时间:2023-07-17 16:35:13
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇交流电动机的应用范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
关键词:交流电机 直流电机 电控系统 故障与维护
一、概述
随着中国经济的快速发展,各种能源的需求量不断加大,为了适应发展的需要,煤炭作为目前中国的重要能源,必须加大自身的产量,这样就造成了原有副井绞车交流电动机的各种弊端暴露出来,为了满足我矿产煤量的不断加大对副井绞车运输能力的需求,现用高速直流电机代替原有的交流电机。直流高速电机具有优良的转矩速率特性并能在大范围内平滑的调速,很好的适应了运输能力增加的需求。
二、交流电动机和直流电动机的简介
1.原副井绞车交流电动机简介
我矿副井绞车原交流电动机型号JRZ1000-12,功率1000KW,总重10700Kg,1987年投入使用。随着我矿的生产能力不断的提高,该电动机在运行过程中出现故障种类很多而且出现故障频率也较高,
电气故障主要有定子绕组单向运行、定子绕组首尾反接、三相电流不平衡、绕组过热等。
2.原副井绞车交流电动机的具体缺点
2.1能耗大、控制方式落后
原副井绞车系统采用高压交流电机切电阻控制方式,提升过程中多余电能通过电阻箱转换为热能。电力资源极大浪费。
原副井绞车控制系统由于控制方式所限速度阶越式变化。提升速度不能由绞车司机控制随意调整,速度不稳定,受负载影响比较大。随着生产任务的不断加大,副井绞车系统工作任务也不断增大,从而使受负载影响大的缺点不断发生。
2.2抱闸系统不完善、维护工作量大
原副井绞车系统的抱闸系统频繁参与绞车减速控制,使闸盘的磨损异常大,不利于闸盘保养和维护。原副井绞车电控系统柜体较多,自动化程度不高、故障率高、噪音大,从而增大了维护的工作量而且不满足生产的增大的要求,影响生产任务的顺利完成,增大了完成单位生产任务所需要的时间。
三、高速直流电动机在副井绞车中的应用效果
经过我矿及运转队专业技术人员的不断研究并且经过我矿领导的审核最终决定用控制更加方便、性能更加优良的高速直流电动机代替原有的交流电动机,并更换了原有的控制系统采用了更先进的自动控制系统,使我矿副井绞车的控制更加的精密、更加的趋于完善。高速直流电动机具有优良的转矩速率特性并能在大范围内平滑的调速,很好的适应了我矿运输能力增加的需求。我矿现副井绞车高速直流电动机为上海电气集团电机厂有限公司生产。
主电动机数据:
主电动机型号:Z710-400型直流电动机
主电动机功率:1250kW,750V;580rpm。
电枢电压:750V,电枢电流: 1773A。
励磁电压:220V。
过载能力:2倍额定电流60秒,切断电流2.25倍额定电流,总重10000Kg。
高速直流电动机具有优良的转矩速率特性并能在大范围内平滑地调速。能够满足我矿生产任务不断加大的需求。电控系统应用方案
1.高压供电系统
提升机房两回~6kV ,50HZ电源分别引自矿井工业场地变电所6kV不同母线段,由两路高压电缆分别引向提升设备的高压进线柜,一路工作,一路备用,故障后手动切换。两路进线互为闭锁。选用GG—1ZF型封闭式高压开关柜,高压开关柜按4台配置:高压进线柜2台:提供双进线电源,电缆下进线;主整流变供电2台。
2.电控系统主回路传动系统
提升机的驱动装置应能够适应提升机的各种工作情况,按照预定的速度和提升要求实现平稳地启动、运行、减速、制动、停车。在整个循环中,应使钢丝绳的振动最小,井口停车必须准确无误误差不超过±20mm。驱动电动机及其供电装置应有足够的过载能力,以适应副井提升负载变化大的特点。最大过载能力不低于额定值的2倍。
调节系统采用SIEMENS 6RA70装置实现数字式速度、电流、位置闭环控制,全数字调节的动、静态技术性能满足提升机四象限运行要求,并满足提升工艺要求的过载能力和安全系数,具有优良的动、静态品质指标。
3.上位监控系统
工控机和彩色终端组成上位机监控系统,监控系统通过与PLC通讯采集数据实现多画面实时监控,多参量数码及曲线显示和记录,各种故障的报警及记录。
监控画面主要有;电控系统构成,系统状态图,速度曲线,电流曲线,图形化安全回路图,当前故障报警,历史故障记忆,故障判断及诊断,生产报表的完整资料。
四、采用高速直流电动机所带来的好处
1.降低了能量损耗
原副井绞车系统采用高压交流电动机切电阻控制方式,提升过程中多余电能通过电阻箱转换为热能。电力资源极大浪费。
副井绞车更换为高速直流电动机电控系统后克服了能耗问题。
2.控制方式得到了提高
原副井绞车控制系统由于控制方式所限速度阶跃式变化。提升速度不能由绞车司机控制随意调整,速度不稳定,受负载影响比较大。随着生产任务的不断加大,副井绞车系统工作任务也不断增大,从而使受负载影响大的缺点不断发生。
副井绞车更换为高速直流电动机电控系统后。高速直流电控系统采用无极调速控制方式,绞车提升过程中,提升速度由绞车司机控制随意调整。加/减速时速度平稳变化。速度不受负载所影响。
3.抱闸系统得到了优化
原副井绞车系统的抱闸系统频繁参与绞车减速控制,使闸盘的磨损异常大,不利于闸盘保养和维护。
高速直流电控系统报闸系统只起到定位作用。不参与速度控制。减小了闸盘的磨损,提高了闸盘的使用率,节约了大量的资金。
4.减小了维护工作量
原副井绞车电控系统柜体较多,自动化程度不高、故障率高、噪音大,从而增大了维护的工作量而且不满足生产的增大的要求,影响生产任务的顺利完成,增大了完成单位生产任务所需要的时间。
