时间:2023-05-30 14:50:17
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇人工智能的投资逻辑范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
通联数据是万向集团旗下子公司,成立后一直低调运作,万向集团斥资3亿元初期投入,前博时基金创始人肖风出任董事长,前博时基金股票投资部总经理王政担任CEO。
近年来资管行业蓬勃发展,有着深厚金融基因的通联数据的管理团队却没有跟风去做“掘金者”,而是选择“卖水”,为资产管理机构提供金融信息服务。致力于将云计算、大数据和人工智能技术与先进的投资理念相结合,为资产管理行业打造创新、高效的金融服务云平台。
迎接资产管理行业新时代
在陆家嘴的万向大厦,通联数据所在的楼层新增加的座位又坐满了,大家以互联网公司的高效率、快节奏忙碌着,这群具有金融、计算机、算法等各种背景的精英正全力投入Fintech时代,他们正在做一件对资管行业具有革命性意义的事件。
随着互联网的快速发展,海量的数据爆炸式增长,通联数据应运而生,从最底层做起,建立了强大的数据平台。
“只有做好数据端的质量,做到别人都做不到的数据,才是成功,这一过程就持续了3年。”肖风表示。
“通联数据现在的数据来源分为三部分,一是自己搜集整理,二是从第三方购买,三是数据商把数据整合过来放在云平台,未来会有更多数据商的数据接入进来。”通联数据CEO王政介绍说。
打好数据的地基后,就需要用最新的金融科技建造资产管理的大厦,因为Fintech的核心就在于科技与金融的深度融合。
在底层数据库之上,通联数据又构建了两个平台,萝卜投研和优矿,其中萝卜投研是针对基金经理和研究员提供智能投资研究服务的平台,而优矿则是一个众包的、分享式的量化平台。
王政表示,通联数据将使投资更趋智能化,更加依靠模型和数据去寻找规律,效率得到飞速提升,这将重构资产管理行业的生态。
据了解,目前已经有数十家机构在试用通联数据的产品,包括公募、私募、保险等资管机构,也包括非资管机构。
Fintech的前沿是人工智能
除了资深的基金业人士外,通联数据还吸引了来自阿里、百度、腾讯、微软等公司的技术骨干加盟,众多IT工程师在探索将智能搜索、自然语言处理、机器学习等人工智能技术应用于投资管理行业。
肖风表示:“人工智能是Fintech里最核心的东西之一,人工智能正对我们的社会发生深刻影响,人工智能将帮助研究员、交易员、基金经理提升工作效率,这是未来的一个方向。”
人工智能是一项战略性前沿技术。近年来,人工智能产业发展迅猛,进入高速创新期。将人工智能和金融投资深度融合,使金融智能化也成为大势所趋。
通联数据打造的萝卜投研就是一个智能平台,收集海量信息,然后通过自然语言处理和机器学习等技术,高效而专业地提炼出对研究有用的信息,帮助投资人从大量重复、繁杂的底层数据处理过程中解脱出来,有针对性地帮助投资者提高投研效率。
例如,在底层数据收集层面,先对数据进行清洗;在数据整理层,会对数据进行专业分类,对信息进行初步智能处理;然后是机器学习的层面,通联数据专门训练了一个垂直搜索引擎,用人工智能模拟人类的思维方式,使它理解交易员、基金经理有什么样的需求。让计算机对大量数据进行提取、整理、分析,把精炼后的信息,或初步发现的逻辑线索呈现给用户。
以大数据创建知识图谱
人工智能首先我想起了长期资本(LTCM)的故事。套利之父、债券之王、诺贝尔奖获得者一群精英的梦幻组合,于1994年创立了美国长期资本管理公司,主要活跃于国际债券和外汇市场,利用私人客户的巨额投资和金融机构的大量贷款,专门从事金融市场炒作。它与量子基金、老虎基金、欧米伽基金一起被称为国际四大对冲基金,一度取得骄人业绩。它以“不同市场证券间不合理价差生灭自然性”为基础,制定了“通过电脑精密计算,发现不正常市场价格差,资金杠杆放大,入市图利”的投资策略。最后因为俄罗斯金融风暴、公债违约导致公司几乎濒临破产。有人分析,它的问题出在历史数据统计的模型不能代替未来方向。实际上,我觉得,从更高层面来说,这是一种对社会现象能否进行数理分析的根本哲学问题。
1、人工智能的概念
人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的思维方式和方法产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。
2、人工智能的发展
对于人工智能的研究一共可以分为五个阶段。
第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。
第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。
第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。
第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。
第五个阶段是20世纪90年代后。网络技术的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。
3、人工智能可否超过人的智能
那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:
首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了国际象棋世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。
第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?
第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。
第四,随着科学技术的发展,人工智能不单需要逻辑思维与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。
4、结束语
人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
参考文献:
机器人参加高考来源于“类人答题机器人项目”的规划。该项目是中国“十二五”规划的重大专项,集合了超过30家主要科研院校共同研发,目标是研制出能参加高考并考上重点大学的“类人答题机器人”。
从2015年科技部立项到2017年参加高考,这款高考机器人仅有两年的“备战”时间。在此前进行的测试中,“高考机器人”解答近几年的高考北京卷,最难的一道压轴题能在两分钟之内解出。林辉对“高考机器人”明年数学考上一本很有信心。“普通学生一天做100道题,人工智能可以一天做几万道题。它在这个过程中不断学习,分析人类看不出来的规律。”
根据计划,中国的高考机器人计划在2020年考上北大、清华。林辉介绍说,人工智能机器人的核心是将老师的教学智慧和经验转化为机器认知。
机器人能精准采集学生书写的原始笔迹,对笔迹进行自动识别,利用构建的知识库,及时对学生答案正误、错误知识点、错误原因进行智能判定,将前后答题步骤进行逻辑推理证明,实现一题多解下的判定和评测,甚至是对初等数学主客观题的自动评测。
第一,人工智能在特定约束条件下已具备超越人脑某个方面的能力,但综合来看仅仅相当于蠕虫的智能水平。近期,谷歌研发的人工智能AlphaGo围棋程序在与世界围棋九段李世石的对局中以4:1取胜。AlphaGo采用更为优化的深度学习神经网络,在规则已知和逻辑可控的棋类竞技中实现了对人类的超越。IBM的沃森机器人能够在几秒之内筛选数十年癌症治疗史中的100多万份患者病例记录,为医生提供可供选择的循证治疗方案。但无论是AlphaGo还是沃森都需要由人类预先进行知识分类和设计上的干预,并且“智能”的高低很大程度上取决于所学习先验样本的数量和准确性。因此,通用意义上的人工智能依然是一个漫长而复杂的过程,目前能够做到的更多是特定场景下人类某项大脑能力的延伸和对人类思维决策进行辅助。
