时间:2023-07-20 16:30:29
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇初一数学的概念范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
一般情况下来说,学生在学习一个概念的时候是先感受学习对象,然后经过分析、综合,在头脑中形成一个初步的印象,最后才会形成概念。小学生的思维能力还处于比较简单的阶段,他们对于具体事物的感知会明显高于抽象事物和概念,所以,他们的认识过程一般是从简单到复杂,从具体到抽象。在引入数学概念的时候,一定要给学生创建一个比较具体的形象,让学生直观感受到所要学习的内容和概念,更容易进入学习状态。例如,在教学“长方形和正方形”的时候,由于学生在之前已经接触过有关直线、线段和平行相交之类的概念了,在学生的脑海里已经形成这样的基础和印象,在学习这节课的时候,老师可以事先准备一些长方形和正方形的模型和工具给学生展示,启发学生去思考和想象,经过不断地分析和观察,可以得出一些有关这些图形的特点和共性。
2.利用习题延伸概念内涵
每一个数学概念都可以得到更多的延伸含义,在这个概念适合的范围内都可以用它来进行定义和论证,通过概念来进行运算,得出结果。在概念教学中,老师在学生对概念进行理解的基础上要设计多种习题来进行训练,让学生学会观察、分析以及综合等方式,掌握题目的规律和思路,加深对概念的理解和解释,把概念理解得更透彻,更明了。通过多角度、多方面以及对相似的概念进行对比和深化,掌握概念的本质意义,帮助学生利用好概念的延伸和内涵。例如,在教学“统计”的时候,由于这节课的内容是比较复杂的,学生在学习的时候一定要注意区分统计的各个定义和统计方法,所以在学生基本上了解所学内容之后,老师要注意多设计一些数学习题来锻炼学生,让学生回顾和运用所学的知识,经过练习之后,把不会的和运用错误的知识显露出来,经过老师指导和点拨之后,彻底掌握和熟悉所学到的内容。这样一来,学生不仅能够把已经学到的知识吸收和巩固,还能在做题的过程中发现新的问题和解决问题的方法,一举多得。
3.利用知识迁移构建知识网络
所谓知识网络包括两方面的内容,第一是要加深对一些基本数学概念的教学和讲解,也就是那些在知识体系中运用最多、最关键同时也是最普遍适用的概念,例如,加减法的概念、乘除法的概念和差概念等,那些越是基本越是简单的概念,它的适用范围越广,意义越深刻。只有掌握好这些基本概念,才能使知识产生迁移,学生学习起来才能更加容易。第二,小学数学中的许多概念之间是存在联系的,老师在教学中应该引导学生把所学的数学概念进行对比,弄清楚他们之间的内在联系,只有掌握了概念之间的联系才能让知识网络清晰化,才能形成完整的知识体系,实现知识的统一。例如,在学习平面图形的时候,我们可以将正方形、长方形、平行四边形、梯形联系起来,它们都是四边形,有共同的特点,但是它们又有区别,有各自的特点和属性,在学习的时候,老师要指导学生将这些知识点联系起来,对四种不同的图形进行分析和比较,形成一个比较系统的知识体系,加深学生对知识的理解和记忆,让学生在以后复习的时候也更省力。
4.加强训练,学会运用概念
二、APOS理论的构建
APOS别是由英文Action(操作)、Process(过程)、Object(对象)和Scheme(图式)的第一个字母组合而成。这种理论认为,在数学概念学习中,如果引导个体经过思维的操作、过程和对象等几个阶段后,个体一般就能在建构、反思的基础上把它们组成图式从而理清问题情境,顺利解决问题。这四个阶段的内容如下:
1.活动阶段(Action):亲身体验、感受概念的直观背景和概念间的关系。通过操作活动,理解概念的意义。
2.过程阶段(Process):对“操作”进行思考,经历思维的内化、压缩过程,在头脑中进行描述和反思,抽象出概念所特有的性质。
3.对象阶段(Object):认识概念本质,对其赋予形式化的定义及符号,使其达到精致化,成为一个具体的对象。
4.图式阶段(Scheme):反映概念的定义及符号,建立与其他概念、规则、图形的联系,形成综合的心理图式。
APOS理论将数学概念的建立分为活动――过程――对象――概念四个阶段,如果数学教学停留在活动层面,那不是真正的理想的数学概念学习,数学概念学习还应上升到抽象层面,使概念的形成的“活动、过程”向“对象”阶段转化,从而达到“图式”阶段,才能掌握数学知识的本质与内在。
三、基于APOS理论的教学设计
笔者认为,APOS理论的活动阶段相当于观察、呈现数学概念的具体实体阶段,过程阶段则是对具体实体进行思维概括得出数学概念的阶段。下面是仅以浙教版八年级(上)《平面直角坐标系》的教学设计为例来说明。
1.活动阶段――创设问题情境,在活动中思考问题
笔者发给同学们一张地图,请大家仔细观察地图并回答问题:
(1)向你的同桌描述建筑物A(动物园)、B(青少年宫)、C(电影院)的位置。(2)假设你在另一处D(学校),你将怎样找到A、B、C?
