时间:2023-07-13 16:44:50
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇化学气相沉积的概念范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
关键词:
材料化学;绪论课;教学设计
材料化学是材料科学与化学的交叉学科,伴随着材料科学的发展而诞生和成长,即是材料科学的重要部分,又是化学学科的一个分支[1]。目前,很多高等学校的化学和材料类专业开设了《材料化学》这门课程。《材料化学》是南阳师范学院材料化学专业的核心基础课程,对于培养学生的材料科学基础知识,分析和解决材料制备和应用中的化学问题的能力起到了关键作用。但是该课程涉及的知识面广泛,内容庞杂、概念甚多、加上课程改革,理论课时数减小,学生在学习《材料化学》课程过程中,普遍存在概念混淆、重点难以掌握等问题。绪论是一门课程的开场白和宣言书,是师生之间学习和交流的起始点,能为学生建立起一门课程的知识轮廓。通过对绪论进行学习,学生可以了解课程在所学专业中所处的地位和作用,以及该课程的教学内容、学习方法和考核方式等问题[2]。如何激发学生学习该课程的兴趣,提高课程的教学质量,绪论课在整个课程教学中有着举足轻重的地位。结合近年来的教学实践,就如何讲好《材料化学》绪论课谈一些心得。
1首先明确课程性质、特点及地位
教学之初,首先明确该课程作为专业核心课程的重要地位,是学习后面材料专业课程的基础课程,同时明确考核方式,加强学生对本课程的重视程度。材料化学是材料科学和化学学科的交叉学科,课程内容既涉及工程材料应用中的实际问题,又包括材料结构及制备中的化学问题。作为一门交叉学科,很多知识点与材料学和化学课程中的相关内容重复,很多学生以为学过相关知识,就会从思想上松懈。然而,相关知识点虽然出现重复,但在不同学科中讲授的重点是不同的。在讲授材料化学课程的过程中,要着重培养学生利用化学的思维解决材料科学中的问题,使学生深刻领会化学与材料科学交叉的重要意义。通过一些实例,讲解本课程与化学和材料相关课程的区别和联系,使学生更加深入了本课程的性质和地位。材料科学是偏实际应用的工科课程,化学是偏理论的理科课程,材料化学则是利用化学的理论解决材料应用中的实际问题。
2材料
以材料的实际应用为引子,如材料在航天航空、交通运输、电子信息、生物医药等领域的应用,带领学生进入学习状态,引导学生回想什么是材料?材料的种类?提出材料是对人类有用的物质,是人类赖以生存和发展,征服自然和改造自然的物质基础;是人类进步的里程碑。然后介绍材料的发展历史,说明人们对材料的使用,是从最早的天然材料,依次经历了陶瓷、青铜、铁、钢、有色金属、高分子材料以及新型功能材料。根据材料的发展史,启发学生思考材料研究和发展过程中的规律和特点。人们对材料的使用经历了从天然材料到合成材料,从传统材料到新兴材料。传统的材料主要以经验,技艺为基础,材料靠配方筛选和性能测试,通过宏观现象建立的唯象理论对材料宏观性能定性解释,不能预示性能和指明新材料开发方向,而新型材料则以基础理论为指导。材料科学的历史表明,当一种全新的材料在原子或分子水平上合成后真正巨大的进展就常常随之而来。化学的发展往往导致材料技术的实质性进步。在新材料的研发和材料工艺的发展中,化学一直担当着关键的角色[3]。任何新材料的获得都离不开化学,以石墨烯为例,物理学家主要关注其电子结构及输运理论,材料学家主要测试材料的电磁、光电、传感和催化等性能,而化学家的任务则是利用化学气相沉积和插层剥离等方法制备该材料。只有通过化学气相沉积法制备出高质量大尺寸的石墨烯,才能推动石墨烯在电子信息领域走向实用化。
3材料与化学
材料化学是材料科学与化学学科的交叉,很多学生容易混淆材料科学和化学的研究范畴。在本课程的第一节课,一项重要的任务是使学生明确材料科学和化学的研究内容和范畴,这对于后续相关概念的讲解至关重要。材料科学的研究对象是材料,材料是对人类有用的物质,指的是人类用于制造物品、器件、构件、机器或其他产品的那些物质。而化学的研究对象是物质,物质是构成人类物质世界的基础。材料是物质,但不是所有物质都可以称为材料;材料科学是一门研究材料的成分、组织结构、制备工艺与材料性能及应用之间相互关系的科学;而化学则是从原子和分子角度研究物质的组成,结构、性质及相互转变规律的科学。因此,化学研究的尺度范围是原子、分子、分子纳米聚集体。材料科学最早研究的尺度范围在微米以上,如钢和陶瓷的组织结构。随着一些新兴材料的出现和发展,人们对材料的研究甚至小到电子结构。如近些年发现的拓扑绝缘体,其表面导电,体内不导电的性质由其拓扑的能带结构决定,而该拓扑结构则与电子的自旋运动有关,研究拓扑绝缘体必须从电子自旋角度认识其结构。因此,材料科学的研究范畴不断拓展,并于其它学科交叉。
4材料化学
通过学习材料的发展历程、材料科学与化学之间的区别和联系,学生已经对材料化学有了一定的认识,引导学生给材料化学下一个定义。材料化学是关于材料结构、制备、性能和应用的化学。本校材料化学专业选用曾兆华、杨建文编著第二版《材料化学》作为教材,教材的章节也是按照材料结构、制备、性能和应用进行安排的[4]。在这部分内容讲授过程中,可以让学生以教材目录为参照,讲到相关内容可以与教材相关章节进行对应。
4.1材料的结构
从三个层次讲解材料的结构,分别是电子原子结构、晶体学结构和组织结构。电子原子结构在很大程度上影响材料的电、磁、热和光的行为,并可能影响到原子键合的方式,因而决定材料的类型。在这个层次上研究的化学问题主要涉及原子序数、相对原子量、电离势、电子亲核势、电负性、原子及离子半径等。原子序数决定了材料的化学组成,电负性决定材料内部原子之间的键合方式,从而影响材料的导电性、强度和热膨胀系数等。晶体学结构主要指原子或分子在空间排列的方式,根据原子排列的有序性,将材料分为晶体和非晶体。晶体中出现局部无序,或对理想晶体的产生偏离,则出现缺陷。缺陷的存在影响材料的力学性能和电学性能等。如在本征硅内部掺杂磷元素,磷原子替代硅原子的位置,形成杂质原子缺陷,增加本征硅的导电性,形成N型半导体。组织结构主要指材料的物相组成及结构、晶粒的大小和取向等。在大多数金属、某些陶瓷以及个别聚合物材料内部,晶粒之间原子排列的变化,可以改变它们之间的取向,从而影响材料的性能。一般来说,减小金属的晶粒可以降低其熔点。在这一结构层次上,颗粒的大小和形状起着关键作用。大多数材料是多相组成的,控制材料内部物相的类型、大小、分布和数量可以调控材料的性能。
4.2材料制备
材料合成与制备就是将原子、分子聚集在一起,并转变为有用产品的一系列过程。材料制备的方法和工艺影响材料的结构,从而影响材料的性能。根据制备原理的不同,材料制备方法可以分为物理法和化学法。物理法指在材料制备过程中,仅改变材料内部原子或分子的聚集状态,不涉及化学反应的方法。如真空镀膜、溅射镀膜、脉冲激光沉积法等。化学法则在材料制备过程中,涉及化学反应,并且有新物质的生成。如固相反应法、有机合成法、水热法、沉淀法、化学气相沉积法等。以石墨烯材料为例讲解材料的制备方法。石墨烯作为二维单原子层材料,既可以采用物理法制备,也可以采用化学法制备。2004年发现石墨烯的报道,便是采用简单的胶带对撕方法制备,该方法依靠外力使石墨片层克服层间范德华力,使层与层之间分离,从而获得单层石墨,该方法也称为物理机械剥离法。利用甲烷、乙烯等烃类气体作为碳源,镍、铜、金等金属作为基片,采用化学气相沉积法则可以制备高质量大尺寸的石墨烯。另外,以石墨为原料,利用化学插层剥离的方法也可以用来制备石墨烯[5]。但不同方法制备获得石墨烯的尺寸及性能差别较大,在不同的应用领域采用的石墨烯制备方法是不同的。
4.3材料性能
材料的性能由其结构决定,与材料制备的工艺和方法有关。性能是指材料固有的物理、化学特性,材料性能决定了其应用。广义地说,性能是材料在一定的条件下对外部作用的反应的定量表述,例如力学性能是材料对外力的响应、电学性能是对电场的响应、光学性能是对光的响应等。因此,材料的性能可分为力学性能和特殊的物理性能。常见的力学性能包括材料的强度、硬度、塑性、韧性等。力学性能决定着材料工作的好坏,同时也决定着是否易于将材料加工成使用的形状。锻造成型的部件必须能够经受快速加载而不破坏,并且还要有足够的延性才能加工变形成适用的形状。微小的结构变化往往对材料的力学性能产生很大的影响。材料特殊的物理性能包括电、磁、光、热等行为。物理性能由材料的结构和制造工艺决定。对于许多半导体金属和陶瓷材料来说,即使成分稍有变化,也会引起导电性很大变化。过高的加热温度有可能显著地降低耐火砖的绝热特性。少量的杂质会改变玻璃或聚合物的颜色。
4.4材料应用
材料化学已经渗透到现代科学技术的众多领域,如电子信息、环境能源、生物医药和航天航空等领域。例如,在电子信息领域,现代芯片制造离不开化学。光刻过程使用的光刻胶和显影液,镀膜过程中的化学气相沉积和原子层沉积,刻蚀过程中的反应离子刻蚀,这些工艺过程都离不开化学的作用。在环境能源领域,新型光催化材料和太阳能电池材料的研究和开发,离不开化学法制备材料和对材料进行化学掺杂改性。在生物医药领域,对传感材料进行化学改性提高其传感特性,对仿生材料进行表面改性可以提高其生物相容性。在航天航空领域,各种轻质、耐高温、耐摩擦等结构材料和功能化智能材料的研发都离不开化学。
5结语
通过对“材料化学”绪论课的精心设计,使学生明确了该课程的性质和重要地位,大量的实例激发了学生学习的兴趣和求知欲,树立了学生学好该课程的信心,为课程的深入学习起到了奠基石的作用。以“材料、材料与化学、材料化学”为主线进行讲授,使学生对本课程的内容有了更加清晰和深入的认识,取得了良好的教学效果。
参考文献
[1]禹筱元,罗颖,董先明.材料化学专业人才培养模式的改革与实践[J].高教论坛,2010,1(1):23-25.
[2]杨卓娟,杨晓东.关于高校课程绪论教学的思考[J].中国大学教学,2011(12):39-41.
[3]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997.
Abstract :This paper introduces the concept ,types,capability,preparation methods of functionally graded materials. Based upon analysis of the present application situations and prospect of this kind of materials some problems existed are presented. The current status of the research of FGM are discussed and an anticipation of its future development is also present.