第二,人工智能发展可分为不同层次,目前部分技术分支在行业中的应用已取得突破。人工智能发展层次可分为感知智能(语音、图像识别,自然语义理解,机器翻译,机器搜索等),认知智能(神经元芯片、深度学习算法、行为规划等)和自主智能(机器推理、决策和联想等)。感知智能方面,国外的谷歌、IBM、脸书、微软和国内的百度、科大讯飞等在语音和图像识别、机器翻译、大数据搜索等细分技术领域推出了一批有显著创新性的技术产品。认知智能方面,对神经元芯片、深度学习算法的开发主要集中在IBM、高通、谷歌为首的国际巨头以及美国“类人脑芯片”(SyNAPSE)、欧洲“欧脑项目”纳入的高校和科研机构中。由IBM主导的SyNAPSE项目预计在2016年内能够完成100亿神经元规模的计算机原型,但距离通用型、成熟型产品问世尚需较长时日。
第三,我国应积极应对人工智能发展新浪潮,以产学研用协同创新打造国际竞争新优势。近年来,美欧等国家在人工智能领域不断加大投入,开展专利布局,以技术和应用为纽带构筑产业生态。我国在人工视觉、语音语义识别等细分产业领域并不落后,但从全局来看,在人工智能基础理论、核心算法和产品成熟度、产业投资和人才队伍储备等方面与国外对比还存在明显差距。国外大企业重点攻关认知智能和自主智能,我国企业目前多集中在感知智能的低级阶段。
当前阶段,人工智能技术产业化发展应当从以下四个方面着手改进:
一是加强人工智能核心技术研发和产业化。制定人工智能产业技术发展路线图,在客观分析、科学研判的基础上,找准产业未来发展的薄弱点和赶超点。加大资金投入力度,重点突破自然语音语义识别、机器学习、智能搜索等关键技术,完善核心芯片、显示器件、智能传感器、开发工具与集成环境等产业链配套。
中图分类号:TM73 文献标识码:A 文章编号:2095-1302(2013)01-0032-05
0 引 言
智能电网是当今世界电力系统发展的重大变革,也是21世纪电力系统的重大科技创新和发展趋势。2003年,美国“未来能源联盟”首次提出智能电网的概念。同年,美国能源部了“Grid 2030”设想[1],将美国的未来电力系统描述为一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。2005年,欧洲技术论坛(ETP)提出了“Smart Grid”概念[2],计划通过智能电网的建设,向所有用户提供高度可靠、经济有效的电能,充分开发利用大型集中发电机和小型分布式电源,提高电网公司运营效率,降低电能价格,加强与客户的互动,应对来自市场、安全和电能质量、环境等方面的压力。
国内也高度重视智能电网建设。2010年6月7日,总书记在两院院士大会上的讲话中提出,要“构建覆盖城乡的智能、高效、可靠的电网体系”。国家科技部于2009年11月24日的《关于加快我国智能电网技术发展的报告》中提出了明确的目标和任务。国家电网公司于2009年5月了“坚强智能电网”愿景及建设路线图。南方电网有限责任公司在2010年7月提出了“建设一个覆盖城乡的智能、高效、可靠的绿色电网”的目标。2011年2月,陕西省地方电力(集团)有限公司作为专业的配电网公司,联合清华大学提出了建设“多指标自趋优”智能配电网的目标。
智能电网涉及能源、环境、社会、经济和管理等多个学科,由于其具备系统工程和创新技术的特点,目前智能电网的研究趋向发散,对智能电网的认识多从企业自身出发,尚未收敛到智能电网本质的研究,影响和干扰了对智能电网发展方向的研判。本文在分析国内外智能电网相关研究的基础上,结合实践应用,溯源了智能电网的本质——智能,提出了智能电网分代标准,建立了智能电网分代模型,探讨了智能电网分代的社会经济意义。
1 国外智能电网分代研究状况
分代研究在计算机和战斗机等领域已经取得了共识。计算机按照所采用的电子元件,历经了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机,现在正在研发信息获取、存储、处理、通信与人工智能相结合的第五代计算机。20世纪40年代中期,以喷气式发动机为动力的战斗机出现后,按时代和技术水平,战斗机历经三代,目前正在研制第四代战斗机。
由于智能电网尚未大规模应用,与计算机、作战飞机等其他领域分代研究更注重“回头看”的方法不同,智能电网分代更注重“向前看”,这个特点导致智能电网分层次、分步骤、分阶段的研究异彩纷呈,莫衷一是。国外智能电网分代的相关研究综述如下。
1.1 智能电网演进模型
2010年1月,加拿大学者Hassan Farhangi从功能和投资回报率(ROI)两个维度,提出了如图1所示的智能电网的演进模型[3]。他认为,由于化石燃料的成本猛增,电力公司无法扩大发电能力以满足用户对电能不断上升的需求,只有从配电网着手,加强需求侧管理,才能保障电力公司拥有较高的ROI水平。模型表示,智能电网最初的投资用来满足计量设备由机电式到单向自动抄表(AMR)的功能转变,AMR具有节约人力以及时间成本的优势,但是由于其只具有单向通信能力,无法支持电力公司依据从电表获取数据采取调控措施。高级计量架构(AMI)能够提供双向的通信系统,旨在为电力公司提供实时的能耗数据,允许客户以价格为基础,对能源使用做出选择。智能电网演进的最终目标是分布式控制与微网相结合的互联电网。
1.2 智能电网持续发展理论
2011年7月,美国GridNet公司执行副总裁兼首席战略官Andres Carvallo和能源与IT行业学者John Cooper合作出版了“The Advanced Smart Grid — Edge Power Driving Sustainability”一书,提出了智能电网持续发展理论[4]。书中认为第一代智能电网(Smart Grid 1.0)实现了发电厂到终端计量设备的电流与信息流的传输,典型的第一代智能电网是美国科罗拉多州博尔德市智能电网的建设。下一代智能电网(Smart Grid 2.0)将是一个集成的、先进的智能电网体系,从战略上进行顶层设计,在组织、运行、系统集成与建模等多个维度进行柔性规划,下一代智能电网的一些技术已经在美国奥斯汀市智能电网研究项目Pecan Street中浮现。书中对第三代智能电网(Smart Grid 3.0)进行了展望,并将其定义为一个基于互联网络的重新设计的能源系统。
1.3 智能电网层次理论
IBM高级电力专家Martin Hauske认为智能电网的基本概念有3个主要元素:首先是广泛连接资产与设备的传感器;其次是数据的搜集与整合体系;最后是依据数据进行相关分析,以优化运行和管理的能力。与之对应,智能电网也就有三个层面的含义[5]:首先是利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控;然后将获得的数据通过网络系统进行收集、整合;最后通过对数据的分析、挖掘,达到对整个电力系统运行的优化管理。因此,智能电网可以被认为是通过传感器把各种设备、资产连接到一起,形成一个客户服务总线,通过对信息进行整合分析,从而降低成本,提高效率和可靠性,促进管理和运行达到最优化。
1.4 智能电网成熟度模型
智能电网成熟度模型是IBM、美国生产力和质量中心(APQC)及全球智能电网联盟(GIUNC)合作研究的成果[6]。智能电网的成熟度分为5个阶段:第1阶段,只有对智能电网的设想,主要工作是对技术的试验和评价,以及建立业务模型;第2阶段,企业在至少一个智能电网的重要业务领域进行投资和实施;第3阶段,企业对智能电网的组成部分进行重新配置,实现业务领域整合或产业链升级;第4阶段,实现企业范围的跨业务综合观测及综合控制,力争形成新的经济或商业模式;第5阶段,企业有能力在新的业务、运行、环境等机会出现时,充分利用并发展壮大。