结合学生的生活经验,创造学生展开思考的环境,给予学生充分表达自己看法的机会,让他们在自主思考、自由交流中,在与同学观点交锋中,撞击出思维的火花。
2.过程阶段――体验并抽象比例概念的过程
老师广泛听取学生意见后,因势利导,总结、概括大家的意见,引导学生得出确定平面某一位置的方法,以及这些方法的共同之处。接下来,老师与学生共同回顾之前学过的有关数轴的内容――数轴上的每一个点都对应着一个实数值,然后找到那个点,以此诱发学生思考平面上一个点的确定。结合先前活动的经验,抽象得出平面上的确定位置的过程,也是寻找、设置两条数轴(两个方向)的过程。而两条互相垂直的数轴也是其中的一种过程,也就构成平面直角坐标系,而这一过程也就是形成平面直角坐标系的过程。将平面直角坐标系这一概念的形成过程归结于两条数轴的出现过程,这应该是一种全新的视角。
3.对象阶段――对平面直角坐标系形式化、工具性的表达
将平面直角坐标系作为一个新的对象来认识,对其进行形式化、工具性地表达,这是对象阶段应该达到的目标。课题练习:(1)请你在先前地图中,建立平面直角坐标系。(2)写出各点的坐标。(3)写出与B点关于坐标数轴相对称的点的坐标。1小题用于巩固平面直角坐标系的概念;2、3题皆在联系通过点写坐标。而这一切都将学生的动手尝试放在老师讲解之前,也是考虑到知识内容本身的难易程序和学生已有的知识背景。
4.图式阶段――建立综合心理图式
通过以上三个阶段的教学,学生在头脑中应该建立如下的心理图式:现实生活中直角坐标系思想的应用、直角坐标系的作用、在直角坐标系中确定点的过程及其与数轴的区别和联系等等。老师带领学生订正课堂练习,并在其中尝试区分平面直角坐标系与数轴的不同,认识它们的优越性。
老师引导学生思考平面直角坐标系与数轴的关系,对学生拓宽思考问题的方式大有好处,明确此事物和它事物的区别与联系,也是认识事物的一种方式。
四、数学概念教学中几点建议
APOS理论对于数学的概念的学习能产生多大的指导作用,最终还要依赖于老师的课堂实践。为此,提出以下几点教学建议:
1.努力创设适合学生概念发展的现实情境。
一、高中数学概念的特性
数学的抽象性赋予了概念的特殊性,数学概念的学习并不是其他学科学习所能够比拟的,具体的数学思维形式在数学概念的学习中要不停地进行训练和强化,数学概念反映的是事物内在的客观规律,并借助一定的数学符号和数学形式化语言来对数学知识作出具体的表述,数学符号的冗繁复杂本身就具有高抽象度,不易被学者所理解,而数学概念要对此采用语言符号来描述,所以显得难上加难,数学概念的描述自然也就生涩不易被理解.数学符号的意义,很多并不能够用语言来作出具体阐述,因此在对数学符号做阐述时,要尽量具体明了,并着重强调数学符号的作用,数学符号的作用具体强调清楚后,才能在形式运算中,更好地理解数学概念所内涵的意义,因此符号运算是数学概念的形式化特征.同时,数学概念也具有系统性,而且系统性很强.数学概念多是层层密切联系,不能够在学习的过程中厚此薄彼.因为数学概念之间的联系直接而且广泛,学生可以在学习数学基础概念的时候就进行相应的扩充,从而在学习此项概念的同时能够延伸到下一概念,使得数学学科的知识面增大,并在逐步的学习中,对于数学概念的系统能够深入浅出,并很好掌握.数学概念从古至今进行着不断的发展和延伸的.所以在高中的数学概念学习中,就应该提高学科知识的认识度,并关注学习的实际成效,高中数学概念的学习能够为学生以后的学科学习奠定坚实基础,并对整个学科系统性掌握提供可靠的方法依据.
二、高中数学概念教学的教学方式
1.创设情境教学
数学概念的抽象是对实际生活中事物的抽象,虽然在理解层面上较难被高中学生所接受,但是数学概念的学习与实际生活密切联系,在高中数学教学中,具体的实验能够提高学生学习数学的兴趣,并在实验中充分认知和理解概念的由来及抽象性.传统的数学概念教学,只是强调学生死记硬背,并未要求深入理解,而在具体的习题练习中,教师多采用增加练习量,加以模仿,熟能生巧后对问题的解决能力也就随之提升.其实这一过程中,数学概念的理解还是没有得到解决,不了解的仍然是不了解,了解的也多是练习中机械性解题方式.数学概念是一个不断发展和完善的形式理论,所以学生在具体学习中应该结合实际,并与学生或者老师多交流概念认识的心得.只有实践与合作交流同时进行才能做到概念上的真正理解.因此,高中数学概念的具体教学中,教师应该让学生积极参与到概念教学的探究中,使学生和教师在共同的探究中,找出数学概念的由来,并大胆探究概念的未来走向,所以此过程中,学生的思维开拓离不开教师的正确引导,学生学习数学概念离不开其主动参与和研究,更离不开具体实验的动手能力.只有在概念教学中创造合时宜的情景教学,才能让学生对概念的理解提到另一个层面上来.
数学概念是反映现实世界中空间形式和数量关系的本质属性的概括和反映, 是用数学语言揭示事物的共同属性即本质属性的思维形式,是数学思维的细胞,是数学认知结构的重要组成部分.概念教学是数学教学中的重要环节,是一个抽象的思维过程.通过数学概念的教学,可以使学生深刻理解并正确掌握数学概念,培养学生良好的数学思维品质,从而提高各种思维能力.
