时间:2023-05-23 17:01:47
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇通信工程论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2.实践教学要有专业特色。通信工程专业对于学生的动手操作能力以及创新能力都有较高的要求,但是学生只有在掌握扎实的专业基础知识条件下才会知道如何动手操作,怎样去创新。因此该专业在重视实践教学的同时也不要放松对于专业理论知识的教学。该专业的实践地点一般是各自学校的实验室或者与学校合作的校内外企业,所以学校需要建立起自己的实习基地,保障与外界企业的良好合作,同时学生去实习也要为自己的学校争光,给企业留下好的印象,让企业相信我们学生的能力,为下一届学生再次去企业实习奠定基础。
3.实践教学要有可操作性。在进行通信工程的实践教学中,最重要的一点就是要保障实践过程的质量,让每个学生都能从中收益,所以学校必须对实践教学进行监督考察,并且建立适当的实践教学制度体系,在实践教学中形成自己的操作程序和操作规范,学生和老师从中积累经验,让实际教学和实践教学具有很强的可操作性。
二、通信工程专业实践教学中存在的问题
1.实验室条件和环境较差。由于大部分学校都在进行学生的扩招和学校的扩建,通信专业的人数也会大幅度地增加,学校在扩建过程中会存在资金问题,导致对于实验室仪器设备的资金投入不足,设备更新缓慢,与现代快速发展的通信技术严重脱节,学生在实践过程中学到的知识也是几年前的,已经过时。同时在扩招过程中该专业人数大幅度增加,导致实践教学的场地紧缺,存在多人共用一套实验设备进行实践学习的情况,这就导致实践教学的质量不是很理想。
2.实践教学的老师对于这门课程不够重视。与老师熟知的理论教学相比较,实践教学操作十分麻烦,其中各种各样的环节让人头疼,长期从事理论教学的老师难以适应这样的教学过程,他们就会选择逃避,没有将实践教学真正地开展起来,学生只是进行一些简单的操作,无法学到真正的知识,没有获得实际的动手能力和创新能力。有些学生在老师的影响下也是持比较消极的态度,认为该专业的实践教学可有可无,没有十分重要的存在意义。
3.提供给学生的实习单位较少。有些学校处在偏远地区,当地没有大型的通信企业,城市的经济相对较为落后,只有一些移动、联通、电信的服务型营业厅,没有从事通信工程方面的产品生产的大型公司,所以学生很少有机会进行实习,如果到深圳、广州等通信产业发达的城市进行实习,不仅组织起来比较困难,而且需要大量的资金投入,学生过去之后的管理问题也不是特别的方便。所以老师只是为学生讲解一些实习的经验供学生参考,学生学习效果不明显。
4.集中式的实践教学多是形式主义。在通信工程专业的实践教学中大多采取的是集中式的实践学习,在这个时间段学生要进行毕业论文的撰写,学生在时间上存在较大的问题,他们没有足够的时间写自己的毕业论文,往往就在网络上下载一些资料,选择一些没有创新意义的主题,抄袭问题不可避免。学生专业工程实践的时间和毕业论文的时间冲突,学生为了顺利毕业,把很多时间用在写毕业论文上面,集中实践的效果从而受到影响,这样就导致集中式的专业实践教学形式化,没有达到想要的效果。
三、通信工程专业实践教学环节教学改革的主要方式
1.加强通信工程专业课程体系的建设。通信工程专业的课程设计主要培养学生的能力,科学合理地构造该专业的课程模体系和专业模块,根据不同学生的不同能力、不同爱好,老师为他们选择合适的模块,让教学的基本要素和基本内容与学生能力密切联系。(1)通信基础课程。学生主要学习的课程有信号与系统、通信原理、通信电子线路等,在对这些理论基础学习的时候注重培养学生的信息分析处理能力,为以后的专业课奠定基础,让学生对通信系统有一定的分析和设计能力。(2)通信技术课程。学生需要学习的课程有移动通信、光纤通信、计算机通信网、交换技术等等,主要让学生能够围绕着通信技术进行其中的理论学习,掌握现代的通信技术,将其应用到通信行业,促进通信行业的发展,促进新产品的开发。(3)专业任选课程。学生学习的主要课程有电子测量技术、数字图像处理、光传输和光交换、电信业务开发等等,这些课程主要是根据学生兴趣开设的专业方向课程,相对来说难度大一些,主要是让学生有一个学习的专业方向,学生根据自己的特长和兴趣学习专业课程,学生学习的积极性和主动性也会提高,视野更加开阔,为以后工作打下必要的专业基础。
2.加强通信工程专业实践教学体系的建设。通信工程专业课程基本体系的建设要以实践教学体系为重点,在通信工程专业的实践教学环节中,其设计性、科学性、创新性要全面地体现出来,让每个学生在实践中都能够提升自身的能力,并且要注重学生整体能力的培养,加强实践教学的应用性,让学生在实践中分析问题、解决问题,对于课程设计、毕业设计重点管理和监督,学生在实践中有明确的目标,各自有明确的任务和分工,全面构造通信工程专业实践教学体系,为学生在未来的就业竞争中提供有效保障。
3.加强通信工程专业实验室的建设。在通信工程专业实践中,实验室是学生的主要实践地点,学校应当关注实验室的设备的更新,对实验室进行科学合理的管理,加大资金的投入,为学生创造良好的实验室学习和实践条件,同时实验室也要制定相应的管理制度,损坏实验仪器的学生应当赔偿一定的费用,学生在实验室进行实验之后要打扫卫生,保障实验室的良好环境。实验室应当长期对学生开放,为学生提供良好的实验环境和条件。
4.加强校企协作,在校外投资实习基地。实习是实践教学的重要组成部分,学生总是在实验室中进行实验无法学到真正的工作经验,只有将学生带到通信工程的企业,让他们在其中进行实际的动手操作,他们才会学到实际有用的东西。因此,学校就必须与校外通信企业进行良好的沟通,学校与企业之间联合进行人才的培养,共同制定实习方案,让学生参与到实际的测试、开发、设计中,增加学生的兴趣,毕业后学校为该企业提供专业型人才,保持与该企业的良好联系。如果条件允许,学校可以在校外投入资金建设校企,这样就更加方便学生进行实习。
材料与设备是建设通信工程的基础物质条件,倘若材料与施工设备本身质量存在缺陷,那么工程整体质量绝对会受到影响。通信工程中最为常见的材料之一是光导纤维,又称光缆。假如选择不当或使用了劣质光缆,工程项目完工后投入使用的寿命与效果均会明显不达标。在通信工程施工中,仪器仪表是必不可缺的关键设备,针对工程项目的特殊要求,因此使用到的仪器仪表规格、功能、精度等级都是不一样的,一旦混淆使用或操作不当均会给施工质量造成严重损害。
1.2施工工艺与方法
施工工艺与方法的选择是决定施工质量的关键。通常,通信工程项目的施工工艺与方法是在施工前就已经确定的,若无特殊情况是不可随便更改的。各类新技术、新材料逐渐渗透进工程建设工作中,要协调好技术、材料、设备间的相互联系,充分发挥出各类组成成分的优秀性能,施工工艺的选择至关重要。在现实施工过程中,施工质量与进度,很大程度上取决于施工工艺与方法是否合理。
1.3作业条件与环境因素
工程施工现场环境和作业条件是影响施工质量的主要外因。由于通信工程施工周期长,施工范围比较大,所以容易受到环境条件的影响。恶劣的环境条件无法满足施工对作业条件的需求,势必会对施工质量造成影响,偶尔还会因为天气过于恶劣,施工作业不得不暂停的情况,严重影响施工进度。所以,在施工过程中施工人员务必对环境因素进行充分考量。
二、通信工程施工质量控制的有效对策
2.1施工准备阶段的质量控制工作
通信工程项目施工准备工作,是为后期施工的顺利开展奠定良好基石。所以,施工准备工作不可怠慢。以光缆线路工程为例,施工准备工作具体可从以下几方面着手:2.1.1技术准备拿到设计图纸后,施工人员应对其进行研究,如有疑问应及时与设计部门沟通,并对设计工程量进行核对,确定准确无误,开始拟定技术实施方案。组织施工人员进行路由复测及技术交底。另外,要准备足够的施工技术材料,结合施工规范与质量验收标准,制定适合的施工组织计划与质量控制措施。对施工期间所需要使用到的材料和仪器进行检查,一经发现任何异常务必及时处理。把所有的准备工作落实到位。2.12光缆单盘检测在准备阶段,应着重注意查看光缆技术性能是否完好。可借助光时域反射仪,检验测试光纤的衰减、长度及色散等参数,确保光缆各项指标能够满足施工需求。结合光缆订货清单与设计要求,对光缆的规格、型号、长度进行检查。光缆开盘后,重点检查缆身有无破损,端头封装是否严密。尤其是在对材料的相关性能进行测试时,要做好材料检测结果的记录,方便日后工作交接或对质。确定光缆出厂合格证与测试记录均符合标准,为光纤性能提供可靠保障。2.1.3光缆配盘光缆的配盘工作至关重要。一般情况下应以复测路由的结果作为主要依据,通过计算确定最终光缆铺设的总长度,根据工程需求选择合适单盘进行配缆。原则要求:根据路由复测,光缆配盘应尽量做到整盘敷设,减少接头,同时应考虑人(手)孔间的累计距离及必要的盘留,减少浪费光缆。保证全程衰耗指标达到设计要求;近局端设备侧光缆长度不少于1公里,且光缆接头尽可能避开交通要道;不同型号的光缆按设计要求进行布放;编制并保存好中继段光缆配盘图,以备竣工资料使用,为日后通信工程的正常维护提供方便。
2.2施工过程中的质量控制