综观国外的相关研究,智能电网演进模型以计量系统为主线,没有加入交易环节,同时忽视了人工智能在电网中的应用。智能电网持续发展理论有对智能电网分代以及各代相应功能的描述,但是缺乏对智能电网本质的分析,特别是对三代智能电网核心的描述。智能电网层次理论以传感器为基础,触及到智能电网的基本,但是数据收集与整合体系等没有体现人这一重要因素的参与,理论阐述不够全面。智能电网成熟度模型实质上是智能电网的推进步骤。因此,上述研究都没有涉及智能电网的本质。
2 智能电网的本质——智能
对国外智能电网的研究和实践进行分析,能够为国内的相关研究带来启示和借鉴。从人类认识事物的基本方法来看,对智能电网进行分代研究,必然要从智能电网的本质着手。智能电网可以认为是人工智能在传统电网中的应用,而人工智能又起源于人类智能,因此,必须从人类智能出发,探求智能电网的本质——智能。
2.1 人类智能的发展阶段
人类智能经历了从初级到高级、从简单到复杂的演化过程。这种过程只在个体的前十几年表现得尤为突出,正是这一过程决定了每个人一生智能水平的高低,也决定了人类群体智能水平的多样性。
1983年,美国学者Howard Gardner提出多元智能理论,将智能分为语言智能、数学逻辑智能、空间智能、身体运动智能、音乐智能、人际智能、自我认知智能、自然认知智能等8个方面。瑞士心理学家Jean Piaget从时间维度对人类智能演化规律做出经典总结,提出了人类智能发展理论[7],将个体从出生到青年时期的智能发展水平分为感知运动阶段、前运算阶段、具体运算阶段和形式运算阶段。
虽然多元智能理论并不着眼于各个智能在个体层面的发展顺序,但是结合Jean Piaget的认知发展理论,同时根据Howard Gardner对每种智能概念的描述,可以对智能的8个组成部分以发展为时序,在多元维度上进行归类。在感知运动阶段,空间智能和音乐智能是人类智能重点发展的部分;到了前运算阶段,语言智能和身体运动智能在儿童身上表现较为明显;数学逻辑能力和自我认知能力在具体运算阶段得到了迅速发展;最后,从青少年阶段开始,终其一生,对自然的认知,人际交往能力随着阅历的丰富、经验的积累而日趋成熟。
2.2 人工智能是对人类智能的模拟、延伸和扩展
人类智能的演进规律遵循着Jean Piaget的人类智能发展理论,这些研究成果也深刻地影响着另一个与之紧密相关的学科,即以计算机为基础的人工智能的研究。人工智能最初被定义为“让机器的行为看起来就像人所表现出的智能行为一样”,到后期逐渐演变为让机器拥有自己的思维。对比人类智能发展的历程,人工智能的演进呈现出与之相似的路径。
(1) 人工智能发展的初级阶段是对人类智能的模拟。通过传感器远程传送信号,需要操作者通过计算机终端控制机器执行动作,这类似于人类智能的感知运动阶段,具体的应用如排爆机器人、勘探机器人等。
(2) 人工智能发展的中级阶段是对人类智能的延伸。着眼于通过程序算法实现机器的逻辑运算和自我认知能力,类似于人类智能的前运算和具体运算阶段。智能机器人通过处理器分析传感器收集的信息,在无人操控的状态下执行动作。有些智能机器人还能通过对人类语言的识别和模拟实现与人类的语言交流,如日本的ASIMO智能机器人,可以通过“脑—机”系统达到人类思维直接控制机器人的效果。
(3) 人工智能的更高阶段,智能将成为一种系统层面的应用。人工智能体现出自我思维和机器情感等人类特有的能力,通过自我思维产生对外部环境的认识,通过机器感情与外部环境产生更为复杂的交互,这些能力使得人工智能发生了从模拟、延伸到扩展人类智能的突破。
2.3 智能电网是人工智能在传统电网中的应用
智能电网建立在电力电子技术、传感与测量技术、控制仿真决策技术、信息与通信技术、人工智能技术等基础技术之上,以实现发电、储能、输电、配电、用电等环节的智能化为目的。其中,人工智能技术在推动智能电网发展中起着重要作用。
(1) 人工智能的应用能够推动整个电力系统的发展。传统电网存在大量非线性的、模糊的、不确定、不精确、不完全真值的问题,人工智能技术应用的目的就是解决上述问题。基于人工智能的电网故障检测与诊断、具有灵活自愈功能的配电自动化等技术的应用表明,在期望能取得低代价的解决方法和鲁棒性方面,人工智能的应用显著改善了传统电网对不确定、高度非线性环境的适应能力。
(2) 人工智能技术的应用体现了智能电网的本质。智能电网的本质是智能,现代人工智能技术是对人类智能的模拟,因而人工智能的应用是电网“智能化”的根本体现,人工智能技术应用使智能电网回归到了它的本质——智能。从这种意义上说,人工智能技术是否应用是评价一个电网是不是智能电网的基本依据。
(3) 人工智能技术在电网中的应用程度体现了智能电网区别于传统电网的特征。传统电网未能完整地体现人工智能“感知、思维、行为”三要素,导致人的参与程度较低,传统电网始终徘徊在由工业化主导的阶段,在信息化与工业化融合时,遇到了重重困难。智能电网中,人工智能技术的广泛应用将使得电网逐步具有模拟人类智能的能力,从而减少人的参与程度。
(4) 未来智能电网的发展中,人工智能是推动智能电网跃进发展的革命性力量。未来智能电网将是一个具有自预测、自诊断、自愈、自组织和自管理特性的电网。智能电网的跃进发展将主要依靠电网的自学习能力,人的干预将退居其次。人工智能的应用,使得电网的自学习成为可能。在可以预见的将来,除了人工智能技术,其他技术均无法有效增强电网的自学习能力。
3 智能电网分代原则、标准与模型
以上分析了智能电网的本质,以下在智能电网的本质基础上提出智能电网分代的原则、标准以及智能电网分代模型。
3.1 智能电网分代原则
智能电网分代必须遵循以下原则:
(1) 惟一性原则:下一代和上一代的智能电网必须按照智能电网的本质进行划分。
(2) 革命性原则:下一代智能电网必须在整体,而不是局部取得标志性进展和突破。
(3) 连续性原则:下一代智能电网发展的关键要素必须蕴含在上一代智能电网的发展过程中。
3.2 智能电网分代标准
智能电网的本质是智能。人工智能是人类智能应用于传统电网的纽带,人工智能将人类智能的8个方面归纳为“感知、行为、思维”3个要素,上述3个要素也是智能电网分代的标准。
感知是客观事物通过感觉器官在大脑中的直接反映。在多元智能的8个方面中,感知体现语言智能、空间智能、音乐智能。感知在人工智能技术中的体现有语音识别、机器视觉等。
行为是器官对外界刺激所产生的反应。行为体现身体运动智能,行为在人工智能技术中的体现有机器人学、智能控制等。
思维是主体处理信息及意识的活动。思维体现数学逻辑智能、人际智能、自我认知智能、自然认知智能,思维在人工智能技术中的体现有知识系统、专家系统、神经网络、进化计算等。
3.3 智能电网分代模型
智能电网发展的各阶段均须具备人工智能3个要素的全部或部分,不具备3个要素的电网属于传统电网。依据3个要素在传统电网中渗透与融合的深度和广度,建立智能电网分代模型如图2所示。
图2中将智能电网划分为具有以下特征的三代智能电网:
(1) 第一代智能电网:自感知智能电网(Self-sensing Smart Grid)。第一代智能电网在传统电网的基础上具备自主感知能力,是人工智能在电网中应用的初级阶段。智能电网关键设备能够自主感知电属性(负荷等)和电相关属性(温度等)的变化,需要人参与进行决策并采取行动,第一代智能电网只具备简单的自主决策和初级的自主行为能力。典型的自感知智能电网设备及系统如电子式及光学式互感器、智能环网柜、智能在线监测系统、智能终端等。