一、数学概念要关注形成背景,让学生从现实生活情景中感悟
“能够用来促进学生学习的任何正当的手段和方法,都是合理的,假如为了促进学习,必须把要教的东西包上糖衣,那么你不应当吝啬糖。”这“糖衣”就是问题情境,一个好的问题情境能大大激发学生的学习兴趣和探究的欲望。
如:数轴概念的教学:怎样用数表示温度上升3度?下降3度?收入200元与支出200元等这些相反量呢?引出正负数的概念;用观察生活中的温度计特点:拿温度计观察温度时,水银的上下移动所以对应的数字即为所在时间温度;显然水面越上移,所得到的温度高,。进一步引导学生抽象出本质属性:(1)0度的起点(2)度量的单位(3)增减的方向,我们能否用一个更加简单形象的图示方法来描述它呢?由此启发学生用直线上的点表示数,从而引“数轴”的概念,首先从对实物的感受激发学生学习的兴趣,让学生自己从这个现实生活背景中,发现并抽象出数轴概念。
这样做符合学生的认识规律,给学生留下深刻持久的印象,同时也有助于激发学生的学习兴趣,积极参与教学活动,也有利于观察、分析、抽象、概括等能力的发展,学生思维能力的培养和素质的提高,学生容易接受。
二、 在概念的教学中体验知识的形成过程,进行探究性学习.
例如讲“正弦”首先创设问题情境:“为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是∠BAC=30°,为使出水口的高度为BC=20m,那么需要准备多长的水管?”对于上述问题学生很快想到利用勾股定理解决,若斜坡AB与水平面AC所成角的度数是20°,40°、50°,那么需要准备多长的水管, 对于上述问题,学生经尝试无法解决,从而产生认识冲突--如何解决这类问题?激发了学生的探究欲望。
第二步:启发思考. 在RtΔABC中,∠A的斜边和∠A的对边BC有什么关系呢?学生可能无法下手,此时,教师作点拨,能否从∠A的特殊值中找关系?从探究特殊情况中发现规律:(1)当30度、45度,在RtΔABC中,∠A的对边和斜边有什么关系?(2)运用几何画板进得动演示∠A的对边和斜边有什么关系?由特殊到一般,运用动态演示,引导学生大胆猜想,从而得到当锐角A取其它固定值时,∠A的对边与斜边的比值也是固定值。
第三步:证明猜想.引导学生利用相似三角形的知识证明此猜想。
第四步:引人“正弦”的概念。
学习最好的途径是自己去发现。学生如果能在教师创设的情景中像数学家那样去“想数学”,“经历”一遍发现概念的过程,在获得概念的同时还能培养他们的创造精神。在“正弦和余弦”的教学中,学生通过自主探究,经历了正弦和余弦概念的发生过程,实现了由形到数,由具体到抽象的思维过程,从而培养了学生的概括和抽象思维能力,同时也激发了学生学习的动机和探究的热情。
三、让学生体会概念的螺旋上升逐步剖析数学概念,揭示其本质
例如,在学习函数概念时,学生很难理解课本中给出的定义,教学中不能让学生死记硬背定义,也不应只关注对其表达式、定义域、值域的讨论,而应选取具体事例,使学生体会函数能够反映实际事物的变化规律.
如先让学生指出下列问题中哪些是变量,它们之间的关系用什么方式表达:
(1)火车的速度是每小时60千米,在t小时内行过的路程是s千米;
(2)用表格给出的某水库的存水量与水深;
(3)等腰三角形的顶角与一个底角;
(4)由某一天气温变化的曲线所揭示的气温和时刻.
让学生反复比较,得出各例中两个变量的本质属性:一个变量每取一个确定的值,另一个变量也相应地唯一确定一个值.再让学生自己举出函数的实例,辨别真假例子,抽象、概括出函数定义,至此学生能体会到函数“变”渗透了函数思想。
例2 在一元一次方程的教学中渗透函数思想:某移动通讯公司开设了两种通讯业务。“全球通”:使用者先缴50元月租费,然后每通话1分钟,再付费0.4元;“快捷通”;不缴月租费,每通话1分钟,付话费0.6元{本题的通话均指市内通话}.
(1)一个月内通话多少分钟,两种移动通讯费用相同?
(2)某人估计一个月内通话300分钟,应选择哪种移动通讯业务合算些?
通过在不同阶段渗透函数思想,使学生对函数概念理解呈螺旋上升,有利于学生不断加深对函数思想的理解. 并逐步形成函数概念,(1)“在某个过程中,有两个变量x和y”是说明:a.、变量的存在性;b、函数是研究两个变量之间的依存关系;(2)“对于在某一范围内的每一个确定的值”是说明变量x是在一定范围内取值,即允许值范围也就是函数的定义域。(3)“y有唯一确定的值和它对应”说明有唯一确定的对应规律。(4)“y是x的函数”揭示了谁是谁的函数,由以上剖析可知,函数概念的本质是对应关系。
四、让学生感受概念的实际应用
在教学过程中,应重视挖掘与生活实际联系的因素,使学生掌握概念,并能够应用概念解决生活中的数学问题。
在“数与代数”、“图形与几何”、“统计与概率”三个部分的课程内容中,处处都会涉及数学概念。“数与代数”方面的概念有些是脱离学生的生活实际的,是处于“深处”的概念,如果将概念“做”“简入”化处理,贴近学生生活,是否可以变概念的无趣为有趣呢?