通信工程的施工环节对工程质量影响深远,若希望为工程施工质量提供可靠保障,务必采取有效措施,处理好施工过程中的每一个细节。通信工程的各个工序是一环扣一环,各环节的施工质量与否至关重要,对任何异常情况都要给予及时干预,尽量避免纰漏的出现。2.2.1光缆架(敷)设光缆架(敷)设可谓是整个通信项目建设工作的重点内容,其施工质量的好坏将会直接影响到后期的施工质量。光缆架(敷)设方式一般分为:架空光缆、管道光缆、进局光缆。架空光缆架设前,应检查并保证架空杆路及相应吊线的施工质量符合相关的规范要求。在架设光缆时,通常利用挂钩吊挂;在山地或路面不平的地方架设光缆,则以绑扎法固定光缆。光缆接头应尽量设置在方便维护的地方,预留光缆一般固定在电杆上。架空杆路的光缆间隔3~5档杆则需设置U型伸缩弯,避免因温度变化而引起的热涨冷缩。当架空光缆转为管道光缆时,应使用镀锌钢管予以保护并用防火泥封住管口。铺设管道光缆前,务必要提前检查管道内有无异物,有无堵塞现象。光缆布放的孔位以设计文件要求为主,如有变更应及时做好记录。光缆敷设之前须先在管孔内穿放光纤子管,光缆敷设尽量选择同孔位同颜色子管敷设,其他空置的管孔孔头要进行封堵,避免管孔的堵塞,便于后期其他管线敷设使用。结合人工敷设的方法来看,为确保光缆不会受到磨损,管道光缆应尽量采取整盘的方式进行铺设。布放时尽量降低牵引力,而整盘光缆的布放则从中间开始,分别向四周进行布放,于每个人孔处设置施工人员辅助牵引。光缆出管孔15cm内,不可进行弯曲处理,人(手)孔内的光缆余线要进行必要的固定,并贴上不同标志方便识别。局内光缆敷设时,一般从局前人孔经进线室引至传输机房。布放时上下楼道及每个拐弯处应设专人,按统一指挥牵引,牵引中保持光缆呈松弛状态,严禁出现打小圈和死弯。应根据设计要求或规定留足预留光缆,预留光缆应盘放在绕圈盘上。光缆经由走线架、拐弯点(前、后)应予绑扎,并垫胶管,避免光缆受侧压。光纤在机架内的盘绕应大于规定的曲率半径。金属回强芯、屏蔽线、铠装层,应按设计要求接地或终结。局内光缆应当作好标志,并在醒目部位标明方向和序号。2.2.2光缆接续该环节为工程施工中的关键部分,这部分工作的质量将会直接影响到施工质量与日后投入使用的效果。所以,在施工期间,务必给予该环节足够的重视,利用有效措施,增强质量控制力度。具体可通过以下方法进行:首先,在剥离光缆护套时,务必把握好切割深度,过浅会导致切割不充分,过深则容易损坏纤芯。其次,在光纤涂覆层剥离时,操作者应注意动作轻柔且干净利落,在顺利剥离光纤涂覆层的同时,不会对光纤造成损害。再者,光纤端面切割是整个接续过程中的关键。在对光纤进行切割的过程中,操作者务必要做到平稳、迅速,确保断面平整干净无毛刺。最后,在进行光纤熔接的操作时,操作者应注意仔细查看熔接情况,发现异状,应立刻停止熔接并查明原因,妥善解决问题。接续损耗应达到规范要求。2.2.3测试光纤接续时,施工人员要对熔接过程中的所有光纤进行双向测试,实时监测光纤熔接质量,严格核算光纤损耗,抽查盘纤质量。最后,在封装接头盒前,务必再次对所有光纤进行反复检测,确保全程衰耗达到设计要求。确定无误后方可封盒,以免因需调试反复开启接头盒,影响封盒质量。最后做好测试记录,收集技术资料。
2.3竣工验收阶段的质量控制
在进行该环节工作时,首先要对竣工验收资料进行汇总与整理,形成竣工文件,对工程质量进行初步验收。工程初验中发现的质量问题应在建设单位及监理单位规定的时间内,按规范要求进行整改。整改的工程项目应重新经过验证,合格后交付建设单位,并办理相关的签证手续。在终验期间,要对工程进行全面、彻底的检查,具体操作可结合相关质量评定标准执行。工程质量应符合国家现行有关法律、法规技术标准、合同规定及设计文件的要求。验收合格后交给维护单位。笔者需要强调的是,在进行隐蔽工程质量现场验收时,要会同建设单位和监理单位做好随工签证记录,为顺利验收与投入使用提供可靠依据。
2.4提高对影响工程质量因素的控制力度
为进一步提高通信工程的整体施工质量,提高防范意识,加强影响工程高质量的各类因素的监管力度很有必要。具体详情如下所示:2.4.1加强对施工人员的管理力度前文中提到,在通信工程施工期间,人为因素是影响施工质量的重要因素。所以,笔者认为,应加强对施工人员的管理力度,最大化降低失误的发生率。要定期举办培训活动,加强技术考核,注重对道德文化的培养,帮助员工树立正确的思想观念,始终坚持质量第一。同时,加强对现场施工与管理人员专业技能的培训,提升他们的专业技能水平,能够选择正确的施工工艺与施工方法,并规范执行各项操作。最后,要设立健全的责任制与奖惩制度,激发员工工作积极性,对员工不良习惯和违规行为加以约束。提高员工责任感,激发员工工作潜能。对于部分施工难度系数大、技术含量要求高的施工环节,尽量选择技术过硬的员工来完成。2.4.2加强施工材料与设备的管理前文中笔者谈到,材料与设备是建设通信工程的基础物质条件,倘若材料与施工设备本身质量存在缺陷,那么工程整体质量绝对会受到影响。所以,提高对材料与机械设备的管理力度,为工程质量提供良好保障很有必要。施工管理人员对材料质量要进行严格把关,结合工程需求,筛选合适材料。对进场的材料进行仔细审核,材料务必三证齐全且密封性良好,抽检结果也要毫无问题。材料入库后,应指定专人进行管理,负责材料的出库与入库,避免因管理不善引起资源浪费现象的发生。要对施工期间需要用到的机械设备进行检查,确保其性能是否良好,精准度是否符合标准。另外,还要定期对设备进行保养与维护,必要时送相关计量中心检测,确保设备随时保持最佳的工作状态,满足工程施工的需要。2.4.3方法因素的控制施工决策层应提前根据工程设计,结合现有人力资源与物力资源,拟定科学、合理、可行性强的施工规划,选择最为合适的施工方法,提前准备好各类突发事件的应急措施。尽量确保项目施工顺利进行,在提高施工效率的同时,提高资源有效利用率,为工程质量提供可靠保障。2.4.4环境因素的控制在项目施工期间,工程施工现场环境和作业条件是影响施工质量的主要外因,由于通信工程施工周期长,施工范围比较大,容易受到环境条件的影响。所以,要根据工程技术环境、施工现场作业环境的实际情况,采取有效措施,尽量降低环境因素对工程质量的不利影响。共建和谐、文明的施工环境,降低安全事故的发生率,为施工质量创造有利条件。
2采用质量、环境、职业健康安全管理体系
目前,在通信工程监理工作中,为了提高监理企业监理效果并使监理工作和国际接轨,应当采用质量、环境、职业健康安全管理体系,并贯彻落实ISO9000标准。通信工程监理企业在采用质量、环境、职业健康安全管理体系的过程中,应当做到以人为本,充分体现内审员的价值,培养一支高素质、高专业标准的内审员队伍。此外,通信工程监理企业也应当积极完善内部质量审核标准,加强管理评审,严格依照ISO9000管理标准进行项目管理,提升监理工作的科学性。
3采用岗位责任制将监理责任落实到位
在通信工程监理工作中,如果监理工作的岗位职责落实不到位,就很容易导致各责任人相互推脱责任、推诿扯皮的情况发生,大大降低了监理工作的实效。因此,需要在监理工作中采用岗位责任制,并严格落实各个岗位的职责,明确每个工作人员的职责。这样,一旦监理工作出现问题或者失误,可以第一时间找到责任人,对其按规定进行惩处,不至于出现无人承担监理责任的情况。并且,采用岗位责任制可以给监理工作人员带来适当的压力,使工作人员在压力的作用下产生更强的工作动力,顺利完成工作任务。
4加强监理企业人才建设
对于企业来说,人才是企业发展过程中必不可少的资源。监理企业应当积极制定人才战略,招聘和引进高素质的监理工作人才,并在企业内部构造良好的人力资源储备机制,通过人才的推动实现企业的快速、健康、可持续发展。并且,企业应当充分利用人才资源,合理培训企业内部人才,培养具有综合能力、实践能力的高质量复合型人才,发挥每一位工作人员的工作特长,通过工作人员相互之间的高效合作,使监理企业接受的监理任务顺利、高质量完成。
二、通信工程成本管理过程中存在的问题
1.工程成本控制计划性不强。一些通信工程企业都有工程施工计划,但是很少有企业制定专门的成本控制计划,导致很多因素没考虑到,计划的执行性不强,导致通信施工企业对项目的管控力度不到位,遇到问题往往是项目负责人说了算。往往抬高了工程预算,降低了企业的营利水平。
2.项目负责人对成本管理重视不够。在通信工程建设过程中,项目负责人主要考虑了工程的质量及安全问题,减少了对成本的考虑。另外,项目负责人的待遇与整个工程利润高低的关联度不够高,这就使得项目负责人开展项目工程成本管理工作的积极性不高;再者迫于工程建设工期的要求,项目负责人为了能够尽早地交工,勿视了对工程成本的关注,使得项目施工成本管控中出现问题,整个工程的利润不高。
3.过度关注工程质量,忽略工程成本。在现在的施工过程中,往往是甲供材料,导致项目负责人有一种错误的理念,材料成本不关我事的想法,更多地去关注施工安全、质量及进度等多个问题,项目施工负责人将重点放到施工安全与质量上时,对施工材料、先进的施工技术及设备等的管控会少些,很多不必要的支出会增加,从而导致施工总体成本上升。因此,通信施工企业必须把成本控制也纳入项目经理的考核范围,不能过于强调工程质量。
三、通信工程中的成本管控措施
1.制定成本控制计划,做好成本事前控制。事前控制即为运用一定的科学手段,帮助企业降低工程成本和制定最完美的计划方案。成本控制计划应该涵盖工程全过程中所涉及到的管理费、材料、机械的费用;变更施工方案涉及的费用;各种辅助工程费、设施费等费用以及成本失控后带来的风险。全面考虑各种费用,并以此确定工、料、机的控制标准及工期进度,从工程前期就开始控制工程成本。
2.加强员工管理,提高内部管控能力。人才是企业最重要的资源也是企业最具有创造价值的资源,只有更大限度发掘人力资源,才能从根本上保证企业的成本控制。因而在通信工程项目工程中,应形成内部控制制度,把事前预防作为重中之重,并辅之以事后控制。借鉴先进企业的优秀经验,搞好内部控制制度建设。一方面规范员工的工程流程,制定员工操作规范。另一方面加大对员工的考核力度,完善考核体系,提高员工工作的责任心。从而为企业的良性运行提高保证。
