时间:2023-04-10 15:00:54
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇无线电论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
1无线电通信技术的发展历程
1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。
1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。
1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。
1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。
随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。
随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。
信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。
无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。
2无线电通信技术的特点
近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:
不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。
具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。
可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。
无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。
3无线电通信技术之通信方法的拓新
21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:
3.1采用了数字通信技术
提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。
3.2推广通信信息技术宽带化的发展
信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。
3.3推广个人信息化技术
个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。
3.4拓新接入网络的样式
技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。3.5过渡电路交换网络
关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。
3.6使用Bluetooth技术作为信号传感器
Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。
3.7推广软件无线电
软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。
3.8提高无线通信网络可持续性
无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。
结束语
回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。
参考文献
[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.
一、感知无线电的概念
感知无线电技术用以实现动态频谱共享。通过检测空中信号占用频谱,通过探知无线环境中空闲频谱资源,选择可被自己利用频率进行通信。租借系统通过采用感知无线电技术,实时跟踪授权系统占用频率状况,随时使用、释放频段,在保障授权系统通信前提下,与授权系统动态共享频谱。论文百事通采用频谱检测方式获取频谱信息可使感知无线电技术能适应无线环境频谱使用状况短期变化,高效利用频谱,并且感知无线电技术不要求改造现有系统,对无线信道环境和用户需求都将具有较好适应性。
感知无线电技术动态频谱共享是自适应传输技术思想在频谱分配领域的运用。自适应传输使无线通信系统数据传输适应信道传输能力的变化,通过提高数据传输速率来改善频谱利用率。而感知无线电使无线通信系统占用的频谱适应无线环境频谱使用状况的变化,通过增加共享同一频段的系统数、用户数来提高频谱利用率。不管是自适应传输技术还是感知无线电技术,其思想的核心都是无线通信系统能自动地适应外界环境和自身需求的变化。
感知无线电思想可以推广到移动通信其它层面。从低层到高层,要求未来移动通信系统能检测系统各层参数与状态,如链路质量、网络拓扑、业务负载、甚至用户需求,并能适应这些变化。从通信端到端,在存在重叠覆盖多种无线电通信环境下,要求移动设备能够在异构网络间切换,实现包括终端、网络和业务在内的端到端重配置。这也就是所谓的认知网络(CognitiveNetwork)。
