀,对混凝土保护层产生巨大的辐射压力,其数值可达30MPa(大于混凝土的抗拉极限强度)使混凝土保护层沿着锈蚀的钢筋形成裂缝(俗称顺筋裂缝)。这些裂缝进一步成为腐蚀性介质渗入钢筋的通道,加速了钢筋的腐蚀。钢筋在顺缝中的腐蚀速度往往要比情况快,等到混凝土表面的裂缝开展到一定程度,混凝土保护层则开始剥落,最终使构件丧失承载能力。

影响混凝土中性化(包括碳化)速度的因素很多,但主要的因素是混凝土的密实度,即抗渗性能。混凝土愈密实,即抗渗性能愈高,则外界的气体只能作用于混凝土表面,向内部渗透比较困难。影响混凝土密实度的主要因素是混凝土的水灰比和单位水泥用量。水泥品种对混凝土的中性化速度有一定的影响;不同品种的水泥,因其掺合料的品种及含量不同,水解时生成的碱性物质数量不同,使混凝土的中性化速度也就不同了。

普通硅酸盐水泥的熟料含量多,掺合料的含量一般不大于15%,其碱度比其它品种的水泥高,中性化速度相对的要慢。火山灰质硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,由于掺合料中的活性氧化硅与水泥熟料中水解时产生的氢氧化钙结合,从而降低了混凝土孔隙中的液相碱度,加快了碳化或中性化的速度。

1.3预应力混凝土结构

预应力混凝土结构的腐蚀除了具有普通混凝土结构的腐蚀类型外,由于采用高强度钢筋和钢筋在高应力条件下工作,所以可能发生应力腐蚀和钢材的氢脆。

1.3.1应力腐蚀

应力腐蚀是钢筋在拉应力和腐蚀性介质共同作用下形成的脆性断裂。这种破坏与单纯的机械应力破坏不同,它可以在较低的拉应力作用下破坏;这种破坏又与单纯的电化学腐蚀破坏不同,它可以在腐蚀性介质很弱的情况下而破坏。

腐蚀性介质与钢筋作用,在钢筋表面形成一个大小不等弥散分布的腐蚀坑后,每个腐蚀坑相当于一个缺口,钢筋在拉应力的作用下,形成应力的不均匀分布和应力集中,在缺口的边缘,当钢筋平均应力不高时,其集中的应力即可达到断裂应力的水平,而引起钢筋的断裂。由于缺口的存在,形成了拉应力三轴不相等状态,阻碍了钢筋塑性变形的开展,使塑性变形性能在钢筋断裂前不能充分发挥出来,延伸率、冷弯等塑性指标均有明显下降。预应力钢筋的腐蚀是拉应力与腐蚀性介质共同作用的结果,腐蚀因素对钢筋断裂的最初形成起主要作用,而拉应力则促进了腐蚀的发展。

1.3.2氢脆

氢脆是预应力钢筋在酸性与微碱性的介质中发生脆性断裂的另一中类型。氢脆与应力腐蚀的机理完全不同。应力腐蚀发生在钢筋的阳极,而氢脆发生在钢筋的阴极区域。氢脆是由于钢筋吸收了原子氢,而使其变脆,所以称为氢脆。钢筋在腐蚀过程中,表面可能有少量氢气产生,在通常情况下,生成的原子氢会迅速结成分子氢,在常温下是无害的,但当这一过程受到阻碍时,氢原子就会向钢筋内部扩散而被吸收到金属内部的晶格中去,如果钢筋内部有缺陷存在,氢原子很可能重新结合成为氢分子。氢分子的生成产生很大的压力,出现“鼓泡”现象。使钢筋变脆。产生氢脆的钢筋在受到超过临界值的拉力作用时,便会发生断裂。硫化氢是能引起预应力钢筋氢脆的介质之一。

1.4纤维混凝土结构

纤维混凝土的腐蚀机理与普通混凝土基本相同,但纤维的直径较细,且均匀分布,其耐久性相对普通混凝土要强一些。开裂的纤维混凝土构件在潮湿的环境下,裂缝处的混凝土碳化后,碳化区的钢纤维开始锈蚀。有研究表面,钢纤维混凝土中钢筋的锈蚀较普通混凝土钢筋的锈蚀减轻,其原因除了钢纤维阻裂作用的影响外,还在于细小纤维在混凝土中乱向均匀分布,从而改变了钢筋电化学锈蚀的离子分布状态,阻止了钢筋的锈蚀。

1.5轻骨料混凝土结构及加气混凝土

轻骨料混凝土的腐蚀机理与类型基本与普通混凝土相同,由于大多数轻骨料抵抗气体扩散能力较低,腐蚀性气体较易渗入内部,因此必须控制轻骨料混凝土的密实度。

加气混凝土的显气孔较多,不致密,吸水率高,碳化速度较快,在正常使用条件下尚需对钢筋进行表面涂覆保护层,而且加气混凝土表面气孔多,不容易进行保护,所以在腐蚀环境下不宜使用加气混凝土。

2预防混凝土结构腐蚀的办法

对混凝土结构腐蚀预防应针对其不同的结构组成制定不同的办法。

2.1原材料的选择

2.1.1水泥

水泥是水泥砂浆和混凝土的胶结材料。水泥类材料的强度和工程性能,是通过水泥砂浆的凝结、硬化而形成。水泥石一旦遭受腐蚀,水泥砂浆和混凝土的性能将不复存在。由于各种水泥的矿物质组份不同,因而它们对各种腐蚀性介质的耐蚀性就有差异。正确选用水泥品种,对保证工程的耐久性与节约投资有重要意义

2.1.2粗、细集料

发生碱-集料反应的必要条件是碱、活性集料和水。粗、细集料的耐蚀性和表面性能对混凝土的耐蚀性能具有很大影响。集料与水泥石接触的界面状态对混凝土的耐蚀性有一定影响。

混凝土中所采用粗细集料,应保证致密,同时控制材料的吸水率以及其它杂质的含量,确保材质状况。

2.1.3拌合及养护用水

混凝土拌合及养护用水,应考虑其对混凝土强度的影响。水灰比的大小很大程度影响混凝土强度值的大小。拌合水应检查其杂质情况,防止影响砂浆及混凝土生成时杂质影响其耐久性。

海水中含有硫酸盐、镁盐和氯化物,除了对水泥石有腐蚀作用外,对钢筋的腐蚀也有影响,因此在腐蚀环境中的混凝土不宜采用海水拌制和养护。

2.1.4外加剂

混凝土外加剂是在拌制混凝土过程中掺入,用以改善混凝土性质的物质。

混凝土外加剂的范围很广,品种很多,我国外加剂的品种目前已超过百种,其中包括减水剂、早强剂、加气剂、膨胀剂、速凝剂、缓凝剂、消泡剂、阻锈剂、密实剂、抗冻剂等。

在建筑防腐工程中,外加剂的使用主要是为了提高混凝土密实性或对钢筋的阻锈能力,从而提高混凝土结构的耐久性。实践证明,采用加入外加剂的方法,可以在一定范围内达到提高混凝土结构的耐腐蚀能力,是一种经济而有效的技术措施。

但由于外加剂的化学组成,来自外加剂中的氯盐可能使混凝土结构中的钢筋脱钝,给结构物带来隐患。在进行外加剂选择时需对其中氯盐的含量进行检测,并做相关实验。

2.2防腐混凝土的配合比设计

为提高混凝土的密实性和抗中性化能力,混凝土的强度等级宜大于或等于C25。受氯离子腐蚀或其它大气腐蚀时,钢筋混凝土构件中可掺入钢筋阻绣剂。对于预应力混凝土结构,其混凝土强度等级不小于C35,后张法预应力混凝土构件应整体制作,不得采用块体拼装的构件。

篇(2)

1火灾现场的资料收集

火灾事故一经发现,应尽可能早地进入现场或其周围了解情况。在火灾扑灭之后,更应在现场未经破坏时收集原始资料。

(1)起火时间、原因与灭火方式。建筑物的起火时间与火灾延续时间应予详细记录。火灾发生之后,有一个火势从小到大的发展阶段,再经过灭火或空气、燃料耗尽而火势减弱直至熄灭。要尽可能地找出火源所在位置,查明失火的原因,这对以后避免火灾发生很有意义。不同的受灾对象有不同的灭火方式,要说明灭火使用的手段。

(2)火势蔓延的过程与过火范围。从火源处开始,通过可燃物的燃烧,过火范围逐步扩大。火势常通过门窗、楼梯间、过道、天井等蔓延至其他位置与楼层。火势能否蔓延与通风条件有很大关系。由于建筑物各部分火烧时间不同,受损的程度也还大有差异。

(3)可燃物品统计。特别对工矿企业,可燃物的品种、数量与存放方式各有不同,应分别查明,记录在案。还需说明可燃物在火灾后的燃烧状况,如烧毁多少、残存多少等。

(4)结构损毁程度。钢筋混凝士结构受不同温度不同时间的作用,有多种损坏情况。在各个过火区域要分别调查结构损毁程度,例如结构本体是否完好,外观破坏程度,包括保护层剥落、钢筋外露、裂缝开展以及构件变形等等。