例如,在苏教版教材第12册“认识成正比例的量”一课中,认识两种相关联的量是一个难点,也是一个重点。为了更好地帮助学生理解什么是两种相关联的量,我采用儿歌“简入”:一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿;三只青蛙三张嘴,六只眼睛十二条腿……n只青蛙几张嘴呢?几只眼睛?几条腿呢?嘴的张数随着青蛙的只数增加而增加;同样,眼睛的只数随着青蛙的只数增加而增加,腿的条数也随着青蛙的只数增加而增加。在儿歌中,学生初步感受到“一种量在变化,另一种量也随之变化”即是“两种相关联的量”。接下来,再通过一些练习辅助理解,如圆的周长和半径、圆的半径和圆周率、老师的年龄与身高……让学生判断这两种量是否是两种相关联的量。正是由于前面儿歌的铺垫,学生才能充分掌握知识点。
这里处于“深处”的数学概念,由于儿歌的“简入”,不仅激发了学生的学习兴趣,还将无趣的概念“做”成了有趣的概念,让人朗朗上口。当然,“简入”的方式不仅仅有儿歌,还有谜语、游戏等,目的是将“深处”的概念“简入”成趣味概念。
二、在“简洁”和“深辟”之间,“做”出生动概念
在统计与概率这一部分的课程中,也有“深辟”的概念,比如苏教版教材第11册“用分数表示可能性的大小”一课中,孙谦老师通过猜乒乓球的游戏,呈现“■”,并让学生说一说这里的2和1分别表示什么意思。联系实际场景,学生很容易就明白,分母的2表示共有左手和右手2种情况,分子的1表示球在左手或右手,只有1种情况。“简洁”的导入后,孙老师顺势进入扑克牌游戏:将2张扑克牌(其中一张是红桃A)洗一洗后反扣在桌面,任意摸一张,摸到红桃A的可能性是多少?接着孙老师又放入一张红桃3,问现在摸到红桃A的可能性还是■吗?如果要使摸到红桃A的可能性是■,你打算怎么办?最后,孙老师又将5张扑克牌反扣在桌上洗一洗,问摸到红桃A的可能性是几分之几?是什么影响了摸到红桃A的可能性?
通过猜乒乓球和玩扑克这两个游戏,孙老师“简洁”地带领学生在游戏中边玩边学,发现“用所有情况作分母,可能的情况作分子”的“深奥”概念,并生动地感悟到事件发生的概率与事件内部组成之间的密切联系。
三、在“简言”和“深意”之间,“做”出形象概念
在图形与几何这一部分的课程中,也有“深意”的概念,需要“简言”来陈述。比如第11册“长方体和正方体的认识”一课中,特征教学是重点,也是难点。长方体的特征包括面、棱、顶点三部分,为了不分割面、棱、顶点,可通过切土豆的活动导入新课:依次切3刀,以3个层次呈现面、棱、顶点;接着通过活动记录单(如下表),将零碎的众多知识点集中地呈现,并引导学生自主研究。如此直观的“简言”,可以将“深意”呈现出来!
■
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)14-291-01
一、农村中下层初中生数学学习主动性培养的概念解析
伴随着基础教育新课程改革的深入,突出教育教学过程中的学生参与性、激发他们学习的主动性已经成为课堂改革的必然要求。着重突出学生在教育教学过程中的自觉性和主动探究性,这不仅仅是教育教学行为的变革,更是教育教学理念和思维的转变。而学习主动性的培养重点就在于创设各种有利条件和机会,让学生作为学习的主体去体验知识,锻炼能力,实现教育教学的三维目标。
农村中下层学生是指由于各种原因引起的,学习成绩偏差的农村学生,这些学生有的是可以通过一些方法能够改善学习成绩的。激发他们数学学习的主动性是教师根据他们的现有学情,认知特点和学习规律,通过创设现实的情境和机会,呈现或再现、还原数学的教学内容,能让学生自觉和积极的参与思考和学习, 使学生在学习的过程中积极的理解并掌握文化知识、发展自身能力。
二、农村中下层初中生数学学习主动性培养的意义探究
1、体现时代性的优势,培养了大批创新型人才
创新型人才就是不拘一格,各式各样的人才观,与此相适应,我国“《基础教育课程改革纲要》指出,要转变学生的学习方式,就要改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生学习的自觉性和主动性,让他们乐于探究、勤于动手,培养搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。”培养学生的自主性和创造性意识。学生主动参与知识形成过程,自主探索,独立思考,利用已有的认知结构,对外部信息进行主动性选择、推断,主动发现问题、分析问题,创造性地解决问题,成为知识的发现者与运用者,可以发展学生以创新精神和实践能力为核心的素质,智力也会得到较好的发展。
2、把握规律性的优势,定位了教与学共同发展的结合点
学习主动性的培养是把握学生成长成才的规律,很好地改革教材和教学方法的体现。随着教材改革的全面铺开,初中数学课教材已经实现了新旧转型,教学方式也做了创新和改革,尤其是增加了学生参与活动的环节,自主探究的环节,如:“想一想”、“议一议”“说一说”、“阅读天地”、“操作平台”、“辩论会”等;初中数学课每一单元开头都设置了“探究主题”(探究活动)来指导单元教学,案例和活动也较多。总之这些变化都强化了过程性、体验性目标以期引导学生主动参与学习过程、培养自主合作探究、激发学习主动性等主体性精神,变革单一的记忆、接受、模仿的被动学习方式。