二、感知无线电关键技术分析
作为一种新的智能无线通信技术,感知无线电可以感知到周围的环境特征,采用构建方法进行学习,通过相关描述语言与通信网络智能交流,实时调整传输参数,使系统的无线规则与输入的无线电激励的变化相适应,以达到随时随地通信系统的高可靠性和频谱利用的高效性。无线规则指一系列适合无线频谱合理使用的射频带宽、空中接口、相关协议和空间时间模式的设置。感知无线电系统的重构能力很重要,该功能就是以软件无线电作为平台来实现的。重构功能是由软件无线电实现,而感知无线电的其他任务是通过信号处理和机器学习的过程实现,其感知过程开始于无线电激励的被动感应,以做出反应行为而终止,一个基本的感知周期要大致分为3个基本过程,分别是无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,它们的顺序执行使感知无线电系统的感知功能得以实现。
2.1感知无线电技术与动态频谱分配
未来移动通信系统满足用户需求的关键点是提高频谱利用率。移动通信的发展使带来了越来越严重的频率短缺问题。解决频率短缺大致有两类方法,一是扩大可利用的频率范围,二是提高频谱利用率。为增加可用频率,移动通信系统的频率已扩展至300GHZ。无线信道的路径损耗是随频率升高而迅速增加的,所以频率过高并不利于移动通信。因而,更加有效的方法是提高频谱利用率。
提高频谱利用率有三类途径,改进通信设备的传输技术,优化网络、提高组网能力。目前广泛采用这两种途径,但是这两种方法能够获得的频潜利用率增益将越来越少。第三种提高频谱利用率的途径是改进频谱分配方式。
目前国际上主要采用固定频谱分配方式,一个频段只分配给一个无线接入系统,不管分配的频段是否被频率牌照的所有者实际使用,其它无线接入系统不能占用该频段。为提高频谱利用率,可以将一些频段分配给了多个系统,允许它们同时占有同一个频段,甚至一些频段可以开放为不需牌照的频段,允许任意系统占用。尽管固定频谱分配方式能够改善系统干扰问题,但由于频谱的授权系统并不是在任何地区的任何时刻都使用频率,其频谱利用率很低。而简单地允许多个系统共享一个频段,虽然优于独占性的固定频谱分配方式,但由于它对频谱共享没有加以必要的控制,一个系统占用频率前并不知道该频率是否正在被其它系统使用,从而导致了两方面的问题。可见,如果仅仅是简单地允许多个系统共享频谱,而不避免系统间干扰,会制约频谱利用率的提高,并且不能保证通信质量。
为解决频谱短缺与频谱利用率低下的矛盾,可以考虑采用动态频谱分配方式。允许多个系统共享同一频段,各系统只在需要通信时才能占有频段,通信结束就释放频段,而且必须控制系统间干扰,后接入的系统不能影响其它已有系统的通信。为与现有通信系统兼容,分配频段上授权系统有使用频谱的最高优先级,只要不影响授权系统通信,租借系统与授权系统动态共享频谱。这种动态的频谱共享包含时间与空间两方面。在时间上,当授权系统不使用所分配的频率时,租借系统可以占用频率,但当授权系统重新占用频率时,租借系统必须及时地归还频率。
2.2信道状态估计及其容量预测
信道估计的结果可用来计算信道容量,用于控制发送端的信号能量,可使用香农法则计算信道容量C,但在感知无线电系统中并不直接在发送端传输C的信息,而是量化C,一定的量化率用于反馈发送端,量化比率是预先确定的,所以接收机接收的信息量要小于信道容量C。一般来说,无线系统的传输率是波动的,当其超出一定界限时,就会引起系统的不正常工作,这个界限决定了最大的传输比特率。
2.3功率控制和频谱管理
2.3.1功率控制
在感知无线电通信系统中功率控制的实现以分布方式进行,以扩大系统工作范围,提高接收机性能。控制发送端功率是感知无线电系统的关键技术之一。在多址接入的感知无线电信道环境中,主要采用协作机制方法,包括规则及协议和协作的Adhoc网络两方面内容。多用户的感知无线电系统彼此协作工作,基于先进的频谱管理功能,可以提高系统工作性能,支持更多用户接入。
2.3.2动态频谱管理
动态频谱管理也称为动态频谱分配,具有实现系统频谱高效利用的功能。在感知无线电系统中,频谱管理的算法可这样描述:基于频谱空穴和功率控制器的输出,选择一种调制方式以适应时变的无线传输环境,使系统工作在可靠传输的状态下。系统工作的可靠性可由信噪比差额(SNRgap)的大小确定。
2.4无线电知识描述语言
传统的软件无线电不能与网络进行智能交流,因为没有基于模式推理计划能力和没有相关描述语言。在以软件无线电为发展平台的感知无线电研究中,研究表示无线系统知识、计划和所需语言是关键技术,无线电知识描述语言(RKRL)应运而生,它表示了无线规则、系统配置、软件模块、网络传送、用户需求、应用环境等知识。
参考文献:
[1]何丽华,谢显中,董雪涛,周通.感知无线电中的频谱检测技术[J].通信技术,2007,(05)
[2]王军,李少谦.认知无线电:原理、技术与发展趋势[J].中兴通讯技术,2007,(03)
[3]谭学治,姜靖,孙洪剑.认知无线电的频谱感知技术研究[J].信息安全与通信保密,2007,(03).