3.加强对工程项目的资金管控。工程项目资金是按照国家的相关标准进行预算,通信施工企业应该一方面从总额上控制,另一方面也应该从过程中进行控制。特别是加大对结算管理。严格按照国家现行的有关制度法规予以结算,按法定程序进行审批;再者还要加强资金的安全管理,保证现金安全。再者还要加大对费用支出的审批,最好做到项项有审批,事事有管控。力争做到动态控制成本。
4.设置专门的成本核算专员。通信工程一般都由专业的企业去做,但是随着通信行业的进一步发展,通信行业越来越发达,越来越完善,对专业公司提出了更高的要求,通信项目企业应按照市场及项目需求,积极引进优秀的成本核算专员,并对其定期进行培训。同时,不断探索出新的成本核算管理方法,推动通信企业更快更好的良性运转。
2课程体系改革坚持的原则
课程体系是学校人才培养的总体设计,是安排教学内容、组织教学活动的基本依据,同时也是学校教学改革的总体反映。通信工程专业是应用性很强的专业,其课程体系的建设既要保证人才的知识系统性和学科前沿性的要求,又要体现应用型人才培养的实践特性。因此,我校通信工程专业的办学理念坚持以满足国家重大需求为导向,瞄准国际发展前沿,理工兼备、综合发展。在上述教学理念的指导下,通信工程专业课程体系的改革遵循以下几个原则:(1)秉承“允公允能、日新月异”校训,坚持“以人为本、立德树人”的中国特色社会主义办学方向;(2)学习和借鉴国内外知名高校成功的办学理念和经验,突出我校的历史积淀和办学精神,凝练通信工程专业的教学特色、优化本科课程教学体系;(3)科学、合理的分类设置基础课、专业基础课和专业课,充分考虑专业间、课程间以及不同年级知识结构的关联度,避免因人设课的现象;(4)在全体专业教师范围内选拔胜任的任课教师,组成课程组,定期开展教研活动;(5)教授必须上教学第一线,承担并完成本科基础课教学任务;(6)深化教学方式改革,贯彻“讲一练二考三”要求。
3课程体系改革的内容与措施
3.1组织调研
对国内外高等学校的通信专业进行考察与调研:国外高校主要通过网上调研的方式,通过访问各国外高校的网站,对人才培养目标和专业课程设置等进行调研;国内高校主要通过派出相关专业教师到清华大学、北京邮电大学、电子科技大学等高校进行实地考察,对无线通信技术、宽带通信、光纤通信、移动通信技术、计算机通信等方向的人才培养目标、课程设置、教材建设、毕业生就业情况以及未来几年内的人才需求情况进行了调研。同时,走进与通信学科密切相关的各大企业,充分调查研究社会企业对通信工程人才的知识与能力结构需求。
3.2建设课程体系
构建“专业+模块”的课程体系,其中“专业”是保证通信工程专业人才的基本规格和全面发展的共性要求,体现“厚基础、宽口径”,“模块”主要是实现不同方向人才的分流培养,体现个性。将公共基础课分为数学类课程模块、物理类课程模块、英语类课程模块和计算机类课程模块,专业基础课分为电子电路课程模块和应用设计模块,专业课分为通信理论模块、通信网络和专业实践模块。这种模块化的教学模式,是对传统教学模式的整合与创新。传统教学课程之间缺乏良好的衔接,彼此内容间有重叠。模块化课程可以使教学避免课程间的重复和脱节,适度把握课程间的交叉与渗透,构成完整的知识体系,帮助学生融会贯通。各个模块课程的授课教师组成了课题组,以课题为引领,带动教师参与到课程建设中来,课题组通过顾问专家指导、讲座等形式完善课程和教材建设,合理设置专业课程结构,整合教学内容,改革教学方法,以期形成独具特色的教学体系。此外,我们对课程体系中的细节问题进行了修订。全面考查专业课程名称并进行调整,对6门专业选修课的课课程名称进行规范;新开设4门专业选修课,补充了调整前缺少的相关领域的课程;将通信电路和现代交换原理与技术两门课程由专业选修课调整为专业必修课;陆续开设科技论文写作、通信技术系列讲座、实践类的一系列课程,形成一整套优质的课程体系。
3.3优化课程内容
直接反映授课内容的是课程的教学大纲,课程大纲首先由任课教师制定,由教学指导委员会审核并修订,审核通过后,主讲教师按照教学大纲执行教学计划。在课程讲授过程中,如果主讲教师发现问题,或者随着社会发展需求更新教学内容、授课教材等,需要及时修改教学大纲,调整教学内容。要求教师根据课程的学科知识体系,梳理出相关知识群,形成课程教学的知识脉络和框架,明晰课程的整体教学目标和教学内容。同时,进行精品课程的建设,通信电路作为通信工程专业的基础课,将作为通信工程专业重点培养的精品课程,推出一系列教学改革措施,包括课时的调整、理论讲授与实际练习比重的调整、授课方式的改革、加强课程资源共享系统和共享制度建设等等,最终实现“讲一练二考三”的教学理念。
3.4增加实践比重
在综合考虑各门课程知识之间的衔接关系,对专业基础课和专业课的开设时间和讲授内容进行调整的基础上,我们适当地增加了涉及通信前沿技术的选修课程,并着重加强实验和实践类课程,重视学生创新能力、实践能力的培养和锻炼,适当开设或增加实习、实训的课时和学分,开设认知实习课程,鼓励学生进行实践。由此,拓宽学生的专业知识面,满足学生的未来发展需要,培养学生多方面、多角度立体思维的能力,强调宽厚的基础知识学习和创新实践能力的培养。积极鼓励学生参加电子设计竞赛、国创、百项等实践活动,利用开放实验室资源,组织学生形成研发设计小组。鼓励学生利用这些资源进行系统设计、电路焊接调试等动手练习,并组织专业教师指导,充分发挥学生的主动能动性,进一步加强学生实验动手能力的培养。
3.5加强教学管理
成立教学指导委员会,通过听课、审核大纲等方式,加强教学规范化管理,进一步理顺教学管理体系,明晰职责,加强教学督导。实施院领导听课制度,明确教学系职责,强化过程管理。建立课程建设课题组,以课题为引领,带动一部分教师参与到学校课程建设中来,通过顾问专家指导、讲座等形式完善课程和教材建设,合理设置专业课程结构,整合教学内容,改革教学方法,以期形成独具特色的教学体系。
1.1多网融合的应用价值。
1)整体的性价比较高。
曾经有调查数据表明:在将多网融合技术应用到通信工程中后,投资企业可以减少大约百分之三十五的资金投入。这些减少的建设成本大多属于商业早期预算的占地部分的资金投入。这样就可以大大减少在通信工程建设中大范围占地情况的产生。这样的新形势对企业来说是一个很好的发展机遇,企业需要抓住机会,赢得挑战。
2)提升空间大。
现在的通信工程应用多网融合技术的通信现状,自身已经形成了一种独特的集成化和一体化的现代管理模式。相比于传统的管理模式,这种新型的现代管理模式可以很好的衔接各个子系统之间的工作,防止在工作中系统之间的断路等问题的产生。同时也保证用户在通信时的稳定性,确保网络畅通,避免信息延时、接收不到等问题的产生,为用户的通信网络打造一个良好的网络平台。在安防这一方面,特别是在以网络为背景的当今时代,网络安全是一个十分严肃的话题,需要特别注意。这种新型的技术可以将通信工程中数量较多的独立安防中心集结为一个,这样可以大大减少企业在商业占地方面的投资,节约土地资源,同时也在一定程度上缩短了通信工程的建设周期。
3)增值优势明显。
伴随着全球化的深入发展,数字网络在全球的通信方面发挥着不可替代的作用。正是由于这种通信趋势,有一些商家在网络增值方面推出了一些套餐服务,吸引大量客源。在多网融合的进程中,我们主要是针对网络的稳定性与传输速度进行优化,如果网络通信达到了一个最佳的通信状态,那么这些增值服务的市场将会十分广阔。所以说将多网融合技术应用在通信工程中,其中的增值潜能是十分巨大的,需要我们对其进行最优的开发使用。
4)维护优势。
传统的通信工程在进行维护时是比较麻烦的。因为它们没有形成一个集中点,网络过于分散,在对其进行维护时需要进行大量的工作,还需要在不同的位置进行测量检修,相关技术人员的工作量也大大增加。大量的工作使得维修人员感到疲惫,从另外的角度上来说,会出现工作纰漏,为网络的使用埋下安全隐患,威胁用户的使用安全。将多网融合的技术应用到通信工程中,可以解决传统通信的技术难题。在多网融合的技术中,各个通信的子系统已经进行了技术融合,形成了一个中心集中区域,在进行检测维修时不需要进行大规模的场地移动就可以对整个网络系统的安全状况进行全面仔细的检查。
1.2多网融合在实际应用中的安全问题。
多网融合具有效率高成本低的优点,是通信工程中重点研发的技术,也满足了市场的需求,应用较为广泛。由于多网融合是建立在大网络的基础上的,所以存在一定的安全隐患。多网融合技术的应用是需要将通信工程系统和网络运营商的网络进行连接的,但在这之间就存在安全问题。比如通信工程系统存在安全漏洞或者在两个系统连接的地方存在缝隙,都容易遭到黑客的攻击。一旦遭遇袭击,就会严重影响网络信息的传递甚至是导致重要信息的丢失。网络应用系统是一环套一环的连接紧密,有一个环节脱节都会造成通信的中断。数据在传输中中断是很难恢复的,只能让发送者重新发送,原始数据整理也是一个很繁琐的工作。黑客木马病毒等恶意攻击程序随着网络的诞生而出现。为了避免系统遭到攻击,防火墙和漏洞检测修补等应用也随之出现,很好的阻止了病毒的攻击防止了网络的瘫痪。但多网融合技术的出现,就要求人们在选择保护网络时要根据实际的网络环境选择适合的网络保护方法。
2多网融合技术在实际应用时应注意的事项
2.1人员问题。