中图分类号:U264.91+3.4文献标识码:A
交流电动机调速方法近年来得到了广泛的应用,它的惯量小、结构设计简单、可在恶劣环境中使用,并且维护检修比较方便、容易实现高速化、高压化以及大容量化,还具有非常明显的成本优势。交流电动机调速技术因其具有优质、节电、降耗、增产的特点已经逐渐成为我国电气传动的中枢。
虽然交流电动机调速方法在现实使用中具有明显的优势,但是由于很多企业和部门对于交流电动机调速的方法缺乏明确的判断和认识,对于各种调速方案的使用条件和优缺点认识不够,在使用过程中出现了一系列的问题,不能使各种调速方案的作用得到最大化的发挥。为了避免这些问题的出现和蔓延,也为了进一步提高对于交流电动机调速方法及其控制方案的理解,本文从交流电动机调速的基本方法及其装置入手,对交流电动机的调速控制方法及其 特点进行了详细的分析,并研究了各类交流电动机的调速控制方案的适用场合和条件,为交流电动机调速方案作用的最大化发挥提供了参考和指导。
1 交流电动机调速方法阐述
根据交流电动机的基本转速公式(下式(1)、(2))可以发现只要改变转差率S、交流电机供电率F以及极对数P中的任意一个交流电机的转速就会发生改变,由此引出了三最基本的调节电机转速的方法,即常说的变频调速(改变频率f1)、变转差率调速(改变s)、变极调速(变极对数p)三种调速方式。
同步电动机转速公式:N0=60F/P(1)
异步电动机的转速公式:N=N0(1-S)=60F/P(1-S) (2)
式中: P为极对数;
F为频率;
S为转差率(0~3%或0~6%)。
由于电机供电率F的改变比转差率S和极对数P的改变要简单得多,所以变频调速在实际中比另外两种调速方式的应用要广泛的多,特别是近年来静态电力变频调速器的迅速兴起和发展促使了三相交流电动机变频调速成为当前电气调速的主流。总的来说,交流电动机的调速方法有不改变同步转速和改变同步转速两种方式。基于此,在生产实际中,不改变同步转速的调速方法有应用油膜离合器、液力偶合器、电磁转差离合器等调速以及绕线式电动机的串级调速、斩波调速以及转子串电阻调速。我们还应该注意到仅仅改变电动机的频率不一定能获得良好的变频特性,还需要对对电压做出调整,以便使磁通保持在一个恒定位置。
2各种调速方法及其装置的特征分析
(1)变频调速
变频调速是一种改变同步转速的调速方法,它的主要装置是能够改变电源频率的变频器。一般有两大类变频器:交流-交流变频器以及交流-直流-交流变频器,而我国使用的是后一种变频器。它的主要特点如下表1所示:
表1 变频调速的主要特点
(2)转子串电阻调速
转子串电阻调速的原理是转子串电阻加大了电动机的转差率,因而串入的电阻越大就会使转速越低,对设备的要求比较简单,但是在使用过程中会产生热量。它的主要特点如下表2所示:
表2 转子串电阻调速的主要特点
(3)定子调压调速
定子电压的改变会产生一系列机械特性各异的曲线,进而产生不同转速。但是电压的平方正比于电动机的转矩决定了该方法的调速范围不大。基于此,在实际应用中有人提出了转子电阻值大的笼型电动机或者在绕线式电动机上串联频敏电阻能够扩大其调速范围的观点,并得到了证实。调压调速的核心设备是一个能使电压发生改变的电源,主要有晶闸管调压、自耦变压器、串联饱和电抗器等几种,其中以第一种调压方式为最好。它的主要特点如下表3所示:
表3 定子调压调速的主要特点
(4)串级调速
串级调速是通过在绕线式电动机转子回路中联入可变附加电势来改变电动机转差的一种调速方法。在这个过程中可变附加电势对于转差功率的吸收能力决定了串级调速的程度,并且根据吸收方式的不同,串级调速又可分为晶闸管串级调速、机械串级调速以及电机串级调速三种形式,第一种为最常用的形式。它的主要特点如下表4所示:
表4 串级调速的主要特点
(5)变极调速
该种方法主要是针对笼型电动机而言的,它改变的是定子绕组的接线方式,因此设备要求比较简单。它的主要特点如下表5所示:
表5 变极调速的主要特点
参考文献
[1] 周志敏,周纪海,纪爱华.变频调速系统设计及维护[M].北京:中国电力出版社,2007:76.
引言
油田采油设备中,三相交流电动机的使用占绝大多数,在日常的电气故障处理、更换自控箱等维护工作中,经常出现相序变更等现象,致使三相交流电动机反转,对单向运行的采油机械造成不利,易引发严重的机械事故、生产事故。
1 现状调查
1.1三相交流电动机使用情况
各式各样的抽油设备占孤岛采油厂生产设备的绝大部分,而作为提供动力的三相交流电动机更是广泛应用,平均一个注采管理站能达到100余台,确保三相交流电动机正常运转意义重大。
1.2游梁式抽油机的结构特性
游梁式抽油机的工作原理是通过电动机提供旋转动力-减速箱进行二级减速(高速旋转变为低速旋转)-曲柄连杆机构、游梁、驴头等装置将旋转运动变为直线往复运动-通过光杆带动深井泵将原油从地下采出。
抽油机的减速箱一般为二级减速,内部齿轮的配合有点啮合式、渐开线式等方式,不同的旋转方向,齿轮间的受力面是不一样的。在大负荷下,频繁改变减速箱齿轮转向,易对齿轮造成伤害,影响抽油机减速箱使用寿命。
减速箱两侧的曲柄销子是曲柄与连杆连接的重要部件,工艺设计上存在正扣与反扣的差别,正常工作时,曲柄销子的冕形螺帽不存在倒扣问题,一旦抽油机减速箱齿轮反转,那么曲柄销子反转,冕形螺帽就存在倒扣的危险,极易造成曲柄销子退扣脱出、抽油机翻机的严重事故。
2 电动机工作特性
2.1电动机的种类