3、富有创造性的优势,提高了学生的社会品质
在初中数学学习的过程中,激发学生学习的主动性可以培养学生良好的社会品质。努力培养学生良好的社会品质是教学义不容辞的责任。在学习中,突出学生主动性能力的培养,让学生成为学习的主体,自始自终充当主人的角色,他们把教学看作是自己的责任,在活动中,能够确立敢于负责的意识和精神。主动性的培养可以使学生在与教师、同学频繁的交往中学会与人相处的艺术,从而使自己具有一定的亲他性。学生在积极主动的学习过程中,既能够恰如其分地表现自己,又能使别人有表现的机会,共同的活动是人们交往的前提,学生在共同的活动中将学会如何与人相处、与人合作。
4、强化沟通的优势,有利于建立良好的师生关系
学生主动性的培养,是让学生成为学习的主角,我们知道,教师与学生之间彼此相倚,教师是教学活动的组织者、指导者,学生是自我发展的自主参与者,是积极的探索与创造者,师生之间是一种民主、平等、合作的交往关系。教师能够创造条件满足学生的参与愿望,学生就会有明显的向师性。他们高昂的参与热情会在一定程度上助长教师的教育热情,一种更加强烈的情感或许由此产生。在学习中培养学生的主动性,可以增强学生与教师的交流与合作,学生的人格价值也会得到体现。在与教师的交流过程中,也会感受到教师对教育工作的责任感,对学生无私的关爱,从而增强对教师的理解与尊重,教师的人格价值也会在学生心目中得到升华。
5、活跃的课堂气氛优势,有利于提高教学质量
在学习中,培养学生的学习主动性会形成多边的教学交流,这是课堂气氛活跃的前提。学生主动性的培养有利于学生的需要(即表现的需要、求知的需要、发展的需要)得到满足。通过参与,学生可以获得表现的机会,他们学习的积极性会被调动起来,课堂上洋溢着的不只是教师的热情。成功的体验更有助于学生求知欲望的产生。轻松、活跃的学习氛围,会让师生双方体会到教学是人生的一大乐事。学生在参与的过程中,将形成学习的自觉性、积极性,并不断反思学习方法,从而获得良好的学习效果。由此看来,教师应根据教学的实际特点,提出行之有效的策略,让学生在课堂上充分地发展,通过培养学生学习主动性实现教学过程整体的最优化,提高教学质量。
一、概念的引入
1、从学生已有的生活经验、熟知的具体事例中进行引入。如“圆”的概念的引出前,可让同学们联想生活中见过的年轮、太阳、五环旗、圆状跑道等实物的形状,再让同学用圆规在纸上画圆,也可用准备好的定长的线绳,将一端固定,而另一端带有铅笔并绕固定端旋转一周,从而引导同学们自己发现圆的形成过程,进而总结出圆的特点:圆周上任意一点到圆心的距离相等,从而猜想归纳出“圆”的概念。
2、在复习旧概念的基础上引入新概念:概念复习的起步是在已有的认知结构的基础上进行的。因此,在教学新概念前,如果能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,就可以先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的。通过比较得出两种方程都是只含有一个未知数的整式方程,差异仅在于未知数的最高次数不同。由此,很容易建立起“一元二次方程”的概念。
二、概念的分析
1、揭示含义,突出关键词
数学概念严谨、准确、简练。教师的语言对于学生感知教材,形成概念有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念的每一个字、句、符号的意义,特别是关键的字、词、句,这是指导学生掌握概念,并认识概念的前提。
如:“分解因式”概念:“把一个多项式化成几个整式的积的形式,这种变形叫把这个多项式分解因式。”在教学中学生往往只注重“积”这个关键词,而忽略了“整式”,易造成对分解因式的错误认识。所以在教学中务必强调,并与学生分析这两处关键词的含义,加深对概念的理解。
2、分析概念,抓住本质
数学概念大多数是通过描述定义给出他的确切含义,他属于理性认识,但来源于感性认识,所以对于这类概念一定要抓住它的本质属性。
如:“互为补角”的概念:“如果两个角的和是平角,则这两个角互为补角。”其本质属性:(1)必须具备两个角之和为180°,一个角为180°或三个角为180°都不是互为补角,互补角只就两个角而言。(2)互补的两个角只是数量上的关系,这与两个角的位置无关。通过这两个本质属性的分析,学生对“互为补角”有了全面的理解。
3、剖析变化,深化概念
数学概念都是从正面阐述,一些学生只从文字上理解,以为掌握了概念的本质,而碰到具体的数学问题却又难以做出正确的判断。因此,在教学过程中,必须在学生正面认识概念的基础上,通过反例或变式从反面去剖析数学概念,凸显对象中隐蔽的本质要素,加深学生对概念理解的全面性。如:学生刚接触“二次函数”的概念时,仅能从形式上判断某一函数是否为二次函数。但当他们学习了其图象,研究了图象的性质后就能根据a得出图象的开口方向,由a、b确定图象的对称轴,由a、b、c给出图象的顶点坐标。这时对二次函数的概念自是记忆深刻,能脱口而出了。
三、概念的记忆
1、并列概念,举一反三