Key words :FGM;composite;the Advance
0 引言
信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。
近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。
1 FGM概念的提出
当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2, 其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。
随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。
2 FGM的特性和分类
2.1 FGM的特殊性能
由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:
1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;
2)将FGM用作涂层和界面层可以减小残余应力和热应力;
3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;
4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。
2.2 FGM的分类
根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。
3 FGM的应用
FGM最初是从航天领域发展起来的。随着FGM 研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。
功 能
应 用 领 域 材 料 组 合
缓和热应
力功能及
结合功能
航天飞机的超耐热材料
陶瓷引擎
耐磨耗损性机械部件
耐热性机械部件
耐蚀性机械部件
加工工具
运动用具:建材 陶瓷 金属
陶瓷 金属
塑料 金属
异种金属
异种陶瓷
金刚石 金属
碳纤维 金属 塑料
核功能
原子炉构造材料
核融合炉内壁材料
放射性遮避材料 轻元素 高强度材料
耐热材料 遮避材料
耐热材料 遮避材料
生物相溶性
及医学功能
人工牙齿牙根
人工骨
人工关节
人工内脏器官:人工血管
补助感觉器官
生命科学 磷灰石 氧化铝
磷灰石 金属
磷灰石 塑料
异种塑料
硅芯片 塑料
电磁功能
电磁功能 陶瓷过滤器
超声波振动子
IC
磁盘
磁头
电磁铁
长寿命加热器
超导材料
电磁屏避材料
高密度封装基板 压电陶瓷 塑料
压电陶瓷 塑料
硅 化合物半导体
多层磁性薄膜
金属 铁磁体
金属 铁磁体
金属 陶瓷
金属 超导陶瓷
塑料 导电性材料
陶瓷 陶瓷
光学功能 防反射膜
光纤;透镜;波选择器
多色发光元件
玻璃激光 透明材料 玻璃
折射率不同的材料
不同的化合物半导体
稀土类元素 玻璃
能源转化功能
MHD 发电
电极;池内壁
热电变换发电
燃料电池
地热发电
太阳电池 陶瓷 高熔点金属
金属 陶瓷
金属 硅化物
陶瓷 固体电解质
金属 陶瓷
电池硅、锗及其化合物
4 FGM的研究
FGM研究内容包括材料设计、材料制备和材料性能评价。
4. 1 FGM设计
FGM设计是一个逆向设计过程[7]。
首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。
FGM设计主要构成要素有三:
1)确定结构形状,热—力学边界条件和成分分布函数;
2)确定各种物性数据和复合材料热物性参数模型;
3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。
FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。
4. 2 FGM的制备
FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM) ,自蔓延高温合成法(SHS) ;涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD) 和化学相沉积(CVD) ;形变与马氏体相变[10、14]。
4. 2. 1 粉末冶金法(PM)
PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/ Ni 、ZrO2/ W、Al2O3/ ZrO2 [8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7] 。
4. 2. 2 自蔓延燃烧高温合成法(Self-propagating High-temperature Synthesis 简称SHS或Combustion Synthesis)
SHS 法是前苏联科学家Merzhanov 等在1967 年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去, 利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:
SHS 法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS 法己制备出Al/ TiB2 , Cu/ TiB2 、Ni/ TiC[8] 、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4. 2. 3 喷涂法
喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。
4. 2. 3. 1 等离子喷涂法(PS)
PS 法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1 500 K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1. 5 km/ s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7] 、NiCrAl/MgO -ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
4.2.3.2 激光熔覆法
激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti - Al 、WC -Ni 、Al - SiC 系梯度功能材料[7 ] 。
4.2.3.3 热喷射沉积[10]
与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。
4.2.3.4 电沉积法
电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni, Cu-Ni ,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5 气相沉积法
气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD) 和化学气相沉积(CVD) 两类。
化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。
物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm 厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD 法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/ TiN、Ti/ TiC、Cr/ CrN 系的FGM [7~8、10~11]
4. 2. 4 形变与马氏体相变[8]
通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力) 梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18 -8 不锈钢(Fe -18% ,Cr -8 %Ni) 试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。
4. 3 FGM的特性评价
功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。
5 FGM的研究发展方向
5.1 存在的问题
作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:
1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;
2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;
3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;
4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。
5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;
6)成本高。
5.2 FGM制备技术总的研究趋势[13、15、19-20]
1)开发的低成本、自动化程度高、操作简便的制备技术;
2)开发大尺寸和复杂形状的FGM制备技术;
3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);
4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。
5.3 对FGM的性能评价进行研究[2、13]
有必要从以下5个方面进行研究:
1)热稳定性,即在温度梯度下成分分布随 时间变化关系问题;
2)热绝缘性能;
3)热疲劳、热冲击和抗震性;
4)抗极端环境变化能力;
5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等
6 结束语
FGM 的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。
参考文献
[1] 杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.
[2] 李永,宋健,张志民等.梯度功能力学[ M].北京:清华大学出版社.2003.
[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.
[4] 曾黎明.功能复合材料及其应用[M]. 北京:化学工业出版社,2007.
[5] 高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J]. 山西建筑,2006, 32(5):143-144.
[6] Erdogan, F.Fracture mechanics of functionally graded materials[J].Compos. Engng,1995(5):753-770.
[7] 李智慧,何小凤,李运刚等. 功能梯度材料的研究现状[J]. 河北理工学院学报,2007, 29(1):45-50.
[8] 李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J]. 菏泽学院学报,2007, 29(5):51-55.
[9] 林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.
[10] 庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J]. 金属制品,2005,31(4):4-9.
[11] 戈晓岚,赵茂程.工程材料[ M].南京:东南大学出版社,2004.
[12] 唐小真.材料化学导论[M].北京:高等教育出版社,2007.
[13] 李进,田兴华.功能梯度材料的研究现状及应用[J]. 宁夏工程技术,2007, 6(1):80-83.
[14] 戴起勋,赵玉涛.材料科学研究方法[M] .北京:国防工业出版社,2005.
[15] 邵立勤.新材料领域未来发展方向 [J]. 新材料产业, 2004,1:25-30.
[16] 自蔓延高温合成法.材料工艺及应用etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
[17] 远立贤.金属/陶瓷功能梯度涂层工艺的应用现状.91th.com/articleview/2006-6-6/article_view_405.htm.
TheAdvanceofFunctionallyGradientMaterials
JinliangCui
(Qinghaiuniversity,XiningQinghai810016,china)
Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.
Keywords:FGM;composite;theAdvance
0引言
信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。
近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。
1FGM概念的提出
当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3],如图1所示。
随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。
2FGM的特性和分类
2.1FGM的特殊性能
由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:
1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;
2)将FGM用作涂层和界面层可以减小残余应力和热应力;
3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;
4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。
图2
2.2FGM的分类
根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。
3FGM的应用
FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。FGM的应用[8]见图3。
图3FGM的应用
功能
应用领域材料组合
缓和热应
力功能及
结合功能
航天飞机的超耐热材料
陶瓷引擎
耐磨耗损性机械部件
耐热性机械部件
耐蚀性机械部件
加工工具
运动用具:建材陶瓷金属
陶瓷金属
塑料金属
异种金属
异种陶瓷
金刚石金属
碳纤维金属塑料
核功能
原子炉构造材料
核融合炉内壁材料
放射性遮避材料轻元素高强度材料
耐热材料遮避材料
耐热材料遮避材料
生物相溶性
及医学功能
人工牙齿牙根
人工骨
人工关节
人工内脏器官:人工血管
补助感觉器官
生命科学磷灰石氧化铝
磷灰石金属
磷灰石塑料
异种塑料
硅芯片塑料
电磁功能
电磁功能陶瓷过滤器
超声波振动子
IC
磁盘
磁头
电磁铁
长寿命加热器
超导材料
电磁屏避材料
高密度封装基板压电陶瓷塑料
压电陶瓷塑料
硅化合物半导体
多层磁性薄膜
金属铁磁体
金属铁磁体
金属陶瓷
金属超导陶瓷
塑料导电性材料
陶瓷陶瓷
光学功能防反射膜
光纤;透镜;波选择器
多色发光元件
玻璃激光透明材料玻璃
折射率不同的材料
不同的化合物半导体
稀土类元素玻璃
能源转化功能
MHD发电
电极;池内壁
热电变换发电
燃料电池
地热发电
太阳电池陶瓷高熔点金属
金属陶瓷
金属硅化物
陶瓷固体电解质
金属陶瓷
电池硅、锗及其化合物
4FGM的研究
FGM研究内容包括材料设计、材料制备和材料性能评价。FGM的研究开发体系如图4所示[8]。
设计设计
图4FGM研究开发体系
4.1FGM设计
FGM设计是一个逆向设计过程[7]。
首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。
FGM设计主要构成要素有三:
1)确定结构形状,热—力学边界条件和成分分布函数;
2)确定各种物性数据和复合材料热物性参数模型;
3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。
FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。
4.2FGM的制备
FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。
4.2.1粉末冶金法(PM)
PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。
4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)
SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:
图6SHS反应过程示意图
SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。
4.2.3喷涂法
喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。
4.2.3.1等离子喷涂法(PS)
PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料
图7PS方法制备FGM涂层示意图[17](a)单枪喷涂(b)双枪喷涂
4.2.3.2激光熔覆法
激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。
图8同步注粉式激光表面熔覆处理示意图[18]
4.2.3.3热喷射沉积[10]
与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。
4.2.3.4电沉积法
电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]
4.2.3.5气相沉积法
气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。
化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。
物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]
4.2.4形变与马氏体相变[8]
通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。
4.3FGM的特性评价
功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。
5FGM的研究发展方向
5.1存在的问题
作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:
1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;
2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;
3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;
4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。
5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;
6)成本高。
5.2FGM制备技术总的研究趋势[13、15、19-20]
1)开发的低成本、自动化程度高、操作简便的制备技术;
2)开发大尺寸和复杂形状的FGM制备技术;
3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);
4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。
5.3对FGM的性能评价进行研究[2、13]
有必要从以下5个方面进行研究:
1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;
2)热绝缘性能;
3)热疲劳、热冲击和抗震性;
4)抗极端环境变化能力;
5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等
6结束语
FGM的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。
参考文献:
[1]杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.
[2]李永,宋健,张志民等.梯度功能力学[M].北京:清华大学出版社.2003.
[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.
[4]曾黎明.功能复合材料及其应用[M].北京:化学工业出版社,2007.
[5]高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J].山西建筑,2006,32(5):143-144.
[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.
[7]李智慧,何小凤,李运刚等.功能梯度材料的研究现状[J].河北理工学院学报,2007,29(1):45-50.
[8]李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J].菏泽学院学报,2007,29(5):51-55.
[9]林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.
[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,31(4):4-9.
[11]戈晓岚,赵茂程.工程材料[M].南京:东南大学出版社,2004.
[12]唐小真.材料化学导论[M].北京:高等教育出版社,2007.
[13]李进,田兴华.功能梯度材料的研究现状及应用[J].宁夏工程技术,2007,6(1):80-83.
[14]戴起勋,赵玉涛.材料科学研究方法[M].北京:国防工业出版社,2005.
[15]邵立勤.新材料领域未来发展方向[J].新材料产业,2004,1:25-30.
[16]自蔓延高温合成法.材料工艺及应用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm
[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.
