时间:2022-08-01 12:19:24
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇通信发展论文范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.
[2]查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,2004.
应用短波按照国际无线电咨询委员会(CCIR)的划分是指波长在10m~100m,频率为3MHz~30MHz的电磁波。短波通信又称高频(HF)通信,实际上,为了充分利用短波近距离通信的优点,其实际使用的频率范围为1.5MHz~30MHz。由于短波通信的固有特点,长期以来,短波通信始终是军事指挥的重要手段之一,一直被广泛地应用于外交、气象、邮电、交通等各个部门,用以传送图像、数据、语言、文字等信息。同时,它也是海上航行和高空飞行的必备通信方式。短波通信是无线通信的基础,尽管目前无线通信新技术不断涌现,短波通信有逐渐退出通信领域的趋势,但是自身所拥有的优势和长处并不能被完全取代,在国际通信、防汛救灾、海难救援及军事等领域依然发挥着重要作用。
一、短波的传播方式
民航通信中使用到的短波实质为无线电波,主要用于地面与飞机间的通信,其通信传播方式主要有以下三种:
1.1地面波。地面波是沿着地球表面传播的波,它沿着半导电性质和起伏不平的地表面进行传播,一方面使电波的场结构不同于自由空间传播的情况而发生变化并引起电波吸收,另一方面使电波不像在均匀媒质中那样以一定的速度沿着直线路径传播,而是由于地球表面呈现球形使电波传播的路径按绕射的方式进行。
1.2天波。天波是经过地面上空40~800公里高度含有大量自由电子离子的电离层的反射或折射后返回地面的电波传输方式。天波是短波的主要传播途径,可实现长距离的传播,短波信号由天线发出后,经电离层的多次反射,传播距离可以由几百公里达到上万公里,且不受地面障碍物阻挡。在天波传播的过程中,路径衰耗、大气噪声、时间延迟、电离层衰落、多径效应等因素,都会造成信号的畸变与弱化,影响短波通信的效果。
1.3直接波。直接波是从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。由于民航中,飞机大多数时间都是在飞行,所以有些时候地、空之间的短波通信,实际上是可以靠直接波完成的。
二、短波通信的特点
与卫星通信、地面短波等通信手段相比,无线电短波通信有许多显著的优点:(1)短波通信无需建立中继站即可实现远距离通信,(2)短波通信元器件要求低、技术成熟、制造简单、设备体积小、价格便宜,建设和维护费用低;(3)设备简单,目标小、架设容易、机动性强,即使遭到损坏也容易修理,由于其造价相对较低,可以大量装备,因而系统顽存性强。(4)电路调度容易,灵活性强,可以使用固定设置,进行定点固定通信,也可背负或装入车辆,实现移动中的通信。这些优点是短波通信被长期保留、至今仍被广泛应用的主要原因。同时,短波通信也存在着一些明显的缺点:(1)信道拥挤、频带窄;(2)短波的天波信道是变参信道,故信号传输不稳定;(3)大气和工业无线电噪声干扰严重;(4)天线匹配困难。
三、短波通信系统的主要用途是使飞机在飞行的各阶段中和地面的航行管制人员、签派、维修等相关人员保持双向的语音和信号联系,当然这个系统也提供了飞机内部人员之间和与旅客的联络服务。
3.1民航短波通信基本设备
民航短波地空通信设备由短波单边带发信机、短波单边带收信机、遥控器及地空选择呼叫器组成,设备一律使用单边带抑制载波、模拟单信道无线电话工作方式。短波单边带发、收信机均采用全固态电路及频率合成技术,频率范围为2.8~22MHz,发信机功率不大于6KW。
3.2民航短波通信地面站
民航短波通信地面站系统由三部分组成:短波机房设备、天线和馈线以及操作台设备。短波机房设备作为大功率发射设备,通常设置在远端,以减少对其他电子设备的干扰以及对操作员健康的影响。操作台设备设置在操作终端附近,便于操作与管理。
3.2.1短波机房设备。短波机房设备的主要设备包括短波通信电台、功放、预后选器、交流稳压电源、光端机及一整套控制电缆,主要功能是传送选呼信号和语音信号。短波电台是整个系统的核心设备,地面与航空器上均有配备,用于收发信号,包括选呼信号和音频信号。电台的性能直接决定了整个系统的性能,电台选型依据主要有两点:符合用户需求并且与飞机上电台匹配。预后选器是为了提高系统的抗干扰能力而选择的设备。光端机是地面站系统中实现远程控制的接口设备,起着连接短波机柜和操作台的作用。
3.2.2操作台设备。操作台设备由操作终端及监控软件、选呼器、选呼控制器和光端机组成。操作员的所有操作都在监控软件上进行。监控软件实现对选呼器和短波电台的远程遥控,控制选呼器产生选呼代码,呼叫对应的飞机,控制电台的调制方式转换和音频信号收发,同时监测电台的工作状态。选呼器的功能是通过发射4个单音信号选择通知某个飞机。选呼器提供了一个7针的音频接口,包括一对平衡的选呼音频输出口、一个PTT输出口和一个地线,其余3个口经改造用于同选呼控制器通信。选呼控制器作为选呼器、电台和控制终端的中间设备,是实现系统自动化的关键,其基本作用是实现对电台、选呼器、控制终端、音频设备的信号转接、电平匹配、远程控制和状态感知,并自动转换调制方式。
3.2.3天线。天线的选择具体根据用途来确定:近距离固定通信:选择地波天线或天波高仰角天线。点对点通信或方向性通信:选择天波方向性天线等。组网通信或全向通信:选择天波全向天线。车载通信或个人通信:选择小型鞭状天线。3.3短波地空通信数据链系统在民用航空领域,由于我国地理复杂、疆域辽阔、超短波网络尚不能实现完全覆盖,短波依然是地空通信的主要手段。短波地空通信数据链系统作为民航数据通信系统的子系统,在当前兴起的极地飞行中,有效解决了飞行盲区问题,对飞行安全起着非常重要的保障作用。短波地空通信数据链系统用于航空器飞行中保持与基地和远方航站的联络。其系统构造由短波/超短波通信系统、卫星通信站、地空数据网及机载通信系统组成,短波地空通信数据链系统通过短波、超短波与卫星实现了近、中、远程地空实时话音和数据通信。
四、结束语
近年来,随着微型计算机、移动通信和微电子技术的迅速发展,短波通信技术有了新的突破性进展,出现了实时选频、自适应、跳频、差错控制、多载波正交频分复用(OFDM)调制及软件无线电等新技术,使短波通信很好地弥补了它的缺点,还使短波通信的设备更加小型化、更加灵活方便,进一步发挥了短波通信设备简单、造价低廉、机动灵活等固有的优点。短波通信必将在应急通信、抗灾通信、特别是在军事通信中发挥更重要、更广泛的作用。因此。短波通信作为民航内部通信的重要手段,必将在今后较长时间内得到保持和发展。
参考文献:
[1]JohbG.ProakisMasoudSalehi.通信系统原理.电子工业出版社.2006年6月
伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。
1移动通信的发展历程
第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSMPhase2+,目的在于扩展和改进GSMPhase1及Phase2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSMPhase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