(5)现场材料取证。火灾现场一般都有各种金属与非金属材料,如铜、铁、铝、玻璃等、它们在经受温度作用时会发生不同的物理化学变化,铝与铝合金在600~700℃、黄铜在900~1000℃、铸铁在1100~1200℃会有金属滴产生;玻璃在700℃时软化,而在850℃时熔化,在不同过火区域取证这些典型样品,对火灾的鉴定有很大作用。

(6)混凝土取样。混凝土是组成结构的主要材料,其损毁程度与建筑物修复的关系最大。混凝土在高温作用下会发生物理变化与化学反应,当温度在300℃以下时,混凝土无变化,随着温度的升高,水泥水化物(主要是硅酸钙与氢氧化钙晶体)将会有显著的变化。可通过扫瞄电子显微镜,拍摄到清晰的照片,再结合X射线衍射分析,能有效地鉴定混凝土受火的损伤状态。

2火灾的技术分析资料

根据现场勘测收集的资料,进行综合分析,在技术上作出判断与评估,这些技术分析资料主要有:

(1)结构受火温度。可根据以下情况综合分析:

混凝土表面颜色的变化与温度有关:300℃以下颜色不变,300~600℃转为粉红至红色,600~950℃转为灰白至淡黄,大于950℃则为灰黄色;现场材料取证(见前述);构件外观状况:300℃以下无显著变化,300~600℃表面开裂,石英质骨料发生爆裂,600~900℃混凝土剥落起壳,轻击后脱离,部分钢筋外露,表面疏松,900℃以上表面呈粉末状,至1200℃熔融;扫瞄电子显微镜与X射线衍射分析;碳化深度检测:混凝士正常碳化通常发生在表面,火灾引起的碳化可出现在内部。用碳化深度可检测受火表面温度。

(2)混凝土高温后力学性能。混凝土的抗压强度、抗拉强度、粘结强度、应力-应变关系等均与温度有关,当温度确定后,均可予以推断。混凝士强度还可用钻芯取样、回弹仪检测、超声检测等方法直接测得,并进行综合评价。

(3)钢筋高温后力学性能。包括屈服强度、极限强度、弹性模量等也与温度有关,可通过由实验得出的经验公式计算获得。

(4)结构残余承载力。从混凝土与钢筋高温后的强度可计算火灾后钢筋混凝土结构的残余承载力(结构承载力因受高温作用而下降)。必要时可在火灾现场不同区域选取典型构件进行加载试验。

(5)结构损伤度。结构灾后损伤程度分为4级:1级为轻度损伤,只是表面装饰部分遭受损坏,或表面损伤轻微,结构本体完好。2级为中度损伤,损伤深度达到混凝土保护层,使保护部分剥落,但受拉主筋未受损伤,构件整体性好,变形不超过规范规定值。3级为严重损伤,混凝士保护层大片剥落、主筋外露,粘结力破坏,构件明显变形。4级为严重破坏,混凝士构件表面大面积损伤剥落、严重开裂,结构变形很大,构件遭到严重破坏,已成为危险结构。

(6)修复措施。对于损伤度为1~3级的结构,可分别采取相应的技术措施予以修复,由有关部门应提出结构修复的技术文本。

3资料的系统归档

火灾发生以后直至处理结束,应将所有资料系统归档,这些将由不同单位和不同方式提供的火灾现场资料与技术分析资料有:

(1)火灾现场资料。根据资料不同的性质,将分别由消防部门、业主、有关技术人员等提供。资料包括书面文件、材料样品、照片、录像等。除书面文件外,其他资料还应有详细说明。

(2)专家技术人员的技术鉴定书。火灾对结构破坏的技术分析,只能由专门技术人员作出,并提供技术鉴定书与评估意见。

(3)图纸。由业主提供受灾建筑物的设计图纸。专家技术人员在检测过程中,应对图纸上每个构件编号,说明受损情况,以便采取相应的修复措施。由于建筑物受灾程度不等,故进行全面检测后,要对图纸中标明的过火区域按不同损伤情况分区,划为严重受灾区、中等受灾区、轻微受灾区、未受灾区等。

篇(3)

据公安部消防局统计,2005年全国共发生火灾235941起,死亡2496人,伤残2506人,直接财产损失13.6亿元。近年来,预应力混凝土结构已由早期的简单构件发展为现今复杂的空间整体受力结构,以其大跨度、大空间、良好的结构整体性能以及有竞争力的综合经济效益,正逐步成为现代建筑结构形式的发展趋势,由于预应力混凝土结构的抗火性能劣于普通钢筋混凝土结构,因此开展预应力混凝土结构的火灾反应和抗火性能研究是非常有意义的。

1预应力混凝土结构火灾研究的现状

国外学者对结构抗火性能的研究开展较早,始于20个世纪初,并成立了许多抗火研究组织,比较有名的有美国建筑火灾研究实验室、美国消防协会、美国的波特兰水泥协会、美国预应力混凝土协会、英国的BRE(BuildingResearchEstablishment)。这些组织对建筑结构的抗火性能进行了系统的研究,主要体现在对建筑材料高温下的力学性能;结构、构件火灾下的升温过程及温度场的确定;火灾条件下结构和构件的极限承载能力及耐火性能方面的研究,并编订了相应的建筑规范及行业规则。

国外预应力混凝土构件抗火性能的研究稍晚于钢筋混凝土结构,主要工作始于20世纪70年代初期。尽管早期Ashton等人的试验研究认为预应力混凝土在火的作用下存在许多问题,但其后一些学者的试验和研究表明预应力混凝土构件在火的作用下仍具有较好的工作性能。

有关文献介绍了美国进行的18个后张预应力混凝土板和梁的耐火试验。在这些试验构件中,预应力筋分为有粘结和无粘结两种。在耐火试验中,实测了时间与预应力筋温度关系,典型的时间-温度曲线如图1所示。在图中还可以看出不同保护层厚度与耐火时间的关系。

Gustaferro等人在预应力混凝土抗火方面做了不少试验研究,他们对有粘结预应力混凝土梁、预应力混凝土简支板、预应力混凝土连续梁、板等结构或构件在不同情况下的抗火性能进行了试验研究,并对预应力混凝土结构的抗火性能提出了合理的计算方法。他们通过对后张预应力混凝土梁和板的抗火试验,得出在1,2,3,4小时的抗火等级下的保护层厚度和构件最小尺寸的建议值。Ashton等人与Gustaferro同期也进行了一系列相应的预应力梁抗火试验研究,包括不同比例试件的耐火极限试验的对比,试验结果表明预应力混凝土能满足结构的不同耐火等级,其耐火性能主要取决于其预应力筋在火灾中所达到的温度,因此预应力筋的保护层厚度和梁的截面形式对预应力混凝土结构的耐火性能具有明显的影响,结构在火灾下的承载力随混凝土的保护层厚度增加和荷载减少而提高,并且轻骨料预应力混凝土板的抗火性能好于普通预应力混凝土板。Joseph等进行了后张无粘结预应力混凝土板的试验研究,试验着重研究了预应力钢筋保护层厚度对构件抗火性能的影响同时研究了荷载和端部约束情况的影响、辅助钢筋的作用等问题。Abrams等人对不同骨料和喷有隔离层的预应力混凝土构件的抗火性能进行了试验研究,Krishnamoorthy等人通过徐变和温度对预应力混凝土框架性能的试验研究得出了试验结果,其中包括不均匀温度对结构变形性能的影响及内应力和弯矩随时间的变化。

国外根据预应力混凝土梁、板等方面的试验研究结果,已对预应力混凝土在火灾作用下的承载力及极限耐火时间有了较全面的了解。他们认为温度是影响预应力混凝土结构蠕变性能的主要因素,要建立合理的分析方法必须考虑混凝土温度蠕变特性,弹性理论已不适用,蠕变率的分析方法被认为是预测整个加载阶段结构特性较满意的方法。他们的试验研究为预应力混凝土抗火设计提供了直接依据。

国内抗火研究组织从20世纪80年代后期起着手进行钢筋混凝土结构的抗火性能研究,但国内关于预应力混凝土抗火方面的试验研究尚处于起步阶段,缺乏足够的试验数据。国内规范中涉及预应力混凝土的抗火内容主要是参考国外经验确定的,如《无粘结预应力混凝土结构技术规程》防火部分第三章第3.2.1条规定用保护层厚度来满足不同耐火等级要求,它对不同耐火极限下无粘结预应力混凝土保护层厚度的确定,主要取自美国《后张预应力混凝土手册》。同济大学对5榀相同尺寸的单层无粘结预应力混凝土框架、3榀有粘结预应力框架和预应力钢丝进行了火灾试验,得出了一些有用的结论,主要有以下几个方面:①在高温作用下,预应力钢丝的强度、弹性模量、延伸率均表现出与常温下不同的性能。强度和弹性模量随温度升高而下降,延伸率则随温度的升高而增大;②对于预应力混凝土结构,火灾升温速率和温度越高,其抗火性能越差;在同一升温条件下,预应力混凝土结构承受的荷载越大,其抗火性能越不利;③对于预应力框架结构,与普通混凝土结构框架试验结果不同,荷载大小对抗火性能的影响可能要比温度的影响明显。预应力度大的结构受温度影响大,抗火性能差。预应力筋的有效应力大的结构,其抗火性能比有效应力小的结构差。无粘结预应力混凝土结构的抗火性能比有粘结预应力混凝土结构的抗火性能差。火灾后预应力混凝土结构的刚度明显减小,但仍存在一定的承载力,并反映出较好的恢复性能。