二、认知无线电与宽带无线通信系统的融合
认知无线电的关键技术有:频谱监测技术,自适应频谱资源分配技术、自适应调制解调技术等。宽带无线技术主要有正交频分复用技术(OFDM)、多输入多输出技术(MIMO)、HARQ技术和AMC技术等。认知无线电与宽带无线通信系统的融合最主要的就是自适应频谱资源分配技术和正交频分复用技术结合、并辅以其它相关技术。OFDM系统是目前公认的比较容易实现频谱资源控制的传输方式。该调制方式可以通过频率的组合或裁剪实现频谱资源的充分利用,其与自适应技术相结合,除了在传统的时间域上自适应外,还更容易利用多载波的频率域,可以灵活控制和分配频谱、时间、功率等资源,在结合MIMO系统的空间资源,根据用户在不同的位置的不同传输条件,感知环境并且适应环境,并不断地跟踪环境的变化,以合理利用资源、提高系统容量。自适应频谱资源分配的关键技术主要有:载波分配技术、子载波功率控制技术、多天线层资源分配算法和复合自适应传输技术。
(1)载波分配技术。CR具有感知无线环境的能力。子载波分配就是根据用户的业务和服务质量要求,分配一定数量的频率资源。检测到的宽带资源是不确定的,随时间、空间、移动速度等变化。OFDM系统具有裁剪功能,通过子载波的分配,即在频段内对于用户来说,信干噪比(SINR)较高的不规律和不连续子载波的频谱资源进行整合,按照一定的公平原则将频谱资源分配给不同的用户,确定每个子载波传输的比特数量,选取相应的调制方式,实现资源的合理分配和利用。
(2)子载波功率控制技术。由于分配给用户的功率和子载波数一般是成比例的,功率控制算法在经典的“注水”算法的基础上,有一系列的派生算法。这些算法追求的是功率控制的完备性和收敛性,既要不造成干扰又要使认知无线电有较好的通过率,且达到实时性的要求。事实上功率控制算法和子载波分配算法是密不可分的。这是因为在判断某子载波是否可以使用时,就要对现状(空间距离、衰落)做出判断,同时还需要计算出可分配的功率大小,对于一个用户如果速率一定,如子载波数目增加所需的功率就会下降。
(2)强化无线电通信的监察
加强无线电通信安全,离不开对无线电通信的安全监察。通过有效地监察,可以确保无线电通信的安全隐患被控制在一个可以调控的范围之内,如此对于降低甚至是消除无线电通信带来的安全威胁是至关重要的。
(3)定期检修设备
对设备做好定期检修,这是无线电通信安全的保障措施之一。一旦设备出现通信方面的问题,很容易影响无线电通信的安全性,所以,确保无线电设备的正常运转,就需要检修人员、管理人员在日常的检修中,做好无线电有关设备的定期检修,及时地排除安全隐患,为无线电通信安全创设条件[2]。
(4)掌握无线电电波的传输规律
加强无线电通信安全,也可以通过掌握无线电电波的传输规律来实现。如无线电电台,其GMDSS通信系统包含MF、HF、VHF三个主要的频段。这三个频段信号可传输的距离按照由高到低的顺序,依次是HF、MF、VHF。所以,为了掌握无线电电波传输的规律,就要熟悉传输的实际距离,这样在当你需要呼叫接收电台之时,就可以选择最合理的频段用于无线电通信[3]。另外,在呼叫过程中,切忌使用大功率,一般可以先使用小功率进行尝试性呼叫,假如无法呼叫成功,或者是通信状态不良,才使用大功率,这样可以满足合理使用资源的要求。所以,掌握无线电电波的传输规律,对于无线电通信安全也有一定影响。
(5)采用屏蔽措施,满足无线电通信安全
提升无线电通信质量,才能满足无线电通信对安全提出的要求,针对无线电通信设备而言,可以结合设备结构、工作条件以及工作频率等因素,制定合理地屏蔽措施来满足无线电通信要求。①屏蔽体使用的材料:屏蔽措施是否能取得效果,屏蔽体材料的选择是主要因素。如果是高频电子设备,可以选择铝、铜等良导体材料。如果是低频电子设备,可以选择硅钢片、钢、电工软铁等磁铁性材料;②对缝隙的屏蔽:如果机箱对密封性有要求,可以尝试先用导电密封衬垫进行缝隙密封处理。如果机箱没有密封性要求,需将镀铜簧片安装在侧板、机箱盖板等于箱体搭接缝隙处。如果缝隙之处无法使用密封衬垫与无法安装镀铜簧片,可以考虑使用铜屏蔽胶带进行密封处理;③对连接线的屏蔽:连接线的设置应远离空洞和缝隙,信号线和地线必须分开布设,如无必要,导线尽量避免从屏蔽机箱穿过,如果必须穿过机箱,则需在导线上增设磁环,以此来降低电磁辐射量,确保整体的安全性。
由于无线电液控制技术在工程机械领域占有重要地位,它也越来越受到各国的重视,都投入了很多的技术力量和资金进行研究开发。虽然红外遥控也可以实现电液控制技术的远程遥控,但是由于红外遥控存在对工作背景要求高、能耗高、传输距离短(一般不会超过10米),且必需在同一直线上,中间不能有任何障碍物以及易受工业热辐射影响等缺点,使得无线电液控制技术成为当前研究的主要方向。