孤岛采油厂的抽油机目前广泛采用的是三相交流异步电动机、三相交流同步电动机、高效永磁同步电动机等,直流电动机应用较少。
2.2三相交流电动机转向特性
三相交流电动机对运转方向没有要求,正反两个方向均可运转,现场根据生产设备的要求进行三相交流电动机转向的选择。影响三相交流电动机转向的唯一因素是三相交流电动机旋转磁场的旋转方向,任意改变三相交流电动机电源相序就能改变电动机旋转磁场的旋转方向,使电动机向相反的方向旋转。
3 相关集成模块
3.1 HCF4011四与非门集成电路
HCF4011四与非门集成电路(与CC4011只是生产厂家不同而已可以通用)CC4011是常用的CMOS四输入与非门集成电路,他的内部含有4个与非门,常用在各种数字逻辑电路和单片机系统中,功耗很小, CC4011的逻辑功能和管脚图顺序(如图1)。
3.2CD4027 双J-K触发器
CD4027是包含了2个相互独立的、互补对称的J-K主从触发器的单片集成电路(图3)。每个触发器分别提供了J、K置位、复位和时钟输入信号及经过缓冲的Q和Q反输出信号,输入输出引出端排列与CC4013双D型触发器相似。CC4027可用于性能控制、寄存器和触发器等电路。加在J、K输入端的逻辑电平通过内部自行调整来控制每个触发器的状态,在时钟脉冲上升沿改变触发器状态,置位和复位功能与时钟无关,均为高电平有效。
4 调整器工作原理(相序监视电路、控制电路)
4.1相序监视电路
该三相电相序监视器由相序检测电路、触发控制电路和LED显示电路组成(图4)。
相序检测电路由整流二极管,电阻器、稳压管组成;触发控制电路由四与非门集成电路构成;LED显示电路又四与非门集成电路中的非门D4、发光二极管、晶体管、电阻器构成。
在三相交流电相序正确时,非门D4输出脉冲宽度约3mm的负矩形波脉冲信号,使晶体管导通,绿色发光二极管点亮;若三相交流电相序错误,则D4输出高电平,使红色发光二极管点亮,而晶体管截止,绿发光二极管不亮,从而保证该装置按照正确相序安装。
4.2相序调整调整器控制电路
该电路由电源电路、相序检测电路、控制电路构成。电源电路由电源变压器、整流桥堆、电阻器、稳压二极管、滤波电容组成;相序检测电路由整流二极管、限流电阻器、稳压二极管、六非门施密特触发器构成;控制电路由双JK主从触发器集成电路、电阻器、晶体管、二极管、继电器、交流接触器构成。
工作时,接通电源,通过电源电路降压整流、稳压后为集成模块以及直流继电器提供+12V工作电压。三相交流电压分别经过整流二极管整流,电阻器限流,稳压管消波限幅以及六非门施密特触发器集成电路反向整形、变换为交流电负半周对应的方脉冲信号,分别加至双JK主从触发器集成电路的J、CP、K端。
当输入三相交流电相序为正相序时,经施密特触发器整形后的方波信号便依次滞后120度相位角,在双JK主从触发器集成电路的CP端输入脉冲的上沿到来时,J端为高电平,K端为低电平,Q端输出高电平,晶体管饱和导通,直流继电器吸合,常开触点闭合、常闭触点断开,接触器KM1动作,三相交流电动机正向旋转。
当输入三相交流电的相序为逆相序时。无论怎样的逆相序,双JK主从触发器集成电路的Q端均输出低电平,晶体管无法导通,直流继电器处于释放状态,其常开断开KM1控制电路,常闭接通KM2控制电路,经过KM2倒相序,保证三相交流电动机仍按正方向旋转,从而达到三相交流电动机恒转向的控制(图5所示)。
5 实施效果:
抽油设备绝大部分散布在野外,这是由油田的工作特性决定的,由于自然环境的恶劣、施工时动力电缆误损伤、更换电气设备、雷击、雨雪损害等一系列因素,造成三相电源相序常常产生变化,一旦相序连接错误,又没有被及时发现,很容易造成抽油机减速箱齿轮损坏,缩短抽油机减速箱使用寿命,曲柄销子退扣脱出造成抽油机翻机事故。
采用相序调整器对三相交流电动机控制电路进行改造,保证了电机的恒转向运转,大大增强了抽油机的生产安全性,减轻了现场工人的劳动强度,具有经济、社会双重效益,应用前景广阔。
6 结束语:
创新永无止境,作为一名工人,我唯有不断努力工作、不断努力创新来回报企业,为企业做出更大的贡献!
引 言
电动机是指依据电磁感应定律实现电能转换或传递的一种电磁装置;电动机技术是通过线圈转动产生电磁感应效力使得机器产生转动的动力,形成机械能,这一过程是电能转化为机械能的过程,是将电功率转化为机械能功率的过程。电动机将转化的机械能为人类的生产和生活提供源源不断的动力。随着电动机技术的不断发展,电动机的种类越来越多,这些不同种类的电动机具有不同的性能、特点和作用。根据电动机工作电源的不同,可分为直流电动机和交流电动机。本文就以交流电动机为例,详细的分析电动机故障原因以及维护保养方面的知识。
1.交流电动机的技术原理
交流电动机可分为单相电动机和三相电动机。
1.1单相交流电动机技术工作原理
单相交流电动机是人们生活中十分常见的电动机,在家用电器中得到了广泛的应用,它一般是由一个绕组组成,是通过单相的正弦电流与绕组产生的电磁感应效力,形成电磁场,根据正弦电磁强弱的规则发生变化,形成交变磁场,我们在单相交流电动机的定子部分加入启动的绕组,它和电动机本身的绕组形成九十度的夹角,使得在运动时间和空间中差距两个九十度的电流运转形成两相旋转的磁场,这个磁场为单相电动机提供了旋转的动力。单相交流电动机本身的主体绕组被我们习惯性的称作电动机的工作绕组,而定子中的绕组,被我们称作是启动绕组,主要起到启动单向交流电动机的作用。在某些小型的单向交流电动机中,工作绕组和启动绕组可以互相兑换,但是在大中型单相发电机中,由于所带的负载较大,需要有强大的启动动力,所以启动绕组的线圈的匝数较多,电阻值较大,一旦将工作绕组与启动绕组交换,比较出现反转交换电源这种情况下难以真正启动电动机。