2第三代移动通信系统概述
第三代移动通信业务主要是话音和中低速数据,码率为384kb/s(局域网可达2Mb/s),因而可传送比目前GSM(第二代移动通信)更高码率的信息。随着多媒体业务的发展,2Mb/s的码率将越来越不能满足用户各种新的宽带业务的需要,因此国际上已开始研究第四代移动通信系统,第一步目标是10Mb/s以上。我们国内则尚未启动。因此需尽早开始研究其关键技术。需要解决的关键技术有:宽带多媒体移动通信系统的体系结构,包括频段、多址方法、无线接入技术、软件无线电的硬件和软件、多载波调制和OFDM技术、自适应天线阵、高效信道编码技术(如Turbo码)等。
第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:nextgenerationmobilecommunication)是必要的。
第三代移动通信技术的基本特点:(1)全球统一频段,统一标准,全球无缝覆盖和漫游。(2)频谱利用率高。(3)在144kbps(最好能在384kbps)能达到全覆盖和全移动性,还能提供最高速率达2Mbps的多媒体业务。(4)支持高质量话音、分组多媒体业务和多用户速率通信。(5)有按需分配带宽和根据不同业务设置不同服务等级的能力。(6)适应多用户环境,包括室内、室外、快速移动和卫星环境。(7)安全保密性能优良。(8)便于从第二代移动通信向第三代移动通信平滑过渡。(9)可与各种移动通信系统融合,包括蜂窝、无绳电话和卫星移动通信等。(10)终端(手机)结构简单,便于携带,价格较低。超级秘书网
3第四代移动通信系统
4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:(1)网络频谱更宽。要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍;(2)通信速度更快。人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率速率可以达到10M~20Mbps,最高可以达到100Mbps;(3)通信更加灵活。从严格意义上说,4G手机的功能已不能简单划归“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端;(4)智能性更高。第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能;(5)兼容性更平滑。要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从3G平稳过渡等特点。
总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息。从而人们的学习、工作、生活将会发生更深刻的变化。
参考文献:
一、引言
移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集
成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。
回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。
二、4G移动通信简介
第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:
(一)通信速度更快
由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。
(二)网络频谱更宽
要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。
(三)多种业务的完整融合
个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。
(四)智能性能更高
第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。
(五)兼容性能更平滑
要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。
(六)实现更高质量的多媒体通信
4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。
(七)通信费用更加便宜
由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。
三、4G移动通信的接入系统
4G移动通信接入系统的显著特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。
不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。
分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。
蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。
热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。
个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。
固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。
网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。
四、4G移动通信系统中的关键技术
(一)定位技术
定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。中国-(二)切换技术
切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。
(三)软件无线电技术
在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。
(四)智能天线技术
智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。
(五)交互干扰抑制和多用户识别
待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。
(六)新的调制和信号传输技术
在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。
五、OFDM技术在4G中的应用
若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。
在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。
六、结束语
对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。
首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。
其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。