二、无线电液控制技术的研究现状及趋势
(一)无线电液控制技术的研究现状
最初,遥控电液控制系统都是采用有线遥控方式进行的。早在60年代初期,人们就能利用拖缆遥控装置来控制液压机械上的手动、电液多路阀,操作时通过拖缆遥控装置上的双向单轴摇杆输出线性比例信号来控制电液比例多路阀,线控盒摇杆的信号完全能模拟液压多路阀上手动拉杆的动作。虽然这种方式也可以使操作人员在作业区外对机械设备进行操作控制,但是由于控制信号在电缆线中的衰减,使得遥控的距离有限,同时由于电缆线的存在,影响了操作的灵活性,而且数米长的电缆经常是生产事故中的主要根源。[2]
随着无线电技术的成熟,把无线电技术引入电液控制系统成为了可能。由于无线电液控制技术是通过无线电波来传递控制指令,完全消除了拖缆式遥控装置所带来的故障隐患。但是一开始的无线电液控制系统都只能发射简单的指令,如:打开/关闭等指令。进入70年代后,随着大规模集成电路及专用微处理器的出现,开发出了可靠性更高的手持式无线遥控系统。后来,随着数字处理技术的快速发展,无线数字通信技术的日趋成熟,利用数字通信技术的抗干扰能力强、易于对数字信号进行各种处理等等的优点,使得遥控系统的抗干扰性能逐步提高,安全性能大大改善;与此同时,模拟集成电路设计的迅速发展,各种高精度的模拟/数字转换器(A/D)和数字/模拟转换器(D/A)的研制成功,并把他们应用到无线电液控制系统中,使得无线电液控制系统不但能够传输开关信号,也能够传输模拟控制量并且对控制指令有较高分辨能力,也就是说,无线电液控制系统不但能够控制普通的电磁开关阀,而且能够控制比例阀。
由于无线电液控制技术既有电液控制技术的优点,又有无线技术的优点,因此它有着很广泛的应用,特别是在工程机械领域中。无线电液控制系统的典型应用场合如工业行车、汽车吊、随车吊、混凝土泵(臂架)车、盾构掘进机的管片拼装机等。
80年代初,美国KraftTeleRobtics和约翰·迪尔等公司,相继开发出无线遥控系统,并应用于挖掘机中,成功推出遥控挖掘机。其中,比较典型的是约翰·迪尔公司的690CR型遥控挖掘机。
1983年,日本小松制作所研究开发了各种工作装置的微动控制和复合动作的无线电操纵,并成功改装PC200-2型液压挖掘机。
1987年,德国HBC公司研制成功应用于工程机械领域的工业无线电遥控装置。这种遥控装置采用了先进的数字化通信技术,传输的比例控制信号安全、可靠和实用,并对发射的指令有很高的分辨率;在接收端使用模拟技术可以使执行机构的加速、减速动作与无线电遥控装置发射器上的动作完全成比例,从而实现对执行机构的无级控制。利用它,结合电液比例伺服驱动机构、液压比例多路阀和电液比例减压阀及普通电磁控制开关阀,就可以实现工程机械的无线遥控。德国HBC无线电遥控系统采用的比例输出信号(0-5V/10V、4-20mA、PWM0-2A)可与多个厂家电液多路阀信号匹配,可模拟手动操作方式达到与液压控制系统互相间的协调。
与国外对无线电液控制技术的研究应用相比较,国内则相对比较晚,技术相对也落后一些。上海宝山钢铁公司于1997年引入HBC无线遥控系统、意大利FABERCOM的比例液压伺服模块,对黄河工程机械厂生产的ZY65型履带式装载机进行了遥控改造,使其成为一台遥控装载机。
(二)无线电液控制技术研究趋势
随着数字通信技术和超大规模集成电路的高速发展,把数字通信技术和高性能、高集成度的集成电路应用到无线电液控制技术中,使得无线电液控制器的性能更加完善,可靠性更加高。它们都推动着无线电液控制技术的发展,具体表现在以下几个方面:(1)超大规模集成电路的飞速发展使无线电液控制器硬件电路的可靠性提高,同时为实现更强大的(下转第152页)(上接第193页)功能提供了可能性;(2)数字通信技术提高了无线电液控制器的性能;(3)纠错编码技术提高了无线电液控制器的抗干扰能力。
三、无线电液控制技术在盾构管片拼装机中的应用
盾构管片拼装机是一六自由度机械手,由电液比例多路阀控制各个方向执行器动作,实现管片的拼装。利用无线遥控系统控制电液比例多路阀的先导级就可以控制进入多路阀的流量。采用电液比例技术能提高管片机的拼装速度,有效地降低工程造价。
四、结语
由于无线电液比例技术具有多方面的优点,在工程机械领域得到了广泛的应用。将无线遥控技术应用于盾构管片拼装机系统,将具有重要的工程应用意义。
【参考文献】
[1]郑贵源.无线遥控装置在工业控制中的应用[J].机械与电子,1997,(2).