2存在的问题

尽管国内在钢筋混凝土结构抗火方面的研究工作已经取得长足进步,但在预应力混凝土结构火灾性能方面的研究才刚刚起步。诚然,预应力混凝土结构的抗火性能与一般钢筋混凝土结构在许多方面有相似性,但由于预应力混凝土结构自身的特性,这方面的研究还存在着许多问题,主要表现为以下方面:一是到目前为止各国学者所进行的试验及研究,基本上是以预应力混凝土简支构件在标准火灾下极限耐火时间为研究对象,主要考虑了截面内部温度分布及升温对预应力钢筋强度的影响等因素;二是以往试验主要研究预应力混凝土构件的耐火性能,由于结构的相互作用,因此受火构件的热变形将对其他构件产生影响,并存在较大的内力重分布,目前尚无专门研究,一般的解决办法是直接引用普通钢筋混凝土连续梁等火灾的有关结果,而这些结果是否能直接使用于预应力混凝土结构尚缺乏试验验证;三是以往的分析方法仅以热传导作为判断依据,无法对结构响应和损伤如位移、开裂、屈服等进行有效的判断,特别是材料的高温蠕变对结构火灾响应的显著影响缺少一定的研究;四是与普通混凝土相比,预应力混凝土具有许多特殊性,而以往的试验研究较少涉及。

3今后应开展的工作

(1)预应力材料高温性能研究。采用高强预应力钢丝和钢绞线是目前高效预应力混凝土的一个主要特征,因此预应力钢丝和钢绞线在高温下的蠕变性能是预应力混凝土结构抗火性能研究的基本内容。必须要通过材料试验研究高强钢丝和钢绞线在高温下的强度、变形、弹性模量的变化规律,特别是钢丝和钢绞线的高温蠕变性能对预应力混凝土结构的有效预应力的影响。此外要重视材料高温(火灾)性能数据库的建立。由于混凝土和钢材本身化学成分的差异,在温度影响下材料热工、力学性能有较大的离散性,如何对目前国内外进行的高温材料试验结果进行总结,并建立可供计算机程序调用的材料高温(火灾)性能数据库是火灾材料研究的一个重点。

(2)高温下预应力整体结构的非线性有限元分析。拟用传热学的基本原理,得到差分-有限元瞬态非线性温度场计算基本方程和各类常用边界条件,由此计算预应力混凝土结构温度场分布,并根据热弹塑性基本理论建立预应力混凝土火灾反应的非线性有限元分析基本方程。方程可用于分析预应力混凝土结构火灾下的变形、内力变化及预应力筋的应力随时间变化的过程,确定预应力结构火灾反应的一些基本特征。

(3)结构火灾的计算机仿真试验分析。一方面预应力混凝土结构火灾试验是最直接反应预应力混凝土结构抗火性能的手段,但预应力混凝土结构通常都应用于各类大跨度、大空间结构,由于试验条件限制,无法进行足尺模型试验,采用缩小比例的模型能基本反映火灾全过程的反应规律,但仍然有一定的差距。另一方面,由于受试验条件、试验经费的限制,也无法进行大量的模型试验。在进行模型试验的同时,要研究如何采用计算机仿真试验以避免上述限制。通过大量仿真试验,了解不同形式预应力混凝土结构的抗火能力,并提出改善预应力混凝土结构抗火能力的方法。笔者通过对有粘结预应力框架火灾位移的计算机仿真分析,可以得出如图2所示的有粘结预应力框架火灾下位移的实测值和计算机仿真分析结果的比较。由图2可见,计算所得的位移变化规律与实测相符,但仿真分析得到的结构位移较实测要大,误差最大时为40%。产生误差的主要原因可能由于试件混凝土含水率偏高,造成计算温度场高于实际温度分布,而结构的温度变形及材料性质与温度密切相关,从而产生结构计算误差。并且温度越高,材料的物理、力学性能离散性越大,另一方面,材料的高温蠕变的相关资料较少,这些也会造成一定的误差。总之仿真分析时的参数取值是否准确将影响分析结果,合理的参数取值依赖于可靠的实验结果。

(4)结构火灾反应的可靠度分析。由于火灾发生的可能性、火灾的持续时间和峰值强度、发生火灾时结构承受的荷载等因素并不确定,材料在高温下性能更趋于离散,上述因素均会影响结构的耐火性能。在无粘结预应力结构中,还存在锚固失效的可能性,以及结构局部失效可能产生的整体失效等,因此如何在设计中对这些因素进行综合考虑,以确定其耐火安全度是结构火灾的一个重要研究内容。结构火灾下的可靠度分析也是对现有遭受过火灾的建筑物进行评估的一个重要方面。

(5)结构抗火设计计算机模块的研制。目前对特定结构进行火灾全过程非线性有限元分析在理论上是可行的,但不免繁复的运算过程。因此有必要编制具有工程准确度的、概念清晰且简易实用的结构抗火设计计算机程序,并实现和现有通用结构设计软件进行接口是结构抗火试验研究工程化的一个关键。

参考文献

篇(4)

高校对课程设计的要求一般为一人一题,但是由于学生人数多,设计任务书资料不足,难于真正实现人手一题。导致产生两方面的问题,一是教师在同一届学生中多采取分组方式开展不同结构类型的课程设计,在同一组内只是对部分参数做一定修改,计算过程和步骤完全相同,学生无需考虑结构布置或经济性等要求,缺乏对学生创新意识和能力的培养;二是教师在下届学生课程设计时会继续使用上一届使用过的题目,命题更新不够,致使学生会搜集上届学生的课程设计成果进行单纯模仿或直接抄袭,学生无法通过课程设计来了解当前相关技术的最新动态,与社会生产发展中的实践环节脱节。长此以往,学生便无法真正掌握结构设计方法,更无益于培养分析问题、解决问题的能力。

1.2课程设计图纸计算大多采用软件,不利于学生基本技能的培养

随着计算机技术普及,各大高校在土木工程教学中大多都开设了CAD、SoliWorks、PKPM、midas等用于提高制图及计算的效率,同时有助于学生很好地与工程实际应用相结合,然而在教学中,过多地采用计算机软件进行辅助设计,学生只知道按照软件提示步骤操作获取最终结果,但对其内在的制图和识图方法、规范依据等却不熟悉甚至不去思考,导致工作中经常出现对于实际工程中的明显错误判断不出,图纸识别不准确等问题,不利于培养学生的基本技能。

1.3考核评价体系不合理,缺乏对设计过程的控制

混凝土结构课程属于专业基础课程,课时量大,理论授课占用时间较长,课程设计基本在学期末,学生此时面临多门课程的期末考试,迫于对课程设计成绩的追求,学生大多数会需找往届模板,或照抄别人的成果交差。由于教师对课程设计成绩的评定多以设计成果作为唯一依据,也有高校采取了抽查答辩等方式进行,但是忽视对学生设计过程的监管,缺少平时考核,日常检查也不严格、不规范,最终给定的成绩也不科学,甚至出现抄袭者的成绩反倒高于自行完成者的成绩,评定不够客观和公正,课程设计成果的质量自然无法保证。

2教学方法改革

2.1课程设计命题工程化、多元化,切实增加学生设计自由度

课程设计命题不能只是要求学生做简单的虚拟设计,应该密切联系现行的工程规范依托已建或在建项目资料编制多元化的课程设计题目,同时在任务书的编写上可以适当放宽约束条件,给学生自由选择和发挥的空间,从而激发学生设计的积极性和主动性。具体做法:一是学校应该充分发挥校内外实习基地(设计院、工程单位)的作用,大量收集工程背景资料、设计图纸等为教师开展课程设计命题提供依据;二是教师应该根据该课程设计的大纲要求科学编写任务书,充分体现一人一题的要求,同时已知条件可适度放宽,让学生自由选择和发挥,引导学生独立思考、解决“实际问题”;三是由教研室组织相关教师对拟开展的任务书进行认真审定,包括设计内容、深度、工作量、成果评定方式等,然后下发至学生开始设计。通过这种方式可切实提高课程设计科学性和工程应用性,为学生后续工作奠定良好的基础。

2.2采取手工设计为主,软件验证为辅的方式开展课程设计

为杜绝学生电子文本相互抄袭的问题,该课程设计可要求学生对于结构设计及施工图纸手工绘制,教师严格按照制图规范标准进行检查,对于不符合要求的图纸全部返工;设计计算书要求学生先采取手工计算,然后利用软件进行验证。通过这种方式,既可以提高学生对基本计算公式和规范的应用能力,又可以加强学生对基本制图、识图能力及三维工程形构件能力的培养,真正达到理论结合实际的目的。

2.3充分体现课程设计教师主导作用,加强过程监控

教师的实践能力直接决定学生课程设计的质量和效果,因此,任课教师必须要具有丰富的工程实践经验,且熟悉现行规范。为提高课程设计质量,教师必须要积极投入到学生的设计当中去,并起到主导作用,教师每天进行集中答疑,以便及时发现问题,对于共性问题采取集中讲解,个别问题单独解释,这样既可以保证课程设计质量,又可以检查和督促学生的设计进度,真正达到课程设计大纲对人才培养的要求。