因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。
参考文献:
光纤通信的发展趋势
1、光纤到家庭(FTTH)的发展
FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3倍。过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。
发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。日本NTT发展FTTH最早,现在已经有近200万用户。目前中国FTTH处于试点阶段。
FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。FTTH目前大量推广受制约。
对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,AD8L就难以满足。尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。正在用H.264技术开发,可压缩到5~6Mbps。通常认为对QOS有所保证的ADSL的最高传输速串是2Mbps,仍难以传输HDTV。可以认为HDTV是FTTH的主要推动力。即HDTV业务到来时,非FTTH不可。
FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。
F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。
PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。(按照目前市场价格,PEP比PON经济)。
PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3)OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,0EPON是千兆毕以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。
发达国家发展FTTH的计划和技术方案,根据各国具体情况有所不同。美国主要采用A-PON,因为ATM交换在美国应用广泛。日本NTT有一个B-FLETts计划,采用P2P-MC、B-PON、G-EPON、SCM-PON等多种技术。SCM-PON:是采用副载波调制作为多信道复用的PON。
中国ATM使用远比STM的SDH少,一般不考虑APON。我们可以考虑的是P2P、GPON和EPON。P2P方案的优缺点前面已经说过,目前比较经济,使用灵活,传输距离远等;宜采用。而比较GPON和EPON,各有利弊。GPON:采用GFP技术网络效率高;可以有电话,适合SDH网络,与IP结合没有EPON好,但目前GPON技术不很成熟。EPON:与IP结合好,可用户电话,如用电话需要借助lAD技术。目前,中国的FTTH试点采用EPON比较多。FTTH技术方案的采用,还需要根据用户的具体情况不同而不同。
近来,无线接入技术发展迅速。可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已可商用。如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEES02.11g是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。FTTH+无线接入是未来的发展趋势。
2、光交换的发展什么是通信?
实际上可表示为:通信输+交换。
光纤只是解决传输问题,还需要解决光的交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。合理的方法应该采用光交换。但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。显然是不合理的办法,是效串不高和不经济的。正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。
通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。一般要在低次群中实现电子交换。而光交换可实现高速XGbDs的交换。当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的
大容量的光交换。当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。包的颗粒比较小,可采用电子交换。然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。目前,少通道大容量的光交换已有实用。如用于保护、下路和小量通路调度等。一般采用机械光开关、热光开关来实现。目前,由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。
电子交换一般有“空分”和“时分”方式。在光交换中有“空分”、“时分”和“波长交换”。光纤通信很少采用光时分交换。
光空分交换:一般采用光开关可以把光信号从某一光纤转到另一光纤。空分的光开关有机械的、半导体的和热光开关等。近来,采用集成技术,开发出MEM微电机光开关,其体积小到mm。已开发出1296x1296MEM光交换机(Lucent),属于试验性质的。
光波长交换:是对各交换对象赋于1个特定的波长。于是,发送某1特定波长就可对某特定对象通信。实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。已开发出640x640半导体光开关+AWG的空分与波长的相结合的交叉连接试验系统(corning)。采用光空分和光波分可构成非常灵活的光交换网。日本NTT在Chitose市进行了采用波长路由交换的现场试验,半径5公里,共有43个终端节,(试用5个节点),速率为2.5Gbps。
自动交换的光网,称为ASON,是进一步发展的方向。
3、集成光电子器件的发展
如同电子器件那样,光电子器件也要走向集成化。虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件组装于其上,也可以直接集成为一个光电子器件。要实现FTTH也好,ASON也好,都需要有新的、体积小的和廉价的和集成的光电子器件。
日本NTT采用PLO技术研制出16x16热光开关;1x128热光开关阵列;用集成和混合集成工艺把32通路的AWG+可变光衰减器+光功率监测集成在一起;8波长每波速串为80Gbps的WDM的复用和去复用分别集成在1块芯片上,尺寸仅15x7mm,如图1。NTT采用以上集成器件构成32通路的OADM。其中有些已经商用。近几年,集成光电子器件有比较大的改进。
中国的集成光电子器件也有一定进展。集成的小通道光开关和属于PLO技术的AWG有所突破。但与发达国家尚有较大差距。如果我们不迎头赶上,就会重复如同微电子落后的被动局面。
光纤通信的市场
众所周知,2000年IT行业泡沫,使光纤通信产业生产规模爆炸性地发展,产品生产过剩。无论是光传输设备,光电子器件和光纤的价格都狂跌。特别是光纤,每公里泡沫时期价格为羊1200,现在价格Y100左右1公里,比铜线还便宜。光纤通信的市场何时能恢复?