(2) 第二代智能电网:自适应智能电网(Adaptive Smart Grid)。第二代智能电网在第一代智能电网自主感知能力的基础上,具备一定的自主决策能力和自主行为能力,是人工智能在电网中应用的中级阶段,较少需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是独立的,即只在单一设备或系统局部的感知域内进行决策并根据决策结果驱动单一设备或系统局部采取行动,以达到局部最优。典型的自适应智能电网应用系统如智能调度系统、智能自愈系统等。
(3) 第三代智能电网:自趋优智能电网(Self-approximate-optimization Smart Grid)。第三代智能电网在第二代智能电网自主决策和自主行为能力的基础上,是人工智能在电网中应用的高级阶段,更少需要或不需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是系统的、全局的,即在整个系统感知域(或子集)内进行决策并根据决策结果驱动相关(部分或全部)设备采取行动,使得电网自身状态趋向最优。目前,已经提出来的自趋优智能电网如智能广域机器人(Smart Wide Area Robot,Smart-WAR)[8]。
4 智能电网分代的社会经济意义
技术创新与人类解放之间的历史发展进程表明,人的劳动方式在逐渐变化,技术创新使人在生产劳动中逐渐从事必躬亲的执行者演变成监督者、命令者,这种角色的演变,反映出技术创新在人的实践过程中所具备的强大能动作用。智能电网作为当前电网行业最重要的技术创新形式,同样发挥着着解放人类劳动的作用,亦即电网运行中人的参与程度不断减弱。
第一代智能电网通过技术创新实现自我感知,不但极大地拓展了认知的深度和广度,而且还使人的身体在一定程度上获得了解放。
第二代智能电网通过技术创新实现自我行为,将会极大地减轻人的劳动强度,甚至取代了劳动者在电网运行过程中仅有的操作、监督和控制工作,使人得以在很大程度上从体力劳动中解放出来。
第三代智能电网通过技术创新实现自我思维,“电脑”开始代替“人脑”控制电网运行,机器人劳动取代人的劳动,使人的活动逐渐从电网运行中淡出,这将使人的思维劳动强度得以极大的减轻。
以智能电网建设为标志的技术创新为电力产业提升运行管理水平,开发新产品和服务,以及延伸整个产业链奠定了坚实的技术基础。随着技术手段的革新与经营管理模式的转变,电力产业尤其是电网企业的供给可能性边界将极大扩展,不仅能够满足目前存在的潜在需求,而且还能在未来引领和创造新的需求,在供需双方良性互动的作用下,电力产业将不断优化升级,产业整体影响力和竞争力都会获得显著的提升。
5 结 语
智能电网分代是一个全新的课题,但是分代研究在计算机等其他领域并不鲜见,对这些领域进行分代的目的是通过研究“上一代是什么”来推测“下一代是什么”,因此有必要通过分代研究来预测和引导智能电网的发展方向。与其他领域分代研究更注重“回头看”的方法不同,智能电网尚未大规模应用,分代更注重“向前看”,正是人类智能与人工智能的发展规律,奠定了我们“向前看”的基础。未来,伴随智能电网的深入推进,实践应用总结出的成果和经验,将有助于深化对智能电网本质的认识,理论的可行性与实践的迫切要求,也必将对智能电网分代研究起到促进作用。
参 考 文 献
[1] US Department of Energy. Grid 2030: A national vision for electricity's second 100 years[R].USA: US Department of Energy Initiative, 2003.
[2] European Commission. European technology platform smartgrids: vision and strategy for Europe's electricity networks of the future[EB/OL]. [2012-09-20]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.
[3] FARHANGI Hassan. The path of the smart grid [J]. IEEE Power and Energy Magazine, 2010, 8(1): 18-28.
[4] CARVALLO Andres, COOPER John. The advanced smart grid: edge power driving sustainability [M]. Boston: Artech House Publishers, 2011.
[5] IBM论坛2009. 点亮智慧的地球[EB/OL]. [2012-09-25]. http:///cn/forum2009/wisdom.shtml.
一、当前经济形势下智能制造发展宏观分析
1.基础技术的应用和发展
随着我国需求市场的蓬勃发展,一大批企业的快速跟进,使我国在计算机视觉、中文语音识别和无人驾驶等典型应用方面进入全球前列,具备了加速发展的市场条件和产业基础。在新一代信息技术接力式创新的驱动下,万物互联和智能化趋势越发明显,预计2035年全球联网设备数量将突破千亿件,将快速推动智能制造快速发展。近年来在算法、数据和算力三方面的突破下,新一代人工智能开始成为新的竞争焦点。人工智能在看、听、理解等关键指标上已经媲美甚至赶超人类。在机器识别图像、语音和自然语言等开始广泛应用,类似技术已广泛嵌入呼叫中心、客服系统、智能助手、聊天机器人等产品中。人工智能蕴含着无可估量机遇,各路企业争相涌入布局。从2013年到2017年,全球人工智能投资事件从310件增长到1349件,投资额从17亿美元增长到152亿美元,安防、医疗、交通、制造等数据丰富的行业成为重点投资领域。
2.我国智能制造发展情况
随着我国智能制造发展的快速推动,依托用户规模、应用场景、风险资金和科技论文等优势,我国在一些基础技术的应用方面进入全球前列,一大批骨干企业快速发展,在智能制造产业各个环节积极布局,为我国智能制造的快速发展,实现弯道刹车提供有利条件。数据资源是发展人工智能的关键要素,主要来自用户和联网设备。从用户数看,到2017年底,我国有3.49亿固定宽带用户,是美国的3.5倍,占全球38%。从数据量来看,我国已占全球13%,据高盛报告预测,随着用户数和在线时长增长,这一指标到2020年预计提升至20%—25%。我国有用户规模的先天优势。我国有近4亿的年轻用户,他们对新科技、新产品的接受度比较高,所以广泛的行业分布、多样的用户需求为拓展人工智能应用提供了广阔市场。在这一轮人工智能刚兴起时,国内一批公司深耕计算机视觉技术,目前从算法水准和应用情况看,人脸识别、安防监控等领域已获得全球认可。总体上,智能应用开始进入快速扩展期,我国有望在更多领域形成自身优势。
二、我国智能制造发展当前阶段面临的问题
1.芯片产业发展有待提升
高端芯片产业的发展是智能制造的重要前提,但是芯片关键技术方面还有很大的提高空间,目前处于“受制于人”的情况。当前芯片产业关键技术方面美国还是占主导地位,首先,图形处理芯片方面,英伟达、超威和英特尔三强主导市场方向。其次,可编程逻辑阵列芯片方面,赛灵思和英特尔两强主导市场。第三,专用集成电路(ASIC)芯片方面,谷歌的张量处理芯片(TPU)性能优势明显。目前,由于价格和关键技术的制约我国还处于芯片进口阶段,孙然有部分企业可以进行芯片的定制,但是由于资本投入和商业化推广的弊端还处于初级阶段。
2.人工智能的基础技术依旧不能形成单独生态体系