如:一元一次方程的概念:“只含有一个未知数,并且未知数的指数为一(次),这样的方程叫做一元一次方程”,清楚了“元”与“次”的含义,则一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通过纵横对比,在类比中找特点,在联想中求共性,把数学知识系统化,学生轻轻松松记概念。
2、易混淆概念,联系区别
任何一个概念都有它的内涵和外延,外延的大小与内涵成反比关系。内涵越多,外延就越小;内涵越少,外延就越大。把握概念的内涵与外延,能大大增加学生对概念的明晰度,提高鉴别能力,避免张冠李戴,为此,把所教概念同类似的相关的概念相比较,分清它们的异同点及联系,也就显得十分重要。如:学完“轴对称”与“轴对称图形”的概念后,可引导学生找出两者之间的联系和区别。联系:两者都有对称轴,如把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形,如把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分成轴对称。区别:“轴对称”是指两个图形成轴对称,主要指这两个图形特殊的位置关系;而“轴对称图形”仅仅是指一个图形,主要指这个图形所具备的特殊形状。通过这样的联系与区别,学生加深了对概念的理解,避免混淆,从而提高学生认知概念的清晰度。
四、概念的巩固
1、利用新概念复习就概念。如:在四边形这一章中:平行四边形具有四边形所有性质,矩形具有平行四边形所有性质,菱形、正方形具有平行四边形的所有性质,正方形具有矩形、菱形的所有性质。这样链锁式概念教学,既掌握了新概念又加深了对就概念的理解。
2、加强预习。在课堂教学中优先考虑概念题的安排,精讲精练,讲练结合,合理安排,选题时注意题目的典型性、多样性、综合性和针对性,做到相关概念结合练,易混淆概念对比练,主要概念反复练。
3、每一单元结束后,要进行概念总结。总结后,要特别注意把同类概念区别分析清楚,把不同类概念的联系分析透彻。概念的形成是一个由特殊到一般的过程,而概念的运用则是一个由一般到特殊的过程,它们是学生掌握概念的两个阶段。
4、运用概念去分析问题和解决问题,是教学过程中的高级阶段,在应用中求得对概念更深层次的理解,以达到巩固的目的,同时也使学生认识到数学概念既是进一步学习数学理论的基础,又是进行再认识的工具。当然应用概念应由易到难,循序渐进,有一定的梯度,以符合学生的认知规律,便于将所掌握的知识转化为能力。
数学是抽象思维方式的产物,当前初中数学教育重点是对学生的逻辑思维的培养,数学这门学科本身就属于一种建构行为,在长期的数学教学实践中,建构主义学习理论形成。在本文中,我们根据建构主义学习理论下的初中数学教学研究进行分析和学习。
一、建构主义学习理论
(一)建构主义学习理论的基本概念
建构主义学习理论是一种新型的学习理论,从建构主义学习理论的角度进行分析,知识不是通过教师的教授得到的,而是学习者在一定的环境、条件下,通过他人的帮助,利用学习资料通过采用知识建构的方式得到的,在学校教育中,教师只是在学习者获取知识的过程中起到了引导的作用,引导学生进行自主学习,在学生求知的道路上,学生是主体,教师只是起到了引导、帮助的作用。在学习者获取知识的过程中,知识、学习资料内容、学习的能力等都是不能被训练的,只能进行建构,对这些进行强调性认识并不是人的大脑直接而又简单的反应,而是需要在原有知识的基础上,通过主观、客观的相关作用,进而建构起来的。
(二)建构主义学习理论的内容及内涵
构建主义学习理论,在学习者学习过程中,重点关注的是学习者大脑中原有的知识,发挥的作用,重视学习者在学习过程中表现出来的主观能动性,以学习者为中心,以学习认知为主体,教师在学习者学习过程中仅仅发挥的是帮助和促进的作用。在学习者学习过程中,教师需要不断的激发学习者的学习兴趣和学习积极性,为学习者提供可以进行数学活动的机会,帮助学生真是的理解和掌握数学思想、方法、技能等。
二、建构主义理论视域下初中数学的概念教学的研究
(一)建构主义理论在初中数学教学中的作用
情景教学在初中数学课堂中的应用,也可以为学生提供更适宜的学习环境和发展空间,激发学生的积极性、创造性,有益于引导学生形成全面、清晰的思路,增强思维逻辑,还能提高学生的自主学习能力,使其充分发挥主观能动性,提高学生的理解能力、认知能力以及实践能力,这对学生自身的成长和发展会起到重要的影响作用。将情景教学应用到初中数学课堂中,对全面提高学生的综合素质起着决定性作用,也能显著提高教学质量,更好地完成教学目标。
(二)建构主义理论视域下的初中数学教学模式
将建构主义理论应用到初中数学教学中,是对传统初中数学教学模式的一项重大突破。建构主义理论视域下的初中数学教学基本模式是采用情景教学法以及小组合作教学方式。根据数学知识、数学问题和实践活动之间的关联,创造出相关的数学情景,让学生置身在这一情景中,可以对数学知识有更深刻、清晰的了解,帮助学生发挥创造性思维,增强学生逻辑思维能力。同时,更能摒弃了以往枯燥、乏味的教学环境,激发学生的热情,有效改善学生被动学习,不善于思考等不良局面。有助于培养出一批高素质的、拥有较强实践能力、社会适应能力、创造能力的人才,实现素质教育的人才培养目标。