在网络这个平台上,人员的选择是非常重要的,专业人员和有从业经验的人员是最佳的人选,所以在挑选的时候一定要注意所选人员专业知识的掌握情况。有些网络操作人员由于专业知识欠缺,没有认真考虑客户需求就进行网络操作,使得客户问题得不到解决,即使出现问题也不能及时解决,这就让客户对通信行业产生怀疑,给整个通信行业造成不良影响。非专业的网络操作人员由于缺乏专业的知识,对网络的运营不甚了解,就会造成问题发现不及时,解决不及时等现象,给企业发展造成不利的影响。网络在运行时,就怕出现安全隐患,不专业的操作技术是这些隐患滋生的土壤。因此,在招聘人才时,一定要考虑操作人员的专业技能和人品素质。
2强化实践教学体系建设,构建实践教学新体系
以培养专业能力为目标,重新构建教学体系,加强对实践教学体系的建设就要做到注重对学生个人能力的培养的整体设计,将实验教学作者主导思想贯彻落实于每一个教学实践中。对学生的培养要注重其个人的学习基础,加强学生对所学知识的应用,紧跟学科的前沿,培养学生分析解决实际中的通信工程的问题的能力,提高学生就业率。每一个实践环节都要具有设计、综合、创新性,以保证学生实践能力可以更上一层楼。不断深化改革完善教学体系不仅可以提高实践教学在教学活动中的地位,还有利于培养新一代具有应用、工程、创新性的高级应用型人才。加强课程设计、实习—含了解实习、生产实习和毕业实习和毕业设计等环节的实施与管理,把工程化教育和学生实践能力、应用能力的培养落到实处。实验教学内容和体系的改革是实验教学改革的重点和难点,创新实践教学体系要紧紧围绕创新教育对人才培养的要求,既要注重纵向知识体系的系统性和完整性,又要注重横向知识体系的相互渗透相互促进;既要考虑到学生的共性需求,又要成分注意学生的个性发展;既要发挥教师的领导和主导作用,更要注意学生主体作用和自身能动性的发挥。
3加强校企合作,建立校外实习实训基地,提高学生工程实践能力
真实实习是实践教学体系的重要组成部分,对培养学生工程实践能力至关重要。本专业亟需在校内校外建立一批集实验、实习、模拟训练和岗位实践诸功能为一体,兼具素质教育、创新意识培养的实践教学实训基地,同时要和企业一起共同制定更加符合企业用人需求的实习实训方案,让学生有机会直接进入知名企业开展测试、开发和设计工作。这些改革措施对学生熟悉工作环境,积累工程实践经验及提高工程实践能力是必要的,也是必需的。
4引入国家级专业技能考核体系,实施双证教育
通信工程专业引入工业和信息化部人才交流中心授权的“全国电子专业人才考试中心”,可开展“通信设备终端维修”“EDA设计与开发”“单片机设计与开发”“PCB设计”“电子组装与维护”五个科目人才考试与测评工作。采取“毕业证+专业技能证”相结合的模式,以国家级专业人才考试作为人才培养质量的检验标准,学生动手能力得到了极大的提高。
超宽带无线电是对基于正弦载波的常规无线电的一次突破。几十年来,无线通信都是以正弦载波为信息载体,而超宽带无线通信则以纳秒级的窄脉冲作为信息载体。其信号产生、调制解调、信号隐蔽性、系统处理增益等方面,具有独特的优势,尤其是能够在密集的多径环境下实现高速传输。由于脉冲持续时间很短,多径分量在时域上不易重叠,多径分辨能力高,通过先进的多径分离技术或瑞克接收机,可以充分利用多径分量。
目前,典型的超宽带无线通信调制方式以TH-PPM、TH-PAM为主,本论文中,介绍超宽带无线通信中的调制技术,主要讨论TH-PPM、TH-PAM的基本原理,并且对比调制技术的优缺点,性能的好坏,并进行动态的仿真,从仿真图中较清楚的研究调制方式,从而得出正确的结论,细致的研究超宽带无线通信中的调制技术。
关键字:超宽带 调制方式 PPM调制 PAM调制 OFDM调制
2 概述
2.1 总述
近几年来,超宽带短距离无线通信引起了全球通信技术领域极大的重视。超宽带通信技术以其传输速率高、抗多径干扰能力强等优点成为短距离无线通信极具竞争力和发展前景的技术之一。FCC(美国通信委员会) 对超宽带系统的最新定义是:相对带宽(在- 10dB 点处) (fH - fL)/fc > 20 %(fH ,fL ,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW> 500MHz。[1]它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs) 、更强的抗干扰能力(处理增益50dB 以上) ,同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内) 。
2.2 UWB基本原理
发射超宽带(UWB) 信号最常用和最传统的方法是发射一种时域上很短(占空比低达0. 5 %) 的冲激脉冲。这种传输技术称为“冲击无线电( IR) ”.UWB - IR 又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的[6];由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。因此冲击脉冲和调制技术就是超宽带的两大关键所在。
2.2.1 脉冲信号
从本质上讲,产生脉冲宽度为纳秒级的信号源是UWB 技术的前提条件。目前产生脉冲信号源的方法有两类: ①光电方法,基本原理是利用光导开关导通瞬间的陡峭上升沿获得脉冲信号。由于作为激发源的激光脉冲信号可以有很陡的前沿,所以得到的脉冲宽度可达到皮秒(10 - 12 ) 量级。另外,由于光导开关是采用集成方法制成的,可以获得很好的一致性,因此是最有发展前景的一种方法。②电子方法,利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的[7]。
冲激脉冲通常采用单周期高斯脉冲,典型的单周期高斯脉冲的时域和频域数学模型分别表示为:
(2-1)
(2-2)
单周期脉冲的宽度在纳秒级(0. 1~1. 5ns) ,重复周期为25~1000ns ,具有很宽的频谱,如图2-1 所示。实际通信中使用的是一长串的脉冲,由于时域中信号的周期性造成了频谱的离散化,周期性的单脉冲序列频谱中出现了强烈的能量尖峰。这些尖峰将会对信号构成干扰,通过数据信息和伪随机码来进行编码P调制,改变脉冲与脉冲间的时间间隔,可以降低频谱的尖峰幅度[2]。
图2-1 单周期脉冲的时间域和频率域的表示
2.2.2 UWB的调制技术
超宽带系统中信息数据对脉冲的调制方法可以有多种。脉冲位置调制( PPM) 和脉冲幅度调制(PAM) 是UWB 最常用的两种调制方式。通常UWB信号模型为:
(2-3)
其中,w ( t) 表示发送的单周期脉冲, dj , tj 分别表示单脉冲的幅度和时延。
a PAM- UWB
PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。任何形状的脉冲都是通过其幅度调制使传输数据在{ - 1 , + 1}之间变化(对于双极性信号) 或在M 个值之间变化(对于M 元PAM) 。增加传输脉冲所占的带宽或减少脉冲重复频率,都可以增加一个固定平均功率谱密度的UWB 系统所能达到的吞吐量和传输距离,可以看出这一效果与增加传输功率的峰值的效果是相似的。[8]
采用脉冲幅度调制(PAM)的超宽带信号波形如下:[4]
(2-4)
其中, dj 是信息序列, Tf 是脉冲重复周期。根据dj 的不同取值, 可将PAM调制方式分为以下三种:
(1) OOK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为0) ;
(2)PPAM(发送数据为1 ,UWB 信号的幅度为β1 ;发送数据为0 ,UWB 信号的幅度为β2) ;
(3)BPSK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为- 1) 。
对于这三种方式,在超宽带的PAM调制方式中多采用BPSK方式。
b PPM- UWB
脉冲位置调制(PPM) 又称时间调制(TM) ,是用每个脉冲出现的位置落后或超前某一标准或特定时刻来表示某个特定信息的[3]。二进制PPM 是超宽带无线通信系统经常使用的一种调制方法,相对其它调制方法来说也是较早使用的一种方法。采用PPM的一个重要原因是它能够使用零相差的相关接收机来接收检测信号,而这种接收机有着非常好的性能。采用脉冲位置调制( PPM) 的超宽带信号波形如下:
(2-5)
其中, dj 取0 或1 ,δ为调制因子, 与脉冲宽度Tm (1/Tf ) 是一个数量级。当发送数据为1 时脉冲就会相应滞后一个时延δ。
图2-2 给出了上述四种调制方法的信号波形图,对这四种调制方式给出了一个比较直观的描述。
除了这些对脉冲的调制方法外,用伪随机码或伪随机噪声(PN) 对数据符号进行编码以得到所产生信号的频谱时,根据编码的不同即扩频和多址技术不同,超宽带系统又被分为跳时的超宽带系统(TH - UWB) 、直扩的超宽带系统(DS - UWB) 、跳频的超宽带系统(FH - UWB) 和基带多载波超宽带系统(MC - UWB) 等[9]。
图2-2 不同调制方式的信号波形[4]
2.3 UWB 技术特点
由于UWB 与传统通信系统相比,工作原理迥异,因此UWB 具有如下传统通信系统无法比拟的技术特点[4]:
(1)系统容量大。香农公式给出C = Blog2 (1 +S/N) 可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。超宽带无线电系统用户数量大大高于3G系统。
(2)高速的数据传输。UWB 系统使用上GHz 的超宽频带,根据香农信道容量公式,即使把发送信号功率密度控制得很低,也可以实现高的信息速率。一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。