[2]李水平.工业遥控器在起重机上的应用[J].设备管理与维修,1997,(9).
在无线电能传输系统中,当工作频率在谐振点附近时,传输效率较高,随着工作频率偏离谐振点,传输效率会下降[8]。由于接收线圈两端的感应电压决定了接收模块的驱动能力,为了方便对传输效率进行测量,简单以接收线圈两端的电压与发送线圈两端电压之比衡量系统的传输效率。在频率较低时,增加频率可以提高传输效率,而当频率高于某一值时,继续增加频率则传输效率反而会降低,即存在一个频率点可以使传输效率取得最大值。实验显示,可以用高斯函数近似模拟传输效率随传输频率变化的趋势,如图1所示。发送设备自动调整工作频率到发送模块谐振点与接收模块谐振点之间的某一值,从而使传输效率达到最优。综上所述,以频率为变量对传输效率最大值的寻优过程就是寻找效率随频率变化曲线的最大值。模糊控制器是一种不需要了解被控对象的精确数学模型的控制器,它根据一套控制规则推理出控制决策。模糊控制的实质是用人的经验知识进行控制的一种控制方式[9-11],它是一种非线性控制,对参数的变化不敏感,具有很好的鲁棒性[12]。在无线电能传输系统中,工作频率由频率发生器决定,系统中采用单片机模拟输出PWM波形来作为频率发生器[13-15]。因此,可以直接在单片机中编程实现模糊控制器。利用实时采集到的数据计算出传输效率及传输效率变化率(传输效率变化量除以频率变化量)作为模糊控制器的输入,利用模糊控制规则推理出控制决策,调整工作频率,使系统始终工作在传输效率较高的频率点处。控制器设计思路如下:在系统开始工作时,由于无法计算传输效率变化率,任意设定1个较小的初始频率调整量,此后,则根据当前传输效率及传输效率变化率确定下一步频率调整量。不同频率处传输效率及传输效率变化率的曲线图如图2所示。当传输效率较低而传输效率变化率较大时,频率调整量取一个比较大的值,频率是增加还是减小则取决于传输效率变化率的符号。当传输效率变化率为正是,说明频率处于谐振点左边,频率调整量为正;当传输效率变化率为负时,则说明频率处于谐振点右边,频率调整量应该为负。而当传输效率较高或者传输效率变化率很小时,频率变化量应该取较小的值,其正负同样取决于传输效率变化率的正负。
2模糊控制器的设计
传输效率自寻优的过程实质上是一个通过不断改变工作频率进行尝试从而逐渐逼近极值点的过程。要尽快逼近到极值点附近就需要选取合适的频率调整量。在本文的设计中频率调整量由模糊控制器推理得出,因此,传输效率自寻优的实现关键是设计合适的模糊控制器。本文设计了1个双输入单输出模糊控制器,其中,两个输入变量分别为传输效率η(f)及传输效率变化率dη(f)/df。通过测量发送线圈两端电压u(1)与接收线圈两端电压u(2)可求得传输效率,即η(f)=u(2)u(1)×100,(2)作为输入变量1;将当前传输效率减去前一次测得的传输效率求得传输效率改变量,然后除以频率调整量得到传输效率对频率的变化率dη(f)/df,作为输入变量2。输出变量为频率调整量的决定因子U,由映射df=g(U),(3)决定下一步的频率调整量df。模糊控制器将输入变量1和输入变量2进行模糊化后根据控制规则推理出下一次的频率调整量df,以当前频率加上求得的频率调整量作为下一步的工作频率。模糊控制器结构示意图如图3所示。输入变量1,即η(f)采用6个语言值,分别为5(很大)、4(大)、3(一般大)、2(小)、1(很小)、0(零);输入变量2,即dη(f)/df采用5个语言值,分别为-2(负大)、-1(负小)、0(零)、1(正小),2(正大);输出变量U采用11个语言值,分别为5(正很大)、4(正大)、3(正一般大)、2(正小)、1(正很小)、0(零)、-1(负很小)、-2(负小)、-3(负一般大)、-4(负大)、-5(负很大)。输入变量及输出变量均采用三角形隶属度函数。各变量隶属度函数的图形分别用图4、图5和图6表示。分析频率调整因子U与输入变量1(传输效率)和输入变量2(传输效率变化率)之间的关系,可得到模糊控制器的规则表如表1所示。系统采用Mamdani模糊模型,在模糊推理过程中,“与”运算采用最小值运算,“或”运算采用最大值运算,模糊蕴含采用最小值运算,综合规则采用最大值运算,解模糊化采用中心法。
3仿真结果使用