三、加强建构主义理论下初中数学有效性的策略
(一)创设情境教学
(1)根据学生的兴趣,创设“问题”情境
培养学生的学习兴趣,激发学生的求知欲望,是推进情景教学在初中数学课堂中的实施的关键一步。针对学生感兴趣或者急待老师解决的问题,创建情景模式,来吸引学生的注意力。问题的设置要注意生活化、个性化,积极去适应学生心理发展的需要,这样才能引起他们的共鸣,也能增强学生对知识的理解,使学生对知识的记忆也更加牢固、深刻。
(2)营造适宜、愉悦的情景
数学学科的特性决定了在数学课堂上,不可避免地会有枯燥、乏味的元素,教师可以采用多种创新方法,积极尝试不同的途径,来活跃课堂气氛,带动学生情绪,这样有利于课堂上教学活动的开展。依据某节课的教学重点来设置相关的情景,比如可以通过多媒体播放一个与本节内容相关的生活实例或生活现象,使学生进入那个生活场景,便有利于深入学习。教师采用的方式和内容应该丰富、灵活,调动学生的情绪,也能激发学生的创造力和想象力,使课堂和教学生动活泼,会收获意想不到的良好效果。
(3)构建“新鲜”场景,培养学生发散性思维
教师的教学内容要丰富,开拓学生的视野,培养学生发散性思维。通过知识链接或者相似、相异知识点的整合,引出新鲜、多样的问题,这样可以使学生从多方位理解和记忆知识点,也能做到“万变不离其宗”,使学生在不同的问题形式下,都可以掌握要点知识和解答的关键点。这样,不仅可以加强学生的理解能力,也能培养学生发散性思维,拓展学生知识面,使学生灵活地运用知识。
(4)利用“数形结合”,增强学生空间思维训练
数形结合不仅能更好地展示知识点,增强学生对知识的理解,也会对学生进行空间思维训练,增强逻辑能力。同时,也会使学生在无形之中觉得数学具有一种“奇异感”,提高对数学的学习兴趣和探索数学奥秘的兴趣。尤其是在初中数学的“立体几何”教学中,要加强“数形结合”情景的构建,便于更加形象、准确地进行讲解和探讨。
(二)分小组探讨、合作学习的教学方式
教师可以采用合作交流的学习方法,来引导学生学习,不仅能够提高数学教学的有效性和学生的学习效率,也适应了新课改以及素质教育改革的要求,在合作交流中,学生互相学习,取长补短,能够培养学生的自主学习能力和团队合作精神,增强学生综合素质。在进行合作交流学习时,教师要提前制定课堂教学内容和方案,创建合作小组。在组建合作小组时,教师要对学生的知识基础、性格特点以及心理素质等方面进行综合了解,依据学生的特点,遵照公平原则,合理分配小组人员,尽量做到小组人员之间的优势互补,教师可以根据学生的实际情况,为学生设置施展自己的平台。
结语:
建构主义学习理论在初中数学创设情境教学有重要的作用,让学生在真实的情境中学到知识,通过情境创设激发学生学习数学的兴趣和热情,让学生积极主动的进行数学学习和探索学习,在建构主义学习理论基础下,开展初中数学教学工作,重点发挥学生在教学活动中主体地位,引导学生学习,让学生进行知识的探索,对培养学生的综合素质与能力具有重点的积极影响。
记忆是任何阶段学生学习任何学科必不可少方式,特别是还处于认知层面和记忆启蒙阶段的初中生,更应当学会利用好各种记忆策略科学学习数学基础知识,为将来进一步深造打下坚实的根基。记忆是理解数学概念,推导数学公式,证明数学定理,解决实际问题的必要手段。目前,初中生虽然有着较好的记忆力,但有针对性地学习、理解、掌握数学概念还面临着诸多的困难。因此,作为一名基础教育工作者首先必须明确初中生记忆数学概念究竟存在哪些困难,才能对症下药,采取针对性强的有效策略,从而帮助学生解决记忆数学概念这一基础性、关键性问题。
一、初中生记忆数学概念存在的问题
笔者根据多年的初中数学一线教学经验总结出,学生作为教学的主体在学习数学基本概念的过程中,主要呈现出以下三个层面的问题,值得深思和深入研究。
1.缺乏针对数学概念记忆的策略性知识。我国是一个教育历史悠久、教育经验丰富的国家,特别是在“记忆学”的研究与应用上取得了较好的成就,这在“应试教育”教育阶段发挥了一定的作用。随着素质教育、创新教育理念的提出,数学“记忆型”教学突然在理论上被界定为“数学应试教育”的代名词。这样一来,向来受到重视的“数学三基”数学理论研究失去了往日的光彩,同时,理解型学习数学知识、创造性解决数学问题,最终培养学生的创新能力一越成为当前素质教育、创新教育培养目标的内核与教育界理论研究的热点。这意味着前者已经成为初中数学教学视阈的一个“真空地带”。可从我国数学教育教学规律可以看出,“记忆型”教学是初中数学学习必不可少且占有重要地位的方法论。因此,不能因为素质教育的倡导就彻底否定了记忆教学的价值,或者说割裂了记忆与创新教育的必然联系。
在如今初中数学教学过程中,很多教师片面理解创新教育理念,刻意讲求创新方法,无形中把必要的数学知识记忆完全抛给了还处于记忆懵懂阶段的初中生。而他们不但没有记忆的感性认识,而且在记忆策略层面完全是一片空白,更何况高难度的抽象性数学知识记忆呢?每个教育者想必都知道,初中生如果在这种完全没有指导性的碰壁式条件下记忆数学知识的话,最终结果只能是徘徊在记忆的原始阶段“机械记忆”。这对于依靠理解性学习的数学来说是一个致命性节点。那些基础好、主动性强的学生会在以后逐步的应用中,慢慢地“反刍”大脑中的数学知识;而那些基础不好、主动性差的学生则极有可能永远在数学的迷宫里徘徊不前。可见,在肯定和大力倡导创新教育的大环境、大背景下,探讨记忆与创新的结合策略,充分发挥记忆的强大优势,科学推进初中数学的创新教育是一个必要而紧迫性的课题。