(3)多径分辨能力强。UWB 由于其极高的工作频率和极低的占空比而具有很高的分辨率,窄脉冲的多径信号在时间上不易重叠,很容易分离出多径分量,所以能充分利用发射信号的能量。实验表明,对常规无线电信号多径衰落深达10~30dB 的多径环境,UWB 信号的衰落最多不到5dB。
(4)隐蔽性好。因为UWB 的频谱非常宽,能量密度非常低,因此信息传输安全性高。另一方面,由于能量密度低,UWB 设备对于其他设备的干扰就非常低。
(5)定位精确。冲激脉冲具有很高的定位精度,采用超宽带无线电通信,可在室内和地下进行精确定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之内。与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相对位置, 其定位精度可达厘米级。
(6)抗干扰能力强。UWB 扩频处理增益主要取决于脉冲的占空比和发送每个比特所用的脉冲数。UWB 的占空比一般为0. 01~0. 001 ,具有比其它扩频系统高得多的处理增益,抗干扰能力强。一般来说,UWB 抗干扰处理增益在50dB 以上。
(7)低成本和低功耗。UWB 无线通信系统接收机没有本振、功放、锁相环( PLL) 、压控振荡器(VCO) 、混频器等, 因而结构简单,设备成本将很低。由于UWB 信号无需载波,而是使用间歇的脉冲来发送数据,脉冲持续时间很短,一般在0. 20ns~1. 5ns之间,有很低的占空因数,所以它只需要很低的电源功率。一般UWB 系统只需要50~70mW 的电源,是蓝牙技术的十分之一[10]。尽管如此,UWB 在技术上面临一定的挑战, 还有诸多技术的问题有待研究解决,比如需要更好地理解UWB 传播信道的特点,建立信道模型,解决多径传播;需要进一步研究高速脉冲信号的生成、处理等技术;研究新的调制技术,进一步降低收发结构的复杂度等。
2.4 UWB发射机和接收机组成框图
2.4.1 UWB发射机组成框图
UWB发射机直接发送纳秒级脉冲来传输数据而不需使用载波电路。所以,UWB发射机比现有的无线发射设备要简单得多。TH-UWB发射机组成框图如图2-3所示[5]。
图2-3 UWB发射机组成框图
调制后的数据与伪码产生器生成的伪码一起送入可编程延迟电路,可编程延迟电路产生的时延控制脉冲信号发生器的发送时刻,脉冲信号发生器输出的UWB信号由天线辐射出去。脉冲信号产生电路的一个关键部分是天线,它的作用相当于一个滤波器。
2.4.2 UWB接收机组成框图
TH-UWB接收机采用相关接收方式,接收机框图如图4所示。图4中虚线内的部分是相关器。它由乘法器、积分器和取样/保持电路三部分组成[5]。
接收机与发射机类似,两者的区别在于接收机的基带信号处理器从取样/保持电路中解调数据,基带信号处理器的输出控制可编程时延电路,为可编程时延电路提供定时跟踪信号,保证相关器正确解调出数据。
图2-4 UWB接收机组成框图
2.5 UWB 技术的应用前景
UWB 系统在很低的功率谱密度的情况下,UWB具有巨大的数据传输速率优势,最大可以提供高达1000Mbps 以上的传输速率,使UWB 同其它短距离无线通信系统的技术优势非常明显,如表1 所示。现有的各种无线解决方案(例如802. 11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 则在10m 左右的范围之内打破了这一限制,UWB 的应用将使人们可以摆脱更多线缆的牵绊,通信因而变得更为方便[6]。
2.6 结束语
无线通信已经迅速渗入我们的生活当中,对容量不断增长的要求需要一种不对现有的通信系统造成影响的新的无线通信方案,超宽带脉冲无线电系统正好满足了这一要求。UWB 技术对于无线短距离的高速数据通信是非常有竞争力的,随着研究的深入,凭借多方面的优势,它将在很多领域占有一席之地。特别是短距离传输的后3G领域,UWB 将有广阔的发展空间[8]。
表1 几种短距离无线通信比较
IEEE802. 11a
Bluetooth
UWB
工作频率
2. 4GHz
2. 402~2. 48GHz
3. 1~10. 6GHz
传输速率
54Mbps
小于1Mbps
大于480Mbps
通信距离
10m~100m
10m
小于10m
发射功率
1 瓦以上
1 毫瓦~100毫瓦
1 毫瓦以下
容量空间
80kbps/m2
30kbps/m2
1000kbps/m2
应用范围
无线局域网
家庭和办公室互连
近距离多媒体
终端类型
笔记本、台式电脑、掌上电脑、因特网网关
笔记本、移动电话、掌上电脑、移动设备
无线电视、DVD , 高速因特网网关
3 MATLAB 软件工具介绍
3.1 MATLAB语言的概述
MATLAB是一种科学计算软件,适用于工程应用各领域的分析设计与复杂计算,它使用方便,输入简捷,运算高效且内容丰富,很容易由用户自行扩展。因此,它已成为大学教学和科学研究中最常用且必不可少的工具。
MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。与其他计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。它用解释方式工作,键入程序立即得出结果,人机交互性能好,为科技人员所乐于接受。特别是它可适应多种平台,并且随计算机硬、软件的更新而用时升级。因而,MATLAB语言是数值计算用得最频繁的电子信息类学科工具。它大大提高了课程教学、解题作业、分析研究的效率。
3.2 MATLAB的历史
在1980年前后,美国的Cleve Moler博士在New Mexico大学讲授线性代数课程时,发现应用其他高级语言编程极为不便,便构思并开发了MATLAB(MATrix LABoratory,矩阵实验室),它是集命令翻译、科学计算于一身的一套交互式软件系统,经过在该大学进行了几次的试用之后,于1984年推出了该软件的正式版本。它是以著名的线性代数软件包LINPACK和特征计算软件包EISPACK中的子程序为基础发展而成的一种开放型程序设计语言,其基本的数据单元是一个维数不加限制的矩阵,这就允许用户可以根据数值计算问题的复杂程序,对问题进行分段甚至逐句编程处理,显然这与C、FORTRAN等传统高级语言完全不同。在MATLAB下,矩阵的运算变得异常的容易,后来的版本中又增添了丰富多彩的图形图像处理及多媒体功能,使得MATLAB的应用范围越来越广泛,Moler博士等一批数学家与软件专家组建了名为MathWorks的软件开发公司,专门扩展并改进MATLAB。
为了准确地把一个控制系统的复杂模型输入给计算机,然后对之进行进一步的分析与仿真,1990年MathWorks软件公司为MATLAB提供了新的控制系统模型图形输入与仿真工具,并定名为SIMULAB,该工具很快在控制界得致函广泛的使用。但因其名字与著名的软件SIMULA类似,所以在1992年正式改名为SIMULINK。此软件有两个明显的功能:仿真与连接,亦即可以利用鼠标在模型窗口上画出所需的控制系统模型,然后利用该软件提供的功能来对系统直接进行仿真。很明显,这种做法使得一个很复杂系统的输入变得相当容易。SIMULINK的出现,更使得MATLAB的控制系统的仿真与其在CAD中的应用打开了崭新的局面。
3.3 MATLAB语言的特点
MATLAB语言有以下特点。
(1) 起点高
每个变量代表一个矩阵,以矩阵运算见长。当前的科学计算中,几乎无处不用矩阵运算,这使它的优势得到了充分的体现。
(2) 人机界面适合科技人员
MATLAB的语言规则与笔算式相似。MATLAB的程序与科技人员的书写习惯相近,因此,易写易读,易于在科技人员之间交流。矩阵的行列数无需定义。MATLAB不必有阶数定义,输入数据的行列数就决定了它的阶数。键入算式立即得到结果,无需编译。MATLAB是以解释方式工作的,即它对每条语句解释后立即执行,若有错误也立即做出反应,便于编程者立即改正。这些都大大减轻了编程和调试的工作量。
(3) 强大而简易的做图功能
能根据输入数据自动确定坐标绘图,能规定多种坐标系,(极坐标系、对数坐标系等),能绘制三维坐标中的曲线和曲面,可设置不同颜色、线型、视角等。如果数据齐全,通常只需一条命令即可出图。
(4) 智能化程度高
绘图时自动选择坐标,大大方便了用户;做数值积分时自动按精度选择步长;自动检测和显示程序错误的能力强,易于调试。
(5) 功能丰富,可扩展性强
MATLAB软件包括基本部分和专业扩展两大部分。
基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分等等。可以充分满足大学理工科学生的计算需要。
扩展部分称为工具箱。它实际上是用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图像处理、系统辨识、模糊集合、神经元网络及小波分析等工具箱,并且向公式推导、系统仿真和实时运行等领域发展。
MATLAB的核心内容在于它的基本部分,所有的工具箱子程序都是用它的基本语句编写的。
3.4 MATLAB仿真
通过利用所学的理论知识,建立一个完整、准确的需求说明,清楚、准确地提出仿真试验所要解决的问题。
对所提出的仿真系统给出详细定义,明确系统中的模块、系统构成、模块之间的相互关系,系统的输入输出、边界条件以及系统的约束条件,并明确仿真所要达到的目标。