2.电动机的常见故障分析
电动机在现代人们生产生活中使用相当普及,不管是工业生产,还是生活家居就会涉及到它,已经成为生产生活的必需品。电动机在矿山生产使用过程中,由于矿山生产的工作环境和超强的工作时间、也由于年久失修或者用户未按照电动机相关说明书的要求进行合理的操作,难免会对电动机造成损坏,出现故障,下面就电动机在使用过程中经常发生的常见故障进行分析:
2.1电动机过热
(1)电源电压过高、电源电压过低、电源电压不对称、三相电源不平衡导致电动机过热。
(2)负载使电动机过热的原因:
a、电动机过载运行;b、拖动的机械负载工作不正常;c、拖动的机械有故障
(3)电动机本身造成过热的原因:
a、电动机绕组断路;b、电动机绕组短路;c、电动机接法错误;d、电动机接法错误;e、电动机的机械故障
(4)通风散热不良使电动机过热的原因:
a、环境温度过高,使进风温度高。b、进风口有杂物挡住,使进风不畅,造成进风量小。c、电动机内部灰尘过多,影响散热。d、风扇损坏或装反,造成无风或风量小。e、未装风罩或电动机端盖内未装挡风板,造成电动机无一定的风路。
2.2交流电动机不能起动的原因
(1)电源未接通;(2)熔丝熔断;(3)定子或转子绕组断路;(4)定子绕
组接地;(5)定子绕组相间短路;(6)定子绕组接线错误;(7)过载或负载太大;(8)转子铜条松动;(9)轴承中无油,转轴因发热膨胀,妨碍在轴承中回转;(10)轴承损坏。(11)启动电容损坏。(12)离心开关触点接触不良。
交流电动机不能起动因素很多,应根据实际情况及症状作详细分析、仔细检查,不能搞强行多次起动,尤其在起动时电动机发出异常声响或过热时,应立即切断电源,在查清原因且排除后再行起动,以防故障扩大。
2.3电动机带负载运行时转速缓慢的原因
(1)电源电压过低;(2)线圈或线圈组有短路点;(3)相绕组反接;(4)过载;(5)离心开关分断转速高。
2.4动机运转时声音不正常的原因
(1)定子与转子相擦;(2)转子风叶碰壳;(3)转子擦绝缘纸;(4)轴承缺油或损坏;(5)波形垫圈破损;(6)电动机内有杂物。
2.5电动机外壳带电原因
(1)电源线与接地线搞错;(2)电动机绕组受潮,绝缘老化使绝缘性能降低;(3)引出线与接线盒碰壳;(4)局部绕组绝缘损坏使导线碰壳;(5)接地线失灵。
2.6 电动机振动的原因
(1)转子不平衡;(2)轴头弯曲;(3)固定电动机的地脚螺丝松动。
2.7电动机轴承过热的原因[4]
(1)轴承损坏;(2)油过多、过少或油质不良;(3)轴承与轴配合过松走内圆或过紧;(4)轴承与端盖配合过松走或过紧;(5)电动机两侧端盖或轴承盖未装平。
3.电动机的定期检查和保养
为了保证电动机正常工作,除了按操作规程正确使用,运行过程中注意监视和维护外还应进行定期检查和保养。间隔时间可根据电动机的类型、使用环境决定。主要检查和保养项目如下:
(1)及时清除电动机机座外部的灰尘、油泥。
(2)经常检查接线板螺丝是否松动或烧伤。
(3)定期用煤油清洗轴承并更换新油,如有磨损则应更换新的轴承。
(4)定期检查启动设备,看触头和接线有无烧伤,氧化,接触是否良好等。
中图分类号:TM33 文献标识码:A
为提高环境的舒适性, 在电梯、电动车上采用变频器调速,可以改善加速与减速的平滑性,从而可提高乘坐的舒适感。实现自动化,使设备小型化,近几年来,通用变频器在国民经济各部门得到了迅速的推广应用。
一、电器传动国内外发展概况
电器传动是指以各类电动机为动力的传动装置与系统。因电动机种类的不同,有直流电动机传动、交流电动机传动、步进电动机传动、伺服电动机传动、等等。众所周知,直流电动机尽管比交流电动机结构复杂、成本高维修保养费用较贵,但其调速性能很好,所以,在调速传动领域中一直占主导地位。然而,由于电力电子技术的迅速,发展,使电器传动发生了重大变革,即交流调速传动迅猛发展,电器传动交流化的新时代已经到来。
交流电动机与直流电动机相比,有结够简单、牢固、成本低廉等许多点,缺点是调速困难、现在,借助电力电子技术以解决了交流电动机调速问题,交流电动机调速传动已占主导地位。据日本早年统计,1975年交流电动机调速与直流电动机调速之比是1 :3,而到了1985年成了3 :1。近10多年来发展更快。20世纪末,在工业发达国家,交流调速已占主导地位。
纵观交流电动机调速传动发展的过程,大致是沿着三个方向发展的:一个是取代直流调速实现少维修、省力化为目标的高性能交流调速;另一个是以节能为目的的,改恒速为调速,用于交流电气传动中的变频器实际上是变压(Variable Voltage,简称 VV) 变频(Variable Frequency 简称VF) 器,即VVVF.正弦波PWM法(SPWM)是为了克服等脉宽PWM法的缺点而发展来的.它从电动机供电电源的角度出发,着眼于如何产生一个可调频调压的三相对称正弦波电源。
直流可以认为是频率为零的交流,由直流变为定频定压或调率调压交流电的变频器,称为逆变器。
将整流电路、逆变器电路、检测电路、保护电路等集成于一体的功率集成电路(Power Integrated Circute ,简称PIC) 等。
二、步进电动机PWM控制信号生成方法