Matlab对所设计的无线电能传输自寻优算法进行仿真验证。实验室所研究的无线电能传输系统在接收端靠近发送端时的理论谐振频率为530kHz。在实际工作过程中,由于元器件参数变化及测量误差,谐振频率会偏离理论谐振频率,因此,在实际系统运行时,可将初始传输频率设置为理论谐振频率,随后按文中控制方法进行传输效率自寻优。在做仿真验证时,将初始频率设置为530kHz,假设由于参数的改变,谐振频率变为600kHz,且理想最佳传输效率为80%,用高斯函数η=80×exp-f-600000()200000[]2,(4)模拟实际系统的传输效率随工作频率的变化曲线。经试验,当df与U的映射关系取df=sign(U)×10×10|U|时控制效果较好。系统在工作时有两种调整方式,第一种方式是持续调整,始终保持效率最优;第二种方式是连续5次调整量df均小于某一固定值时结束调整,系统传输频率不再改变。对应第一种工作方式,观察100个调整周期,其仿真结果如图7所示。对应第二种方式,设定结束条件为连续5次|U|<2,即频率调整量df≤100,仿真结果如图8所示。由图7、图8可以看出,经过4个调整周期后,传输效率就很接近理想传输效率,此后,传输效率均能一直保持在最优传输效率附近。
随着A/D/A器件与DSP处理器的迅速发展,使得软件无线电技术广泛地应用于陆上移动通信、卫星移动通信与全球定位系统等。本文利用软件无线电的思路,针对中科院创新一号低轨移动小卫星多功能地面站设计的具体要求,研制了一套基于软件无线电技术的多信道发射机设备。该地面站发射系统数字基带部分采用全软件化设计,核心部件是可编程的DSP及FPGA,可同时处理三路信号。该设备具有以下三个优点:多模工作;无线通信系统可升级;发射配置动态更改。该设备可根据实际需要灵活配置系统,适用范围大大扩展。
1系统构成
SDR地面站发射系统如图1所示。该系统的发射速率为2.4kbps窄带、2.4kbps扩频、19.2kbps窄带或它们混合的速率。中频分别为18.45MHz、20MHz、21.85MHz。DAC的采样频率为78.336MHz。发射系统中FPGA实现FIFO、信道编码、扩频、内插滤波、数字上变频、信道合成、DAC预补偿滤波器等功能。这些功能都集成在一片XilinxVirtexII芯片中。
2FPGA部分功能模块
2.1FIFO模块
FIFO完成数据缓存功能。为了节省不必要的资源,设计了一个长度为32、深度为2的FIFO。即当一个寄存器32位取完时发出中断给DSP,同时读、写寄存器指针变换,DSP响应中断向FIFO写数,此时数据还在不断地读出。这样就实现了用最少的资源实现数据缓存。
2.2信道编码
在实际信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,所收到的数字信号不可避免地会发生错误。采用信道编码可以将误码率降低。本系统主要采用性能较优的卷积编码和差分编码等。
对于窄带信号还有扰码(CCITTV.35)。扰码能改善位定时恢复的质量,还能使信号频谱弥散而保持稳恒,能改善帧同步和自适应时域均衡等子系统的性能。
对于扩频信号还有扩频编码。在直扩系统中,用伪随机序列将传输信息扩展,在接收时又用它将信号压缩,并使干扰信号功率扩散,提高了系统的抗干扰能力。
编码过程在DSP的控制下进行,数据从DSP送出,并标识信道特征,FPGA识别后进入相应的编码通道,这样三路信道可以分时进行编码处理。由于硬件速度快的特点,可视为同时处理。
2.3信道合成
信道合成模块由内插滤波器、数字上变频、信道复接三部分组成。
2.3.1内插滤波器
各信道滤波器性能指标如表1所示。
表1各信道滤波器指标
滤波器性能要求
19.2kbps窄带收信机在f0±80kHz外,杂散小于50dBc;谐波(二、三次)小于40dBc
2.4kbps窄带发信机在f0±10kHz外,杂散小于50dBc;谐波(二、三次)小于40dBc
2.4kbps扩展发信机在f0±1.25MHz外,杂散小于50dBc;谐波(二、三次)小于40dBc
为了以最少的滤波器阶数得到较低的符号间干扰和高阻带衰减,成形滤波器采用一个根升余弦滤波器,滚降系数0.4。其频域表达式为:
式中α为滚降因子,取0.4。
成形滤波器设计采用频率采样技术,这样可以得到阶数较低、性能较好的滤波器。成形滤波器一般采用4倍或8倍的内插系数。先用MATLAB把滤波器阶数和系数确定下来,这样可以用移位加运算代替乘法以节省大量硬件资源。在FPGA实现时,采用DA(DistributeAlgorithm)技术。DA技术提出了二十多年,广泛应用于线性时不变信号处理,已被证明不适用于可编程DSP的固定指令系统结构,但是用FPGA实现却是个好的选择——DA电路中没有直接的乘法器,乘法可由查找表得到。
CIC滤波器是一种灵活的无乘法滤波器,适合于硬件实现,并可处理任意大的数据率变换。由此,第二级内插滤波采用CIC滤波器是最佳选择。
在不降低性能的前提下,从节省资源的角度考虑,各信道内插滤波器分为两步实现:第一级FIR成形滤波器,第二级内插滤波器采用五级CIC滤波器。各信道滤波器内插分解为两级,大内插系数滤波器由CIC完成,其结构如图2所示。实验结果表明这样做并不影响性能。
三路信道内插滤波器分别描述如下:
(1)2.4kbps窄带信号:编码后信号采样率为4.8kHz,要用78.336MHz进行采样,必须经过78336/4.8=16320倍内插。第一级采用75阶8倍内插成形FIR滤波器,第二级采用2040倍五级CIC内插滤波器。