根据仿真系统分析的结果,确定系统中的参数、变量及其互之间的关系,并以数学形式将这些关系描述出来,从而构成仿真系统的数学模型。数学建模是系统仿真中最关键的一步,所建立的数学模型必须尽可能准确地反映所关心的真实系统的特性,而又不能过于复杂,以免降低模型的效率,增加不必要的计算过程,即建模需要根据求解问题的要求,在模型的近似程度与复杂程度之间折中。电子与通信系统的数学模型通常以方框图形式或数学方程形式来表达。
根据建立的数学模型所需要的数据元素,收集与模型系统有关的数据。根据数学模型建立系统的计算机仿真模型,收集数据,确定其中各子模块的结构,输入输出接口,输入输出的数据表达形式,数据的存储方式等。然后编制相应的程序流程,用MATLAB语言实现。
仿真模型验证的目的是确定计算机仿真模型是否准确表达了数学模型。仿真模型验证通常的方法是将数学模型的解析结果(或理论结果)与仿真所得到的数值结果相比较来完成的;或通过已知的系统输入输出结果,对比在相同条件下的系统仿真结果来验证仿真模型的正确性。
根据仿真试验设计的方案,让计算机执行计算,并在执行计算的过程中了解仿真模型对于各种不同输入信号以及不同参数和仿真机制下的输出,得出试验数据,从而预测系统在实际环境中的运行情况。
对仿真模型的运行阶段所产生的数据进行分析,其目的是从运行阶段所产生的数据中找出系统运行规律,对仿真系统的性能做出评价,为系统方案的最终决策提供辅助支持。对仿真结果进行分析,对仿真数据的可靠性、一致性、置信度等做出判定,最终将仿真结果以曲线、图表和文字等形式形成论文。
4 超宽带无线的调制技术
发射超宽带(UWB)信号最常用和最传统的方法是发射时域上很短的脉冲。这种传输技术称为“冲激无线电”(Impulse Radio,简写为IR)。信息数据符号对脉冲进行调制,其调制方式可以有多种。脉冲位置调制(PPM)和脉冲幅度调制(PAM)是最常用的两种调制方式。除了要对脉冲进行调制外,为了形成所产生的信号的频谱,还要用伪随机码或伪随机噪声(PN)对数据符号进行编码。一般是,编码后的数据符号引起脉冲在时间轴上的偏移,这就是所谓的跳时超宽带(TH-UWB,Time-Hopping UWB)。直接序列扩谱(DS-SS)就是编码后的数据符号对基本脉冲的幅度进行调制,这在冲激无线电(IR)中被称为直接序列超宽带(DS-UWB,Direct-Sequence UWB),这种调制方式似乎非常有吸引力[1]。
对于超宽带信号,也可以通过很高的数据速率来产生而根本不需要具备脉冲的特性。只要UWB定义所要求的相对带宽或最小带宽在整个传输过程中得到满足,那么,靠发射高速率数据而不是窄脉冲所产生的具有UWB射频带宽的系统,就不应该被排除在UWB系统之外。诸如正交频分复用(OFDM),在数据速率适当的情况下也可产生UWB信号。因此,OFDM也是一种超宽带的调制方式。
本文主要讨论TH-UWB、DS-UWB和OFDM调制方式。
4.1 PPM-TH-UWB 调制方式
4.1.1 跳时超宽带信号的产生
在结合了二进制PPM的TH-UWB(二进制PPM-TH-UWB或者PPM-TH-UWB)中,UWB信号的产生可以系统地描述如下(参见图4-1描绘的发射链路) [1]。
SHAPE \* MERGEFORMAT
图4-1 PPM-TH-UWB信号的发射方案
给定待发射的二进制序列b=(…,b0,b1,…,bk,bk+1,…),其速率Rb=1/Tb (b/s),图4-1中的第一个模块使每个比特重复Ns次,产生一个二进制序列:
(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=
(...,a0,a1,…aj,aj+1,…)=a
新的比特速率Rcb=Ns/Tb=1/Ts (b/s)。这个模块引入了冗余,其实是一种被称为重复码的(Ns,1)分组编码器。一般术语上称为信道编码。
第二个模块是传输编码器,就是应用整数值码序列c=(…,c0,c1,…,cj,cj+1,…)和二进制序列a=(…,a0,a1,…,aj,aj+1,…),产生一个新序列d,序列d的一般元素表达式如下:
dj=cjTc+aj (4-1)
式中,Tc和 是常量,对所有的cj满足条件cjTc+ <Ts,通常 <Tc。
这里的d是一个实数值序列,而a是二进制序列,c是整数值序列.现在我们遵循最常用的方法,假定c是企业界随机码序列,它的元素cj是整数,且满足
0 cj Nh-1。 码序列c可能为周期序列,其周期表示为Np。两种特殊情况值得讨论。第一种,码是非周期的,即 ;第二种是Np=Ns,这是最常用的一种,这时的编码周期与二进制码重复的次数相等。我们必须牢记:传输编码扮演了码分多址编码和发射信号的频谱形成双重角色[1]。
实数值序列d输入到第三个模块,即PPM调制模块,产生了一个速率为Rp=Ns/Tb=1/Ts(脉冲/s)的单位脉冲(Dirac pulses ) 序列。这些脉冲在时间轴上的位置为 ,因此脉冲位置在jTs基础上偏移了dj,脉冲的发生时间也可表示为( )。注意是码序列对c信号引入了TH位移,也正因为此,c被称为TH码。还要注意一点就是由PPM调制引起的位移 ,通常比TH码引起的位移cjTc小得多,即: ,cj=0除外。Tc称为码片时间(chip time)。
最后一个模块是脉冲形成滤波器,其冲激响应为。必须保证脉冲形成滤波器输出的脉冲序列不能有任何的重叠。
以上所有系统级联以后的输出信号 可表示如下:
(4-2)
比特间隔或比特持续时间,也即用于传输一个比特的时间Tb,可表示为:Tb=NsTs。在式(4-2)中,cjTc定义了脉冲的随机性或者说是相对于Ts整数倍时刻的抖动。如果用随机TH抖动 来表示由TH编码cjTc引起的时间上的位移,并假定 在0和 之间分布,则可得到:
(4-3)
正如前面提到的, 通常远大于 。这两个量的整体效果是产生一个分布在0和 之间的时间随机位移量,用 表示这个时间随机位移,可得发射信号的如下表达式:
(4-4)
更一般性地概括式(4-2)所表示的信号,其思想是:对于信息比特“0”和“1”,可以发射两个不同的脉冲波形 和 来分别表示。上面分析的PPM调制的例子,引入了 这个时间位移量,它的值根据它所代表的比特而有所不同,其实是上述思想的特殊例子,其中的 是 位移以后的波形。一种更一般的表达式:
(4-5)
当将 设置为- 时,式(4-5)也表示了PAM和TH-UWB的结合,即PAM-TH-UWB模型[1]。
4.1.2 PPM-TH-UWB的发射链路 系统模型如图4-2所示
SHAPE \* MERGEFORMAT
图4-2 PPM-TH-UWB 发射器的系统模型
图4-2中的第一个模块表示二进制源。这个模块的输出是发射到物理信道的二进制流。第二个模块表示重复码编码器。二进制流的每一个比特都被重复次。第三个模块仿真TH编码和二进PPM。这里考虑伪随机TH码。最后一个模块是脉冲形成。这个模块的冲激响应表示要发射的UWB信号的基本脉冲波形[1]。
4.1.3 PPM-TH-UWB 仿真结果及其分析
图(4-3)显示了参数设置如下时所产生的UWB信号
以dBm为单位的平均发射功率Pow, 信号的抽样频率fc, 由二进制源产生的比特数numbits, 平均脉冲重复时间Ts(单位为秒),每个比特映射的脉冲数Ns, 码片时间Tc(秒), 跳时码的码元最大值Nh和周期Np,冲激响应持续时间Tm, 脉冲波形形成因子tau(秒), PPM时移dPPM(秒)。
Stx: Pow=-30, fc=50e9, numbits =2, Ts=3e-9, Ns=5,
Tc=1e-9, Nh=3, Np=5, Tm=0.5e-9, tau=0.25e-9,
dPPM=0.5e-9
由图4-3中可以看到输出序列的前五个脉冲在其对应时隙的中间位置,而后五个脉冲则在其对应时隙的起始位置。
图4-3 PPM-TH-UWB 发射机产生的信号
图4-4 PPM-TH-UWB的幅度谱
由图4-4可以看出,TH编码和PPM调制都对幅度谱的高斯形状产生扭曲。PPM-TH-UWB信号的幅度谱将完全包含在无TH编码和无PPM调制的幅度谱包络中,这是因为以同样的形状和同样的平均功率传输等间隔脉冲的结果。
4.2 PAM-DS-UWB调制方式
4.2.1 直接序列超宽带信号的产生
直接序列扩谱(DS-SS)是一种著名的数字调制方式。这里,我们先回顾DS-SS的基本原理,并把主要精力放在它在UWB的延伸方面。
具有UWB特性的信号可以通过下面的过程产生:首先,用伪随机码或二进制PN码序列对要发射的二进制进行编码;其次,对一串窄脉冲进行幅度调制。这一过程可以看做是目前使用DS-SS系统的一种极端方式,此时脉冲在时域上是具有典型时间的奈奎斯特型脉冲或方波。让脉冲宽度远远小于切普间隔,很容易得到DS-SS-UWB的解析表达式。在传统的DS-SS系统中,RF发射信号是对载波进行幅度调制后得到的,通常使用二进制相移键控BPSK方式。而在DS-UWB中,如果没有专门的要求,这一过程可省略。[1]
更详细地,上述信号可以通过如下过程产生(见图所示发射链路)。
SHAPE \* MERGEFORMAT 图4-5 PAM-DS-UWB 信号的发射方案
假定待发射的二进制序列b=(…,b0,b1,…,bk,bk+1,…),其速率为Rb=1/Tb (b/s),图4-5中的第一个系统将每个比特重复Ns次,得到序列:(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=a*,其速率为Rcb=Ns/Tb=1/Ts (b/s)。与TH方式相似,系统引入的冗余相当于一个参数为(Ns,1)的重复码编码器。
第二个系统将a*序列转换成只含有正值和负值元素的序列a=(…,a0,…,a1,…,aj,aj+1,…),转换公式为:( ).