中图分类号:TM914.4 文献标识码:A 文章编号:1007—9599 (2012) 14—0000—02
一、太阳能多晶硅的生产工艺
(一)太阳能多晶硅的传统生产工艺
目前国际上用于制造多晶硅的技术很多经过几十年的发展以及改进,对于原有的Ca、Mg、Al还原法已经弃之不用,目前常用的是西门子法,已经在世界范围使用了接近30多年,比起早先的SiC、SiHC13还原法,西门子法集中于硅烷分解法和氯硅烷气相氢还原。
1.西门子法
西门子法比起早先的还原法,在多晶硅的纯度上完全满足太阳能用硅的使用要求,具体提纯的方法如下:
(1)三氯氢硅的合成
以金属硅和氯化氢为原料,在流态氯化炉中进行反应:
工用三氯氢硅的沸点为31.5℃,在使用精馏提纯时,可以利用三氯氢硅与含有多数的杂质的氯化物挥发的温度差很大,但须注意的是三氯氢硅非常易挥发,并且挥发后容易产生强腐蚀的盐酸气,所以在精馏时,必须针对该特质采取措施防止水汽和空气混入,在大规模生产时,应采取耐腐蚀的金属或合金材料以避免铜、铁等杂质的混入而影响质量。
(2)三氯氢硅的还原
SiHC13还原法采用气相沉积的方法,使还原的硅沉积在上要化学反应有:
经过第一公式的多次精馏后,三氯氢硅的纯度会越来越高, 然后用高纯度的氢气就可以还原出高纯多晶硅体。生产的具体化学记技艺如上,各国的生产工艺虽然不太相同,大体思路如上,国际上普遍采用第三代闭路循环,具体原理如图1 所示,各种气体在这个生产系统中可以循环使用,不仅节省材料,而且大大减少了对环境的影响。
图1第三代多晶硅生产流程图
(二)硅烷法
硅烷法是以硅烷为中间介质,经过热分解提纯的方法,具体做法如下:
1.硅化镁法
由硅烷Mg2Si与NH4Cl在液氨中反应生成。该方法耗料大,这种方法原料耗量大、危险性大,所以一般不采用。
2.以SiF4与NaAlH4为原料制备硅烷,该方法由美国MEMC公司采用。
3.歧化法
与传统的西门子生产方法比较,该方法具有许多优点,如:硅产品纯度高、含硅量高、分解速率快、分解率高、硅烷易提纯等优点,缺点就是硅烷属于易燃易爆品,增加了生产的安全隐患,并且粉尘多。为了避免上述问题,硅烷的热分解技术也引入了硫化床技术。
硫化技术无需太多的冷却水来降温,所以能耗很少,降低了成本,同时提高硅烷的分解速率和硅的沉积速率,缺点是生产的硅体无法在纯度上更进一步,但满足太阳硅的使用要求。
(三)流化床法
四氯化硅、氢气、氯化氢以及工业硅在硫化床内化合成三氯氢硅,将三氯氢硅进一步歧化生成二氯二氢硅,进而生成硅烷,制得的硅烷通入有小颗粒硅粉的通道内,进行热分解反应,生成多晶硅。
在硫化床内生产的硅谷具有硅表面积大,生产效率高,电耗低与成本低,所以适合大规模生产,缺点就是产品纯度低,并且生产过程中危险性大,但可以满足太阳能用硅的规格要求。
二、高纯多晶硅的新生产工艺
(一)冶金法
日本在制硅上也具有领先世界的水平,著名的川崎制铁(Kawasakisteelcorp)于1996年起,在NEDO的支持下开发的由工业硅生产太阳能级硅方法。冶炼法类似用冶炼金属的方法对工业硅进行提纯,主要方法有电子束熔炼法、等离子束熔炼法、吹气精炼法、高温熔盐电解法、以及真空熔炼法等等,分为两步提纯:
第一阶段:在电磁炉中采用定向凝固法除P和初步除去金属杂质:
第二阶段:在等离子体炉中,在氧化气氛下除B和C,融化的硅再次定向凝固最后除掉金属杂质。
冶金法通常采用两步法生产多晶硅,顺序没有严格的要求,目前通常采用纯度较高的工业硅为原料,经过两步后得到太阳能级多晶硅。
(二)高纯碳热还原法
近几年新出现的制硅技术主要是碳热还原法,但从事该领域研究的还很少,碳热还原法是将工业硅用高纯碳还原为高纯二氧化硅在进行脱碳工序,以得到高纯度的硅体,碳热还原法的具体化学方程式为:
实际发生的反应主要有:
碳热还原法对原料的要求比较高,对原料的纯度一家杂质含量都有非常高的限制,在理论上该方法以及试验中都取得不错的效果,具体的工序参见图 2 ,表1 是冶炼后(即除碳后)其他杂质含量都不大,如果再选择性的,定向地运用凝固法,就可以提取纯度更高的太阳能用硅。
(三)固态电迁移
在1953年,国际上就开始对固态电迁移提纯金属进行一定程度的研究,专注于稀有金属的研究,在1981年,科学家运用固态电迁移法提纯获得了当时世界上最高纯度的稀有金属——钇,它的具体原理是将金属置于一个高强电场内,在电子的流动的同时,会有一个较小的质量迁移,迁移的具体方程式为:
1.金属中电子向空位流动而引起的自迁移;
2.合金内用于置换的杂质,由于移动的速率和方向不同,根据此可以对其进行分离,以达到提纯的效果。
3.合金中的间隙溶质的迁移。该技法决定只有在特定的熔体中,杂质才能进行速率和方向不同的迁移,固态电移法适合于一些难以除去的微量元素,例如O、N、B、C、H、P等。该方法对初始用来提纯的原料的纯度也有一定的要求,因此固态迁移法属于前期工艺在后期的一个补充后续工艺。
目前我国对于提纯技法的后期再提纯缺乏研究,可以运用这种方法,除去一些常规技法去除不了的微量元素。
三、在西门子法基础上改进的工艺
(一)三氯氢硅等离子体增强化学气相沉积制备
高纯多晶硅等离子体增强化学气相沉积通常用于制备薄膜材料,这种方法与西门子法比较的优点在于:热CVD法虽然在整个高温区沉积,但沉积速度慢,等离子体增强CVD沉积温度低、沉积速度快。
(二)锌还原四氯化硅
利用锌代替氢气来还原四氛化硅的锌还原法,可以得到纯度较高的多晶硅。
(三)熔盐电解法
熔盐电解法也是制备特殊硅料的一种新的思维技法,在制备太阳能用硅料上主要有一下几种方法:
1.熔盐电解SiO2:以高纯度的SiO2为为原料,使反应温度高于硅熔点,通过熔盐电解制备多晶硅,该工艺需要在高温下才能进行,所以能耗极大,设备折损严重,并且难以获得太阳能多晶硅。
2.熔盐电解氟硅酸盐:采用熔盐电解法,以高纯氟硅酸盐为原料,硅以固态形式析出。存在的问题是,硅以枝晶析出,导电性差,阴极固液界面不稳定,沉积速度慢,无法连续生产;
以高纯度的SiO2为阳极,以阴极氧元素与其进行电化学反应来制备多晶硅,但该方法也同样存在一些问题,在脱氧过程中无法去除杂质,难以保证硅料的纯度,并且由于二氧化硅导电性差,反应很难充分进行,所以效率很低。
四、结束语
综上所述,金属硅的生产的具有多种方法,然而每一种方法都有他的局限性,笔者详细讲述了自金属硅概念出现以来,各种关于金属硅的生产的探索,对各种方法进行例举对比,为生产领域提供了很好的参考。市场上对于太阳能用硅的需求量增加,同时也导致了太阳能级硅的生产工艺的变革,我们期待新的技术的出现,必将是人类历史的一大步。
关键词: 光学薄膜技术;教学体系;主动式教学;教学方法
Key words: the optical thin film technology; teaching system; active teaching;teaching methods
0 引言
《光学薄膜技术》这门课程是我院光电类专业必修的一门专业课,但现有的这门课的教学方法并不适用于独立学院的学生,并且这方面发表的论文也很少。本文对本课程的内容组织方式和传授方法进行适当的改进[1-2],以加强知识内容组织的严密性和课堂教学讲授的生动性,调动学生课堂学习的主动性。其目的就是要用合理的课程体系组织教学内容,以互动式教学方法让学生主动地参与到课堂教学中来,重视课堂上实际教学效率,最终实现教学质量的提高。
1 课程体系的构建
《光学薄膜技术》课程综合了物理光学、大学物理以及材料科学基础等诸多课程[3]。各部分内容之间层层递进、环环相扣,但是学生在上课时一些相关基础课大多数同学都未曾学过,这样许多重要的概念大家都不能很好地理解,致使教学效果大打折扣,也严重影响了授课进度。比如,在讲授薄膜的物理气相沉积工艺时,涉及到辉光放电,但是学生并没有接触过关于等离子体物理方面内容等等。
因此在教学内容编排上,从光学薄膜设计的基础出发,到真空科学与技术,然后讲述薄膜制备和工艺的基本方法,再介绍几类典型的薄膜材料,最后讲授薄膜的生长机制和表征手段[4]。整个课程的教学目标清晰,构建合理完善的课程体系,科学合理地构建就是要准确地归纳、提炼课程中包含的概念,形成一个完整的课程体系,正确的概念是科学判断和推理的基础。
2 主动式教学法
因为并不是每个人都对推理过程紧凑、公式化的表现形式都能敏感,都能接受,那么即使再严密的逻辑,再科学的表达,如果仅仅是枯燥呆板地平铺直叙,那么由于表现形式的面目可憎,也达不到理想的教学效果。运用适当的技术去刺激鼓励指导学生的思考和自动学习,亦应视学生的学习兴趣需要、能力和教材的内容,甚至教学的环境等,决定采用的教学方法。在教学实践中也总结并提炼了一些认识,并在课堂上已经取得了一些颇有意义的效果简列如下:
2.1 将抽象的概念具体化 高深的理论之所以难懂,就是因为包含众多抽象晦涩的概念。人的思维往往对于一些具体的直观的事物有着良好的亲和性,那么为什么不将一些抽象的概念具体化呢?比如定位辉光等离子体[5],从霓虹灯说明辉光等离子体的具体应用,这样学生就能够很好地接受抽象的概念。
2.2 采用多种语言丰富表达形式 思想内容的表达可以采纳多种表现形式,利用形体语言往往可以取得意想不到的表现效果,例如形容磁控溅射靶表面电子的跑道式运动方向,可以形容成刘翔跨栏的动作,并用肢体语言表示,学生更容易理解和接受。
2.3 适当吸纳前沿科研经验充实教学内容 多数情况下,学生对课堂讲授内容缺乏理解,往往就是因为没有形成相关概念的正确认识。在每一讲中穿插一些研究实践的体会,学生在张弛有度地学到了学习内容。比如,在讲授类金刚石等先进薄膜材料时,学生对类金刚石材料这一范畴的属性概念非常模糊,对非晶金刚石的概念在行业中也没有统一的定义。那么就从这一研究领域中最权威最主流最有影响力的刊物、专著, 充分考虑多数专家学者的建议,对非晶金刚石明确界定科学的定义。非晶金刚石是薄膜中四配位杂化含量超过50%的无氢类金刚石碳[6]。上课的时候,可以通过sp2-sp3-H三元相图明确不同类金刚石范畴的划分。再比如,在讲授等离子增强化学气相沉积时,学生对等离子辅助沉积能够降低界面反应温度的物理过程不能理解。上课的时候,从辉光放电产生等离子体着手,基于等离子的物理特性,解析反应气氛中的物理过程,通过演绎推理阐明等离子激发能够降低界面反应温度的本质[7]。
2.4 实践教学 实验室镀膜过程录像的内容,使学生进一步了解薄膜镀制的过程。在薄膜设计中,增加薄膜设计软件的教学,使学生熟悉计算机完成膜系设计的过程。
2.5 课后练习 课后布置适当数量的作业,定期批改。最终使学生了解薄膜科学和技术科研具体过程,培养独立思维能力。
2.6 课堂演讲 针对重点、难点内容组织课堂讨论,拟定若干薄膜技术研究和应用中具体问题,由同学自主选择,让学生查阅相关文献,独立解决问题,课堂宣读。充分发挥学生的主观能动性。
3 结论
《光学薄膜技术》的教学实践中利用科学合理地组织教学内容,积极的调动学生参与课堂教学的主动性,探索了更适合独立学院光电类专业学生教学方法,促进教学质量的提高。
参考文献
[1]唐晋发等.现代光学薄膜技术[M].浙江:浙江大学出版社,2006.
[2]卢进军,刘卫国.光学薄膜技术[M].西安:西北工业大学出版社,2005.
[3]洪冬梅等.中红外激光薄膜的研究与特性分析[J].光学仪器印刷世界,2008,30(5):80-82.
[4]Spfer G.Flexible Display[J],DisplaySearch, an NPD Group Company,2006,359.
Abstract Developments in the last fifty years(1949~1999), especially in the last two decades on the solid state inorganic chemistry in China have been reviewed.