(2)19.2kbps窄带信号:编码后信号采样率为38.4kHz,要用78.336MHz进行采样,必须经过2040倍内插。第一级采用75阶8倍内插成形FIR滤波器,第二级采用255倍五级CIC内插滤波器。该路信道所有内插滤波器频率响应如图3所示。
(3)2.4kbps扩频信号:编码后信号采样率为1.224MHz,要用78.336MHz进行采样,必须经过64倍内插。第一级采用25阶4倍内插成形FIR滤波器,第二级采用16倍五级CIC内插滤波器。
2.3.2数字上变频
数字上变频器的主要功能是对输入数据进行各种调制和频率变换,即在数字域内实现调制和混频。笔者设计了三个单路数据DUC。
在BPSK调制模式中,内插滤波器把数据流采样频率升至时钟频率后,通过载波NCO进行混频。DUC设计取22位累加器,SIN/COS的分辨率为12位。其频率输出调谐精度为18.68Hz。NCO简单结构如图4所示。
2.3.3信道复接
三路信道分别完成数字上变频后经过一个加法器变为一路信号送至DAC,这样只需要一个RF模块就可完成发射功能。如图5给出了发射机信道复接后的频谱。
2.4Inverse-SINC预补偿滤波器
1无线电通信技术的发展历程
1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。
1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。
1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。
1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。
随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。
随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。
信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。
无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。
2无线电通信技术的特点
近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:
不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。
具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。
可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。
无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。
3无线电通信技术之通信方法的拓新
21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:
3.1采用了数字通信技术
提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。
3.2推广通信信息技术宽带化的发展
信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。
3.3推广个人信息化技术
个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。
3.4拓新接入网络的样式
技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。
.5过渡电路交换网络
关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。
3.6使用Bluetooth技术作为信号传感器
Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。
3.7推广软件无线电
软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。
3.8提高无线通信网络可持续性
无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。
结束语
回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。
参考文献
[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.