发射编码器将一个由 1组成、周期为Np的二进制码序列c=(…,c0,c1,…,cj,cj+1,…)应用到序列a=(…,a0,…,a1,…,aj,aj+1,…),产生一个新序列d=a·c,其组成元素dj=ajcj。通常假定Np等于Ns,更具一般性的假定是Np等于Ns的整数倍。注意,序列d的元素值为 1,这一点与序列a相同,其速率为Rc=Ns/Tb=1/Ts (b/s)。
序列d进入第三个系统——PAM调制器,产生一个速率为Rp=Ns/Tb=1/Ts (脉冲/s)的单位脉冲(Dirac脉冲 )序列,其位置在jTs处[6]。
调制器输出的信号进入冲洲响应为p(t)的脉冲形成滤波器。在传统的DS-SS系统中,冲激响应p(t)是持续时间为Ts的矩形脉冲。而在DS-UWB系统中,与TH方式相似,p(t)是持续时间远小于Ts的脉冲。
以上系统级联后的输出信号可以表示为
(4-6)
注意,与TH方式相似,比特间隔或比特持续时间,即传输一个比特所用的时间是Tb=NsTs。
输出的波形显然是一个PAM波形。很容易知道,由于没有时移而且脉冲以规则的时间间隔出现,计算式(4-6)所示信号的PSD要比计算式(4-2)所示信号的PSD更容易。
上述方式的一种变形是使用PPM调制器代替PAM调制器,得到的信号可表示为:
(4-7)
注意到在式(4-7)中,由于码的伪随机特性,编码会起到白化频谱的作用。
4.2.2 PAM-DS-UWB 发射链路 其系统模型如图4-6所示.
SHAPE \* MERGEFORMAT
图4-6 PAM-DS-UWB 发射机系统模型
图4-6中的前两个模块分别表示二进制源和重复码编码器。第三个模块是在重复码编码器的输出端实现DS编码和二进制PAM调制。我们考虑伪随机DS码,分配给一般用户的是长度为NP的二进制码序列。最后一个模块是脉冲形成器[1]。
4.2.3 PAM-DS-UWB 仿真结果及其分析
图4- 7 由PAM-DS-UWB发射机产生的信号
图(4-7)显示了参数设置如下时所产生的UWB信号
以dBm为单位的平均发射功率Pow, 信号的抽样频率fc, 由二进制源产生的比特数numbits, 平均脉冲重复时间Ts(单位为秒),每个比特映射的脉冲数Ns, 码片时间Tc(秒), 跳时码的码元最大值Nh和周期Np,冲激响应持续时间Tm, 脉冲波形形成因子tau(秒), PPM时移dPPM(秒)。
Stx: Pow=-30, fc=50e9, numbits =2, Ts=2e-9,
Ns=10, Np=10, Tm=0.5e-9,
tau=0.25e-9,
这个信号由两组脉冲序列组成,每组包含10个脉冲,每组映射信息源的一个比特。从图4-7中可以看出每二组的10个脉冲与第一组的10个脉冲在极性上是相反的。
图4-8 PAM-DS-UWB的幅度谱
由图4-8可以看出,幅度谱的包络具有基本脉冲的傅氏变换的形状,即高斯形状。且Np(信号每比特发射脉冲数)值越大,图形分布越宽,即幅度峰值越小。
4.3 OFDM调制技术
4.3.1 概述
多频带(MB)方式与本章前两节分析研究的IR原理不同。根据2002年,FCC公布的UWB定义,带宽超过500MHz的信号都是UWB信号。因此,按照FCC规定的频带范围3.1~10.6GHz,将此7.5 GHz的带宽分割成最小带宽为500MHz的若干个频带。为了尽量减小同窄带通信系统的相互干扰,UWB采用较小的功率,于是UWB信号对于窄带通信系统来说相当于热噪声,并不被窄带通信系统的接收机检测到,也可以避免特定频带上的非人为干扰[1]。
在每个子频带内可以使用不同的数据调制类型,并不一定要用IR方式,正确的频谱带宽可以通过合适的比特速率实现。应用最广泛的是众所周知的正交频分复用(OFDM)。
4.3.2 多频段OFDM-UWB信号产生
一个已调的OFDM信号由调制在不同载波频率 上的同个并行发射的信号组成。这些载波等间隔地位于频域上,其间隔为 。OFDM调制器输入的二进制序列每K比特编为一组,以产生具有N个符号的数据块{ },这里假定 是L个可能的取值中的一个,K=N1bL。最后,每个符号调制一个不同的载波。为了并行传输数据块的N个符号,不同的调制载波信号在频率上必须正交[8]。
所有调制器使用相同的矩形波,其持续时间为T:
(4-8)
如果符号 在星座图中的点用 表示,OFDM信号中有N个符号的数据块的表达式如下[1]:
(4-9)
而相应的复包络是
(4-10)
其中 ,S(t)是周期为T0的周期函数。
式(4-9)中OFDM信号的数字变换相当于传输式(4-10)中复数包络的抽样值,也就是说传输序列可表示如下:
(4-11)
tc是抽样周期。
仿真OFDM调制信号,考虑的是OFDM各个载波使用QPSK调制的情况。仿真整个发射链路,产生式(4-9)的信号。
4.3.3 OFDM仿真结果及其分析 要发射的总比特数numbits; 调制信号的中心频率fp; 抽样频率fc; 每个符号在其相应载波上的传输时间T0; 循环前缀的持续时间TP;保护间隔时间TG, 矩形脉冲响应的幅度为A, OFDM系统的子载波数N。
(1) numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;
TP=60.6e-9; TG=70.1e-9; A=1; N=4;
图4-9 OFDM-UWB信号
图4-10 OFDM-UWB幅度谱
图4-10中的幅度谱由子载波的幅度谱叠加而成。
(2)numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;
TP=0; TG=50e-9; A=1; N=2;
图4-11 OFDM-UWB信号图
图4-11 OFDM-UWB信号幅度谱
对比以上两图,可以看出,在同样的时间里为了传输更多的符号,是以增加带宽为代价的,也就是增加子载波的数量。
4.4 总结
通过一系列的仿真,我们可以得出以下结论:PAM、PPM两种调制方法主要是为了进行信息数据符号对脉冲的调制,而信号中的伪随机TH码和DS码主要是为了产生信号的频谱,使信号的功率谱密度在采用伪随机码调制后变得更加平滑,不能干扰到其它已经存在的窄带系统[9]。
OFDM具有良好的抗多径干扰性能,通过频率的合理选择,能够同现存的窄带系统和开放频段的通信系统具有很好的共存性,同传统的超宽带系统相比有很大的优势[11]。
5 性能分析及应用前景
5.1 脉位调制(PPM)和脉幅调制(PAM)
脉位调制(PPM)是一种利用脉冲位置承载数据信息的调制方式。按照采用的离散数据符号的状态数可以分为二进制PPM(2PPM)和多进制(MPPM)。在这种调制方式中,一个脉冲重复周期内脉冲可能出现的位置有2个或M个,脉冲位置与符号状态一一对应。根据相邻脉位之间距离与脉冲宽度之间关系,又可分为部分重叠的PPM和正交PPM(OPPM)。在部分重叠的PPM中,为保证系统传输可靠性,通常选择相邻脉位互为脉冲自相关函数的负峰值点,从而使相邻符号的欧氏距离最大化。在OPPM中,通常以脉冲宽度为间隔确定脉冲位置。接收机利用相关器在相应位置进行相干检测。鉴于UWB系统的复杂度和功率限制,实际应用中,常用的调制方式为2PPM或2OPPM[3]。
PPM的优点在于:它仅需要根据数据符号控制脉冲位置,不需要进行脉冲幅度和极性的控制,便于以较低的复杂度实现调制与解调。因此,PPM是UWB系统广泛采用的调制方式。但是,由于PPM信号为单极性,其辐射谱中往往存在幅度较高的离散谱线。对此超宽带信号的幅度谱仿真也证明了这一点。如果不对这些谱线进行抑制,将很难满足FCC对辐射谱的要求[10]。
脉幅调制(PAM)是数据通信系统最为常用的调制方式之一。在UWB系统中,考虑到实现复杂度和功率有效性,不宜采用多进制PAM(MPAM)。UWB系统常用的PAM有两种方式:开关键控(OOK)和二进制相移键控(BPSK)。前者可以采用非相干检测降低接收机复杂度,而后者采用相干检测可以更好地保证传输可靠性[3]。
当发射能量相同时,使用二进制PAM调制的信号可以比使用二进制PPM调制的信号获得更好的性能。