Key words Solid state chemistry, Inorganic synthesis, Inorganic materials, Application
固体无机化学是跨越无机化学、固体物理、材料科学等学科的交叉领域,尤如一个以固体无机物的“结构”、“物理性能”、“化学反应性能”及“材料”为顶点的四面体,是当前无机化学学科十分活跃的新兴分支学科。近些年来,该领域不断发现具有特异性能及新结构的化合物,如高温超导材料、纳米相材料、C60等,一次又一次地震撼了整个国际学术界。
中国化学会于20世纪70年代末成立了固体无机化学和合成化学专业组,从此在有关高等院校和研究所内开展了大量的基础性和应用基础性研究工作,取得了一批举世瞩目的研究成果,向信息、能源等各个应用领域提供了各种新材料,为我国的社会主义现代化建设作出了贡献。同时,许多高校相应开设了“固体化学”选修课,出版了编著或翻译的教材;1998年,出版了韩万书主编的《中国固体无机化学十年进展》一书;自从1986年召开了第一届全国固体无机化学和合成化学学术讨论会以来,迄今已召开了6次,这些活跃的教学和学术活动推动了固体无机化学的教学、科研、人才培养以及把科研成果转化为生产力等方面的发展。
1 固体无机化合物的制备及应用
固体无机化合物材料的制备大多是利用高温固相反应,这些反应难以控制,能耗大,成本高。为此,发展了其它各种合成方法,如前体法、置换法、共沉淀法、熔化法、水热法、微波法、气相输运法、软化学法、自蔓延法、力化学法、分子固体反应法(包括固相有机反应和固相配位化学反应)等。其中,近年来提出的软化学合成方法最为突出,它力求在中低温或溶液中使起始反应物在分子态尺寸上均匀混合,进行可控的一步步反应, 经过生成前驱物或中间体,最后生成具有指定组成、结构和形貌的材料。
1.1 光学材料的研究
苏勉曾等[1]用均相沉淀法在水溶液中合成了氟氯化钡铕(Ⅱ),经过处理后制得无余辉、发光性能良好的多晶体。用这种多晶体制成的高速增感屏, 其增感因素是钨酸钙中速屏的4~5倍, 已被全国2000所医院使用。1983年,苏勉曾等在系统研究氟卤化物的X-射线发光及紫外发光现象的过程中,发现了BaFX:Eu2+晶体经X-射线辐射后着色的现象,开始注意到晶体中色心生成,并于1984年开始研究晶体的X-射线诱导的光激励发光现象及发光机理,用光激励发光材料制成了图像板,作为X-射线的面探测器。他们还设计制作了一台由光学精密机械和计算机组成的计算X-射线图像仪, 已可以获得清晰的X-射线透视图象和粉末晶体衍射图像。
苏镪等用溶胶-凝胶法合成了一系列的稀土硅酸盐和铝酸盐等固体纯相发光材料,使合成温度降低了150~300℃[2];用燃烧法合成了发蓝光的多铝酸盐BaMgAl10O17:Eu2+和发绿光的Ce0.67Tb0.33MgAl12O20.5荧光体,该法具有反应时间很短,不需要还原性气氛保护,使用炉温从1500℃降到600℃,节能效果显著等优点[2];他们首次发现,在空气中当以3价离子Sm3+, Eu3+和Yb3+不等价部分取代碱土硼酸盐SrB4O7中的Sr2+时,可使掺入的3价稀土离子还原为2价[3],此项工作于1993年发表后,立即引起国际同行的注意。苏镪等还根据观察到的有关Dy3+的发光规律和敏化方式,合成出一些掺Dy3+的发白光的材料,制成光通量超过我国部颁标准的汞灯。
石春山等[4]研究出一种组成为BaLiF3:Eu2+、具有存储X-射线辐射能以及热释发光和光激励发光性质的氟化物晶体,很有希望成为一种性能更加优越的新型X-射线存储材料。王世华、赵新华等[5]发现EuI2和CsSmI3在高压下皆有相变化,并已将此研究成果用于电光源材料。
1.2 多孔晶体材料的研究
徐如人、庞文琴等在水热法合成各种类型分子筛的基础上,发展了溶剂热合成法,利用前驱体和模板剂,制备了一系列水热技术无法合成的新型磷酸盐及砷酸盐微孔晶体,所合成的JDF-20是目前世界上孔口最大的微孔磷酸铝[6];1989年,徐如人、冯守华等首次报道了微孔硼铝酸盐的合成和性质[7],之后,又获得了一系列新型微孔硼铝氯氧化物。其中硼的配位数可取4也可取3,但不会高于4;铝、镓、铟的配位数大多超过4,有的甚至达到6。所有这些都突破了传统分子筛纯粹由四面体结构基元构成的概念,为开发新型结构特征的微孔材料提供了丰富的实验依据。
庞文琴等[8]还系统研究了介孔分子筛的不同合成途径,首创了湿凝胶加热合成法[9]及干粉前驱体灼烧合成法合成MCM-41。她们还开发了双硅源法并成功合成了丝光沸石大单晶体;在非碱性介质中利用F-离子作矿化剂,成功合成了一系列高硅沸石分子筛大单晶体及一些笼形氧化硅大单晶。
1.3 纳米相功能材料及超微粒的研究
近几年来,我国科学家在纳米管和其它功能纳米材料研究方面,取得了具有重要影响的7项成果,引起国际科技界的很大关注。范守善等首次利用碳纳米管成功地制备出GaN一维纳米棒,并提出了碳纳米管限制反应的概念,该项成果成为1997年Science杂志评选出的十大科学突破之一;他们还与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上的碳纳米管阵列的自组装生长,推进了碳纳米管在场发射和纳米器件方面的应用研究。解思深等利用化学气相法制备纯净碳纳米管技术, 合成了大面积定向纳米碳管阵列, 该项工作发表于1996年的Science上; 他们还利用改进后的基底, 成功地控制了碳纳米管的生长模式, 大批量地制备出长度为2~3mm的超长定向纳米碳管,该项工作发表于1998年的Nature上。张立德等应用溶胶-凝胶与碳热还原相结合的方法及纳米液滴外延等新技术, 首次合成了准一维纳米丝和纳米电缆, 在国际上受到了高度重视。钱逸泰等用γ-射线辐射法或水热法及两者的结合, 成功地制备出各种纳米粉; 用溶剂热合成技术首次在300℃左右制得30nmGaN[10],此外,他们还利用溶剂热法制得了InP及CrN、Co2P、Ni2P、In2S3等纳米相化合物; 用催化热分解法从CCl4制得纳米金刚石, 该项成果发表于1998年的Science上, 成为人们推崇的“稻草变黄金”的范例。
洪广言等应用醇盐法制备了十几种稀土氢氧化物、氧化物的超微粉;用络合-沉淀法制备了超微Y2O3粉;运用溶胶-凝胶法制备了CeO2纳米晶及多种稀土复合氧化物超微粉;运用共沉淀法制备了铝酸镧超微粉;采用乙二醇为溶剂和络合剂制备的PbTiO3超微粉,比传统固相反应合成温度降低了约230℃[13]。
1.4 无机膜与敏感材料的研究
孟广耀等[12]利用高温熔盐离子交换法获得固体电解质Ag+-β″-Al2O3,设计并发展了全固态SOx传感器;中国科技大学气敏传感器实验室还研制了CO、C2H2、C2H4等多种气敏传感器,有的已达国际先进水平。彭定坤等[13]建立了先进而有效的溶胶-凝胶工艺,制得了γ-Al2O3超微粉及Y2O3稳定的ZrO2膜;通过不同溶剂中的溶胶-凝胶过程,研制了有支撑体和无支撑体的TiO2膜。彭定坤、孟广耀等发展了化学气相沉积法(CVD)和金属有机化学气相沉积法(MOCVD),合成了高温超导体YBa2Cu3O7-x薄膜和透氢的Pd-Ni、Pd-Y膜。
1.5 电、磁功能材料的研究
苏勉曾、林建华等用软化学方法合成一系列稀土-过渡金属间化合物[14],制得了10余种满足制备稀土永磁粘结磁体要求的金属间化合物。任玉芳等合成了300多种不同组成的稀土与Ti、 V、 Mn、 Fe、 Co、 Ni、 Cu、 Mo、 W、 Ir、 In、 Sn的复合氧化物及稀土复合硫化物,稀土复合氟化物,稀土磷化物;研究了它们的结构和性质,光电、热电、气敏、热敏、磁敏等传感性质,快离子导电性质、超导性质及影响电性的规律;并研究开发了这些性质的应用。1987年,任玉芳等[15]在国际上较早提出临界温度为90.4K的掺银的Y-Ba-Cu-Ag-O超导材料。
1.6 C60及其衍生物的研究
1990年底,中国科学院化学研究所和北京大学开始C60团簇的合成实验研究[16],尔后国内10余个单位相继开展了C60的研究,取得了很好的结果,如首先在国际上建立了重结晶分离C60和C70的方法;在国内首次获得了K3C60和Rb3C60超导体,达到了当时的国际先进水平;发现在阴极中掺杂Y2O3可以大大提高阴极沉积物中等碳纳米管的含量;首先报道了直接氧化C60含氮化合物的研究成果等。
1.7 多酸化合物的研究
顾翼东等[17]在常温及很低酸度下合成了活性粉状白钨酸,使钨化学研究取得重要突破;谢高阳等以活性白钨酸为原料,制备了多种不同结构的含钨化合物。王恩波等结合钨、钼、钒的催化、抗病毒、抗肿瘤、抗爱滋病等特性,合成了大量钨、钼、钒以及含稀土元素的多酸化合物,并以多酸化合物为催化剂[18],在酯化反应、烷基化反应、缩合脱水反应等方面进行了卓有成效的工作。
1.8 金属氢化物的研究
申泮文等设计了有特殊搅拌设备的固-液-气多相反应釜, 使“金属还原氢化反应”[19]在400~500℃范围内进行完全;利用此类反应以新方法合成复合金属氢化物;以“共沉淀还原法”和“置换扩散法”制备了钛铁系、镍基或镁基合金等储氢材料;创造了钕铁硼等永磁材料合成新工艺。
1.9 其它
黄金陵[20]等通过固相合成获得了一系列具有奇特的层状结构的三组元碲化物,第三组元离子是插入到“薄板”内,而不是“薄板”之间;他们还合成了具有优异的光、电、磁、生物等特性的金属酞菁、萘酞菁类配合物等功能材料。秦金贵等对具有特殊固体物理性能的金属有机功能材料的合成、结构与物理性能进行了研究。孙聚堂等研究了一些固相反应的可能机理,希望为一些化合物的合成提供新方法。秦子斌、曹锡章、计亮年等在大环配体金属配合物,尤其是自由卟啉、氮杂或硫杂卟啉的配合物的合成、表征及其性质方面进行了广泛研究,取得了许多有意义的结果。
此外,国内还有利用微波辐射法合成了氧化物、硫化物、硅酸盐、磷酸盐、铝酸盐、硼酸盐、钨酸盐等各类荧光体,其中制得的CaWO4:Pb荧光粉的相对发光亮度为市售荧光粉的119%;利用掺Sm2+的M1-xM′xFCl1-yBry(M=Mg, Ca, Sr, Ba)的选择光激励,在世界上第一个实现了室温光谱烧孔;建立了百万巴高压实验室,完成了模拟地下6×109Pa和1500℃的高温高压实验;利用高温高压法合成了立方氮化硼超硬材料、宝石级的掺稀土的翡翠及双稀土钙钛矿结构的新相物质。转贴于
2 室温和低热固相化学反应
从固体无机化学的发展过程来看,固相反应尤其是高温固相反应一直是人们制备新型固体材料的主要手段之一。但长期以来,由于传统的材料主要涉及一些高熔点的无机固体,如硅酸盐、氧化物、金属合金等,通常合成反应多在高温进行,所得的是热力学稳定的产物,而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在,它们在高温时分解或重组成热力学稳定产物。为了得到介稳态固相反应产物,扩大材料的选择范围,有必要降低固相反应温度。
2.1 固相反应机理与合成
忻新泉等[21]近10年来对室温或近室温下的固相配位化学反应进行了系统的研究,探讨了低热温度固-固反应的机理,提出并用实验证实了固相反应的四个阶段,扩散-反应-成核-生长,每步都有可能是反应速率的决定步骤;总结了固相反应遵循的特有的规律;利用固相化学反应原理,合成了几百个新原子簇化合物、新配合物以及固配化合物。
2.2 原子簇与非线性光学材料
非线性光学材料是目前材料科学中的热门课题。近10多年来,人们对三阶非线性光学材料的研究主要集中在半导体、有机聚合物、C60以及酞菁类化合物上,而对金属簇合物的非线性的研究几乎没有。忻新泉等在低热固相反应合成大量簇合物的基础上,开展了探索研究,发现Mo(W,V)-Cu(Ag)-S(Se)簇合物具有比目前已知非线性光学材料更优越的三阶非线性光限制效应(表1),使我国在这一前沿领域的创新工作中占有一席之位。
化合物 溶剂 线性透射率/(%) 光限制阈值/(J.cm-1) 参考文献
C60 甲苯 62 1.6 L.W.Tutt.Nature, 1992, 356, 224
(n-Bu4N)3[MoAg3BrX3S4](X=I, Cl) 乙腈 70 0.5(0.6) 忻新泉等. JACS, 1994, 116, 2615
[Mo2Ag4S8(PPh3)4] 乙腈 92 ≈0.1 忻新泉等.J.Phys.Chem.,1995,99,17297
酞菁类化合物 甲苯 85 ≈0.1 J. W. Perry. Science, 1996, 273, 1533
{(Et4N)2[(μ4-WSe4)Cu4(CN)4]}n DMF 90 0.08 忻新泉等, to be published.