2.缺乏权衡记忆与理解的关联意识。在"应试教育"阶段,大部分初中数学教师只顾及数学知识传授的量的积累与扩充,从而忽视了学生学习知识质的积淀与提高;只强调向学生“填塞”数学知识,从而忽视了“填塞”的方法论要求。这一阶段实质上是记忆完全占据统治地位的阶段。而在建构主义学习理论的作用下,许多数学研究者有这样一个共识:数学知识的抽象性和概括性决定了数学知识的学习必须有学生自己理解过程的参与。此观点后来不断被强化,以致于在上世纪90年代中期,初中数学教学实践走向了一个与前者完全相反的极端,即理解完全占据同志地位的阶段。但经过艰辛的理论探索后,一条数学教学科学规律终于得到广泛的认可:数学知识的记忆和理解应该是一个相辅相成的动态化过程。记忆与理解的最佳结合点在于寻求恰好的“平衡支点”。初中生只有站在这个“平衡支点”上,才能在真正意义上掌握数学概念,并逐步勾勒自己的数学知识结构网。现在,问题的主旨在于如何帮助初中生建立权衡记忆与理解的关联意识,寻找到这个最佳“平衡支点”。
3.缺乏系统性数学概念梳理意识。记忆学显示:有效的数学概念记忆的结果应该是使数学概念在大脑中以网络链接模式有机组合的。初中生的数学知识结构只有也只能以这种模式存在,才能更加利于以后知识的择取与应用。建构主义学习理论同样显示:只有学生自身经过同化和顺应作用形成的知识结构才具有基础性、可辨性、适用性的品质。数学理论的逻辑体系更是决定了数学概念应该是一系列概念环节互为相扣的链条有机体系。但是,初中生特别是那些在数学迷宫里徘徊不前的学生,长时记忆体系中的数学概念却是孤立的、散乱的。造成这种局面的原因除了学生没有有效地讲求记忆策略和没有处理好数学概念理解与记忆的关系外,主要是学生没有整体意识,没有从宏观上梳理所记住的数学概念,更没有理清数学概念间的联系。其实,即使在教改后的现在正在应用的数学教科书里,很多基础练习都是针对一个或几个具体的概念而设计的,并没有为学生提供从整体上去理解和把握节、章,甚至是一册数学教材中的概念关系的练习。
二、初中生记忆数学概念的对策选择
(一)缺乏针对数学概念记忆的策略性知识。我国是一个教育历史悠久、教育经验丰富的国家,特别是在“记忆学”的研究与应用上取得了较好的成就,这在“应试教育”教育阶段发挥了一定的作用。随着素质教育、创新教育理念的提出,数学“记忆型”教学突然在理论上被界定为“数学应试教育”的代名词。这样一来,向来受到重视的“数学三基”数学理论研究失去了往日的光彩,同时,理解型学习数学知识、创造性解决数学问题,最终培养学生的创新能力一越成为当前素质教育、创新教育培养目标的内核与教育界理论研究的热点。这意味着前者已经成为初中数学教学视阈的一个“真空地带”。可从我国数学教育教学规律可以看出,“记忆型”教学是初中数学学习必不可少且占有重要地位的方法论。因此,不能因为素质教育的倡导就彻底否定了记忆教学的价值,或者说割裂了记忆与创新教育的必然联系。
(二)缺乏权衡记忆与理解的关联意识。在“应试教育”阶段,大部分初中数学教师只顾及数学知识传授的量的积累与扩充,从而忽视了学生学习知识质的积淀与提高;只强调向学生“填塞”数学知识,从而忽视了“填塞”的方法论要求。这一阶段实质上是记忆完全占据统治地位的阶段。而在建构主义学习理论的作用下,许多数学研究者有这样一个共识:数学知识的抽象性和概括性决定了数学知识的学习必须有学生自己理解过程的参与。此观点后来不断被强化,以致于在上世纪90年代中期,初中数学教学实践走向了一个与前者完全相反的极端,即理解完全占据同志地位的阶段。但经过艰辛的理论探索后,一条数学教学科学规律终于得到广泛的认可:数学知识的记忆和理解应该是一个相辅相成的动态化过程。记忆与理解的最佳结合点在于寻求恰好的“平衡支点”。
(三)缺乏系统性数学概念梳理意识。记忆学显示:有效的数学概念记忆的结果应该是使数学概念在大脑中以网络链接模式有机组合的。初中生的数学知识结构只有也只能以这种模式存在,才能更加利于以后知识的择取与应用。建构主义学习理论同样显示:只有学生自身经过同化和顺应作用形成的知识结构才具有基础性、可辨性、适用性的品质。数学理论的逻辑体系更是决定了数学概念应该是一系列概念环节互为相扣的链条有机体系。
但是,初中生特别是那些在数学迷宫里徘徊不前的学生,长时记忆体系中的数学概念却是孤立的、散乱的。造成这种局面的原因除了学生没有有效地讲求记忆策略和没有处理好数学概念理解与记忆的关系外,主要是学生没有整体意识,没有从宏观上梳理所记住的数学概念,更没有理清数学概念间的联系。其实,即使在教改后的现在正在应用的数学教科书里,很多基础练习都是针对一个或几个具体的概念而设计的,并没有为学生提供从整体上去理解和把握节、章,甚至是一册数学教材中的概念关系的练习。
二、初中生记忆数学概念的对策选择