5.2 OFDM调制
OFDM有很多优点:能够提供较大的系统容量,具有较强的抗多径干扰、抗频率选择性衰落和频率扩散能力,适应多径和移动信道传播条件,能够适应不同设计需求,灵活分配数据容量和功率,可提供灵活的高速和变速综合数据传输可以实现较高的安全传输性能,允许数据在复数的高速的射频上被编码。由于OFDM技术的良好性能使得它在无线通信系统中得到了广泛的应用[12]。
OFDM技术是将频道资源分成若干个子信道,每个子信带再采用一定的调制技术,提高频率利用率。OFDM可与PPM、PAM等结合使用,将会有性能更好的调制技术出现。
5.3 UWB的应用前景
超宽带技术在通信、雷达和无线定位等领域都将有广阔的应用前景。近年来,人们对超宽带技术深入的研究使超宽带技术在系统理论、功率放大器、脉冲的产生与接收、同步、集成电路等方面取得了重大进步,尤其是在超宽带无线产生领域的技术进步,使超宽带通信成为无线网络的重要组成部分成为可能。
相对于传统的窄带无线通信系统,超宽带无线产生系统具有诸多优点和潜力,使超宽带无线产生成为中短距无线网络的理想接入技术。根据产生速率不同,挤兑超宽带无线传输系统也具有不同的特点和应用领域。
利用超宽带技术可以提供高数据率传输的能力与定位功能,可以设计依赖定位信息优化网络资源管理的WPAN或WLAN,并应用于多媒体传输、计算机通信和家庭娱乐等领域。
利用脉冲超宽带信号对障碍物的良好穿透特性与精确测距功能,可以设计既具有通信功能也具有定位功能的超宽带脉冲无线通信与定位系统。该系统包括传输距离远(通信速率低)、颁布式移动定位、便携、超低成本、超低功耗、定位可靠性和精度高等特点。因而可以广泛用于传感器网络、消防、公共安全、库存盘点、人员监护与救生等重要领域。利用超宽带脉冲信号低截获概率、保密性高和体积小的优点,该系统还可以应用与侦察、情报收集、伤员救护、武器制导等军事领域[8]。
超宽带信号具有很低的辐射功率,而这样的辐射功率分布在某些方面GHz的频率范围内,功率谱密度极低,类似白噪声频谱,具有低干扰、低截获概率特性;同时由于使用窄脉冲为信号载体并采用跳时扩频,接收端必须已知发射端扩频码的条件下才能解调出发射数据来,加上它对多径干扰具有很好的鲁棒特性,非常适合在军事保密通信的应用。非常低的辐射功率可以避免过量的电磁波对人体的伤害[7]。
结论
超宽带无线通信技术是目前发展的热门技术。它以其自身的优点,被研究人员广泛关注。超宽带无线电技术大体包括基带脉冲传输方式和带通载波调制传输的方式两大类。脉冲传输的特点是把信息调制在离散脉冲信号上发射,而带通载波调制传输的特点则是把信息调制在正弦载波上发射。本论文是以采用基带脉冲传输技术的经典超宽带无线电通信系统为基础进行研究的。
为了更好地了解超宽带通信系统,本文先概括地介绍了超宽带无线通信的基础知识。接着将仿真的基本工具MATLAB的使用说明简单介绍。然后,重点介绍超宽带通信的调制方式,主要包括对TH-PPM、DS-PAM和OFDM调制方式的介绍,并通过仿真图像加以对比,说明调制方式的优缺点。
常采用不同的调制方案,对系统传输速率、搞多径干扰能力有很大影响。对它们进行分析比较,对系统调制信号的设计具有一定的参考意义。通常,在一个通信系统中,应用何种调制方式不仅要看调制方式本身性能,还要根据系统总的设计加以考虑。
参考文献
[1]葛利嘉,朱林,袁晓芳,陈帮富,超宽带无线电基础,电子工业出版社,2005,1~110
[2]葛利嘉,曾凡鑫,刘郁林,岳光荣,超宽带无线通信,国防工业出版社,2005,76~107
[3]常远,UWB无线通信系统信号产生和调制技术的研究,哈尔滨工程大学优秀硕士论文,2006
[4]朱慧,苏锐,超宽带技术概述,信息技术,2006
[5]武海斌,超宽带无线通信技术的研究,无线电工程,2003
[6]徐征,UWB超宽带无线通信技术,中国电力教育2006年研究综述与论坛专刊,2006
[7]张新跃,沈树群,UWB超宽带无线通信技术及其发展前景,数据通信,2004
[8]张在琛,毕光国,超宽带无线通信技术及其应用,技术视点,2004
[9]牛?模?禾危??泶?尴咄ㄐ畔低车牡髦品绞窖芯浚?缱又柿浚?004
[10]邵怀宗,李玉柏,彭启琮,马永,时间脉冲位置调制的超宽带无线通信,系统工程与电子技术,2003
(2)在航空航天领域,通信工程技术为载人火箭、宇宙飞船等航天设备的成功发射升空、完成宇宙探测使命提供基础通信技术保障,监其飞行轨道和运行状态,提高各类飞行器的动作精确度,实时摄录飞行实况景象,采集、传输特定高度、速度、时空环境下的宇宙数据,提高我国航天科研领域的创新发展。
二、通信工程行业的发展前景
1.通信工程行业的未来发展方向
据相关科研资料显示,我国通信工程在未来发展过程中,一方面将运用光通信技术、云电技术和无线宽带网络技术实现全国全城无线战略,摆脱空间距离的沟通限制,彻底改变人们的通信体验;一方面将与生态环保理念相结合,降低通信工程在生产和消费上的环保成本,加大通信工程技术与生态环保科研成果的密切结合,结合国民经济各领域的行业发展现状,设立以生态通信理念为主导的综合类通信工程技术项目,让通信工程更好地服务于当代社会的同时,也要更好地造福于子孙后代。
2.通信工程行业未来发展的人才保证
通信工程行业的综合性较强,属于服务面广、跨学科、宽口径的学科门类,因此在人才培养标准上,一方面要着眼于学术人才培养,加强对通信网络和通信系统相关技术理论的学习掌握和创新,一方面要着眼于应用人才培养,加强对通信工程行业在国民经济领域中涉及的技术研发、产品设计、设备制造和终端应用等各个环节的学习掌握和创新。以此满足我国通信工程行业向纵深方向发展对高端技术人才的需要[2]。
由于传统的实验教学目标着眼于巩固和加深理论教学效果,实验项目基本上都是授课老师按理论课程需要而设置,各科为政,缺乏整体性、系统性,并且多以验证性实验为主,不利于对学生创新能力的培养。因此,我们本着以学生为本作为出发点,通过课程群讨论,构建了包含验证性实验、设计性实验、综合性实验、项目式实验的实验教学体系。
1.2软硬结合
我国通信事业现代化建设所需要的高级工程技术人才,不仅具备计算机应用能力和信号处理能力,掌握计算机网络、卫星通信和移动通信等现代通信技术还要具有较强的软硬件动手能力。在过去的实践教学过程中,大多数是实验箱的实验,软件工程方面的实践几乎没有。其原因是在过去的培养方案里,所设专业课和专业基础课硬件课程占了绝大部分。为了更好的培养社会所需的通信类人才,为了使学生形成更完整的理论体系和实践体系,在培养方案里增加了软件课程,如《高级程序设计》、《数据库原理及应用》等课程。
2实践教学体系改革的实施
2.1加强对实践教学的调整和整合
加强对实践教学的调整和整合,如在《信息论与编码》设有霍夫曼编码一实验,在《多媒体通信技术》设有图像处理实验(利用霍夫曼编码)。既注意到各门课程的独立性,又要考虑各门课程之间的连贯性及专业的系统性。
2.2增加专业实训增强专业实习
为了更好培养通信方向结合型、应用性人才,提高学生的工程项目能力,增加了专业实训,增强专业见习。我专业专门建立了专业实训实验室-TD实验室;有组织的带领学生到公司企业实习,打破以前放羊式实习。经过专业训练和实习后,丰富了同学对通信工程项目立项、通信工程方案设计、通信工程线路施工、通信系统设备安装调试、通信工程竣工验收,以及通信工程项目监理等方面的认识。
2.3加强校企合作,建设校外实习基地
坚持科学、规模、结构、质量、效益协调发展的原则,拓宽专业口径,构建电子与信息工程大平台,将相近学科的实验室“联合共建”,形成“大概念”、“全方位”实践基地,以扩大其规模效应。建立一个现代化、多功能、多层次、立体型、开放型的工程综合训练中心。通过实地学习,使学生增强了实践能力,也提高其学习理论课的兴趣,有利于其知识体系的形成我们积极与企业联系,2013年1月与三亚移动公司签订了通信工程专业校外实习基地合约;2013年3月,我们与三亚豫权光纤通信公司签订了校外实习基地的协议。在2012、2013、5014年分别派09通信工程、10通信工程和11通信工程专业全体同学到实习基地学习和实训。