2.3 合成纳米材料新方法
纳米材料是当前固体物理、材料化学中的又一活跃领域。制备纳米材料的方法总体上可分为物理方法和化学方法两大类。物理方法包括熔融骤冷、气相沉积、溅射沉积、重离子轰击和机械粉碎等;化学方法主要有热分解法、微乳法、溶胶-凝胶法、LB膜法等。贾殿赠、忻新泉等[22]发现用低热或室温固相反应法可一步合成各种单组分纳米粉体,并进一步开拓了固相反应法制备纳米材料这一崭新领域,取得了令人耳目一新的成绩,如在深入探讨影响固相反应中产物粒子大小的因素的基础上,实现了纳米粒子大小的可调变;利用纳米粒子的原位自组装制备了各种复合纳米粒子。该法不仅使合成工艺大为简化,降低成本,而且减少由中间步骤及高温固相反应引起的诸如产物不纯、粒子团聚、回收困难等不足,为纳米材料的制备提供了一种价廉而又简易的新方法,亦为低热固相反应在材料化学中找到了极有价值的应用。
2.4 绿色化学
绿色化学是一门从源头上减少或消除污染的化学,它解决的实质性问题是减少合成反应的污染或无污染。低热固相化学反应不使用溶剂,对环境的友好及独特的节能、高效、无污染、工艺过程简单等优点,使之成为绿色合成化学值得考虑的手段之一。近年来,我们在这方面做了许多有益的尝试,取得了许多有意义的结果,如尝试在低热温度下用固体FeCl3.6H2O氧化苯偶铟类化合物,成功地合成了相应的苯偶酰类化合物[23];尝试将低热固相反应合成方法用于芳醛、芳胺及过渡金属醋酸盐的原位缩合-配位反应,高产率地合成了相应的Schiff碱配合物[24]。有关固相反应在绿色化学中的应用潜力有待进一步发掘,尤其是在合成工业绿色化方面需要更多的投入。
作者简介:周益明 男,1964年8月生,江苏射阳县人,副教授,博士研究生。研究方向: 固相配位化学及固相有机合成。忻新泉 联系人 男,1935年1月生,浙江宁波人,教授,博士生导师。研究方向: 固相配位化学反应及含硫原子簇化合物。
作者单位:南京大学配位化学研究所 配位化学国家重点实验室 南京 210093
参考文献
[1]苏勉曾, 龚曼玲, 阮慎康. 氟氯化钡铕的合成、发光性能以及在X-射线照像增感屏中的应用. 化学通报,1980, (11): 656~657.
[2]苏镪, 林君, 刘胜利. 用软化学方法合成稀土硅酸盐和铝酸盐磷光体. 发光学报, 1996, 17(增刊).
[3]Pei Zhiwu, Su Qiang, Zhang Jiyu. The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+. J. Alloys and Compds., 1993, 198: 51~53.
[4]Xia Changtai, Shi Chunshan. BaLiF3(Eu2+): A promising X-ray storage phosphor. Mater. Res. Bull., 1997, 32(1): 107~112.
[5]王林同, 王世华, 赵新华等. 高压后EuI2, RbEu2I5, RbEuI3和Rb3EuI5性质的研究. 科学通报, 1995, 40(10): 957.
[6]Huo Qisheng, Xu Ruren, Li Shougui et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc., Chem. Commun., 1992, 875~876.
[7]Wang Jianhua, Feng Shouhua, Xu Ruren. Synthesis and characterization of a novel microporous alumino-borate. J. Chem. Soc., Chem. Commun., 1989, 265~266.
[8]Sun Yan, Lin Wenyong, Chen Jiesheng et al. New routes for synthesizing mesoporous materials. Stud. Surf. Sci. Catal., 1997, 105: 77~84.
[9]Lin Wenyong, Chen Jiesheng, Sun yan et al. Bimodal mesopore distribution in a silica prapared by calcining a wet surfactant-containing silicate gel. J. Chem. Soc., Chem. Commun., 1995, 2367~2368.
[10]Xie Y, Qian Y T, Wang W Z et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272: 1926~1927.
[11]余大书等. 乙二醇法制备PbTiO3超微粉末的研究. 功能材料(增刊),1995:701~703.
[12]Yang Jianhua, Yang Pinghua, Meng Guangyao. A fully solid-state SOx (x=2,3) gas sensors utilizing Ag+-β″-alumina as solid electrolyte. Sensors and Actuators, 1996, (31): 209.
[13]Xia Changrong, Wu Feng, Meng Zhaojing et al. Boechmite Sol properties and preparation of two large alumina membrane by a Sol-gel process. J. Membrane Science, 1996, (116): 9.
[14]Lin J H, Li S F, Chen Q M et al. Preparation of Nd-Fe-B magnetic materials by soft chemistry and reduction-diffusion process. J. Alloys and Compds., 1997, 249: 237~241.
[15]Ren Yufang, Meng Jian et al. Structure and superconductivity for YBa2Cu3O7-Agx. Solid State Commun., 1990, 76(9): 1103~1105.
[16]Gu Z N, Qian J X, Zhou X H et al. Buckminsterfullerene C60: Synthesis, spectroscopic characterization, and structure analysis. J. Phys. Chem., 1991, 95: 9615.
[17](a) 顾翼东, 朱思三. 粉状白钨酸的制备. 高等学校化学学报, 1982, 3(1): 137~140.
(b) 顾翼东. 黄、白钨酸制备法的差异,以及粉状白钨酸反应研究进展. 应用化学, 1985, 2(4): 9~15.
[18]王恩波, 胡长文, 许林著. 多酸化学导论. 北京: 化学工业出版社, 1998: 192~193.
[19]申泮文, 车云霞. 金属还原氢化反应研究. 化学通报, 1984, (10): 24~25.
[20]黄金陵, 黄宝泉. 金属碲化物的插入反应. 第一届全国配位化学会议论文摘要集, 1989: SL1.
[21]周益明, 忻新泉. 低热固相合成化学. 无机化学学报, 1999, 15(3):273~292.
[22](a) 贾殿赠,俞建群,忻新泉. 一种固相化学反应制备纳米材料的方法. 中国: 98111231.5, 1998.
本综述首先简单介绍了扫描电化学显微镜的基本概况,尤其是不同的工作模式.其次,有针对性地介绍了SECM的不同工作模式在氧还原和水解析氧反应相关研究中的应用.最后,对扫描电化学显微镜未来在新能源转换存储系统研究领域的应用进行了展望.
关键词:
扫描电化学显微镜;氧还原;水解析氧;燃料电池;金属空气电池;水解
氧还原反应和水解析氧反应是许多新型绿色能源转换存储系统,如燃料电池(质子交换膜燃料电池、直接甲醇燃料电池和碱性燃料电池等)、一体式可再生燃料电池、金属空气电池(锌空气电池、铝空气电池、锂空气电池等)和水解系统中重要的电化学反应.由于氧气极化电极的引入,氧还原反应也是近些年工业氯气大规模生产中的重要反应[1].提高氧反应的催化活性以及降低催化剂的成本是电催化研究人员关注的重点之一[2-3].然而,由于各类氧反应催化材料的快速发展,分析比较各类含有不同组分和含量的不同样品的催化性能需要一个便捷高效的分析筛选方法.另一方面,循环伏安法、线性扫描法或计时电流法与旋转环盘电极连用是基础分析电催化动力学、活性和稳定性的有效方法[4],但这些手段都是检测样品作为一个整体的催化性能.从微观角度理解和探究催化材料的微区电化学性能并明确其与材料物理形貌结构之间的构效关系对进一步构筑高性能氧反应电极催化材料尤为关键[5-6].高分辨率的扫描探针技术中的扫描电化学显微镜可以实现这两个目的.本综述将主要针对作者及过去十年作者所在的德国波鸿鲁尔大学Schuhmann教授研究组利用SECM开展的各类氧反应(即氧还原和水解析氧反应)电催化材料的研究工作进行系统的回顾,力求使读者对于SECM在电催化氧反应研究中的应用有一个更广泛的了解.
1扫描电化学显微镜简介
扫描电化学显微镜是上世纪八十年代末美国著名化学家Bard和其合作者研究发展而来[7],与扫描隧道显微镜[8]、近场扫描光学显微镜[9]和原子力显微镜[10]同属于扫描探针技术家族的一员,1999年开始在美国商业化.由于超微电极作为扫描探针的引入,它可以极近地接近样品表面,不仅可以用于检测样品局部微区的二维物理形貌,而且可以研究样品与电解液界面之间发生的电化学过程,表征样品表面的电化学性能.UME的引入在电分析化学领域有着重要的意义,由于UME微小的尺寸(直径大小为几个至几十个微米)具有极低的电压欧姆降,可以快速达到法拉第过程的电流平衡、提高法拉第电流与电容电流的比率以及电流信号与噪音比.制备它的电极材料可以是金属铂、金或碳纤维,电极头的形状可以是环型、半圆型、针型,而应用最广泛的通常为平面盘型[11].随着时间的推移,SECM也开始使用直径只有几十个纳米的纳米电极作为扫描探针[12].根据不同研究的需要,SECM有不同的工作模式,主要包括直接模式、反馈模式、产生-收集模式和氧化还原竞争模式等(图1).
1)直接模式通常用于样品表面的改性,例如样品表面局域的金属电沉积或腐蚀等.在该工作模式中,样品通常作为工作电极,而扫描探针作为对电极,溶液中的金属盐在一定的样品极化电压条件下可以发生还原反应电沉积在离扫描探针头非常接近的样品局域表面(图1A).或者金属样品在一定极化电压条件下发生氧化反应,在接近探针的局部区域被改性刻蚀(图1B).2)反馈模式通常用于反应物可以进行可逆氧化还原的过程,如电子转移动力学和催化性能研究.在反馈区域,溶液中原有的介质A在探针表面发生氧化或还原反应生成介质B,当样品为导电性较好的材料时,随着探针极近地接近样品表面,介质B会在样品本身的开路电压或一个给定电压作用下重新在样品表面发生还原或氧化反应生成介质A,介质A很快扩散到扫描探针并再次被氧化或还原生成介质B,使得扫描探针测得的电化学信号增加,称为正反馈模式(图1C).若样品导电性很差,样品的开路电压不足以使扫描探针上生成的介质B重新还原或氧化生成介质A,与此同时,由于探针极近地接近样品表面,使介质A扩散到探针表面的速率受到极大限制,最终扫描探针测得的电化学信号减少,称为负反馈模式(图1D).由于电化学信号对介于扫描探针和样品之间距离的敏感性,这种工作模式也经常被用于SECM扫描之前测定渐近曲线用以寻找样品表面,以及样品的二维表面物理形貌的表征.3)产生-收集模式经常可以被用于电化学反应动力学、样品微区活性及反应起始电压的研究.与反馈模式的不同之处在于其不受制于溶液中原有介质浓度的影响,可以根据研究需要在探针或样品局域产生反应所需的介质,用以进一步探究催化样品的性能.在工作过程中,反应物A会在扫描探针或者样品表面发生电化学反应生成产物B,而产生的产物B会扩散到样品表面或扫描探针,被其收集并在一定电压条件下再次发生电化学反应生成产物C.通过对于产物C的检测可以了解反应物A生成产物B的电化学过程.前者称为探针产生-样品收集模式,而后者被称作样品产生-探针收集模式.相比于后种工作模式,前者对于信号的测量更为敏感,这是由于产物B在微探针表面生成,有着更小的背景电流.如果利用后种工作模式,产物B在相对巨大的整个样品表面产生,由于大背景电流的影响,扫描微探针很难通过收集其周边样品位域产生的产物B而真正区分样品局域的不同电催化活性.另一方面,由于产物B在大表面积的样品上的大量生成,造成溶液中的产物B的浓度随着时间的流逝而大幅度增加,使得扫描微探针的背景电流也不断变化增加.4)氧化还原竞争模式是扫描探针和样品表面会竞争性的对介于二者之间的同一反应物发生电催化反应(图1G),根据扫描探针测得的电化学信息可以了解对方样品对于反应物的电催化性能(具体信息见后).由于不同工作模式的多元化发展,SECM在电子转移动力学[13-15]、生物工程[16-18]、防腐领域[19-21]、多相催化和光催化[22-24]以及液/液和液/气界面[25-28]研究领域都找到了自己的应用.