LTE(LongTermEvolution)技术采用的是多种技术、多点协作、自组织网络等方式,达到高峰值速率,是这一种高效的信道编译码技术。并注重保证系统的安全性,具有极强的环境适应能力,并支持大量的业务类型。例如,随着城市轨道交通快速发展,现有车地无线通信技术已经不能满足轨道交通业务发展的需求。与此同时,LTE已经成为移动通信发展趋势,在经过轨道交通行业的行业匹配后,LTE无线专网无论是抗干扰性、高速移动状态下大带宽以及多业务QoS的保障上,都能够满足轨道交通业务需求。因此,河南郑州地铁1号线即利用LTE技术的端到端解决方案提供能力,精心设计了乘客信息系统+车载视频监控一网承载方案,为改善郑州地铁一号线乘车环境、提升运营安全与效率提供了有利保障。
1.2PDT技术数字集群标准
PDT(专业数字集群标准,Pifv~eDigitalTrunking)是一种专网通信标准,它吸收了其他数字集群的优点,同时根据是集应用环境进行开发,更为注重安全保密性。支持端到端话音、数据加密,网络安全性强。新疆八个地州即实施PDT警用数字集群网改造项目,建设PDT数字集群通信网络,成为全国第一个实现超大区域覆盖、多中心联网的PDT数字集群网络。在处理应急突发事件时,该PDT数字集群网可满足各部门协同作战、统一指挥的需要,提高了一线作战部队的执行能力,节约了客户重复建网的成本,使得北疆在应对应急处突、反恐救援、重大活动安保等任务时做到科技化、信息化,助力整个北疆的指挥调度能力迈上一个新台阶。
1.3McWill技术
McWill技术兼具SCDMA和OFDMA的双重优点,具有较强的对抗相邻小区干扰的能力,可以有效提高系统同频组网能力。McWiLL技术由于系统本身的先进性,可用带宽更高,用户能够体验到更多的新业务,同时McWiLL系统支持深度定制,能够根据市场需求快速定制业务模式和产品形态,这些都是其他运营商所无法比拟的显著优势。例如,中国移动通信集团公司即利用McWiLL技术自身覆盖范围广、非视距效果好、建网成本低、建设周期短、施工维护难度小、抗高低温等优势,实现了对多个农村地区的无线信号覆盖。为有关党政部门行政办公、远程党员教育、维稳处突、应急指挥以及重点行业、企业信息化建设提供了高效的信息通信保障,很好地促进了农村地区信息化的全面快速发展。
2专网无线通信综合能力将得到不断提高
除了越来越高的技术水平,在综合能力方面,专网无线通信也将实现不断的提高。例如,在应用需求方面,今后的发展中,专网需要不断提高自身按照实际需求合理进行资源分配的能力,以及及时进行系统反响,更好地解决各种突发问题的应变能力。还有高效的指挥控制能力,以及灵活机动的重组能力等。而在技术能力方面,专网无线通信也有很长的路要走。例如不断提高自身的安全防护水平,以更好地保证广大用户的安全性;实现高效合理的模块化配置,并不断拓展业务范围,为用户提供更加人性化和多样化的服务,满足不断发展变化的用户需求的能力,以及多体制互通能力和现架构扩展能力等。
3专网功能将积极的渗透到公网之中
长期以来,在无线通信方面,公网始终处于较为领先的地位,相形之下,专网的无线通信发展存在明显的差距。以往,公网和专网总是各司其职,具有各自特定的覆盖面。随着专网无线通信的发展,公网将会逐渐的增加部分专网的功能,实现专网功能对公网的积极渗透。二者将会之间进行合作与交流,相互影响,相互融合,实现共同发展。例如,在发展3G无线网络的过程中,我国三甲通信运营商即尝试将固定电话和公共移动移动电话进行邮寄的结合,为广大用户提供“一个电话”(One—Phone)~务。从而实现了固话网络和移动网络之间的快速无缝转换,为广大用户提供了更加方便快捷的通话服务。因此,随着专网无线通信的发展,专网和公网之间的界限将会之间模糊起来,实现深层次的交流和影响。
2无线电通信的发展趋势