现代步进电动机控制电路有两种类型,一类是适用于个人计算机(PC)控制的,指令及控制信号通过串行接口传送,也可以通过计算机下装程序后脱机运行.这类控制电路称为I/O主控制器.另一类适用于可编程序控制器(PLC)或单片机控制、指令和数据是通过并行口传输的.这类控制电路称为定位主控制器。
I/O主控制器由CPU及电路够成,本身就是一台计算机,与PC联机,可以使用高级语言编程及调试,进行实时的操作,有的其内部设有EEPROM,并设有有关程序控制指令,一旦将程序装入,可以脱机运行,使系统成本降低。
定位主控制器与通用PLC、单片机够成系统,用于定位点数较少的应用场合,适用于简单、重复性大的工作。
三、工厂使用通用变频器
近几年来,通用变频器在国民经济各部门得到了迅速的推广应用。应用的领域,如果按照负载的种类来分,有如下各类:
(一)风力水力机械类。
1、冷却塔冷却水温度控制,用温度传感器检测出冷却水温度,用以控制冷却风扇的转速(变频调速),使冷却水温自动地保持一定,可节电和降低噪声。
2、制冰机鼓风量控制,在制冰过程中,为了使冰中不要有气泡,以便制出透明冰块,就要改变冷风的风量:在冷冻初期,加大冷风量;而在冷冻的中期和后期,将冷风量将到50%以下,使冰块透明。
3、工厂操作台有害气体排气风机的控制,当一个操作台上有人正在操作,有害气体放出时,操作台上方抽风风道的阀门即打开,同时送出一个调频信号。根据风道阀门开闭的多少调节抽风机的转速。这样既可充分地排出有害气体,又可节能;同时也避免了因风道阀门闭合,使抽风机转速不变而产生的刺耳的尖噪声。
4、水塔水位自动控制,检测水箱水位的高低,调节扬水泵的转速,使水位保持一定。这样既可以防止水箱内的水水箱溢出,又可防止枯水,同时又可以节电。
(二)工作机械类。
1、平面磨床,用变频器驱动平面磨床的磨头电动机。在研磨超硬质材料时,必须高速研磨。这时使用专用高速电动机,要求变频器的输出频率达一百至数百赫兹。使用变频器不但可以方便地获得可调的高速,而且可以提高加工精度。
2、冲压机,传统的冲压机电动机为直流电动机或滑差电动机。改为标准的交流电动机,由变频器驱动后,不但可根据冲压材料的材质、板厚和加工内容,任意地调节冲压速度,而且安全、节电。
3、机床工作台走行装置, 机床工作台走行装置原由变极电动机驱动。改用普通电动机, 由变频器驱动后,可平滑地调速,使操作性能提高,并且使电动机小型化、轻量化。
4、起重机运行小车电动机的控制, 起重机 (行车) 运行小车电动机改用变频器供电驱动后,可平稳地起动和停车,避免因起动和突停造成起吊重物的摆动;可低速移动,使起吊重物正确地定位,同时可降低噪声,电梯也是。.
其它,还有车床、铣床的驱动、离心分离机的驱动、污水处理机械的驱动等等。
四、工厂使用通用变频器的好处
通用变频器之所以得到广泛的应用,究其原因,主要是因为使用变频器后,可以达到以下几个目的:
1、节能:对于风机、泵类等机械,需要按所要求的流量调节电动机转速的,以及对于挤出使用变频器调速机、搅拌机等需要按负载状态调节电动机转速的, 使用变频器后,可以节电节能。可节电49% 。
2、实现自动化:可以提高搬运机械的停车精度;可提高流水线调速控制的精度;加反馈控制环节以控制流量,可实现流量控制的自动化等。
3、提高产品质量:在产品制造业中,使用变频器调速可实现最合适的作业线速度控制, 在加工工业中,使用变频器调速可实现最合适的加工速度等,由此而使产品质量提高。
4、使设备小型化:转速越高,则机械的体积也越小。所以使用变频器调速,提高设备的转速,可使设备小型化,由于软起动、软停止,冲击减小,可削减机械设备的设计裕量,从而也可实现设备的小型化。
5、延长设备的使用寿命:使用变频器可使电动机软起动、软停止,避免对机械的冲击,可以延长设备的使用寿命。
前言
变频器技术自应用以来,便作为交流电动机的调速、节能的重要设备得到广泛的应用与发展,有利于交流电动机在运作过程中节约能源、降低耗材、改善工艺、改善生产环境与提高生产质量等。目前,我国现有变频器节能技术改善了传统的变极调速、直流调速等交流电动机调速技术,提高了交流电动机的高效率、高功率运行,促进变频器在节能方面的发展与应用,成为现代化最为合适的设备调速方案[1]。
1 变频器的节能技术原理
变频器技术是一项具有较强综合性的技术,结合了变频技术与微电子技术,通过控制电动机电源频率的工作方式实现对电动机机械设备的控制。变频技术包括电力电子技术、计算机应用技术等,在确保电动机平稳运行的同时,有效控制电动机的自动加速与减速运行,从而提高电动机的工作效率,降低能源的消耗。此外,变频器技术还具有较强的过流、过压等保护功能,根据实际需求不同主要将变频器节能技术分为软启动节能方式与变频节能方式。
1.1 变频器软启动节能方式
通常情况下电动机都是采用直接启动方式、Y/D启动或者全压启动方式,启动的电流高于额定电流的三到六倍,增加了电网的容量需求量,使启动时会有较大的电流损耗,增加了线路的功率损耗,使电动机设备与供电电网受到严重的冲击,导致电动机自身线路受损,造成电压不稳影响线路中其他设备的正常运行。同时也影响了电动机的使用寿命。为了有效避免这一现象的发生导致的电容增加、能源浪费的现象,可以有效运用变频器软启动节能方式,将启动电流从零开始逐渐升到额定电流值,确保电流在上升的过程中最大电流值也不会高于额定电流值,从而降低了功率损耗,减轻了启动时对电网的冲击与对供电电容的需求,达到节能的目的,同时也延长了设备的使用寿命[2]。
1.2 变频节能方式
在实际生产中如果出现设备容量使用不当,就会出现大马拉小车的现象,造成能量的浪费。因此,使用变频节能方式可以有效避免大马拉小车的现象,有效降低能量的消耗,达到节能的目的。