2扫描电化学显微镜在氧还原反应研究中的应用
氧化还原竞争模式是2006年Schuhmann课题组为研究各类金属催化剂的氧还原活性和起始电压而发展的[29],其最初发展目的是最大程度地降低由于样品的大背景电流对扫描结果敏感性带来的影响.其工作原理是给扫描探针一个脉冲电压,使反应物的产生和生成物的收集都发生在扫描探针上(图2A).脉冲电压主要包括:1)在基础电压条件下,任何电解液中的背景过氧化氢可以发生氧化生成水;2)之后给扫描探针一个可以水解的极化电压,在这个电压下水可以电解在扫描探针和样品之间的局部区域生成氧气,目的是为了增加溶解氧的浓度,防止溶液中的溶解氧很快在样品的高极化电压条件下被还原用尽,致使由于氧浓度的限制无法正确比较各类不同催化剂的氧还原催化性能;3)最后给探针一个可以发生氧还原的极化电压,而在这个步骤,扫描探针和样品可能产生竞争,对溶解氧同时进行催化还原反应.当样品的极化电压较小的时候,样品对氧还原不显示催化活性,因此原来溶解在电解液中的溶解氧和前一步探针脉冲条件下水解生成的氧气就只在探针表面发生还原反应,而当样品的极化电压负增长的时候,样品开始对氧还原反应显示出催化活性,因此,在氧浓度一定的条件下,一部分氧被样品催化还原,而更少量的氧在扫描探针表面发生还原反应.根据扫描探针检测的氧还原电流,可以评估样品氧还原催化性能的好坏.探针测得的氧还原电流越低,说明样品的氧还原能力越强.尽管施加在扫描探针上的脉冲电压可以局域水解析氧,但在随后给定的脉冲电压下,溶解氧在被样品和探针消耗还原的同时,也很容易快速地向外扩散,氧气也会在很短的时间内消失殆尽.因此,在什么时刻确定最优电流的选取以确保最优图像的生成就极为重要.基于这个考虑,该工作模式区别于其它工作模式的另外一个特点即为不只是在脉冲电压的最后时刻检测电流,而是在整个氧还原的最后脉冲电压过程中不同时段即时检测100个电流值(比如0.3s的脉冲电压过程中,均匀检测100个电流值,即为每0.003s检测一个电流).检测软件的提高,使得SECM可以更敏感的比较不同时段测得的样品氧还原性能,区分不同催化材料或同一催化材料的不同区域在催化氧还原过程中的细微不同.该工作模式最初应用在检测通过脉冲电化学沉积法制备的贵重金属铂和金的催化剂的氧还原性能研究中.燃料电池中的氧还原反应可以经过4个电子的转移生成水(I)或是2个电子的转移生成过氧化氢(II),而形成的过氧化氢可能继续发生2个电子的还原生成水(III)或者化学分解生成水和氧气(IV),甚至是单纯吸附于样品表面.这直接影响了氧还原过程的电子转移数以及燃料电池的整体操作效率.因此,催化剂的选择性是表征氧还原催化材料性能的一个重要指标.为此,Eckhard等进一步提高了氧化还原竞争工作模式,在扫描探针原有的用于检测氧还原电催化性能的脉冲后又添加了一个脉冲电压(图2B).前两步的脉冲与检测氧还原性能之前的电压一致,目的是为了保持相同的电解质溶解氧背景,之后跟随的为可以氧化过氧化氢的电压.在这一步骤,如果样品在催化氧还原的过程中生成了过氧化氢,将会很快地扩散到扫描探针并被探针收集发生再次氧化反应.实际上这个步骤的工作模式为传统的样品产生-探针收集模式.通过合理地把氧化还原竞争模式和产生-收集模式相结合,有效地探究了各类催化材料在电催化氧还原过程中的选择性[。作者利用电泳法在传统的SECM扫描用玻璃炭载体上施加正电压,通过引入含有电负性的碳纳米管进一步提高了催化剂载体的比表面积,之后再利用SECM的步进系统固定水珠电解池(Droplet-Cell),在碳纳米管改性的玻璃炭上利用电化学法沉积了各类金属(铂、金、铑、钌)及其共沉积金属催化剂,利用氧化还原竞争和产生-收集二者相结合的工作模式研究了各类催化材料在中性溶液中的氧还原反应的起始电压、催化性能和选择性.同时在金属沉积的过程中记录了库仑电荷转移量,通过计算知道金属的沉积量,之后半定量地比较了催化剂在不同担载量的情况下的不同的氧还原性能,结果显示催化剂的担载量对于催化活性有着重要的影响[31].
图3代表性地展示了SECM的氧化还原竞争模式和样品产生-探针收集模式共用以探究不同贵重金属催化剂对于氧还原反应的活性和选择性的检测[31].在不考虑担载量的情况下,贵重金属金相比于其它贵重金属催化剂显示了更好的氧还原电催化活性,但选择性相对较差,更易在氧还原过程中发生2个电子的转移生成过氧化氢.Okunola等利用脉冲法在玻璃炭载体上电沉积了各类金属卟啉(锰、铁、钴卟啉)并利用氧化还原竞争和产生-收集双工作模式对其在中性溶液中的氧还原的催化性能和选择性作了比较,结果显示锰卟啉有着更好的氧还原性能[32].Guadagnini等把氧化还原竞争工作模式应用到了普鲁士蓝的催化还原过氧化氢的检测中[33].Nagaiah等利用循环伏安法在玻璃炭载体上电化学沉积了铂、银及在不同金属盐溶液浓度条件下电沉积了铂和银共沉积金属,通过利用氧化还原竞争的工作模式研究了其对于氧还原的电催化性能,并与旋转圆盘电极的检测结果进行了比较,发现以铂和银金属离子溶液摩尔浓度比为2:1条件下共沉积的金属催化剂有着最优的氧还原催化活性[34].之后,又利用常电压法在石墨电极上共沉积了钯和铂以及钯和金,探究了不同摩尔比溶液组成的共沉积金属在中性溶液中的氧还原电催化活性及生成过氧化氢的选择性,结论指出含钯盐的溶液摩尔比浓度越高,越有利于氧还原在之后的共沉积金属上发生4电子的转移过程.由于部分共沉积金属催化剂的优良的氧还原选择性,可以被用作检测过氧化氢的生物传感器,敏感性可达102nA•(μmol•L-1)-1[35].Maljusch等随后利用氧化还原竞争工作模式研究了单质金属铂在盐酸溶液下的氧还原性能,通过研究发现金属铂并没有显示任何氧还原的性能,这是由于氯离子的存在使得金属铂在扫描探针脉冲电压的施加过程中被刻蚀发生氧化反应,溶解在电解质里.为进一步提高性能,利用脉冲法电化学共沉积了铂和银金属,探针在一定脉冲电压下,可使银发生氧化在共沉积金属表面形成一层氯化银沉淀,虽然反复的脉冲电压可以使得氯化银再次部分被氧化,但是不溶银盐的反复沉积存在大大提高了共沉积金属在盐酸溶液中的氧还原性能[36].Kulp等首先利用化学还原法制备了贵重金属金与商业炭黑(VulcanXC72)共混的催化剂,之后直接滴涂在干净的玻璃炭表面,再利用水珠电解池脉冲法电化学沉积贵重金属铂,对样品局部区域进行了改性,制备了铂壳-金核催化剂,之后利用氧化还原竞争,工作模式一次性地探究了金/炭黑、铂壳-金核/炭黑和金属铂在中性条件下对于氧还原的催化活性,结果显示铂壳-金核/炭黑有着最优的氧还原催化性能[37].Schwamborn等利用SECM的直接工作模式,在玻璃炭表面电化学沉积了铁金属颗粒,通过化学气相沉积法在玻璃炭表面局域直接催化生长出碳纳米管,改性了玻璃炭微区的表面性能.之后利用水珠电解池电沉积金属铂进一步局域改性了碳纳米管/玻璃炭,通过氧化还原竞争工作模式研究显示在中性溶液中铂/纳米管比碳纳米管有更好的电催化氧还原的活性[38].Kundu等在碳布上利用化学气相沉积法首先在较高温度下催化生长碳微米管,之后在较低温度下二次催化生长碳纳米管,最后利用电化学沉积方法电镀沉积了铂金属纳米颗粒.利用氧化还原竞争工作模式考察了铂/碳布与铂/碳纳米管/碳微米管/碳布在中性条件下的氧还原反应的不同催化性能,明确指出了经过两次改性催化生长碳纳米管和微米管的碳布可以更均匀的分散金属催化剂颗粒,并在同样电沉积参数的条件下负载更多的金属催化剂颗粒,因此有着更优越的氧还原催化性能[39].Dobrzeniecka等利用氧化还原竞争的工作模式研究了诸如多壁碳纳米管、钴原卟啉以及钴原卟啉与多壁碳纳米管复合的催化材料在中性条件下的氧还原电催化性能,同时与样品产生-探针收集工作模式共用研究了这些样品氧还原过程中过氧化氢的生成情况,结果表明,过氧化氢为多壁碳纳米管催化氧还原过程中的终极产物,而钴原卟啉的存在有助于过氧化氢进一步化学分解为氧气和水[40].Maljusch等把扫描开尔文探针技术与SECM集成联用,其优点在于一方面可以在任意大气条件下等距离检测样品的局域接触电位差,另一方面可以之后随时添加任意电解液,并对样品的电化学性能开展研究.文章里主要以固定在氧化硅表面的铂和钨薄膜作为研究对象,在对其局域接触电位差进行研究的同时,利用SECM的氧化还原竞争模式探究了两类薄膜对于氧还原的电催化活性,验证了SKP与SECM技术集成连用的可行性[41].之后又以铜原子改性的铂(111)薄膜作为研究对象,再次肯定了SKP与SECM技术集成连用可以更有效地探究样品表面性能与电化学行为之间的构效关系。Schaefer等进一步提高了SECM的基础仪器,使其可以在不同操作温度条件下(0oC~100oC)研究各类催化样品的不同催化活性,其中包括碳载铂催化剂在酸性条件下对于氧还原的催化活性和选择性,结论指出,随着操作温度的增加,催化剂的活性有所增强[43].此外,随着对于扫描分辨率要求的不断提高以及排除样品的物理形貌对于电催化性能的影响,SECM剪切力恒定距离模式也被应用于粉末状的氧还原催化剂的研究中[44].
3扫描电化学显微镜在水解析氧反应研究中的应用
水电解析出氧气是工业氢气大生产中的一个非常重要的电化学过程,在高电压的水解析氧过程中可能同时发生一些副氧化反应.因此,研究水解析氧的电催化过程要比氧还原反应更为复杂.如果利用传统电化学方法(如线性扫描法等)直接在样品上施加电压并对氧化电流进行监测,很难排除在高电压条件下可能产生的副氧化反应(可能来自于样品本身的自氧化或其它电化学氧化过程)对于水解析氧反应起始电压的研究造成的干扰.Maljusch等利用SECM的扫描探针作为探测器,采用了SECM的样品产生-探针收集模式,在给样品施加不同的阶跃式恒压水解析氧的同时,给扫描探针施加一个可以氧还原的恒电压,通过选择性的检测扩散到扫描探针表面的氧气量,排除了其它副氧化反应可能带来的干扰,探测了样品电极的水解析氧的真正起始电压[45].Botz等利用SECM的剪切力恒定距离模式更精准地排除了样品的物理形貌对于起始电压检测所带来的影响,更高分辨率地探究了粉末状的氧化钌和钙钛矿催化样品的水解析氧起始电压[46].由于非导电性的气泡在催化电极表面的连续产生和生长,使得电极的催化活性表面定期的、不定期的或永久性的被气泡覆盖,阻碍了催化电极活性位点的暴露,进而抑制了宏观动力学,在无形之中降低了整个能源转换存储系统的操作效率,并增加了所需能源消耗.与此同时,由于氧气泡的大量生成,也可使催化电极的物理形貌和化学组成随着时间的推移发生变化.因此,研究氧气泡的成核、生长及脱附释放过程,是考察水解析氧催化材料性能的重要因素.Zeradjanin等在研究工业电解氯气的过程中开发了SECM的一种新的工作模式,即噪音模式,利用扫描探针作为传感器,极近地固定在氯气电解电极上表面的某一点,之后采用样品的产生-探针收集工作模式,在扫描探针施加一个可还原氯气的恒电压,收集样品产生的氯气、记录氯气的还原电流.然后对测得的氯气还原电流进行数学的快速傅里叶变换,计算出介于扫描探针和参比电极之间的氯气泡在释放过程中对于溶液电阻的扰动变化频率[47].