如今伴随信息化、科技化、智能化技术的飞速发展,无线电通信技术必须加快脚步来满足社会经济发展和人们生活水平的需要。提高自主创新能力、将无线电通信技术与突飞猛进的高科技技术进行有机高效的结合,都会给我国的无线电通信技术带来意想不到的发展。(1)数字化发展。数字化通信技术可以有效利用系统频谱资源,提高信号传输过程的稳定性,规避抗干扰风险。与此同时,还可以增大通信容量,增强安全保密性。(2)宽带化发展。随着WLAN、WiMAX等宽带接入技术的发展,无线电通信技术将会逐渐朝着宽带化方向演变。(3)软件化发展。在军事通信领域,软件无线电通信侦察技术应用较为广泛。但是在其他领域还未得到应用,如果将软件技术与无线电通信技术的有机结合体普及开来,将可以极大地提高通信过程的保密性。这点对于我国航海航运过程的无线电通信发展应用也极为关键。(4)保证通信网络的持续有效性。众所周知,无线电通信是基于网络设备的基础上发展而成的,如果网络配置和铺设出现了间断、故障等现象,后果将不堪设想。因此,必须提高网络设备的性能,优化网络配置。这也是无线电通信技术的一个重要发展方向。
3海上无线电通信技术的发展应用
3.1全球海上遇险和安全系统(GlobalMaritimeDistresSandSafetySystem,GMDSS)
GMDSS比较全面地建立了海上遇险、通信、搜救系统,包括国际海事卫星通讯系统、地面无线电系统、船舶报告系统、海上安全信息播发系统等。根据国际相关法律法规的程序,我国的海上遇险和安全系统是GMDSS的重要组成部分。此外,我国还是《海上搜救公约》的缔约国,另外也是国际海事卫星组织和ITU的成员国,因此,必须对海上遇险的搜救工作和安全保卫工作担任起相应的责任。无线电通信技术在GMDSS系统中发挥着至关重要的作用,在出海过程中应该做到对GMDSS无线电通信的规范使用,平时也要加强对GMDSS设备的维修保养,及时进行设备更新,保证在遇到危险的情况下,GMDSS无线电通信设备能够对呼叫做到及时的反馈,并进行转发。
3.2船舶远航识别和跟踪系统(LongRangeIdentificationandTracking,LRIT)
LRIT系统在基于无线电通信技术的基础之上发展起来的,该系统可以在全球范围内识别并且跟踪船舶,并且获得相关信息,已经被用于反恐、环保、搜救和航行安全等诸多领域。LRIT船舶识别和跟踪信息包括:船舶身份、船舶所处位置的具体经度和纬度、所提供位置的具体时间,并且这些信息的传输均需要依靠无线电通信技术。无线电通信的快速发展对于LRIT系统识别和跟踪的有效性、安全性有着重大帮助。
3.3海事卫星(MaritimeSatellite)
伴随着网络设备和通信工程事业的快速发展,海事卫星从被使用开始至今也已经历经了四展。海事卫星是用来提供遇险安全通信、数据、图像、声音等信息的综合服务系统。现在海事卫星已经可以为航海过程的手机、无线电通信、数据传输等过程提供高效的服务平台,对于解决航海过程的信号稳定性差、信号丢失等问题发挥了重要作用。基于海事卫星的众多优点,它也越来越多的被应用在众多其他领域,在保证通信质量方面显示出极大的优势。
一、通信电源的发展现状
(一)供电系统的现状
通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设备提供能源。通信电源必须具备智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。
(二)通信电源设备的更新换代
近年来,随着技术的进步,特别是功率器的更新换代,新型电磁材料的不断使用,功率变换技术的不断改进,控制方法的不断进步,以及相关学科的技术不断融合,通信电源在系统的可靠性、稳定性,电磁兼容性,消除网侧电流谐波、提高电能利用率、降低损耗、提高系统的动态性能等等方面都取得长足的进步。
(三)现行通信电源的电路模型和控制技术
目前通信电源的变换电路拓扑结构主要采用双单端电路,半桥电路和全桥电路,各有优缺点。一般认为,在中、小功率场合,采用双单端电路或半桥电路是适宜的;在大功率场合则采用全桥变换电路。
二、通信电源发展趋势
(一)开关器件的发展趋势
电源技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有重要地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。
(二)通信直流电源产品的技术发展市场需求发展
在需求与技术的共同推动下,通信直流电源产品体现了如下的发展态势:
体系架构相当长的一段时间内维持稳定。通信直流电源在相当长的时间内还是维持现有的交流配电、整流器模块(并联)、直流配电、监控单元、蓄电池等为主要组成部分的架构;功率变换模式也将维持现有的高频开关模式,暂时不会出现类似从线性电源到开关电源的阶跃性的变化。
功率密度不断提高。通信一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但配电器件、蓄电池等密度基本维持稳定,一定程度制约了整机系统的功率密度的提高比率。
更高的可靠性。高可靠性是通信电源的最基本要求。随着器件技术、通信电源技术的成熟,以及各通信直流电源设备厂家在可靠性研究上大力投入,通信直流电源产品可靠性呈不断提高的趋势。
按照TRIZ理论(“创造性解决问题的理论”的俄语缩略语)描述的技术系统发展进化规律,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,通信直流电源的核心技术,开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,未来几年甚至十几年内,通信直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,通信直流电源产品就会再出现一个阶跃性的发展,就像开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。
(三)通信用蓄电池技术研究的新进展
通信用蓄电池作为通信系统后备的能源供应手段,其研制、生产和应用技术一直备受世界各国通信行业的重视。随着科技的发展和技术的不断进步,国外正在研制和试验新一代的通信用蓄电池,有的已经进入商用化阶段。这些新的蓄电池,由于其材料、结构和技术上的先进性,在性能上具有传统的VRLA电池无可比拟的优越性。
1.钒电池(VanadiumRedoxBattery)。钒电池(VRB)是一种电解值可以流动的电池,目前正在逐步进入商用化阶段。
2.燃料电池。燃料电池是一种化学电池,也是一种新型的发电装置,它所需的化学原料由外部供给,如氢氧燃料电池,只要外部供给氢和氧,经过内部电极、催化剂和碱性电解液的作用,就能产生0.9V电压的直流电能,同时产生大量的热能.
3.电源监控系统的发展。随着互联网技术应用日益普及和信息处理技术的不断发展,通信系统从以前的单机或小局域系统逐渐发展至大局域网系统或广域网系统,大量人力、物力被投入到网络设备的管理和维护工作上。不过通信设施所处环境越来越复杂,人烟稀少、交通不便都会增大维护的难度,这对电源设备的监控管理提出了新的需求,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此时,数字化技术就表现出了传统模拟技术无法实现的优势,数字化技术的发展逐步表现出传统模拟技术无法实现的优势.
4.通信电源的环保要求。环保问题,一方面的指标是通信电源的电流谐波要符合要求,降低电源的输入谐波,不但可以改善电源对电网的负载特性,减少给电网带来严重污染的情况,还可减少对其他网络设备的谐波干扰。另一个重要方面,是材料的可循环利用和环境的无污染,这方面需要产品满足WEEE/ROHS指令。
在通信电源开发、生产早期,人们主要集中研究电源的输出特性,较少考虑到电源的输入特性。例如:传统的在线式电源输入AC/DC部分通常采用桥式整流滤波电路,其输入电流呈脉冲状,导通角约为π/3,波峰因数大于纯电阻负载的1.4倍。这些谐波电流大的电源给电网带来了严重的污染,使电网波形失真,实际负荷能力降低,对于三相四线制的电网来说,还很有可能因中性线电流过大而出现不安全隐患。
参考文献:
[1]朱雄世,《通信电源的现状与展望》.
[2]《浅析全球通信电源技术发展趋势》.
[3]《通信直流电源发展趋势》.
[4]孙向阳、张树治,《国外通信用蓄电池技术研究的新进展》.
[5]《通信电源技术发展趋势及标准研究方向》.
[6]曾瑛,《浅谈通信电源》.
[7]王改娥、李克民,《谈我国通信电源的发展方向》.
[8]王改娥、李克民,《我国通信电源的发展回顾与展望》.
[9]侯福平,《UPS系统在通信网络中使用的特点及要求》.