人工智能的算法框架依附于国外巨头开源生态体系。当前我国人工智能产业必须降低人工智能产品或应用开发成本,进而吸引世界各地开发者入驻生态。从高盛报告看,谷歌Tensorflow算法框架聚集了6.8万名明星开发者;而百度Pad-dlePaddle平台仅有5330位,不到前者1/10。我国当前大部分都机遇谷歌的基础算法框架进行开发,很难自主建立内生性的生态系统。3.专业技术人才的缺失异常严重智能制造的重要核心就是专业技术人才的集聚,但是我国智能制造相关人才总量和人才结构上还处于比较落后的阶段。如全球最大招聘网站领英2017年《全球AI领域人才报告》显示,全球人工智能人才数量190万人,其中美国85万人,我国5万人,位列印度、英国、加拿大、澳大利亚、法国之后,排第七位。从专业化人员从业时间来看,与美国相比我国专业化从业人员,从业超过十年以上的不足40%,而美国却超过了70%,我国大部分关键技术人员和管理人员都是海外引进,我国在智能制造的核心技术方面,尤其是人工智能的底层算法方面与美国还是有很大的距离。
4.我国关键技术创新相关的政策法规落后于技术创新的需求
数据开放、隐私管理、算法歧视、网络攻击等方面需要新的监管法规。以智能影像诊断为例,美国2017年采取先上市后批准的模式助推产业创新;我国则按照医疗器械监管,要求经过器械检测、临床评测、器械技术审批、政府发放批文等四个环节,企业反映总耗时30个月,且准入制度、收费模式、医保对接等尚是空白。所以,首先数据开放是我们必须要解决的问题,我国政府数据开放排名全球靠后,而在科技巨头之间创建标准统一、跨平台分享的数据生态系统要落后于美国。其次数据隐私管理方面问题,海量数据的采集不可避免涉及个人隐私,如何避免滥用是各方关切点。最后是网络攻击问题,防御网络攻击、保障安全是客户最为关心的主要问题。
三、推动我国智能制造发展的路径及建议
1.建立核心技术研发标准,加大产业上下游衔接
我国智能制造虽然全面推广,但是在芯片产业方面还是短板,想要借助人工智能的机会实现弯道超车必须要放长战线,做好基础研发工作。我国消费市场具有一定的优势,要做好开放合作的准备,加强学习的强度,缩短学习的周期。避免资金、人才等资源的浪费,推进强强联合,鼓励走差异化技术路线。优化产业链条,加强上下游的衔接,利用好国内良好的消费市场,产业链相关企业要积极抓住这个机会,积极实现商业化应用。
2.建立标准化产业链条平台
如果我们摆脱简单的拟人思维,把人工智能看作互联网智能演进的新阶段,为理解其法律规则,就有必要理解互联网法律在过去20年中形成的路径和推动力,从而探讨人工智能是否有任何特殊性以至于需要新的规则。本文将从网络法的两个视角――实证性和生产性――切入,将它们延伸至人工智能语境下分别讨论。“实证性”视角是我们观察和应用任何规则的惯常思维方式,例如人工智能行为的具体规则如何确立、如何规制等,本文将讨论支撑人工智能的两个构成性要素――算法与数据――可能带来的法律问题,以及法律人处理人工智能的两种路径;“生产性”视角则深入规则背后,探索规则形成的政治经济因素,特别是经济生产方式的内在要求。人工智能本质上是一套复杂的代码设计,既是影响社会行为的强力规范,也是产生新价值的生产机制;它驱动整个社会朝向更智能的方向变化,从而要求法律做出相应调整,尤其是确认新型经济利益的合法性。
限于篇幅,本文姑且将人工智能看成法律上的客体,暂不讨论赛博格(cyborg)之类的人体转向机械体或通过基因技术改变身体的问题(仍是法律上的人),也不讨论人工智能作为一种人造物的自我意识问题(一个难以达成共识的哲学问题)。
理解网络法的变迁
网络法在中国的变迁大致遵循两类逻辑:外生性的政治/监管逻辑和内生性的商业逻辑。政治/监管逻辑体现为对“实证性规则”的追求,这些规则集中在国家(包括法院和监管机构)如何对互联网的内容和行为进行规制,包括对网络和信息安全的追寻。这集中反映了国家权力如何试图介入新技术带来的问题与挑战。这一视角最早由美国法学界引出,特别是Lawrence Lessig的代码理论将代码(架构)和法律并列。由此,所谓的网络法不仅要约束社会主体在网络空间中的行为,也要对架构的变化本身做出回应。
首先,就规制主体行为而言,出现了是否按照传统线下行为规则的思路约束线上行为的讨论。这一讨论的核心是,互联网问题是否具有任何特殊性,需要某些新规来解决。我们已经看到,中国的互联网行为监管在很大程度上延续了传统规则和管理方式,采取渐进的方式,这不仅成本较小,也给予监管者一定的学习和探索空间。其次,就架构变化本身而言,国家在宏观上主张网络空间中仍然需要,不能成为法外之地,在微观上相应出现了国家与平台权力/责任二分的讨论。例如,政府权力何时需要介入平台治理,加强平台的行政管理责任或安全保障责任,还是由后者根据自身情况自我规制,实现治理目标。政治/监管逻辑要么遵循管理者的路径依赖效应,要么坚持既有社会稳定、意识形态安全价值。问题在于,监管者在多大程度上能够认识到代码及其商业模式的特殊性,从而使监管行为和行业特性相互协调融合。
另一种看待规则产生的方式遵循商业逻辑。这种生产性视角关注微观权力运作,综合将代码、法律与社会规范放在一起,不单纯从社会学意义上观察社会主体行为如何受到影响,而是在政治经济学意义上将网络空间的生成和扩散看成是一个由商业力量推动主导的生产性过程,关注价值由谁产生、如何分配,由此推动对新规则的内生需求。按照这一视角,无论是法律还是架构,在具有实证性规制功能的同时,也是一种“生产性规则”。互联网的生产模式决定了其对社会范围内生产资料的创造性生产和再利用,需要法律确认其生产方式的合法性,重塑关键法律制度,并解决和传统生产模式的利益冲突。这一视角无疑帮助厘清新经济主张的例外特性,不仅展示出架构和相应的法律改变,更指明了背后的政治经济原因,是更好地理解实证性规则的基础。
两类不同的逻辑在过去20年中交替出现,相互制约,共同塑造了中国网络法体系,也推动了中国互联网的整体发展。总体而言,鉴于国家有意促进新经济,需要推动传统的属地化、分口治理,事后运动治理模式发生转变,认清互联网商业模式和价值产生的根源,有利探索适应新经济性质的管理体制。从这个意义上说,信息资本主义不断要求对法律内核进行改造,取代其中的传统经济要素,打破限制生产要素自由流通的各类规则。
人工智能法律的实证性视角
如前所述,人工智能的本质在于算法和数据处理,物理形体不必然是人工智能的构成要素,因为即使是人形机器人,也不过是一个算法主导的硬件系统,它实时收集信息,并按照算法的要求做出决定,继而行动。更重要的是,具有物理形体的人工智能可以推动群体智能发展,通过分布式终端收集更多数据加以处理,并不断传输至云端“大脑”,提升整体网络的智能水平。 人工智能巳深度介入医疗领域
根据算法的复杂性和学习/运算能力对强人工智能和弱人工智能进行区分,这在技术认知上没有问题,但在法律上很难按照智能程度给出精确的标准。法律应对复杂世界的方式是确立一般性的简单规则,在概念上对社会个体进行抽象假定(如行为能力),而非针对特殊主体,否则规则体系本身将变得异常复杂,难于理解和操作。而人工智能从单一的自动化服务向多元通用服务转变的过程可能是一个相当长的光谱,法律需要针对其本质特征进行约束,并探索一套应对未来的方案。当我们说社会变得越来越智能的时候,事实上指由于数据搜集、储存和处理的能力不断增强,所有软件/算法都可能朝向自动收集数据,做出决定或判断的趋势,由于算法的复杂性,算法带来的结果可能无法预测,并在更大范围内带来系统性的不利后果。这种后果未必是毁灭性的风险,甚至只是在某领域的制度设计问题,但人工智能恰好将这类社会问题具象化,掩藏在外表华丽、高效、更多是私人控制的“黑箱”中,就会引发一系列问题。