此工作模式很快被应用到水解析氧电极的研究中.通过对有裂痕和无裂痕工业电极样品的研究,发现有裂痕的水解析氧电极更易在水解析氧过程中产生气泡且有规律地从样品表面脱附.这是因为拥有窄小微孔和缝隙的水解析氧电极可以抑制氧气泡在孔缝中的进一步长大,从而使小氧气泡在形成的过程中更快脱附,有助于水解析氧反应活性位域的及时暴露.研究结果明确指出了电极的形貌结构对于水解析氧电催化过程的重要影响[48].初始的噪音工作模式是把扫描探针固定于样品表面的某一点,并且控制参比电极尽量远离扫描探针,以求获得介于扫描探针和参比电极之间的工业样品的宏观的水解析氧动态过程信息.为更加微观地探究样品表面的不同位域的水解析氧性能,尤其是氧气泡释放对于电极催化性能带来的影响,同时体现SECM的高分辨率扫描特性,作者等在进一步提高此工作模式的基础上提出了一个全新的利用SECM研究气体逸出电极的新概念,即把气泡释放的频率与振幅信息相结合,明确气体真正的氧气泡释放的催化活性位域分布以及更加准确的探究气体形成和释放过程中的动态性能.实验首先把微小的参比电极与扫描探针非常靠近地并排固定在SECM的步进器上,以确保二者之间的距离在扫描过程中保持恒定,排除溶液阻抗因二者距离的改变而产生变化.与此同时,利用穴电极固定了商业购买的氧化钌粉末作为研究样品,并对其施加不同的水解析氧极化恒电压.通过采用SECM的样品产生-探针收集模式对样品进行二维扫描,在扫描探针表面测得的氧还原电流可以说明样品局域微区的水解析氧的电化学活性.而通过对每一检测点的扫描探针的氧还原电流进行数学的快速傅里叶变换,不仅可以获得准确的氧气泡释放的活性位域分布,而且可以明确氧气泡的释放频率、释放强度以及可能的释放周期(定期释放、不定期释放、永久性吸附在样品表面).通过同时分析比较传统的SECM的样品产生-探针收集模式测得的样品水解析氧性能的图像与数学处理过的氧气泡释放分布图,可以明确样品的真正水解析氧活性位域(图4).通过对同一样品连续地进行二维扫描,也可以了解样品的水解析氧的稳定性.而最终对工业水解析氧电极的扫描,更进一步证明了利用SECM研究气体逸出电极新概念的有效性[49].
4扫描电化学显微镜在双功能氧还原和水解析氧反应研究中的应用
随着一体式可再生燃料电池和可充放电金属空气电池的出现,制备可具备催化氧还原和水解析氧反应性能的双功能催化剂以及研究其双功能电催化性能成为近年研究的重要内容.通过对SECM不同工作模式的联用,作者近期研究了氧化钴、氧化镍分别与氮掺杂炭黑复合的双功能催化材料以及商业氧化镍样品的氧还原和水解析氧的性能.通过氧化还原竞争工作模式研究了各类催化剂的氧还原催化过程中的起始电压和催化活性,通过与样品的产生-探针收集工作模式共用探究了双功能催化剂的氧还原催化过程中生成过氧化氢的选择性,利用样品产生-探针收集工作模式探究了水解析氧过程的起始电压和催化活性.在利用样品产生-探针收集工作模式与样品的线性扫描电位分析法联用的同时,排除了水解过程中可能产生的副氧化反应,利用扫描探针作为探测器选择性的探究了样品水解析氧过程产生的氧,确定了水解析氧的真正起始电压.而通过对扫描探针氧还原电流的实时监测,更观察到了在水解析氧反应发生之前扫描探针和样品之间的氧浓度的变化,进一步推测了样品可能发生的过渡氧化过程.值得一提的是,通过对SECM软件的提高,相关性能表征可以一系列地先后连续进行[50].
中图分类号:TM914.4 文献标识码:A 文章编号:1007—9599 (2012) 14—0000—02
一、太阳能电池概述
伴随着经济社会的不断快速发展,经济增长对于环境污染的问题也变得越来越严重,因此基于可持续发展理念来进行工业生产、服务提供等成为当今世界经济发展的主旋律,而这也使得经济环保技术与工业生产相结合的理念深入人心。另一方面,在资源有限的情况下,如何有效利用现有资源,并不断开发出对新资源的运用也是摆在可持续发展理念上的重要考虑对象。基本看来,目前人们普遍认为对于太阳能的有效运用是解决能源危机、环境问题的最有效的途径。太阳能资源不仅具有清洁型能源的特征,而且其存在的长期性也能够解决人们对于能源的需求问题,太阳能电池是对于太阳能运用的最有效工具之一。太阳能电池已经经历了多个阶段的发展,其基本原理在于对半导体二极管的运用,将太阳所辐射过来的光波经由光伏作用转变为电能,为人们所用。半导体二极管能够在太阳光照射到其表面时,将太阳光加以吸收,并转化为光子能量,将自身所带的电子激发到导电带部分,最终形成具有正的电极的空穴,从而演进为光生载流子。在形成光生载流子之后,其能够在二级管内发生分离,而电子也相应的发生位置变化,最终带来空穴发生变化,产生具有负极的电极。正负极电荷的不断聚集,就演变为光伏效应,产生电压。因此,太阳能用的半导体二极管秩序在已经形成的两极进行线路连接,就可以将形成的电能导出。尽管太阳能的发展种类很多,但却普遍存在光电转化效率不高的状况,而这在军事领域、航天领域发展当中难以起到自身应有的作用,而提升光电转化率也成为太阳能研究的焦点所在。光电转化效率的研究多聚焦于太阳能材质的改革、对于元器件进行创新等方面,以增加太阳能电池对于阳光的吸收力度,减少阳光在太阳能电池中的传播距离等,最终提升光转电效率。当然,关于太阳能电池的研究十分广泛,而薄膜太阳能电池也逐步发展成为当今太阳能电池研究的最重要区域。
二、薄膜太阳能电池的发展及特性
(一)薄膜太阳能电池的发展
薄膜太阳能电池,顾名思义,其是在塑胶、玻璃或是金属基板上形成可产生光电效应的薄膜,厚度仅需数μm,因此在同一受光面积之下比硅晶圆太阳能电池大幅减少硅原料的用量。薄膜太阳能电池并非是新概念的产品,实际上人造卫星就早已经普遍採用砷化镓(GaAs)所制造的高转换效率薄膜太阳能电池板(以单晶硅作为基板,转换效能在30%以上)。不过,一方面因为制造成本相当高昂,另一方面除了太空等特殊领域之外,应用市场并不多,因此直到近几年因为太阳能发电市场快速兴起后,发现硅晶圆太阳电池在材料成本上的局限性,才再度引起为产业研发的关注,目标则是发展出材料成本低廉,又有利于大量生产的薄膜型太阳能电池。自2006下半年以来,因全球太阳能市场需求成长,造成硅原料供应不足、硅晶太阳能电池及模组生产成本水涨船高。而薄膜太阳能电池因具有轻薄、低成本、可挠曲、多种外观设计等优点,成为继硅晶太阳能电池之后,被认为是当前最具发展潜力的太阳能技术。
(二)薄膜太阳能电池发电原理
薄膜太阳能电池,是以pn半导体接面作为光吸收及能量转换的主体结构。在基板上分别涂上二种具不同导电性质的p型半导体及n型半导体,当太阳光照射在pn接面,部份电子因而拥有足够的能量,离开原子而变成自由电子,失去电子的原子因而产生空穴。透过p型半导体及n型半导体分别吸引空穴与电子,把正电和负电分开,在pn接面两端因而产生电位差。在导电层接上电路,使电子得以通过,并与在 pn 接面另一端的空穴再次结合,电路中便产生电流,再经由导线传输至负极。从光产生电的过程当中可知,薄膜太阳能电池的能量转换效率,与材料的能隙大小、光吸收系数及载子传输特性相关,因此厂商就提升转换效率的研发方向出发,往往也从材料选用、镀膜方面著手。
(三)薄膜太阳能电池发展的特征
首先是较高的生产成本。除了转换效率造成薄膜太阳能电池无法普及外,昂贵的建厂成本,往往也是令厂商却步的原因。以建一座30MW的太阳电池工厂为例,硅晶太阳电池的投资成本约4000~6000万人民币,而薄膜太阳能电池则为其成本的5~10倍不等,价格差别如此之大,在没有雄厚资金注入的情况下,特别是在目前全球经济不景气的环境下,厂商更难获取充裕的资金,因此无法建立相应的厂房设备。
其次是原料供应充足。在镀膜部分,非晶硅太阳能电池所需的硅镀膜亦只需1~2μm,厚度仅为硅晶圆的1/100,当硅料短缺时,可节省较多的材料费。而CIGS所需的硒、铟及CdTe的碲虽为稀有金属,但因全球对此类原料的需求量仍低,故不存在缺料问题。
最后是与载体做造型整合。由于薄膜电池非使用结晶硅做基板,因此不会受到晶圆尺寸大小限制,故容易进行大面积及客制化生产。加上有些基板具有轻薄、可透光且可挠的特色,因而增加薄膜太阳能电池造型设计的弹性空间及应用范围,例如,可结合商业设施、大楼及住宅,融入遮阳板、玻璃帷幕及屋顶等进行相关设计。
现如今,高科技术的飞跃式发展,也使得人们对于材料性能、使用功能等方面提出了更高层次的要求,而如何才能有效延长仪器设备中零部件的使用寿命,进一步提高化工机械整体的经济性呢?这一问题也成为了现代化工业十分关注的内容。笔者在多年实践工作观察中发现,大部分的零件失效通常都是因为其表面发生损坏之后,逐渐向零件内部扩散,最终导致零件受损严重,同时也对机械设备的使用寿命造成了较大的影响。为此,基于这种情况下,越来越多的化工生产企业开始引进了先进的表面强化技术,以此来改善化工机械的使用性能和使用材料,取得了十分理想的应用效果。
1 表面强化技术概念及意义
实际上,所谓的表面工程主要是通过利用一些物理化、或是化学性质的机械制造工艺,在零件表面增加一些特殊材料成分,以此来改善零件表面的使用性能,从而充分保障产品生产质量。其中,在这一过程中,需要具体经过表面处理、加工、改性等多个工作流程,而表面强化技术作为表面工程中主要的技术手段之一,更是改善零件表面性能、完善组织结构的核心内同。在实际的应用中,表面强化技术需要借助各种加工工艺降,以此来改善材料表面硬度、耐腐蚀性、强度等多方面的使用性能。并且,这种新型的化工机械技术还有利于降低能源消耗、节约环保的优点,具有显著的经济效益。而自从21世纪快速到来以后,一些电子束、激光束技术逐渐进入到工业表面处理领域中,得到了十分广泛的应用,在后期经过了不断的改进与完善之后,也使得表面处理技术水平取得了较大的提升,逐步区域成熟,形成了相对完善的表面工程技术系统,这种表面工程学在推动各领域行业科学技术发展的同时,也促使表面工程技术本身价值得以最大化的展现与发挥。
2 表面强化技术的原理、特点及研究现状
2.1 化学热处理
化学热处理是利用各种化学反应和物理反应方法来改变材料表层的化学成分和组织结构,以得到比基体性能更好的热处理工艺,它主要是将外来元素的固态扩散渗入到基体表层,与基体界面发生界面反应,包括了3个过程:化学渗剂的分解过程、活性原子或离子的吸收过程和被渗人元素原子不断向内部扩散的过程。不同的渗层分别用于提高零部件的抗腐蚀、耐磨与抗疲劳能力,在改善材料的疲劳性能、耐腐蚀能力与抗摩擦磨损能力方面,尤为显著。常见的化学热处理方法有渗碳、渗氮及碳氮共渗等。
采用渗碳技术处理20CrMnMo钢,对其磨损性能和接触疲劳性能进行了研究,发现渗碳层的硬度较传统工艺提高了10%,耐磨性能提高了32%,接触疲劳寿命得到了大幅提高。
2.2 表面形变强化处理
一般来说,表面形变强化处理技术通常都会使用相关机械加工工艺对材料表面进行改性,使其产生塑性变形,或是高速冲击等等,这样有利于增强材料表层微观组织结构的强度,促使表面应力分布更加均匀。而且,这种加工方法非常绿化环保,实际操作起来十分方便,能够很好的提高材料抗腐蚀能力、以及抗疲劳程度等等。其次,表面形变强化技术主要的工作原理是对表层中含有的晶粒进行细化,使其能够发生高密度的错位,以此来引入剩余的压力与硬度。其中,滚压、机械喷丸都是比较常见的方法。相关技术人员在对AZ31镁合金进行表面处理时,采用了高能喷丸技术,他们发现AZ31镁合金在喷丸完成之后,其材料表面形成了较薄的纳米层,而经过机械喷丸的试样腐蚀效率明显下降。但是,其材料表明硬度、耐磨性能方面取得了较大的改善。也有一些技术人员采用机械喷丸技术对TC4钦合金进行了表面处理,重点是对其抗疲劳性进行了调查研究,他们发现在喷丸以后,试样的抗疲劳性能相对于基体来说,提高了15%。
2.3 表面涂层处理