根据物理学知识,我们可以知道功率、压力与流量三者之间的关系,即压力*流量=功率,压力与流量成反比,流量与功率成正比,而转速与流量、压力、功率三者成正比。当压力一定时,调节转速下降,输出功率也会下降,也就是电动机损耗功率下降。例如一台电动机的功率为55千瓦,将转速调到原来转速的五分之四时,其消耗电量是28千瓦每时,节省电率约为一半。将转速调到原来转速的一半时,其消耗电量为6千瓦每时,节省电率约为百分之九十[3]。
2 变频器常用功能
2.1 变频器过载保护功能
变频器过载保护功能是用以确保电动机在启动过程中不被烧坏,即保护电动机温升在额定范围内。电动机在处于低频率运行时,由于电动机散热能力较差出现严重的发热现象,致使电动机温升超过额定值。通过运用变频器过载保护功能,可以确保电动机在不同频率运行状态下具有不同的保护功能,当电动机处于低频率运行时,有效缩短允许连续运行的时间,从而起到保护电动机的作用。
2.2 变频器升速功能
电动机升速过程是指从一种稳定状态到另一种稳定状态的过渡过程,通常在确保电流值不超过额定电流时,尽量缩短控制升速时间。变频器不仅具有升速、降速功能的设定,还可以通过对升速方式的预置来对不同时段的加速度极性控制的功能。在实际中经常运用的变频器升速方式主要有三种:半S形方式、S形方式以及频率与时间成线性关系。在实际应用中根据环境情况选择变频器升速方式。例如常见的电梯,如果电梯在运行时升速或者降速速度过快,就会使人感觉不舒服,因此可采用变频器s形调速方式[4]。
3 变频器节能应用
目前,变频器节能技术主要应用在我国风机类设备以及泵类设备的变频调速技术,有效降低了能源的消耗,实现了安全、高效生产的目的。变频器节能技术的应用成为我国重点的节能推广技术,得到国家的大力支持与推广。经过长期的实践应用证明,变频器节能技术应用在我国的风机类设备以及泵类设备中的变频调速驱动控制,能够有效降低能源的消耗,达到节约能源的效果。因此,变频器节能技术成为现代生产中最为合理、经济的一种设备变频调速控制技术。
随着变频器节能技术的应用越来越娴熟,交流电动机的变频调速技术逐渐应用到数据机床、泵类、空调器、风机等行业当中。目前,在我国煤矿产业的矿井提升机与采煤机等设备中也开始逐渐推广应用,有效节约煤炭企业的电力能源,提升煤矿机械设备的自动化应用程度,从而提高煤炭生产效率与生产质量,为煤炭企业的安全生产运行起到了良好的促进作用[5]。
4 结束语
变频器节能技术在电动机设备中的广泛应用,提高了生产质量,降低了能量的消耗,达到节约能源的目的。变频器节能技术有效提升了电动机设备的使用效率,减少企业对设备的开支、提高了企业的经济效益,也进一步提高了社会经济效益,对我国能源节约事业的发展具有重要的作用。
参考文献
[1]张向东,钟媛媛,徐甫荣.变频器PID功能在恒压供水系统中的应用分析[J].电站设备自动化技术,2009,24(3):23-24.
[2]黄梦涛,王希娟,冯景晓.基于功率因数的通用变频器节能技术原理及实际应用[J].西安科技大学学报(社会科学版),2009,26(2):156-157.
摘要:三相交流电路广泛的应用于我们的日常生活和生产领域,所以针对三相交流电路的工作情况进行实验很有必要,然而在实验室进行
>> 基于行动导向理念的三相交流电路实验法教学设计 三相交流电路的创新学习方法与实践 智能仪表在三相交流电机智能报警系统中的应用 在三相交流电频率测量电路中一种单片机的模拟应用 演示交流电路特性的实验改进 浅谈三相交流电负载平衡的效益 三相交流电源的产生及特点研究 正弦交流电路分析中相量模型的运用 正弦交流电路中的相位实验研究初探 正弦稳态交流电路相量实验问题研究 三相交流电动机常见故障及处理 刍议三相交流电机故障原因分析与处理方法 三相交流电动机直接启动问题探讨 三相交流电机故障诊断及维修 PLC在三相交流异步电动机变频调速中的应用 “电阻、电容、电感对直流和交流电路的影响”实验的改进 正弦交流电路三要素的教学思考 论三相交流电动机常见故障及处理 五相交流电机与传统交流电机的比较研究 分布式光伏发电并网交流电路仿真设计 常见问题解答 当前所在位置:中国 > 科技 > Multisim仿真软件在三相交流电路实验中的应用 Multisim仿真软件在三相交流电路实验中的应用 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")
申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 摘要:三相交流电路广泛的应用于我们的日常生活和生产领域,所以针对三相交流电路的工作情况进行实验很有必要,然而在实验室进行三相交流电路实验时有较大的危险性,一些短路断路的实验也较难进行。电路仿真软件Multisim提供了适用于三相交流电路仿真的各种元件模块及测试工具,利用该软件对三相交流电路进行仿真,与理论分析的结果一致。实验表明利用MuIdsim对三相电路进行各种实验分析很方便准确,可以在今后的电工实验中得以推广。
前言
由于很多生产机械都希望在停车时有适当的制动作用,使运动部件迅速停车。而停车制动常用的有机械制动和电气制动等多种方法。其中能耗制动是一种应用很广泛的电气制动方法,其制动准确可靠、制动转矩较平滑、对电网无冲击作用,不但应用于异步电动机,而且应用于同步电动机和直流电动机的制动系统。
那么能耗制动的理论依据又是什么呢?