如果放在一个更大范围内观察,在历史上,人类社会随着复杂性的增加,不可避免地产生以组织和技术形态出现的各类“黑箱”,它们的决定影响着社会发展和大众福利,但仍然保持着某种秘密性。这一隐喻未必是阴谋论,其核心问题在于信息不对称。为平衡相关当事人和社会大众的知情权、避免恐慌、保持某种预测能力,人们不断设计出某种程度的信息公开和透明化机制,例如政治辩论的公开化,法院诉讼程序透明化甚至公开庭审,上市公司强制信息披露等等。而人工智能不过是信息技术时代的新型黑箱,带来更加严重的系统化影响。互联网在兴起过程中,通过降低信息成本,推动了开放政府、庭审直播,使信息公开透明更加便利,将生产性资源不断解放出来,在更大社会范围内重新配置,产生新价值。然而,这一过程在消除一个又一个传统黑箱的同时,产生了更为复杂的新黑箱,进而主导整个社会的生产过程。生产资料之间的信息变得越来越对称,甚至可以实时互通信息,但作为信息匹配中介的人工智能却变得更不透明,其规则设计和运作从属于用户甚至开发者无法理解的秘密状态,这回到了法律如何处理与代码的关系问题。
一个类似的比较是人类自身:人脑经过上百万年的进化,演变成十分复杂精致的系统。尽管当代神经科学不断改变我们对人脑的认知,甚至每个人的大脑都不完全一样,但就法律而言意义不大,这只能在边际上改变个案判决。即使无从了解人脑的运转机制,或者依据某种更加先进的科学知识解释社会主体行动的具体理由,人类还是有能力形成社会规范,并演进成更加理性化的规则。这套规则只需要假定一般社会主体是(受限)理性的,由少数概念界定不同情形的心理状态(故意、过失),并集中对人的外在行为进行约束,确定权利与义务,就足以以简单规则应对(而非认识)这一纷繁复杂的世界。类似地,在处理算法的负外部性时,也可以有两种不同的路径:(1)关注算法的外部行为与后果,(2)关注算法内部的设计规则。
大部分现有规则关注算法导致的(未意料)结果,例如内容分发算法未经审查造成非法或侵权内容传播,这一般由信息传播者(即内容服务商)承担责任,算法本身并无法律地位,在造成不利后果的过程中只是一个工具。这类责任假定内容服务商应当知道非法内容的存在,并有能力通过算法设计或人力(比如人工审查)加以阻止。在诸多侵权场合,内容服务商可以通过“避风港”规则免责,只要无法证明它实际知晓状态。更复杂的是,如果软件开发者声称自己无法控制信息的生产和传播,却造成一定社会危害的情形。无论是在快播案还是BT案中,软件开发者都无法因这一原因而逃脱责任,法院的理由仍然是,开发者有能力知晓非法内容的输出(如果不是故意的话,例如快播向推广该播放器)。类似地,如果一个具有物理形体的人工智能由于处理信息不当造成了外在损害,按照这一逻辑仍应由算法开发者负责。
而且,还有必要将算法产生的错误和算法缺陷本身区分开。长期以来,软件行业一直通过拆封合同(shrink-wrap)解决缺陷软件造成的短时崩溃或重启问题,这种格式条款旨在确认这样一种事实:没有任何软件是百分之百完美的,只要在用户拆封使用该软件时运行正常即可,服务商并不为软件崩溃或死机造成的消费者损失负责,因为前者无法预料到缺陷带来的风险。这就是为什么消费者需要接受软件生产商不停的更新和补丁,软件/应用不受产品责任的约束,被视为一种可以不断升级改进的服务,这在免费软件时代更是如此。按照这一思路,似乎有理由认为,无人驾驶汽车因算法计算错误导致车祸(何况造成事故的概率远远小于人类司机的错误)是这类软件的正常的缺陷,消费者应当容忍这类错误。但无论是监管者还是潜在的受害人都无法接受这种比拟。声称有潜在缺陷的交通工具(也包括医疗设备和其他与生命财产直接相关的算法)一旦投入使用就需要为此造成的后果负责。无论如何,这类思路仍然是通过后果施加事后责任,监管者或法院并不想深入算法内部了解造成事故的技术原因是什么。只要法律认定这一黑箱应当在合理范围内得到控制,事故可以避免,黑箱提供者就应当承担责任。在这种情况下,保险(甚至是强制险)就成为确保这类发生概率小但潜在损失巨大的不二选择,航空、医疗保险市场十分发达,可以预见将会延伸至更多由人工智能驱动的服务行业。 现实与虚拟的界限不断模糊化
如果说事后救济还无法确保安全,事前干预算法设计则是另一种选择,同时带来的问题也更复杂。早在20世纪,阿西莫夫就试图为机器人立法,尽管他从未讨论技术上的可行性。安全可能是人工智能服务的首要问题之一:一个中心化的入侵可能会导致所有终端都变得极度不安全。行业监管者在不同行业为特定服务中的人工智能设定安全标准(如医疗器械、交通工具、自动化武器),实行安全保护等级制度,甚至要求被认定为重要设施的源代码(如windows系统)供监管者备案,或在设计自动化交易程序时控制报单频率的阈值等。又例如,在魏则西事件后,联合调查组在整改意见中要求落实以信誉度为主要权重的排名算法,对商业推广信息逐条加注醒目标识,予以风险提示。如果说这些监管手段针对的是作为商业秘密的私人算法,诸如Open人工智能这样的倡议则意在延续开源软件运动路径,确保软件漏洞能够得到更大范围内的监督和修补。至少在中国,信息披露机制尚未成为算法监管的重要手段,无论是强制性披露还是第三方披露。
(作者单位:上海财经大学法学院)
注释:
[1]当下的大众媒体、文化产品和社会公共认知正努力将未来的人工智能塑造成具有独立意识的逐渐演化的主体,这集中体现在诸如《终结者》《我,机器人》《西部世界》《2001银河漫游》这类科幻影视作品中。尽管人们也有理由进一步想象,一旦人工智能具有了自我意识,就不再可能忠实地为人类服务,而更可能对人类生存构成威胁。其路径和思维方式仍是20世纪的,和21世纪依托大数据机器学习迥然不同。事实上,按照日本学者森政弘提出的“恐怖谷理论”,人工智能不太可能在短时间内人形普及化,因为这会在消费者心理上引发不安甚至恐惧。像Siri和Cornata这样的语音助手、像Tay和小冰这样的聊天机器人则不会有这种负面效果,因为用户知道自己在和一个尚未通过图灵测试的算法对话,他们甚至乐于教Tay在推特上辱骂用户、发表种族主义和煽动性的政治言论。另一个可能影响中文世界读者想象的因素是,把robot翻译成“机器人”先验地赋予了这类客体某种拟人化主体地位,而人形机器人(android)却没有引起更多的关注。
[2]John Weaver, Robots are People Too: How Siri, Google Car, and Artificial Intelligence Will Force Us to Change Our Laws ,Praeger Publishers Inc, 2013; Ugo Pagallo, The Laws of Robots: Crimes, Contracts, and Torts ,Springer, 2015.一个更加有用的综合文集是Ryan Calo, A. Michael Froomkin and Ian Kerr (ed.), Robot Law ,Edward Elgar Publishing, 2016。Ryan Calo的研究将具有物理形体的机器人作为法律的对象,特别区分了信息性和物理性效果,见Ryan Calo, “Robotics and the Lessons of Cyberlaw”, Calif. L. Rev., Vol.103(2015).一个不同观点,见Jack Balkin, “The Path of Robotics Law”, Calif. L. Rev., No.6(2015),Circuit 45.把机器人视为人在法律上也有相当的历史,见Samir Chopra and Laurence F. White, A Legal Theory for Autonomous Artificial Agents ,The University of Michigan Press, 2011; Ryan Calo, “Robots in American Law”, University of Washington School of Law Research Paper, No. 2016-04.