1.2光纤通信系统光纤通信系统是利用光纤传递信号的系统,由光发送器、通信光纤、光接收器三部分构成的。首先在发送端通过激光调制器把电信号变成光信号,使光的强度随着电信号幅度的变化而变化,然后将调制好的光信号送到光纤上传输,接收端的光检测器将光信号从光纤中检测出来,通过解调器将其还原成电信号,从而得到原始信息。
1.3光纤通信的特点光纤通信是利用光进行信息传递的典型应用,它有着传统通信技术无可比拟的有点。光纤的原材料是石英玻璃,属于绝缘体,不会受到电磁干扰,因此损耗低,适合长途传输;频带宽,通信容量大,传输速率快;不受串音干扰,无法窃听光纤中传递的信息,保密性强。
2光纤通信的现状和主要应用
2.1光纤通信的技术现状光纤通信可以分为双纤双向通信和单纤双向通信,前者是指通信信息可以在两根光线中同时传输,后者则需要信息经过调频后才能在一根光纤内传输,。可见,单纤双向传输比较节省成本,因此在我国得到了广泛应用。
2.2光纤在各领域的应用
2.2.1光纤在传感器方面的应用光纤不仅可以对光信号进行传输,还可以传输图像。因此,光纤可以与其他元器件结合,对流量、温度、湿度、位置、光照等参数进行测量,发挥传感器的作用。
2.2.2光纤在医学中的应用光纤可以对图像进行传输,可以通过光导纤维导入患者的脑部、心脏或者胃部窥视发病区域,从而进行疾病的治疗,也可以进行激光手术等,因此,光纤在医疗行业也得到了广泛应用。
2.2.3光纤在通信技术中的应用利用光纤作为传输介质,用光信号作为载波的通信即为光纤通信。目前,在我国,很多行业都使用光纤作为传输媒介,比如海底通信、国际通信等。光纤通信正在逐步从光纤到路向光纤到楼、光纤到户、光纤到桌面的技术发展。光纤正在逐步地取代铜线、铜缆,成为通信传输的主导,现状已进入“光进铜退”的时代。
2.2.4光纤在网络电视中的应用上世纪90年来至今,光纤通信在电信传输干线、广播电视、网络电视方面得到了广泛应用,大大促进了有线电视网络的快速发展。
3光纤通信的发展趋势与展望
3.1FTTH接入技术随着社会发展,高清数字电视,即HDTV将会是未来电视业务的主流,要实现这种目标,就需要依靠FTTH,也就是光纤到户技术。光纤到户是一种全透明、全光纤接入网络,适用于引进新业务,对带宽大小、传输模式、波长等因素没有什么限制,且安装在用户家中方便,易于及时维护、更新、升级。可以说,高清数字电视是光纤到户技术的主要推动力,要实现高清数字电视的愿景,就必须依靠FTTH技术啊。FTTH建成后,还将进一步促进三网融合技术的发展,即宽带上网接入、有线电视接入和传统固定电话接入。
3.2全光网络传统的光网络在结接点利用的还是电子器件,这在一定程度上影响了通信干线传输量的提高,因此研究如何用光节点替代电节点是提高传输容量的关键。节点之间的全光化,使信息能够始终以光信号进行传输,无需中间的电光和光电转换,也不用再安比特进行处理,直接根据波长来决定路由,大大提高的传输速率。与传统的通信网络相比,全光网络透明、开放、可靠性高、易扩展、带宽大、误码率低、结构简单、组网灵活,在将来的通信中会得到广泛应用。当然,全光网络并不是独立于其他网络的,需要与异步传输网(ATM)、互联网、移动网等相融合使用。虽然全光网目前还处于起步阶段,但它能消除电光瓶颈,这是未来的发展趋势,也是通信技术发展的理想。
一、TD-SCDMA简要介绍
TD-SCDMA是中国提出的时分双工模式的第三代移动通信技术。TD-SCDMA采用智能天线、同步CDMA技术、多用户联合检测技术、动态信道分配技术、软件无线电、接力切换等一系列高新技术,具有高频谱利用率、低成本、上下行不对称信道可适用于不对称业务等特点。
中国移动2007年在全国选取8个城市建立TD的试验网,2008年奥运期间得到试用,在此之前和奥运期间都存在一个明显的问题:高掉话率。GSM网络由建立到成熟经历了一个漫长的过程,TD一个刚刚应用的技术也一定需要一段过渡时间来慢慢成熟。2009年中移动全面在二级城市展开TD建设,并着手LTE即第四代网络演进做出预测及初步部署。
二、3G发展预测
(一)3G与无线局域网高速传输技术融合互补趋势
随着无线技术在各个领域的发展,新的技术和应用不断涌现。尤其在移动通信领域,除3G技术外,比较引人注目的还有几种技术WLAN、WiMax,以及Bluetooth。在此背景下,已经有人提出以下几个问题:3G会受到2.5G与WLAN的联合夹击?WiMax会是3G的掘墓者?而Bluetooth在这种关系中又处于何种地位?这几种技术彼此之间有什么关系?