2.4改革课程设计成果评价机制,正确处理成绩与效果的关系

课程设计的成果评价应该改变传统的以设计成果作为唯一依据的评定方式,坚持以“考核只是手段,学习效果才是目的”的原则,充分考虑教师在指导过程中掌握的信息,既要保证对设计过程中表现积极,成果完整可靠的学生给予高分评价,又不挫伤部分成果欠佳学生的积极性,而是将最终反映出的问题必须反馈至学生,同时要求学生限时改正,最终给予合理的成绩评定。因此,成果评价可采取学生自评、互评、教师讲评和抽查答辩相结合的方式进行,并结合教师平时指导记录,科学设定各环节的分值比例,以实现该课程设计成果评价的客观、公正。

篇(5)

1前言

建筑工程中,混凝土结构的裂缝较为普遍,裂缝的类型也很多,但按成因基本可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝以及由这两种变形共同引起的温度收缩裂缝则是兰州地区实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现,混凝土强度等级的提高,施工中泵送混凝土工艺的应用,使超长混凝土结构易出现的温度收缩裂缝有逐渐增多的趋势。虽然这类裂缝属非结构性裂缝,一般不致影响构件承载力和结构安全,但却会影响结构的耐久性和整体性。同时也会给使用者感官和心理上造成不良影响。另外由于我国幅员辽阔,不同地区气候环境、温湿度差异很大,现行规范对防止和减轻温度收缩裂缝的设计措施制定的较为原则和局限。因此不少设计人员较重视强度设计,而不太认真考虑抗裂的构造措施。这样一旦出现裂缝不仅影响工程质量,同时在进入住房商品化,质量纠纷日趋增多的今天也不利于保护自己。

基于以上原因,笔者感到有必要结合兰州地区温差大,气候干燥这一地区特点,根据多年的工程设计实践和体会,对防止和减轻超长混凝土结构温度收缩裂缝的设计措施提出一些建议,供设计人员参考并能有所启发。

2温度收缩裂缝的基本特点

混凝土在结硬的过程中发生收缩,温度变化时会热胀冷缩,当这两种变形受到约束后,在结构内部就会产生收缩应力和温度应力,这两种应力分别超过混凝土抗拉强度时就会导致混凝土开裂而形成收缩裂缝或温度裂缝。超长混凝土结构中较多见的是在收缩应力和温度应力共同作用下所产生的温度收缩裂缝。要分析温度收缩裂缝的基本特点,首先应掌握收缩和温度变形的一些基本概念。

2.1收缩变形的特性及影响因素:

一般混凝土最终收缩应变约3~5×10-4,其特点是早期收缩快,半年可完成第一年收缩量的80~90%,一年后仍发展但已不明显。其影响因素主要有混凝土强度等级,水泥品种,水灰比,坍落度,养护(保温,保湿)和体表比。

2.2温度变形的特性及影响因素:

混凝土温度线胀系数一般为1.0×10-5/C°,其变形随温差而变化,一般发生在混凝土结硬一直到房屋使用期间。其影响因素有季节温差,内外温差和日照温差。

2.3温度收缩裂缝的基本特点:

⑴该裂缝由收缩和温度变形共同产生,其分布一般为收缩和温度两种裂缝的组合,随环境湿度和温度而变化,随时间而发展,裂缝的开裂和危害程度往往较单一的收缩或温度裂缝严重。

⑵根据具体工程裂缝出现的时间、发展与变化、以及分布、形状、尺寸等特征。一般可分为以收缩变形为主或以温度变形为主,实际工程中较常见的是以收缩变形为主的温度收缩裂缝,一般发生在混凝土浇筑后一年内,但多见半月至数月之内。

⑶主要影响的部位及构件是底层和顶部数层梁板构件以及基础梁、挑檐、栏板等外露构件。

⑷梁板裂缝呈现不同分布和特征,梁缝一般垂直于纵向,分布在两侧面,两头细、中间宽、枣核形。裂缝为表面,深进或贯通。单向板缝等间距平行于短边。双向板缝较重于单向板缝,两个方向板缝纵横交错,不规则,缝多为贯通,板面缝一般宽于板底缝。

3防止和减轻超长混凝土结构温度收缩裂缝的设计建议

3.1设置后浇带以及控制和抵抗温度收缩应力的措施

3.1.1有效设置后浇带

后浇带是列入高规中的一种目前设计人员常采用的方法,它利用了混凝土早期收缩量大的特性,其设计思路是“以放为主”。主要作用是释放早期混凝土收缩应力,减小以收缩为主的变形。高规虽然对后浇带的间距、宽度、钢筋处理、浇筑时间有较明确要求,不少资料对此也有所介绍。但是结合多年来对兰州地区几个较大型超长工程的设计实践,深感对后浇带的做法必须予以重视。如设计施工处理不好,不仅起不到予期的效果,还会留下结构隐患。因此就后浇带的具体做法提出以下建议和看法:

⑴间距:高规规定为30m~40m。建议具体工程应结合建筑物长度、气候环境特点综合考虑,一般应控制在30m左右。

⑵位置:

①小跨梁开间或受力较小的部位,一般可在梁跨三分之一处。

②平面布置时要注意梁的布置宜平行于后浇带以免梁截断太多。

③视具体情况可沿平面曲折通过。

⑶宽度:高规规定800~1000mm。建议预留的宽度要考虑满足钢筋错开搭接要求。可允许大于1000mm。

⑷钢筋:目前对后浇带内梁纵向钢筋处理有两种做法。

第一种:梁板钢筋均断开后搭接(高规要求),但由于梁钢筋搭、焊接处理困难,质量不易保证,易给结构造成隐患。

第二种:板钢筋断开,梁钢筋直通不断。目前工程采用较多,但由于截断梁较多时,钢筋全部不断会约束混凝土收缩,达不到予期效果。

建议:梁上部钢筋,腰筋及板墙钢筋断后错开搭接或必要时先搭后补焊。梁下部钢筋不断,可适当加大配筋。这样即可大大减小梁钢筋全部不断对混凝土收缩形成的约束,又可避免梁钢筋全部断后造成的钢筋搭、焊接困难,这种处理方法笔者自93年以来已在一些工程中较好的进行了使用。

⑸浇筑时间:高规要求,宜在两个月后且浇筑时的温度宜低于主体混凝土浇筑时的温度。由于混凝土早期收缩量大,相对一年的收缩量,半月约占30~40%;1个月约占45~55%;2个月约占65~75%;半年约占80~90%,故应按规范执行,一般应保证两个月后浇筑。

⑹后浇混凝土:采用无收缩或微膨胀混凝土,强度较主体混凝土提高C5级。

⑺设计时要特别交待以下请施工单位注意的问题:

①后浇带两侧宜设钢筋网片,防止主体混凝土流入后浇带。

②后浇带混凝土浇筑前应清理凿毛,浇筑时振捣密实,精心养护。

③后浇带两侧支撑保证稳定可靠,后浇带混凝土达设计强度时方可拆除。

3.1.2、针对性地采取控制和抵抗温度收缩应力的措施

⑴加强屋面保温隔热措施,采用高效保温材料,严格满足建筑节能设计标准。

⑵屋面板、外廊板,阳台板等外露室外现浇板(含施工期间主体暴露时间较长的室内现浇板)以及板跨大于4m且采用泵送混凝土的双向连续板等温度收缩应力较大的板,均应在板面(即板的受压区)配置不小于φ6@200双向钢筋网片,或支座钢筋隔一全跨贯通,但间距不宜大于200mm,每一方向配筋率不宜小于0.1%。以上板在有受力钢筋处,实配钢筋尚应考虑温度收缩应力影响予以适当增大。

⑶框架梁及所有现浇梁凡高度≥600者(外露梁高度≥500)均设置不小于2φ12腰筋。腰筋宜细而密,间距不应大于200mm,每侧腰筋配筋率不宜小于0.1%。

⑷檐口板,外露栏板应双面双向配筋,上下端头各配≥2φ10温度抵抗筋,并每隔15~20m设置一道20mm温度伸缩缝。

⑸控制现浇板混凝土强度等级不宜大于C35。

后浇带列入高层规程后已在大量工程中广泛使用。前已述及,其主要作用是减小混凝土早期以收缩为主的变形。因此,超长混凝土结构温度收缩裂缝的预防不能仅靠设置后浇带来解决,必须采取上述“放”“防”“抗”相结合的综合措施。笔者已在兰州和西非热带地区一些较大型的超长建筑中,根据具体工程各自的特点多次采用了上述综合措施。实践证明比较有效。故认为,防止和减轻兰州地区超长混凝土结构温度收缩裂缝目前仍然应首先或主要采用设置后浇带以及控制和抵抗温度收缩应力的综合措施。考虑目前混凝土温度收缩裂缝的趋于增多以及超长混凝土结构的抗震性能。建议采用上述综合措施,房屋总长宜控制在120m内。

3.2采用UEA补偿收缩混凝土

3.2.1方法提出:

由于后浇带延长工期,钢筋断后的搭、焊接和清理凿毛均给填缝施工带来一定麻烦,处理不好将留下隐患,因此中国建筑材料科学研究院游宝坤等人提出了采用UEA加强带取代后浇带连续浇筑超长建筑的无缝设计施工方法。

3.2.2设计思路:

“以抗为主”的设计原则,利用UEA补偿收缩混凝土在硬化过程产生的膨胀作用,在结构中产生少量预压应力用来补偿混凝土在硬化过程中产生的温度和收缩拉应力,从而防止收缩裂缝或把裂缝控制在无害裂缝范围内。

3.2.3具体做法

所有楼板均掺10~12%UEA(膨胀率2~3×10-4)。但每间隔50m设置一条2m宽膨胀加强带,带内混凝土掺加14~15%UEA(膨胀率4~6×10-4),两侧设密孔钢丝网,防止混凝土流入加强带,可连续浇筑100~200m的超长建筑,具文献[4]介绍,该技术已在全国50多个重大工程中应用。

由于这种方法,规范未列入,施工要求严,气候环境影响大,潮湿地区膨胀可保持,干躁地区会存在问题。结合对福州机场航站楼采用UEA混凝土后实际效果的调研。建议兰州地区应慎重采用,若采用可做必要计算和实验,测得一些技术数据,最好在有条件保湿养护的地下结构中采用。也可考虑在建筑长度70m以下,设置后浇带后影响工期的工程上试用,但对梁板构件仍应针对性地采取3.1.2中介绍的一些必要的控制和抵抗温度收缩应力的设计措施。另外特别提请施工时要严格保湿养护。

3.3采用予应力混凝土结构

予应力混凝土可增强梁板刚度,梁板中所产生的预压应力可抵消由于混凝土温度变化和收缩产生的轴向拉应力,从而达到扩大温度伸缩缝间距不设后浇带的目的。经对珠海机场调研了解到:梁板在采用无粘结予应力混凝土后,平面尺寸84×48m,未设后浇带,使用良好。笔者认为,当为满足建筑层高要求而采用该技术时,可考虑在采用必要的控制和抵抗温度应力的具体措施后增大温度伸缩缝的间距,但应结合工程收集资料具体分析。

4结语

⑴温度收缩裂缝是兰州地区超长混凝土结构中较常见且日趋增多的裂缝,由于该裂缝的危害性及规范的局限性,设计人员应予以足够重视。

篇(6)

一、前言

随着城市建设的发展与建筑技术的进步,大跨度超高层建筑已经成为建筑结构发展的主要方向之一。而由混凝土包裹钢骨做成的钢骨混凝土结构(SRC),充分发挥了钢与混凝土两种材料的特点,与钢筋混凝土结构相比,具有刚度大,延性好,节省钢材的优点。因此,钢骨混凝土结构在我国有着广阔的应用前景。

钢骨混凝土结构的研究和应用在国外开始较早,我国因国情的限制,起步较晚,工程应用就更少,直到1997年11月才由冶金工业部正式了有关规程,并于1998年5月1日起施行。

深圳世贸中心大厦在关键部位应用了钢骨混凝土结构,解决了用普通钢筋混凝土结构不能解决的难题,收到了良好的效果。

二、工程概况

深圳世贸中心大厦于1996年设计,是一幢集金融、贸易、商业、办公于一体的综合性超高层建筑,总建筑面积12万平米。主楼地上52层,地下3层,标准层层高4m,总高230m,采用钢骨混凝土框架-筒体结构。裙房5层,层高5m,总高25m,采用框架-剪力墙结构。主楼与裙房之间未设变形缝,施工时留有施工后浇带。基础采用大直径人工挖孔桩基础最大直径2.9m。

根据建筑功能及使用要求,裙房首层及二层由大厅组成,为大空间;三层为银行办公室,中间部分设一圆形天井;四层设有外汇交易大厅;五层为大会议室;

三、结构布置

为了满足建筑功能及使用要求,需要选择一个受力合理、安全可靠、施工方便的结构方案。由于裙房首层及二层共有6根柱子不能落下,形成了长达25.8m跨的大空间,结构平面采用了井字梁的结构形式。但关键问题是25.8m跨框架大梁采用何种结构型式,并且建筑要求三层框架梁截面高度不超过1m。

方案1:采用普通钢筋混凝土大梁,这种方案梁断面较大,框架梁截面高度需2m以上,不满足建筑功能及使用要求,此方案不可行。

方案2:采用无粘结预应力混凝土大梁,这种无粘结预应力梁本身截面及用钢量均不太大即可满足结构设计要求,但由于三层梁高1m的限制,梁高跨比达到1/25,此方案也不宜采用。

方案3:采用钢骨混凝土大梁,利用大梁中部抗拉柱,按变形协调计算。梁截面比普通钢筋混凝土减小很多,平面和空间利用率都相应提高,又采用由四、五层大梁吊三层梁的悬挂形式,三层框架梁高度为1m,可以满足建筑使用要求。该方案克服了上述二个方案的不足之处,且施工方便,合理可行。经方案比较,优点较突出,虽然增加了用钢量,但因梁截面减小,增加了空间使用面积,抗震能力也大大提高。因此,本工程裙房25.8m大梁采用钢骨混凝土方案。为了保证大梁与柱的固结,与之相接的柱也采用了钢骨混凝土结构形式。

四、钢骨混凝土梁的计算

结构整体计算采用中国建筑科学研究院软件TBSA4.2计算,再采用软件PK对框架梁进行复核。由于本工程在设计时,国内尚未正式出版有关SRC组合结构构件设计规程,针对钢骨混凝土梁的计算,当时有二种计算模型,一种是强度叠加模型,另一种为变形协调模型。下面结合世贸大厦裙房25.8m大梁,分别用两种模型进行计算。

⒈强度叠加模型

假定SRC构件的承载力是钢骨部分与钢筋混凝土部分的承载力之和,钢骨与钢筋混凝土部分的变形彼此独立。这种方法具有计算简单,应用灵活的特点,其设计是偏于安全的。日本的计算标准就采用了此模型,SRC计算方法也是基于这种模型。现SRC梁进行计算,公式如下:

钢骨混凝土梁受弯承载力:M≤Mc+Ms(1)

式中Mc---钢筋混凝土部分受弯承载力,按设计

Ms---钢骨部分的受弯承载力,Ms=γWnf(2)

γ---截面塑性发展系数,Mn---截面净截面抵抗矩,f---型钢材料强度设计值

钢骨混凝土梁受剪承载力:V≤Vc+Vs(3)

式中Vc---钢筋混凝土部分受剪承载力,按设计

Vs---钢骨部分的受剪承载力,Vs=2/3Aswfv(4)

Asw---钢骨腹板部分净截面积,fv---钢材抗剪强度设计值

钢骨混凝土梁的刚度:B=0.65EcIc+EsIs(5)

式中EcIc---钢筋混凝土的刚度,EsIs---钢骨的刚度

由于该模型公式简化,计算简单,故在设计中可先按该模型公式,确定构件截面、钢骨截面及钢筋数量。世贸大厦裙房25.8m跨大梁混凝土及钢骨截面。

弯距设计值为M=19237kN-m,剪力设计值为V=2467kN,混凝土强度等级C40,钢骨为16Mn。

按公式(2):Ms=γWnf=1x4.15x107x315=13100kN-m

按公式(1):Mc≥M-Ms=19237-13100=6137kN-m

再按,Mu=fmcbx(h0-x/2)(矩形截面)

将已知条件代入,得x=170mm,xb=ξbh0=0.55x1765=970mm

选用12Φ36

按公式(4):Vs=2/3Aswfv=2/3x55200x170=6256kN

故V=2467kN<>

按公式(5):B=0.65EcIc+EsIs=1.88x1016Nmm2

挠度:fmax=5ql4/384B+(5n4-4n2-1)Pl/384n3B

=72mm<25800/300=86mm(满足)

SRC计算方法也是基于这种模型,且计算公式也基本相同,除钢骨部分受剪承载力Vs=Aswfv,与有所差异外,其它部分均一致。

2.变形协调模型

沿用钢筋混凝土构件计算中常用的钢筋与混凝土变形协调一致的假定,即钢骨与混凝土之间始终没有相对滑移,构件截面始终保持为平面,钢骨与混凝土能够共同工作。其优点是从力学概念上保持了与钢筋混凝土构件的一致性,主要问题是计算公式过于复杂。前苏联规范就采用了此模型,SRC结构计算也是基于这种模型。由于计算公式较复杂,故在世贸大厦裙房钢骨混凝土大梁设计中,先按强度叠加模型计算截面及配筋,然后再用变形协调模型进行复核。

按第二种情况,中和轴经过钢骨腹板,其截面受压区高度按公式(6)计算:

x=[1.8fayνδw+fsyAs-fsy’As’+fcm(As’+Assf’-δw)]/[fcm(b-δw)+2.25fayδw](6)

将ν=900mm,δw=40mm,fsy=fsy’=310N/mm2,Assf’=3x104mm2,fay=315N/mm2,fcm=23.5N/mm2,

代入得:x=401mm,x<(适筋截面)>

正截面承载力按公式(7)计算:

M=fcmbx2/2+fsyAs(h-x-a)+(fsy’-fcm)As’(x-a’)+0.9fay[+(ν-x)2δw]-fcm(x-)[Assf’+(x-)δw/2](7)

式中---为钢骨塑性抵抗距,=1.17ω=1.17x4.15x107=4.86x107mm3

将各数值代入(7)式得:M=24370kNm>19237kNm(满足)

抗剪承载力按公式(8)计算:V=0.056fcbh0+0.58fywδwhw+fyvAsv/sh0(8)

抗剪承载力与变形经计算,均满足要求,过程不再赘述。

五、设计体会

现行规程中梁正截面受弯承载力及斜截面受剪承载力计算均采用强度叠加模型,公式及含义也基本相同。区别是规程中钢骨部分的受剪承载力是按纯钢构件腹板受纯剪情况计算的,不考虑局部压屈影响,要求放宽。故当计算满足时,也能满足现行规程。

钢骨混凝土构件中的钢骨另由含钢率控制,不受钢筋配筋率的影响,使得有与普通混凝土构件同样的外形尺寸,但其承载力提高很多。同样,在承载力相同的情况下,钢骨混凝土构件的外形尺寸可以相应减小,减轻了结构自重,减小了混凝土用量,利用钢骨本身承载力大的优点,可以节约支模所设的支撑,节省材料。在大跨度,大荷载作用下,钢骨混凝土梁截面尺寸由变形控制。

中和轴通过钢骨腹板的钢骨混凝土构件,在其丧失最大承载力后,由于在其中和轴附近的钢骨腹板仍处于弹性工作状态,所以仍能保持较大承载力,使构件本身并不崩溃,显示出较好的变形能力和抗震性能。

篇(7)

2施工管理

2.1原材料质量控制

第一步,当水泥原料等相关材料还没抵达施工现场前时,其相关负责专人一定要仔细查看并核对的材质证明及具体数据等,尤其在收货时,一定要注意是否有铅封方,若无可拒收拒用;然后,现场管理人员必须遵循严格的检查标准,并全面整体的复检原材料,在进行对主要原料检验时,可以通过预先,批量、抽样三种检验方式相结合可以提高其检验频率。可以坚决保证不让不符合质量标准的材料进入到现场施工的每一个环节里:第三,对于相关材料减水剂进行基本的检验之后,随着现场施工进度的推进情况,依然要定时定期通过对混凝土对比试验这种方式来对减水剂挥况做具体评估,与此同时对水泥适应性波动进行跟进性计算,有必要时还要合理调整优化混凝土和减水剂的配合比。

2.2模拟试验

在整个木工程施工环节之内,自密实混凝土扩展度以6×102mm~6×102mm区间作为设计标准区间,坍落度2.3×102mm~2.4×102mm区间作为设计标准,为了使得上述指标达到满足,当混凝土经过出厂检测后并符合检查的合格标准后应该没有延误的将混凝土送至施工地。与此同时,现场施工人员要尽早提前半个小时抵达现场,以便对模拟施工方做好具体的准备。

3自密实钢管混凝土结构的施工管理措施

3.1钢管的安装以及质量验收

在安装钢管柱之前,需要完全清理柱内存在的杂物和养护水等,在对钢管柱进行安装时候,一定要密封处理钢管柱的上口,如在其上口盖上塑料布等方式可以进行密封,这样一来可以保证无积水或者杂物的进入管内。同时,要安排专人严格控制轴线方向,严格控制钢管上卜管口错位偏差值,当一切安置妥当自检达标后,可上报监理人员并让他们验收。如果验收结果未达到相关验收标准,那么便不能投入使用到则接下来的施工工序里。

3.2施工前的混凝土检查

在自密实钢管混凝土结构施工过程当中,只有对混凝土的扩展、坍落度做好严格严密的控制工作。如此才能保证实现混凝土自密实性能的最大化,故而,专人工作时应在混凝土原料在运输至施工现场前时,需要对每一辆装载混凝土车要认真的检查并记录,即使是卸料时候,也要再次进行复查。本工程所用为C100强度等级混凝土,总7次进行施工过程中的浇筑,实测坍落、扩展度都达到相关标准和要求,另外和易性优势体现的也比较显著。

3.3设置浇筑孔

在钢管内隔板上面所留设的混凝土浇筑,要求孔径设置不得小于200mm<=,以此来确保混凝土的顺利浇筑。与此同时,还需要在内隔板的四个拐角位置设置透气筑气孔,要求孔径设置为25mm,并且将透气孔设置在与管壁相间隔大约100~200mm的位置处,提高透气效果,避免出现混凝土气泡大量聚集在内隔板下面的情况,以此来提高节点位置处的混凝土浇筑质量。在该工程中,钢管内隔板上就留设了孔径为300mm的浇筑孔,并且四个拐角各设置了一个孔径为25mm的透气孔,与管壁之间的距离控制在了100mm。

3.4浇筑工序

在工序实施中,由于其自由下落高度超过其允许浇落范围外,即使是自密实混凝土时粘聚、抗离析性很好的情况下,但过大的下落高度会很容易使其产生离析分层,所以自由落下高度最好控制在6m以内,6米以内是一个规定的允许区间。据了解如果浇筑大于12m长柱时,会对长柱进行两次浇筑,同时在每次新柱浇筑混凝土前,应先浇灌一层厚度为100~200mm的与混凝土强度等级相同的水泥砂浆,以免自由下落的混凝土骨料产生弹跳而离析。浇筑过程中可采用敲击钢管来检查浇筑面高度和浇筑的密实度,同时敲击也有利于混凝土气泡的排出。在浇筑到标高后,待混凝土扩展、密实、气泡排出稳定后,在初凝前,检查浇筑完成的混凝土面有无浮浆。若有,需将其舀出。同时,在自密实混凝土浇灌中和浇灌后,严禁采用任何形式的振捣。

3.5施工缝的处理

根据此前施工的实践经验而言,因为钢管柱在拼接环节中,柱内凝土灼伤反应有出现的可能性,所以,合理的处理施工缝隙是一道非常重要的工序。通常而言,本结构施工缝大多在柱的连接位置3×102mm管口以下设置,之后在进行拼接第二节钢管柱前,应重复对第一节对柱内部清理的措施对第二节进行处理,此后将凿除管内的浮浆,并用清水冲洗其表面。

4自密实钢管混凝土结构的质量检验管理

从钢管混凝土难以直观查看混凝土质量存在的特殊性,通常以铁锤敲击钢管的方法对其密实度进行检查。在对重要建筑物进行检查时,需要运用超声波对其重要构件或部位等予以抽检。通过超声波检测取得超声参数后,用此参数来做标准,再比较自密实钢管混凝土所测得的结果,由此来判定管内土的实际质量状况如何。该工程在各节层上各抽取一根,总的测了19根。经检测后,其提出检测结果,并对每根受到检测柱的混凝土性能给予判断。最后,该工程所测结果都全部达到验收规范要求。

篇(8)

随着时间的不断推延,许多水下混凝土构件中的钢筋逐渐被渗水而发生锈蚀,从而导致其构件的耐久性降低,结构安全性也降低[1].因此,引起的工程损坏事例不断发生,由此带来的工程损失及处理费用也迅速增加,这也引起了建筑工程界和路桥部门的高度重视。其中,水下混凝土结构中钢筋的锈蚀较为普遍,特别是沿海地区的闸、涵、桥、防护堤及盐湖地区的水下混凝土较为严重,据资料显示,施工质量较差的混凝土构件,因为钢筋的锈蚀,正常使用几年后,就会产生顺筋胀裂,从而导致结构破坏,以致钢筋混凝土的失效。

一、水下混凝土结构中钢筋锈蚀的原因

混凝土在水化作用时,水泥中氯化钙生成氢氧化钙,使混凝土中含有大量的氢氧根离子,使PH值一般可达到12.5-13.5,钢筋在这样的高碱环境中,表面容易生成一层钝化膜[2],研究结果表明,这种钝化膜能阻止钢筋的锈蚀,只有这层钝化膜遭到破坏,钢筋开始锈蚀。

1.1、混凝土碳化引起钢筋锈蚀

因为混凝土硬化后,表面混凝土遇到空气中二氧化碳的作用,使氢氯化钙慢慢经过化学反应变成碳酸钙,使之碱性降低,碳化到钢筋表面时,使钝化膜遭到破坏,钢筋就开始腐蚀,众所周知,大气是二氧化碳的主要来源,大气中通常含0.2%-0.3%的二氧化碳,而且只要有大气存在的地方,就必然存在二氧化碳,而水下混凝土结构也有不少部分存在于二氧化碳环境中,对于普通的硅酸盐而言,水化产生的氢氧化钙可达到整个水化产物的10%-15%,它作为水泥水化产物之一,一方面,它是混凝土高碱度的提供源和保证者,对保护钢筋起着十分重要的作用;另一方面,它又是混凝土中最不稳定的成分之一,很容易与环境中的酸性介质发生中和反应,使混凝土碳化,并逐步延伸钢筋,使钢筋开始锈蚀[3]。