1、能耗制动的理论依据
能耗制动是在电动机定子绕组与三相交流电源断开之后,立即使其两相定子绕组接上直流电源,于是定子绕组中产生一个静止磁场,转子由于惯性继续在这个磁场中旋转,因此在转子导体里产生感应电动势和感应电流,转子电流又受到静止磁场对它的电场力的作用,从而产生一个转矩,这个转矩阻碍了转子的继续转动,因而产生制动作用,使电动机迅速减速而停止。
2、半波能耗制动电路分析
(1)电路组成
图1是国家试题库维修电工初级工考证技能考核的单相半波能耗制动电路图,其电路主要分为两部分:主电路和控制电路。所用的主要元器件有:转换开关、熔断器、交流接触器、热继电器、按钮、时间继电器、整流二极管。
(2)控制原理
①合上组合开关QF接通三相交流电源。
②按下启动按钮SB1,接触器KM1线圈通电并自锁,主触头闭合,电动机接入三相电源而启动运行。
③当需要停止时,按下停止按钮SB2,KM1线圈断电,其主触头全部释放,电动机脱离电源。
④此时,接触器KM2和时间继电器KT线圈通电并自锁,KT开始计时,KM2主触点闭合将直流电源接入电动机定子绕组,电动机在能耗制动下迅速停车。
另外,当时间继电器KT的整定时间到其延时动断触点断开,接触器KM2线圈断电,KM2主触点断开,使定子绕组脱离直流电源,能耗制动及时结束,保证了停止准确。
⑤该电路的过载保护由热继电器完成。
⑥互锁环节:
()KM2动断触点互锁KM1线圈,KM1动断触点互锁KM2线圈。保证了两个接触器不可能同时得电,避免了电源短路事故发生。
()停止按纽SB2采用复合式按钮,实现了KM1线圈首先断电KM2线圈才得电的联锁控制。保证了在电动机没有脱离三相交流电源时,直流电源不可能接入定子绕组。
⑦直流电源采用二极管单相半波整流电路,电阻R用来调节制动电流大小,改变制动力的大小。
注:KT瞬动常开触点的作用:为防止KT线圈断线或机械卡住故障时KT不动作造成无法切除直流电源的事故。
(3)电路存在的问题
半波能耗制动的直流电流较小,在气隙中的磁通量也较小,产生的制动转矩较小,制动时间就会较长,制动效果不好。尤其是对于功率较小的电动机,根本无法刹车。另外该电路中的FR采用两极型的热继电器,只对于Y形联接的电动机适用;但接法的电动机一旦缺相还能继续运行,两极型的热继电器将不能起到缺相保护作用,势必会烧毁电机。为此针对该电路存在的问题,我们对电路进行改进并通过实验取得了一定尝试。
3、电路改进
为了提高制动效果,必须加大磁场,而磁场的加大又是依靠增大电流来实现,为此,首先把半波整流换成桥式全波整流,使输出的直流电流增大,这样交流电动机的定子绕组中产生的磁场较强,从而产生较大的制动转矩,制动的效果明显。其次,全波整流的直流成分相对较大,在交流电动机呈感性的定子绕组中,定子电路的励磁电流比较稳定,交流电动机的磁场相对也很稳定,能耗制动的精确度较好。第三,在全波整流的过程中,由于定子绕组的电流比较稳定,整个电路的工作稳定性相对较好,安全系数大。但采用变压器比较笨重,成本比较高。图2是改进后的电路图。
图2
结束语
能耗制动所需的时间长短和是负载转矩、稳定的转速以及接入的直流电流等有关,这也正体现了它制动准确的特点。但如果采用半波整流,其直流电流较小,而且含有的交流成分较多,能耗制动的特点体现不出来。而利用全波整流则可以克服这一点。
参考文献
虽然直流电动机具有调速性能优异这一突出特点,但是由于它具有电刷与换向器(又称整流子),使得他的故障率较高,电动机的使用环境也受到了限制(如不能在有易爆气体及尘埃多的场合使用),其电压等级,额定转速,单机容量的发展也受到了限制。所以,在20世纪60年代以后,随着电力电子技术的发展,半导体交流技术的交流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,为交流电力拖动的广泛应用创造了有利条件。诸如交流电动机的串级调速,各种类型的变频调速,无换向器电动机调速等,使得交流电力拖动逐步具备了调速范围宽,稳态精度高,动态响应快以及在四象限做可逆运行等良好的技术性能。在调速性能方面完全可与直流电力拖动媲美。除此之外,由于交流电力拖动具有调速性能优良,维修费用低等优点,因此它今后将广泛应用于各个工业电气自动化领域中,并逐步取代直流电力拖动而成为电力拖动的主流。
未来电动机将会沿着单位功率体积更小、机电能量转换效率更高、控制更灵活的方向继续发展。一批“巨无霸”电机、一批“光怪陆奇”电机将同时展现在世人眼前。
2 电动机工作原理。目前较常用的主要是交流电动机,它可分为两种:
2.1 三相异步电动机。
2.2 单相交流电动机,第一种多用在工业上,而第二种多用在民用电器上,下面以三相异步电动机为例介绍其基本工作原理。
3 电动机的运行维护。
3.1 电动机启动前的准备。为了保证电动机正常安全地启动,一般启动前应作好下述准备:
①检查电源是否有电,电压是否正常,若电源电压过高或过低,都不宜启动。
②启动器是否正常,如零部件有无损坏,使用是否灵活,触头接触是否良好,接线是否正确、牢固等。
③熔丝规格大小是否合适,安装是否牢固,有无熔断或损伤。
④电动机接线板上接头有无松动或氧化。
⑤检查传动装置,如皮带轻紧是否合适,连接是否牢固,联轴器的螺丝、销于是否紧固等。
⑥传动电动机转子和负载机械的转轴,看其转动是否灵活。
⑦检查电动机及启动电器外壳是否接地,接地线有无断路,接地螺丝是否松动、脱落等。
⑧搬开电动机周围的杂物并清除机座表面灰尘、油垢等。
1 前言
随着经济的快速发展,整个世界的石油需求量也在迅速增长,因此石油开采工艺的要求也随之提高。目前是电子信息发展迅猛的时代,各个行业都在利用高新科技来提高生产工艺水平。在石油生产中,每个国家都在想方设法提高石油开采的效率来增加石油产量,电气系统的机械化管理功能无疑是给这一关键的技术带来革命性的突破。
2 石油钻机系统构成