实际上3G、Bluetooth、WLAN、WiMax这几种技术在本质上存在互补性,尽管它们之间在边缘上是竞争的,从图2.2-1无线接入全球标准中可以看出这几种技术各自的定位。Bluetooth主要定位于最后10m的接入,即个人区域(PAN,PersonalAreaNetwork);WLAN主要定位于最后100m的接入,即局域网(LAN,LocalAreaNetwork);WiMax遵循802.16标准,主要是定位于城域网(MAN,MetropolitanAreaNetwork)建设的标准;而3G是定位于广域网(WAN,WideAreaNetwork)建设的标准。
其他几种技术在本文不加详述,这里主要来谈谈WiMax技术与3G的关系。经过对两者仔细地分析,我们会发现普遍流传的一种预言,即WiMax将成为3G的杀手,是一个错误的定论。3G网络的核心功能是提供移动电话服务,也可以用来传输数据;WiMax的标准是高速率的数据传输,语音质量并不是其关键要求。因此这两种技术各自的任务和目标都不相同。WiMax的着眼点是实现宽带无线化,而3G则更多地倾向于实现无线宽带化。两者从根本上说完全可以技术互补,并不存在谁是谁的杀手。
实际上,如果运营商选择WiMax,更多的用于接入层上,可以更加迅速的占领移动高速无线接入市场。WiMax最初的市场定位也是最后一公里的接入,这样就省去很多基础网络的建设和运营维护,从而与3G运营商实现技术资源互补达到双赢。一再强调事实上竞争力不在一个层面上的WiMax和3G技术是互相竞争对立,这样是盲目而不客观的。
作为分别着眼于MAN与WAN两个层面分明的领域内的技术,WiMax与3G并非冤家对头,而是总体网络框架中优势互补的有机组成部分。
(二)国内的通信产业演进方向的预测
目前国内重组后的三大运营商都着手于网络向3G演进的工作。中移动于2008年启动28个城市的TD试验网,另外把原电信的两个城市的TD试验网也接手。2009年中移动在全网一二线主要城市全面展开TD网络建设。电信更是在2008年9月份开始在很多城市开展无线局域网的应用和试商用。网通也于2008年开始着手占用3G资源频率的小灵通全面退网工作。
为了彻底解决运营商基础设施重复建设问题,广东移动内部人士称,国家正考虑组建一家“国”字头企业,运营全国网络,而移动、联通、电信则向该公司租赁网络。以后所有的运营商都得租国资委下面一个骨干网络公司的网络资源,包括基站光纤等。暂不说消息的可靠性,但租凭网络在国外非常盛行,而此时针对重复性建设的问题提出这个建议看见也并非空穴来风。此前,工业和信息化部联合国资委《关于推进电信基础设施共建共享的紧急通知》(以下简称“通知”),要求电信运营商实行基础设施共建共享。工信部更制定了严厉的共享共建考核制度,还将成立专门领导小组,要求运营商“不折不扣地坚决执行”。采取网络一家接管,运营商租赁,一方面可以彻底杜绝电信设施重复建设。同时,由于WTO条款原因,外资纷纷入股电信商,原目前联通第二大股东即是外资,采取上述制度有利于国家安全,因为骨干网络被外资介入显然不是件好事情。其实,网络租凭在中国电信行业已经有了先例,比如,铁通网络出口原则上由总部统一租用电信的,但是个别省也有私下租的。此前电信也租赁了原联通的C网运营。
纵观国内通信产业全局从运营商到用户都在期待3G网络的早日铺设调测完毕,国家也在先期通信网络建设和运营方面汲取了宝贵的经验和教训,一切都为了3G顺利实现打下了良好的铺垫和坚实地支撑,相信以个人通信为目标的3G离我们已经越来越近。
(三)移动通信咨询设计行业的简单展望和预测
随着技术变革的加大,技术复杂度的加深,对从事设计咨询行业人员的素质要求会越来越高,专业化和综合化人才两极发展需求逐渐增强,传统的核心网专业、数据专业、传输设备专业、传输线路专业、基站设备专业、基站电源专业等划分将打破模糊界限,各专业融合逐渐体现。各专业配合的重要性日益加强,重复型、劳动密集型转向集团协同作业和技术型作业转换,与此同时将会衍生新的更加细化的专业划分。具体的运行模式目前正处于酝酿期,一旦形成适用的高效的运转模式,将会在行业内迅速复制。现有的管理模式将逐渐演变,而项目负责人的作用和权限将会在设计人员素质达到一定标准和具备相应资质后得到极大的提升。
对此,我们从事设计咨询的人员要看清大势所趋,抓紧时间选取自己的发展方向,有意识培养自己的专业方向能力和项目总体管理能力,为即将到来的机遇做好充分准备。
机会是留给做准备的人,这句话既做为本小节的结,也用以作为本文的尾。
最后祝愿我们的行业蓬勃发展的同时,通信人特别是从事咨询设计的通信人水平节节攀升,抓住历史的机遇展现自我的风采。祝愿我国的通信产业蒸蒸日上,继续为我国的经济建设和人民生活做出更多的贡献。
参考文献:
[1]李世鹤.TD-SCDMA第三代移动通信系统标准.北京:人民邮电出版社.2003