1.2、氯离子引起的钢筋锈蚀

水下混凝土中,氯离子进行混凝土通常有两种途径:其一是“掺入如含有氯盐的外加剂,使用海砂,施工用水含氯盐,在含盐环境中搅拌,浇筑混凝土时,其二是”渗入“环境中的氯盐通常通过混凝土的宏观、微观缺陷,渗入到混凝土中并达到钢筋表面,直接或间接破坏混凝土的包裹作用及钢筋钝化的高碱度两种屏障,使之发生锈蚀继而锈蚀产物体积膨胀,使混凝土保护层开裂与脱落[4];在海洋环境中的水下混凝土结构大都是这种情况。氯离子引起钢筋锈蚀可以从以下几个方面分析:

1.2.1破坏钝化膜

混凝土属于碱性材料,其孔隙溶液的PH值为12-14[2],因而对钢筋具有较好的保护作用,有利于钢筋表面形成保护钢筋的钝化膜,但这种钝化膜只有在高碱环境中才是稳定的。如果周围环境PH值降到11.8时,钝化膜就开始变得不稳定,当PH值继续降到9.88时,钝化膜就开始变得难以生存或逐渐破坏,使得进入混凝土中的氯离子吸附于钝化膜处,并使钝化膜的PH值迅速降低,逐步酸化,从而使得钝化膜被破坏。

1.2.2形成腐蚀电流

无论混凝土碳化还是氯离子侵蚀,都可以引起钢筋部分锈蚀,在钝化膜破坏处有腐蚀电流产生,在钝化膜破坏还与未破坏区这间存在电位差,有宏电流产生,但微电流要比宏电流大得多。又因为氯离子的存在大大降低了混凝土的电阻率,并且氯离子和铁离子的结合可以形成易容于水的氯化铁,从而加速了腐蚀产物向外的扩散过程,并由于宏观腐蚀电流在钝化膜破坏区边边缘最大,使得靠近钝化区的边缘的局部钝化膜破坏较快,这种现象称为局部锈蚀钢筋的“边缘效应”。

1.2.3氯离子导电作用

正是由于混凝土结构中氯离子的存在,大大降低了阴、阳极之间的欧姆电阻,强化了离子通路,提高了腐蚀电流的效率,从而加速了钢筋的电化学腐蚀过程,氯离子对混凝土中钢筋锈蚀更严重更快速[5].而氯化物是钢筋的一种活化剂,它能置换钝化膜的氧而使钢筋发生溃烂性腐蚀,而氯盐是高吸湿性的盐,它能吸收空气中的水分变成液体,从而使氯离子从扩散作用变成渗透作用,达到氯离子,透过保护区去腐蚀钢筋的目的。

1.2.4氯离子的阳极去极比作用

氯离子不仅促成了钢筋表面的腐蚀电流,而且加速了电流的作用过程,阳极反应过程Fe2eFe2+,如果生成的Fe2+不能及时搬运而积累于阴极表面,则阴极反应就会因此而受阻,相反,如果生成的Fe2+能及时被搬走,那么。阳极反应过程就会顺利乃至加还进行,Cl与Fe相遇就会生成FeCl2,Cl能使Fe消失而加速阳极过程,通常把阳极过程受阻称做阳极极化作用,而加速阳极过程者,称作阳极去极化作用,氯离子正是发挥了阳极去极化作用的功能。

应该说明的是,在氯离子存在的混凝土中,钢筋通常的锈蚀产物很很难找到FeCl2的存在,这是由于FeCl2是可溶的,在向混凝土内扩散遇到氢氧根离子,立即生成Fe(OH)2的一种沉淀物质又进一步氧化成铁的氧化物,即通常说的“铁锈”,由此可见,氯离子只起到了“搬运”的作用,而不被消失,也就是说进入混凝土的氯离子,会周而复始地起破坏作用,这也是氯盐危害特点之一。

1.2.5氯离子与水泥的作用及对钢筋锈蚀的影响

水泥中的铝酸三钙,在一定条件下,可与氯盐作用生成不溶性“复盐”,从而降低了混凝土中游离氯离子的存在,从这个角度讲,含铝酸三钙高的水泥品种有利于氯离子的侵害,海洋环境中优先选用铝酸三钙含量高的普通硅酸盐水泥,然而,复盐只有在碱性环境下才能生成和保持稳定,当混凝土的碱度降低时,复盐会发生分解,重新释放出氯离子来。在做钢筋锈蚀实验不难发现,如果大面积的钢筋表面上具有高浓度的氯化物,则氯化物所引起的锈蚀是均匀的,但是在不均质的混凝土中,常见的局部锈蚀,导致点蚀[6].首先则是在很小的钢筋表面上,混凝土孔隙液具有较高的氯化物浓度,形成破坏钝化膜的具备条件,形成小阳极,此时,钢筋表面的大部分仍具钝化膜,成为大阳极,这种特点的由大阳极、小阴极组成的锈蚀电偶,由于大阴供养充电,使小阳极上的铁迅速溶解而产生沉淀,小阴极区局部酸化,同时,由于大阴极区的阴极反应,生成氢氧化根离子,PH值增高,氯离子提高了混凝土的吸湿性,使得阴极与阳极之间的混凝土孔隙的欧姆电阴降低,这几方面的自发变化,将使上述局部锈蚀电偶得以自发的一局部深入形式继续进行。

二、评定与检测水下混凝土构件中钢筋的锈蚀状态

为了减少钢筋锈蚀对结构造成危害,需要即时了解现有的结构中的钢筋锈蚀状态,以便对钢筋采取必要的措施进行预防,我们对钢筋锈蚀的测试,可采用如下几种方法:

2.1视觉法和声音法

在常规的混凝土结构中,钢筋锈蚀的第一视觉特征是钢筋表面出现大量的锈斑,显然,只要检查钢筋表面就可以看到;有时,混凝土的表面下的裂缝发展到表面,混凝土最终开裂时可直接检查钢筋在早期可以用“发声”方法估计下部裂缝引起的破坏。使用小锤敲击表面,用声波方面检测顺筋方向的裂缝的出现。

2.2氯离子的监测

它需要对钢筋以上或周围的混凝土进行采样,一般通过钻芯方法,然后用电测法或化学方法确定氯含量,最近,以有中和反应法仪器用于结构中氯离子含量的检测。

2.3极化电阻法

极化电阻法(线形极化法)[7]作为一个锈蚀监测方法,已经成功的应用于生产工业和许多环境,该方法的原理是将锈蚀率与极化曲线在自由锈蚀电位处的斜率联系在一起,可以用双电极或三电极系统监测材料与环境偶合的锈蚀率。极化电阻法同样检验混凝土中的定位的问题;一个小操作可对放在砼中任何需要的位置,但回填土料同样是影响测量结果的一个非常关键性的因素。

2.4自然电位法

篇(9)

 

混凝土在现代工程建设中占有重要的地位。而在今天,混凝土的裂缝在一些施工现场仍然时有出现。论文大全。论文大全。究其原因,我们对混凝土温度应力的变化注意不够是其中之一。我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中大体积混凝土裂缝的成因和处理措施做一探讨。

1.大体积混凝土温度控制措施

高层建筑地下室的底板一般较厚,有的厚达2-3m,属大体积混凝土施工。发生裂缝的主要原因是水化热高,与环境气温差大,或养护不当,裂缝严重的可导致底板渗漏,若混凝土温度较高是突然浇冷水养护,也会产生无规则的多条微裂缝。

判断能否出现温度裂缝,温度裂缝的控制,需进行温度控制计算后采取相应措施加以控制。根据经验和有关规定混凝土内外温差不超过25度则不会产生温度裂缝。该工程大部分混凝土在12月到次年2月浇筑,而这段时间正值全年气温最低,因此必须进行混凝土热工计算和混凝土温度控制,该部分混凝土的标号均为C20。

采取防止出现温度裂缝的措施,计划采取的措施为:混凝土初凝后在表面覆盖一层塑料薄膜,并覆盖两层草袋进行隔热保温养护。

混凝土内部温度监测,为了及时牚握混凝土内部温升与表面温度的变化值,在第一施工段内设一个测温点,监测混凝土中心测点与表面测点的温差值,作为调整养护措施的依据,防止混凝土出现温度裂缝。

1.1大体积混凝土墎台身或基础等结构裂缝的发生是由多种因素引起

各类裂缝产生的主要影响因素有几种:一是结构型裂缝,是由外荷载引起的,包括常规结构计算中主要应力以及其他的结构次应力造成的受力裂缝。二是材料型裂缝,是由非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的。

1)收缩裂缝:限制条件下的收缩可分为自生收缩,塑性收缩,炭化收缩和干缩四种,在收缩变形超过极限延伸率或收缩产生的应力超过混凝土当时的抗拉强度时,就开始出现裂缝。

2)温差裂缝:混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。大体积混凝土结构一般要求一次性整体浇筑。浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发混凝土内部温度将显著升高,而其表面则散热较快形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝龄短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。

3)安定性裂缝;安定性裂缝表现为龟裂,主要是因水泥安定性不合格而引起的。

1.2温度应力的分析

根据温度应力的形成过程可分为以下三个阶段:

(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝土弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。