石油钻机是钻井工作设备中不可缺少的机械设备,钻机必须能给钻井工具提供足够转速和转矩的工作性能下,还能保持一定的钻压,为能够满足更换钻头、下套管、钻具设备的送进以及井下事故的处理需求,钻机电气系统还应具备有高举重能力和提升迅速的速度,同时还能确保泵压和排量的正常作业,维护石油开采的正常工作。在此,主要介绍石油钻机电气系统的构成。
石油钻机是套性组合的重型机组设备,由传动机组、动力机组和多工作机组等组成。而它的工作系统包括钻井悬挂、泥浆循环、动力装置传动、旋转钻井、控制、底座和其他辅助设备。由于电力驱动钻机具有良好的性能,所以是大型钻机设备发展的方向。石油井的生产场地分为动力区、泥浆泵区、钻台区、固控区等,这些区域设备的工作都要依赖电气系统带动。
电系统的动力电源在大多石油开采场地都是由柴油发电机机组进行供应。发电机组的电源要经过控制柜进行输出电压和频率的调整,按照石油开采现场的实际工作情况来确定发电机组的工作数量,进而使用专门的控制系统进行几台供电机组的发电功率分配及同步并网的连接。钻机主要的电量来源由SCR系统连续供应调控后的直流电或者经变频器整流后,逆变出的可变电压、可变频率的电源提供。而钻机辅助设备,固控系统及照明设备和生活区的用电供给需要通过开关柜进行电压切换或者单独使用柴油机组实现供电[1]。
3 电气系统的电力驱动
3.1 交流电驱动
(1)交流电驱动工作原理。在大功率的变频设备没被应用到石油开采之前,主要用交流电动机来进行钻机的驱动工作。随着技术的进步,大功率的交流电动机被充分的应用到石油的钻机作业工作中,其类型可分为异步式交流电动机和同步式交流电动机。
(2)交流电动机的调速控制。交流电动机的调速方法有三种类型:变级调速类型、有级调速类型、变频调速类型。通过更改电子绕组的连接法,更改变电机子的极数实现变级调速。在绕线转子中串接入多级电阻器,就能实现交流电动机的有级调速。变频调速的目的主要是为转速能够连续调节,通过更改交流电的频率波动就能实现。
(3)交流电动机变频调速的特质。交流电动机的变频调速可以通过可控硅变频设备内部进行两次电流性质的更改来实现。可以先把交流电经晶闸管的整流电路转换为可调控的直流电,可调控的直流电在经逆变器设备转换成可调控频率的交流电[2]。
3.2 直流电力驱动
(1)直流电驱动的工作原理。电驱动钻井机运用通电导体在磁场中受电磁力的作用实现直流供电。用于石油开采的供电磁场是供比较大型的直流电动机使用的电磁场,能够为定子绕组进行直流电供电,使导体生成较为稳定的磁场,实现通电导体在电磁场中受电磁力的作用而进行连续供电。
(2)直流电动机的调速控制。直流电动机的调速一般采用以下三种方法:
①在励磁场中的电路系统串入电阻来降低他励及并励直流电动机的主磁调速。串励直流的电动机是要在励磁线圈的旁边并入电阻器。并入可调的电阻器可以产生无极调速的性能;并入有级电阻器可以产生有调级速的性能。
②实现较小型的直流电动机调速可在电路的中枢系统中串入电阻器。
③通过可调控的直流电源来改变电路中枢系统的输入电压,可调控直流电源的获取方法有两种,一是通过触发晶闸管的导通角把交流电转换成可调控的直流电;二是用直流发电机进行发电。但前者在石油钻机的应用更广泛。
(3)直流电整流后的影响。在直流系统进行直流电的整流后,系统的功率因素会变低,开采场地有无专门的设备做功率的补偿工作,容易使规格一样的直流系统钻机发电机组设备相对变频钻机设备的电源装机容量增大。针对这样的情况国内也有相关的单位对其进行技术的补救研发,现场无功补偿装置的研制主要是加入持续调控和迅速反应的无功率补偿技能。新设置的提出不仅对供电质量进行改良,还进一步提高供电系统的功率因数。但该技术因操作人员的认识缺乏,还无法进行普及应用[3]。
3.3 常用钻机电力驱动和传动
国内最为常用的直流电驱动钻机型号是AC―SCR―DC。柴油机带动的电源经电网进行动力并车后实现集中供电。集中的电源还要经可控硅整流设备完成交流变直流的转换后,才能进入驱动直流电动机实现直流电力驱动工作。AC―SCR―DC电动机的动力传送方法有独立驱动和分组驱动两种类型。
C―SCR―DC电驱动钻机的工作特点。将传动系统简单化,总传动效率被提高;采用电子进行调速,确保柴油机能稳定运转,使用寿命延长,耗油量降低;具有较强可塑性,启动能力增强,调速程度较广,能够进行无极调速;但机械的成本较高,使用寿命短,维修不便。
4 存在的安全隐患
(1)石油开采场地大多是比较潮湿的环境,现场施工的设备移动频繁,临时的不用的设备也很多,这样就为石油的施工作业带来一定的用电安全隐患。开采现场的机械设备都是临时铺设,为方便连接和撤离时的拆装,且钻井机的台面和泵区、控制区等会有很多的泥浆沉积,从而造成施工地面极易积水,施工的设备又多是金属,因此用电安全的问题变得很严峻。所以要经常检查设备的安全性,避免出现漏电的情况发生。
(2)石油开采的地段天然气体也较为集中,在开采的过程中,由于技术缺陷,可燃易爆的气体经常会泄露,如果防爆区内没有对所有用电设备进行保护设置,极有可能会引发严重的安全危害。雨天的防雷设施也很重要,因此还要加装防雷设备,进行全面安全防范。
5 结语
面临能源危机问题,各国都在利用创新科技对石油开采工艺进行技术的改良,以便能够在有限的资源基础上获得更多的经济效益。石油钻井工艺是一个复杂的系统工程,施工过程中存在很多的可变量,繁多的计算数据导致数学建模加难,仅仅依靠经验来处理问题是不够的。为此,要充分把科技引入石油的开采作业中,进一步实现电气系统带来的自动化管理,用科学合理的运算方式带动机械进行施工作业,模拟化和智能化是石油钻机电气系统未来的发展方向。
参考文献[1] 胡涛,朱桥飞,李晓亮.全电动石油钻机作业安
全用电分析[J].石化电气,2012,31(19):24-29[2] 崔绍鲲.石油钻机电气系统研究[J].中国石