[3]吴军:《智能时代》,中信出版社2016年版。
[4]例如阿西莫夫的机器人系列小说中,无一例外地设定机器人拥有一个“正子脑”(positronic br人工智能 n),但却没有给出任何解释。见阿西莫夫:《机器人短篇全集》,江苏文艺出版社2014年版。
[5]这被称为终极算法(master algorithm),见佩德罗・多明戈斯:《终极算法:机器学习和人工智能如何重塑世界》,中信出版社2016年版。
[6]尼古拉斯・卡尔:《玻璃笼子:自动化时代和我们的未来》,中信出版社2015年版。在互联网发展的每一个阶段都有某种意识形态化的术语或热词吸引投资,例如宽带、大数据、分享经济、VR(虚拟现实)等,它们不过是互联网形态的各类变种。例如,一个关于分享经济和之前互联网经济的关联,参见胡凌:《分享经济的法律规制》,载《文化纵横》2015年第4期。
[7]这种思维方式可追溯到霍布斯以来的法律实证主义。
[8]胡凌:《代码、著作权保护与公共资源池》,载《腾云》2016年12月刊。
[9]关于两类逻辑的具体表现,集中参见胡凌:《探寻网络法的政治经济起源》,上海财经大学出版社2016年版。
[10]这在众多(特别是国外的)中国互联网观察者身上十分常见,人们的注意力全都转向中国政府如何严格管理和控制互联网。在政治学研究中自然而然地并入“国家与市民社会”传统框架,并吸纳了关于在线抗争、集体行动的传播学与社会学研究。
[11]劳伦斯・莱斯格:《代码2.0》,清华大学出版社2008年版。
[12]一个概述,见胡凌:《马的法律与网络法》,载张平主编:《网络法律评论》2010年第11卷。
[13]胡凌:《非法兴起:理解中国互联网演进的一个框架》,d《文化纵横》2016年第5期。这体现在版权、隐私、财产、不正当竞争、垄断、劳动法等一系列制度中。这种对法律制度的改变不单纯是在既有工业生产背景下微型创新带来的变化,而是社会生产的重塑。
[14]比如说,平台责任议题的出现,和互联网平台更多转向由第三方提供服务的信息中介模式直接相关。
[15]这一区分和观察中国式资本主义兴起的框架十分类似,政治经济学家们争论的焦点就在于如何解释中国改革开放三十年的成功经验,究竟是政府主导还是市场主导,但实质上是一个混合制经济。
[16]由于科斯所说的企业信息成本和管理成本降低,调动生产要素的边际成本趋近于零,企业组织形态本身将成为竞争的高成本。
[17]尼克・波斯特洛姆:《超级智能:路线图、危险性与应对策略》,中信出版社2015年版。
[18]古代的政治过程、现代的企业决策都是黑箱,对外人而言如果不是神秘,也是除魅之后的国家/商业秘密。卡夫卡的小说《审判》就精确描述了作为黑箱的诉讼过程,同一时代的韦伯也描述了理性化的国家机器应当像自动售货机一样。
[19]Frank Pasquale:《黑箱社:掌控信息和金钱的数据法则》,中信出版社2015年版。
[20]帕伯斯:《差错:软件错误的致命影响》,人民邮电出版社2012年版。
[21]长久以来民用航空器已经由软件深度介入驾驶过程,以至于人类驾驶员无法在短时间内预热,形成另一种风险。
[22]阿西莫夫提出的“机器人三定律”(后来扩展至四点)虽然十分基础,但仍然很难在具体情况下起作用,特别是当代伦理学上著名的“线车难题”之类的伦理困境。考虑到这些定律是为模拟人脑状态下设计的,就更可疑;因为人脑并不总是按某些理性伦理原则行事的,在某些关键场合强烈依靠某些默认设置――直觉。
[23]由监管机构强制披露并审查事实做不到,只能依靠像苹果这样的平台公司和软件分发平台帮助对成千上万个软件进行至少是安全审查。在台式机时代,这一平台责任几乎不可能,自然状态下的windows只能导致争夺私人控制权的3Q大战。但像乌云网这样的第三方白帽黑客也被禁止探测和公开互联网公司的漏洞。
[24]同注11。
[25]在笔者看来,法院应当将注意力放在知情同意的合同条款本身的适当性上,而不是一味接受黑箱的逻辑,因为后者确实无懈可击。如果格式合同能准确反映代码的设计,对其条款的审查是更好的选择。百度引发的被遗忘权第一案反映的也是这个问题。
[26]一个补救方法还是尽可能地披露算法信息,允许用户理性地生产/隐瞒个人信息,见戴昕:《自愿披露隐私的规制》,载苏力主编:《法律和社会科学》第15卷第1辑,法律出版社2016年版。
作者简介
余来文,江西财经大学应用经济学博士后、博士生导师、创业导师、野文投资董事长、文字传媒董事长,《商业智慧评论》和《创业管理评论》出品人,并任江西财经大学、江西师范大学、江西理工大学、香港公开大学、澳门城市大学、亚洲城市大学等外聘MBA课程教授或创业导师。曾在海王集团、远望谷股份、飞尚集团等公司工作,历任副总经理、总经理等职务,为大洁王集团、南华西集团、铜川矿务局、陕西煤业集团等公司提供管理咨询。先后在《管理科学》《北大商业评论》《销售与管理》《中国经营报》《CHINA DAILY》以及人大报刊复印资料转载等杂志报纸200余篇。出版《智能革命:人工智能、万物互联与数据应用》《分享经济:网红、社群与共享》《共享经济:下一个风口》《互联网:商业模式颠覆与重塑》《商业模式创新》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式:互联网思维的颠覆与重塑》等30多本图书。林晓伟,江西财经大学管理学博士,现为闽南师范大学商学院副教授,福建省“新世纪”人才。先后在《系统管理学报》《经济管理》《国际贸易》《当代财经》《中国社会科学报》《中央财经大学学报》《现代管理科学》等国内核心刊物20余篇,出版专著1部,参与编写《智能时代:人工智能、超级计算与网络安全》《电子商务:分享、跨界与电商的融合》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式运营与管理》《物流学》《财务管理》和《会计学》等图书。主持福建省级课题4项,先后参与国家自然科学基金项目等省部级以上课题9项,参与诏安县农业和扶贫“十三五”规划编制工作。主要研究方向为物流与供应链管理、产业互联网、企业商业模式。
目
录
1 第1章 智能时代
2 开章案例
6 1.1开启智能时代
7 1.1.1 Mr Smart——我的智能生活
13 1.1.2智能时代之认知颠覆
18 1.1.3人工智能——工作“终结者”
19 1.1.4新产业的催生——“智”家帮的兴起
25 1.2迎接崭新的智能社会
25 1.2.1“数字化”——智能社会的“快引擎”
26 1.2.2“信息化”——智能社会的“大动脉”
27 1.2.3“网络化”——智能社会的“高速路”
28 1.2.4“集成化”——智能社会的“点金石”
29 1.2.5“公共化”——智能社会的“新时代”