(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土的弹性模量变化不大。

(3)晚期:混凝土完成冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。

2.裂缝的防治措施

2.1设计措施

1)精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。

2)增配构造筋提高抗裂性能。配筋应采用小直径、小间距。全截面的配筋率应在0.3-0.5%之间。

3)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。

4)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

5)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

2.2施工措施

1)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。

2)根据工程特点,充分利用混凝土后期强度,可以减少用水量,减少水化热和收缩。

3)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15゜C以上。论文大全。

4)采用两次振捣技术,改善混凝土强度,提高抗裂性。

5)对于高强度混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%-50%。

2.3现场操作方面

1)浇捣工作:浇捣时浇捣棒要快插慢拔,根据不同的混凝土坍落度正确牚握振捣时间,避免过振和漏振,应提倡用二次振捣,二次抹面技术,以排除泌水,混凝土内部的水分和气泡。

2)混凝土的养护:在混凝土裂缝的防治工作中,对新浇混凝土的早期养护工作尤为重要。以保证混凝土在早期尽可能少产生收缩。主要是控制好构件的湿润养护,对于大体积混凝土,有条件时宜采用蓄水或流水养护。养护时间为14-28天。

3)避免在雨中或大风中浇灌混凝土,对于地下结构混凝土,尽早回填土,对减少裂缝有利。

4)夏季应注意混凝土的浇捣温度,采用低温人模,低温养护,必要时经试验可采用冰块,以降低混凝土原材料的温度。

篇(10)

 

1.前言

随着建筑向大型化和多功能发展,超长高层或大柱网建筑不断出现,混凝土强度等级的提高,施工中泵送混凝土工艺的应用,使超长混凝土结构易出现的温度收缩裂缝有逐渐增多的趋势。虽然这类裂缝属非结构性裂缝,一般不致影响构件承载力和结构安全,但却会影响结构的耐久性和整体性。同时也会给使用者感官和心理上造成不良影响。

2. 温度收缩裂缝的基本特点

混凝土在结硬的过程中发生收缩,温度变化时会热胀冷缩,当这两种变形受到约束后,在结构内部就会产生收缩应力和温度应力,这两种应力分别超过混凝土抗拉强度时就会导致混凝土开裂而形成收缩裂缝或温度裂缝。超长混凝土结构中较多见的是在收缩应力和温度应力共同作用下所产生的温度收缩裂缝。要分析温度收缩裂缝的基本特点,首先应掌握收缩和温度变形的一些基本概念。

2.1收缩变形的特性及影响因素:一般混凝土最终收缩应变约3~5×10-4,其特点是早期收缩快,半年可完成第一年收缩量的80~90%,一年后仍发展但已不明显。其影响因素主要有混凝土强度等级,水泥品种,水灰比,坍落度,养护和体表比。

2.2温度变形的特性及影响因素:混凝土温度线胀系数一般为1.0×10-5/C°,其变形随温差而变化,一般发生在混凝土结硬一直到房屋使用期间。其影响因素有季节温差,内外温差和日照温差。

2.3温度收缩裂缝的基本特点:1,该裂缝由收缩和温度变形共同产生,其分布一般为收缩和温度两种裂缝的组合,随环境湿度和温度而变化,随时间而发展,裂缝的开裂和危害程度往往较单一的收缩或温度裂缝严重。2,根据具体工程裂缝出现的时间、发展与变化、以及分布、形状、尺寸等特征。一般可分为以收缩变形为主或以温度变形为主,实际工程中较常见的是以收缩变形为主的温度收缩裂缝,一般发生在混凝土浇筑后一年内,但多见半月至数月之内。3,主要影响的部位及构件是底层和顶部数层梁板构件以及基础梁、挑檐、栏板等外露构件。4,梁板裂缝呈现不同分布和特征,梁缝一般垂直于纵向,分布在两侧面,两头细、中间宽、枣核形。裂缝为表面,深进或贯通。单向板缝等间距平行于短边。双向板缝较重于单向板缝,两个方向板缝纵横交错,不规则,缝多为贯通,板面缝一般宽于板底缝。

3.防止和减轻超长混凝土结构温度收缩裂缝的设计建议

3.1设置后浇带以及控制和抵抗温度收缩应力的措施

3.1.1有效设置后浇带后浇带是列入高规中的一种目前设计人员常采用的方法,它利用了混凝土早期收缩量大的特性,其设计思路是“以放为主”。主要作用是释放早期混凝土收缩应力,减小以收缩为主的变形。高规虽然对后浇带的间距、宽度、钢筋处理、浇筑时间有较明确要求,不少资料对此也有所介绍。但是结合多年来对几个较大型超长工程的设计实践,深感对后浇带的做法必须予以重视。如设计施工处理不好,不仅起不到予期的效果,还会留下结构隐患。因此就后浇带的具体做法提出以下建议和看法:(1),间距:高规规定为30m~40m.建议具体工程应结合建筑物长度、气候环境特点综合考虑,一般应控制在30m左右。(2),位置:a,小跨梁开间或受力较小的部位,一般可在梁跨三分之一处。b,平面布置时要注意梁的布置宜平行于后浇带以免梁截断太多。论文参考网。论文参考网。C,视具体情况可沿平面曲折通过。(3),宽度:高规规定800~1000mm.建议预留的宽度要考虑满足钢筋错开搭接要求。可允许大于00mm.⑷钢筋:目前对后浇带内梁纵向钢筋处理有两种做法。第一种:梁板钢筋均断开后搭接,但由于梁钢筋搭、焊接处理困难,质量不易保证,易给结构造成隐患;第二种:板钢筋断开,梁钢筋直通不断。目前工程采用较多,但由于截断梁较多时,钢筋全部不断会约束混凝土收缩,达不到予期效果。建议:梁上部钢筋,腰筋及板墙钢筋断后错开搭接或必要时先搭后补焊。梁下部钢筋不断,可适当加大配筋。论文参考网。这样即可大大减小梁钢筋全部不断对混凝土收缩形成的约束,又可避免梁钢筋全部断后造成的钢筋搭、焊接困难,这种处理方法笔者自93年以来已在一些工程中较好的进行了使用。(4),浇筑时间:高规要求,宜在两个月后且浇筑时的温度宜低于主体混凝土浇筑时的温度。由于混凝土早期收缩量大,相对一年的收缩量,半月约占30~40%;1个月约占45~55%;2个月约占65~75%;半年约占80~90%,故应按规范执行,一般应保证两个月后浇筑。(5)后浇混凝土:采用无收缩或微膨胀混凝土,强度较主体混凝土提高C5级。

3.1.2针对性地采取控制和抵抗温度收缩应力的措施加强屋面保温隔热措施,采用高效保温材料,严格满足建筑节能设计标准。(1),屋面板、外廊板,阳台板等外露室外现浇板以及板跨大于4m且采用泵送混凝土的双向连续板等温度收缩应力较大的板,均应在板面配置不小于φ6@200双向钢筋网片,或支座钢筋隔一全跨贯通,但间距不宜大于200mm,每一方向配筋率不宜小于0.1%.以上板在有受力钢筋处,实配钢筋尚应考虑温度收缩应力影响予以适当增大。(2),框架梁及所有现浇梁凡高度≥600者均设置不小于2φ12腰筋。腰筋宜细而密,间距不应大于200mm,每侧腰筋配筋率不宜小于0.1%.(3),檐口板,外露栏板应双面双向配筋,上下端头各配≥2φ10温度抵抗筋,并每隔15~20m设置一道20mm温度伸缩缝。(4),控制现浇板混凝土强度等。级不宜大于C35.后浇带列入高层规程后已在大量工程中广泛使用。前已述及,其主要作用是减小混凝土早期以收缩为主的变形。因此,超长混凝土结构温度收缩裂缝的预防不能仅靠设置后浇带来解决,必须采取上述“放”“防”“抗”相结合的综合措施。

3.2采用补偿收缩混凝土。

方法提出:由于后浇带延长工期,钢筋断后的搭、焊接和清理凿毛均给填缝施工带来一定麻烦,处理不好将留下隐患,因此在施工时采用混凝土掺加适量膨胀剂取代后浇带连续浇筑超长建筑的无缝设计施工方法。2,设计思路:“以抗为主”的设计原则,利用补偿收缩混凝土在硬化过程产生的膨胀作用,在结构中产生少量预压应力用来补偿混凝土在硬化过程中产生的温度和收缩拉应力,从而防止收缩裂缝或把裂缝控制在无害裂缝范围内。3,具体做法一般是所有楼板均掺10~12%膨胀剂。但每间隔50m设置一条2m宽膨胀加强带,带内混凝土掺加14~15%膨胀剂,两侧设密孔钢丝网,防止混凝土流入加强带,可连续浇筑100~200m的超长建筑,具文献介绍,该技术已在全国50多个重大工程中应用。

由于这种方法,规范未列入,施工要求严,气候环境影响大,潮湿地区膨胀可保持,干躁地区会存在问题。结合对08年施工建设的临清市六馆工程添加采用NC-P3型(山东省建科院配制)流化膨胀剂后实际效果地回访,临清市六馆工程已建成并投入使用,经观察检测无温度裂缝出现,结构情况良好。对于设置后浇带后影响工期的工程上使用,但对梁板构件仍应针对性地采取一些必要的控制和抵抗温度收缩应力的设计措施。另外特别提请施工时要严格保湿养护。

4.结语

上一篇: 六年级数学论文 下一篇: 电气工程论文
相关精选