我国的现今卫星通信技术的发展在扩展新的频段,加强先可用的频段的利用率以及现在公用干线的通信网都应该一步步转向跟随宽带化的发展趋势,能够准确地利用卫星通信技术来建立我国的卫星宽带业务以及数字化通信网络。所以对于卫星通信网技术而言应该逐渐的走向小型化的、智能化的未来方向。从目前我国的计算机科技的水平来看,假设把设备功能全部换由软件来进行操作实现,那么由于软件的特点也就是需要按照一条条的指令来运行,就算我们采用多处理器的方式来进行协助共同运算,也没有办法真正保障高频率情况下的处理能够及时有效,也使得软件无线电技术在卫星通信领域中的使用范围明显受到限制。基于以上原因,以下设计想法是为了能够让软件无线电技术能真正应用在卫星通信方面。
首先我们所有的设备都需要经过模块化处理,各个模块分开保证控制功能,以及各个模块之间的高速数据的交换问题。而信道设备以及接口设备的内部结构信道设备包括调制解调器、信道的编译码器和置乱器等,在总的CPU的控制之下,信道设备的具体参数值可以做到由软件来进行定义处理。而将无线射频的设备、信道设备和接口设计在卫星通信技术中也是十分关键的存在。再来考虑到了卫星通信技术有着多址方式,业务类型广以及其频率高且变化区域广等各种优点,在信道设备和接口设备的设计选用模块化的设计构思。各个模块应该能够各自拥有能定义自身功能的各个软件接口,而选用的软件接口更应保证标准化以方便各个不同供应商的生产。然后在各个模块的具体设计上面,也要根据具体运算量大小,选择不同的软件接口功能。再来根据具体的各类应用环境,更加灵活地修改和使用数据帧结构,并且保证以软件协同硬件两相结合的方式实现。最后就是设备功能和系统功能的定义要靠网络管理系统来最终实现。
伴随着因特网大面积普及及现在移动网络的迅猛发展,卫星通信技术绝对会在未来迎来更进一步的发展机会。现在我国逐渐采用自主研发的通信卫星为主体,来建立完善的卫星通信系统。软件无线电技术作为一个可利用在卫星通信方面的技术来说,也一定会伴随卫星通信的脚步,成为加速我国科技发展的重要技术。
2无线电监测信息网的日常网络安全管理措施
2.1充分发挥防火墙的屏障作用毋庸置疑,防火墙也应是无线电监测信息网的第一道安全防线。通过制定严格的安全策略,从而有效的实现无线电监测信息网与公众网之间的隔离以及访问控制。目前我国的防火墙能够实现单向控制或者双向控制,且大多数的防火墙对于那些高层协议实施较细的访问控制,已经可以实现从网络层到应用层的自由控制。为了保证网络安全,应在区办与地市之间、监测网与信息网之间设立防火墙,并根据需求的变化不断更改防火墙策略,充分发挥防火墙的屏障作用。
2.2严格内外网的隔离我们应对内网系统中所有的电脑彻底进行技术隔离。对确需通过移动存储设备将数据从外网电脑拷贝至内网电脑的情况,应施行专用移动存储设备制度。即:将一个移动存储设备只用于内外网数据的交换,且在每次使用时要经过严格的病毒检测和杀毒,方可使用。
2.3使用可升级的杀毒软件
计算机病毒是现代信息化社会的一种公害,各种病毒的产生和蔓延已经给计算机系统的安全造成了巨大的威胁和损害。在无线电监测信息网的日常安全管理中,病毒的防治是必不可少的关键环节。因此,我们应选择可信任的、能够升级的杀毒软件,对我们的电脑进行病毒的预防和查杀,以提高监测信息网的抗病毒能力。
2.4注重数据备份与恢复
数据备份就相当于给数据买保险。一旦发生监测和台站数据丢失、系统崩溃等情况,可通过数据备份与恢复来进行补救。首先是选择备份软件和计划使用的备份技术,备份数据的存储设备、存储介质。其次是确定备份的内容、备份方式、备份时间。根据备份的具体数据采用合理的备份策略进行数据库备份。