32 1.3智能生态——智能时代的终极奥义
32 1.3.1传统工业逻辑的颠覆式创新
36 1.3.2人人创造,智能时代新分子
37 1.3.3用户“双力”:参与力创造力
38 1.3.4“智”之大器之智能整合
39 1.3.5未来人工智能生态圈
42 1.4智能时代的内核
42 1.4.1人工智能之先发“智”人
45 1.4.2超级计算之千手“算”音
46 1.4.3云端服务之无上“云”法
47 1.4.4网络安全之“安全”卫士
51 章末案例
56 第2章 人工智能
57 开章案例
62 2.1人工智能:让机器更聪明
62 2.1.1人机大战:阿尔法狗与柯洁
64 2.1.2人工智能与智能机器人
67 2.1.3机械思维向左,智能思维向右
68 2.1.4人机融合:超人类智能时代
72 2.2人工智能新认知
75 2.2.1解密人工智能
76 2.2.2重要的是数据,而非程序
77 2.2.3淘汰的不仅是工作,更是技能
80 2.2.4超人工智能时代
82 2.3大数据与人工智能
82 2.3.1数据驱动智能革命
85 2.3.2数据挖掘:从大数据中找规律
86 2.3.3大数据的本质:数据化
89 2.3.4大数据——人工智能的永恒动力
90 2.4人机融合:连接未来
93 2.4.1人工智能之“星际迷航”
95 2.4.2机器学习与人工神经网络
96 2.4.3超越未来:人工智能之深度学习
101 2.4.4 人工智能之前世今生
102 2.4.5 人机融合:未来ING
104 章末案例
109 第3章 超级计算
110 开章案例
114 3.1大话超级计算机
114 3.1.1 超级计算知多少
115 3.1.2 从数据到超级计算的飞跃
117 3.1.3 大千世界,“数”在掌握
119 3.1.4 数据流——“超算流体”
122 3.2时代新宠——超级计算机
123 3.2.1 超级计算,未来国之重器
124 3.2.2 超算之不得不懂
126 3.2.3 大国超算之超常发展
132 3.3超级管理
132 3.3.1 数据收集——“超管”之“核基础”
132 3.3.2 数据存储——“超管”之“核聚变”
133 3.3.3 数据处理——“超管”之“核爆炸”
136 3.3.4 超级计算安全
137 3.4表演时间:超算之应用舞台
137 3.4.1 互联网应用:“互联”的二次方
140 3.4.2 电子政务应用:政务“超算”跨时代
141 3.4.3 精准医疗应用:超算医疗,快,准,狠
145 3.4.4 智能交通应用:数据出行,悠哉,享哉
146 3.4.5 金融投资应用:“超算”致富经
149 3.4.6 新零售应用:“超”未来,“算”零售
153 章末案例
159 第4章 云端服务
160 开章案例
164 4.1云服务——“云”上境界
164 4.1.1 走进“云”化时代
168 4.1.2 享受云生活
172 4.1.3 幕后英雄——云计算推动“团队”
173 4.2直击云计算
174 4.2.1 云计算为何物
178 4.2.2 云计算从哪里来
179 4.2.3 虚拟化,一切皆有可能
181 4.2.4 云计算未来规模
183 4.3双重界:云计算与虚拟网络
183 4.3.1 云计算与虚拟网络关系
184 4.3.2 云服务之“虚化”技术
189 4.3.3 虚拟服务器——“虚化”技术承载终端
193 4.3.4 多云大融通——云存储设备
195 4.3.5 有备无患——云资源备份
198 4.4“三云”家族:公有云私有云混合云
199 4.4.1 公有云——“云”家必争之地
201 4.4.2 私有云——私享“云端”之上
203 4.4.3 混合云:公私合并——“云端”最强音
207 4.5云应用——“云端”的机智强大
207 4.5.1 云应用:极致“云”风暴
210 4.5.2 云应用、云服务与云计算
211 4.5.3 AI云运用=“云端”最强音
212 章末案例
218 第5章 网络安全
219 开章案例
223 5.1直击网络安全
223 5.1.1 计算机安全——21世纪的重点“安全区”
224 5.1.2 网络安全:居安思危,严阵以待
227 5.1.3 安全攻击之“四面”埋伏
228 5.2不得不知的网络安全
229 5.2.1 网络安全之认知“大充电”
232 5.2.2 网络安全风险之危机四伏
236 5.2.3 网络安全的“威胁危邪”
241 5.2.4 安全管理“六板斧”
242 5.3网络“歪脑筋”:犯罪与黑客
243 5.3.1 网络犯罪——犯罪“新境界”
246 5.3.2 黑客攻击:高智商罪犯的攻击
247 5.3.3 黑客攻击“六”手段:智、快、狠
250 5.4无处不在的安全管家——网络安全管理
250 5.4.1 网络安全“密匙”:加密安全
254 5.4.2 保密系统:守口如瓶,从一而终
256 5.4.3 智能防火墙——安全防护之智能乾坤
260 5.4.4 网络安全未来式:量子通信
264 章末案例
后互联网+时代,或者说互联网+的下半场又将是如何一种态势?根据内爆理论(implosion)创立者、马歇尔・麦克卢汉(Herbert Marshall Mcluhan,1911-19801在他的《理解媒介》(Understanding the Media,1964)一书中提出来的概念――“起初,我们塑造了工具,最后工具又反过来塑造我们”进行推导,互联网+的下半场或是一个以技术“反向”于人类的趋势,也就是人与技术的关系。
从生物学角度,人与技术的关系很像授粉与繁殖的关系。我们对技术授粉,技术就不断的繁殖与生长,然后是技术不断接管了我们的手、脚,甚至思维,进而塑造了我们的消费方式、娱乐方式、交通方式、金融方式等等。不知不觉中,人和技术融为一体,形成了新的依赖关系、新的物种。
这是一个进化的过程、结果。就像生物第一次进化出中枢神经系统一样,将所有的技术连接在一起。刚开始,简单的中枢神经系统只能做简单的应激反应,后来适应性越来越好,神经结构越来越复杂,可以适应更加复杂的环境,卷入了更深刻的资源,当卷入的节点越多,会不会发生相变?
现在是50亿+的节点,未来IOT,那是上万亿的节点数量,当量变发生一定程度的时候,会不会发生质变?就像当年生物的中枢神经系统演化过程一样,当神经元细胞足够多,连接足够多,突触足够复杂的时候,结构进一步复杂,忽然诞生了高等社会性动物,再因一两个意外而产生语言,产生群组内深度的协作,进而演化产生了经济体一样的生命体。
人工智能粉墨登场
新生命体叫什么?我们依然不很清晰,目前阶段姑且称之“人工智能”。人工智能已在悄悄接管我1门生活的操作系统――决定了我们在买什么、我们应该如何想、我们去哪儿玩、跟谁结婚等。