表面涂层处理就是采用化学或物理方法(化学气相沉积、物理气相沉积等)在材料或零部件表面被覆一层与基体材料不同的极薄膜层,它能够适应各种苛刻环境和技术对材料的特殊要求,是制造业最为活跃的技术领域,但该方法工艺复杂,且薄膜与基体的结合强度较低,容易脱离。涂层技术能够显著提高工件的抗腐蚀能力和耐摩擦磨损性能。
3 表面强化技术在化工机械关键零部件中的应用
表面工程是表面经过预处理后,通过表面涂覆、表面改性或多种表面技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状况,以获得表面所需性能的系统工程。已经在航空航天、航海、化工机械及电子等行业领域得到了广泛的应用,用来提高了零部件的耐腐蚀性能、抗疲劳性能和耐磨损性能。表面强化技术在化工机械领用的应用具有实际意义。
压缩机是化工机械行业常用的设备之一,是用于气体增压输送的通用机械。在工作工程中其零部件,如轴承、齿轮、汽缸壁及阀片等,由于不良和工作环境的苛刻性,容易导致严重的摩擦磨损和应力集中,从而产生磨损破坏及疲劳破坏等。采用表面强化处理这些零部件,不但可以显著提高表面硬度,改善耐磨性能,从而降低工件表面磨损,而且通过晶粒细化提高其疲劳性能。温爱玲采用机械喷丸技术处理阀片,对其疲劳性能进行了研究,发现喷丸后在阀片表面产生了较大的残余压应力、硬度和高密度位错,这些有益效果抑制了裂纹的萌生和扩展,显著提高了阀片的疲劳寿命。
结束语
综上所述,可以得知,表面强化技术能够有效改善化工机械的耐腐蚀性能、抗疲劳性能等多种的综合性能,同时还可以大大提高设备零部件的强度和硬度,有利于延长化工机械的使用寿命,这样也为化工企业节省了一笔不小的检查维修成本费用。因此,我国化工业应该加大对表面强化技术的应用,严格按照规范操作流程进行工件表面的强化处理,促使化工机械整体性能得到最优化的改善,始终处于良好的运行状态,为企业创造更多的经济收益。
参考文献
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)15-0164-03
化学电源是将化学能转变为电能的实用装置,是高等学校本科生《物理化学》课程电化学一章重要的内容之一。由于化学电源已经进入人们的日常生活,因此学生能够从亲身的体会感受到化学电源的重要性。化学电源主要包括一次电池和二次电池。一次电池是指电池中的电化学反应只能进行一次放电反应,而不能进行充电。二次电池即蓄电池,指的是电池中的电化学反应能够进行可逆的充放电反应,而且充放电过程可以进行多次,即电池具有较长的寿命。一些新型的二次电池,如燃料电池、锂离子电池和太阳能电池越来越受到人们的重视。因为这些新型的二次电池具有较高的化学能到电能的转换效率,而且还具有环境友好、电池寿命长以及能量密度高等优点,在民用、军事以及航空航天等领域得到广泛的应用[1]。
浓差电池在《物理化学》课程我们每年都会讲述,但这类电池由于没有使用化的器件,没有受到同学们的足够重视。往往在课程结束之后,同学们对其他的化学电源有很深的印象,但是对浓差电池一无所知。假若一个电池中总的反应是一化学反应,我们称这类电池为化学电池。若电池中,总的过程仅仅是一种物质(包括单质或离子)从高浓度状态向低浓度状态转移,这类电池我们称之为浓差电池。简而言之,浓差电池之所以能够对外输出电能是由于电池体系中存在物质的浓度梯度。浓差电池可以分为两类,即电极浓差电池和电解质浓差电池。电极浓差电池指的是由于电极本身活性物质浓度的差别而引起的电势差。这种浓差电池中只包含一种电解质溶液。电解质浓差电池指的是由于电池中电解质浓度的差异所引起的电极电势的差异。这种浓差电池中包含至少两种不同浓度的电解质溶液,而且电极电势的大小与电解质溶液的浓度有关。实际上,浓度梯度是自然界生物体中的一个普遍存在现象。细胞膜内外的电解浓度存在差异。因此,细胞内外保持一个固定的膜电位,这个膜电位是生命的特征,失去膜电位意味着生命的结束。
能源是关系到人类社会发展的最主要问题之一。目前全球大部分的能量需求来源于化石燃料。由于化石燃料具有不可再生性,最终必将导致其枯竭。而且化石燃料的大量使用也将会导致严重的环境污染。因此,有关于新型化学电源的研究越来越受到人们的重视。浓差电池这一古老的原型器件也被推向了研究前沿。普遍的观点认为自然界中存在大量的浓度梯度。如在黄河、长江及其他河流的入海口就存在海水与淡水之间的盐(如氯化钠、氯化钾等)的浓度梯度。如果能够将这些储存在浓度梯度里的化学能转换为电能,就能够为我们的社会提供大量能源。美国和以色列等国家非常重视浓差电池的研究。中国、瑞典和日本等也开展了一些研究。总体上,有关于浓差电池的研究仍还处于实验室实验水平,离大规模应用还有漫长的路程。因此,本论文主要回顾物理化学中浓差电池的基本概念以及近期国内外在浓差电池领域的研究进展。希望同学们能够对浓差电池的未来坚定信心,如果将来有可能,积极投身到浓差电池的研究中去。
一、《物理化学》中浓差电池的概念与实例
从电动势的表达式我们可以看出,当Pt电极所负载的氢气压力相等时(即p1=p2),电池输出的电动势为0。当p1≠p2时,形成浓差电池。当p1>p2时,E>0,说明氢气压力大的Pt电极为电池的负极,压力小的Pt电极为电池的正极。当上述浓差电池被短路时,我们来理解一下电池中电子以及氢离子的运动方向。氢气在负极上发生氧化反应产生氢离子,电子从负极转移到正极上。负极上产生的氢离子在溶液中扩散到正极表面,被从负极上转移来的电子还原,产生氢气。因此上述浓差电池在工作的时候,负极氢气的压力会逐渐降低,正极氢气的压力会逐渐升高。当两侧氢气压力相等的时候,电池无法输出电能。
2.电解质浓差电池。电解质浓差电池的电势差是由于电池中电解质浓度的差异所引起的。这种浓差电池中包含至少两种不同浓度的电解质溶液,而且电极电势的大小与电解质溶液的浓度有关。从电动势的表达式我们同样能够看出,当两个KCl溶液的浓度相等时(即c1=c2),电池输出的电动势为0。当c1≠c2时,形成浓差电池。当c1>c2时,E>0,说明氯离子浓度大的一侧为电池的负极,氯离子浓度小的一侧为电池的正极。当上述电解质浓差电池被短路时,我们来理解一下电池中电子和氯离子的运动方向以及电极上物质的变化。首先,我们看负极上的反应。在负极上,溶液中的氯离子和电极上的银发生反应生成氯化银,同时产生电子。电子经外电路转移到正极上。在正极上,电子将氯化银还原成银和氯离子。因此,在电池开始工作时,负极消耗溶液中的氯离子,氯离子浓度降低。正极上的氯化银分解产生氯离子,氯离子的浓度升高。为了达到电中性平衡,负极区氯化钾溶液中的钾离子需要通过半透膜进入正极区。在电池工作过程中,理想状态时负极区的氯离子浓度降低,正极区的氯离子浓度升高,直到两侧氯离子的浓度达到平衡,电池将浓度梯度所储存的化学能全部转换为电能。在电解质浓差电池中,我们需要强调半透膜的重要性。从浓差电池的工作原理我们可知,在上述Ag/AgCl/KCl浓差电池中,理想的半透膜应该具有阳离子选择性,即阳离子的迁移数等于1,阴离子的迁移数等于零。半透膜主要起到了两方面作用。第一,半透膜能够阻止不同KCl溶液之间氯离子的浓度扩散,从而减少了由于浓度扩散所引起的能量损失;第二,由于钾离子能够通过半透膜,因此在电池工作过程中,钾离子能够通过浓度扩散从负极区扩散到正极区,从而保持体系的电中性平衡。通过讨论物理化学中浓差电池的概念我们可以发现电解质浓差电池能够将溶液浓度梯度转化成电能。由于自然界中存在浓度梯度,如海水与淡水之间的盐浓度梯度都属于溶液浓度梯度。因此发展浓差电池,大家最感兴趣的是如何发展电解质浓差电池。而在电解质浓差电池中最核心的部分是具有离子选择性的半透膜。因此,在电解质浓差电池研究领域,大家主要的研究目标就是发展新型的、高通量的、具有离子选择性的薄膜。大家期望尽可能把这种半透膜的工艺简单化、成本低廉化以及工艺简单化。下面主要介绍新型的具有离子选择性的半透膜的研究进展及其在电解质浓差电池上的应用。
二、电解质浓差电池的器件化
如前所述,发展具有离子选择性半透膜是构筑电解质浓差电池的关键。自然界中,最具有代表性的离子选择性半透膜是细胞膜。我们知道细胞是生物体中基本的结构和功能单位,细胞中的新陈代谢活动需要不断地与周围环境进行物质交换。物质选择性地进出细胞是通过细胞膜来实现的。细胞膜上的通道是由镶嵌在细胞膜上的特殊蛋白构成。其独特的非对称结构(锥形结构)能够实现对特定离子的选择性。对于生物体而言,细胞膜对无机离子(如Na+、K+、Ca2+以及H+)的选择性控制,涉及到生命的根基以及某些疾病的机制,比如神经冲动的产生、心脏的节律性跳动、肌肉细胞的收缩以及能量的生成等。
通过学习细胞膜的结构,我们就能开发出新型的离子选择性半透膜。例如Apel等在聚对苯二甲酸乙二醇酯(PET)表面通过粒子轨迹优先化学刻蚀的技术构筑了结构非对称的纳米通道。通过在纳米通道表面形成负电荷,实现了阳离子从纳米通道的小孔端向大孔端方向的定向传输,得到了具有阳离子选择性的半透膜[2]。半透膜的离子选择性取决于纳米通道表面电荷的性质。我们以具有规整孔结构的多孔阳极氧化铝(AAO)为模板,在其一侧制备一层TiO2多孔薄膜,通过煅烧使其结晶得到TiO2/AAO异质膜。然后用化学气相沉积的方法将十八烷基三甲氧基硅烷分子修饰在TiO2/AAO异质膜上得到疏水纳米孔道。通过紫外光照射在纳米通道表面引入负电荷,得到了具有阳离子选择的半透膜[3]。我们还通过采用电化学聚合的方法,在多孔阳极氧化铝(AAO)一侧沉积聚吡咯(PPy)层得到有机―无机杂化的非对称纳米通道。由于AAO和PPy的等电点不同,调节电解质的pH值可以调控杂化纳米通道中的电荷分布,从而使膜表现出不同的离子选择性。另一方面,PPy是一种光敏分子,光照能够调控膜中通道的表面电荷分布,从而调控膜的离子选择性[4]。
很多研究者把新型的离子选择性半透膜应用到电解质。如Gao等人在多孔阳极氧化铝(AAO)一侧沉积介孔的碳层。AAO的孔径为~80 nm,表面带有正电荷。介孔碳的孔径为~7 nm,表面带有负电荷。这种复合膜表现出高的离子选择性。他们以人工海水和河水来提供溶液浓度梯度,得到3.46 W/m2的能量输出。这一值超过了其他商业可得到的离子选择性膜[5]。
我们利用二氧化钛(TiO2)膜制备了一种光诱导的浓差电池。TiO2作为一种被广泛研究的无机光响应材料,具有光催化分解水的能力,光解水过程导致质子和电子的产生和转移。受能够产生跨膜电化学势梯度的质子泵启发,我们构筑了一个基于多功能光响应纳米通道的光捕获体系。在本体系中,铂纳米颗粒修饰的TiO2纳米通道被作为紫外光的捕获天线,利用TiO2与Pt的功函,非对称性驱动纳米通道两侧发生光化学反应产生跨膜电化学势梯度,从而在纳米通道两侧形成了电势差,导致外电路中光电流的产生[6]。
三、结论
浓差电池作为物理化学里的一个古老的、容易被忽视的化学电源,在新能源领域越来越受到人们的重视。在课堂上通过对浓差电池原理及研究前沿的介绍使同学们认识到物理化学在研究前沿中的角色和作用,增强同学们对物理化学的学习兴趣,从而使一门枯燥的课程变得更加生动。而且,浓差电池普遍存在于自然界中,通过课程的学习,同学们会对自然产生浓厚的兴趣,培养他们学习自然、探索自然以及创造新材料的与器件的能力。
参考文献:
[1]傅献彩,沈文霞,姚天扬,侯文华.物理化学(下册)[M].第五版.
[2]Apel,P.;Korchev,Y.;Siwy,Z.;Spohr,R.;Yoshida,M.Nucl.Instr.and Meth. In Phys. Res. B,2001,184,337-346.
[3]Zhang,Q.;Hu,Z.;Liu,Z.;Zhai,J.;Jiang,L. Adv. Funct. Mater. 2014,24,424-431.