欧姆定律问题汇总十篇

时间:2023-08-14 17:09:38

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇欧姆定律问题范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

欧姆定律问题

篇(1)

欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。

1在欧姆定律的学习中常遇到的问题

1.1欧姆定律的使用范围问题

在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。

1.2线性元件的存在问题

通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

1.3电流,电压与电阻使用的问题

电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式I=UR,I、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。

2欧姆定律学习中需要掌握的内容

本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式I=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式I=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/I;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。

3欧姆定律的解题思路及技巧

3.1加深对欧姆定律内容的理解

在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2A,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。

3.2利用电路图进行进行计算

在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式I=U/R及导出式U=IR和R=U/I进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的I、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。

3.3利用电阻进行知识拓展

本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=ΔI・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。

4总结

简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。

参考文献:

篇(2)

问题教学法是以“问题”为中心向外辐射开展活动任务的教学方法,师生围绕问题互动探究,学生在问题解决的过程中,不仅仅习得固有的物理规律和结论,还有解决问题的过程体验和情感的提升。问题教学法在初中物理教学中的应用关键在于从学生的最近发展区出发创设出适合学生探究,同时又紧紧围绕教学内容的问题情境,打破学生原有的认知平衡,让学生生疑,进而形成科学探究尝试的欲望,在解决问题的过程中内化知识、完善建构。

从心理学角度分析,问题教学法教学过程中,学生的心理活动程序如图1所示。

对于初中物理教学而言,当一个具体的物理问题摆在学生面前时,他们首先会在原有的认知状态中进行搜索,概念、规律、方法等跃进了大脑,识图将问题的目标在大脑图式里找到联系。这里面有知识的同化和顺应过程,最终完善为新的认知结构。

2“欧姆定律”教学案例分析

2.1开门见山,借助问题温故知新

笔者在课堂导入环节,从上一节课和学生一起学习的变阻器入手,设置问题情境提出问题。

问题1如图2所示,请你根据原有的知识和经验,想一想有什么办法可以增大电路中电流表的读数?在使用滑动变阻器时应注意什么?

问题设计意图通过图2情境的创设和问题的抛出,引导学生针对问题进行互动讨论,积极猜想,并形成连接电路实验检验的欲望。在实验的过程中,学生在其原有认知的基础上实现思维的发散,并通过自主探究找到改变电路中电流的办法。实验中应注意滑片C向A端滑动容易造成短路,这是实验中应注意的问题。

问题2在大家自己进行实验探究的过程中,你有什么发现?有什么疑惑的地方?

问题设计意图通过这个问题的抛出,引导学生积极地交流,越发接近教学内容,同时生成新的问题:“导体中的电流跟电压、电阻三个物理量到底存在着什么关系,这种关系是否具有稳定性,能够形成特定的规律?”这是一个反思后再创造的过程,学生的探究热情被点燃。

2.2一针见血,接近教学的主要内容

学生的激情被点燃了,应从教学的主要内容出发,引导学生进一步猜想,领引着学生一步步去揭示教学内容,这一过程也应该是借助于问题的形式开展。

问题3请猜一猜流过导体的电流与导体两端的电压存在怎样的关系?流过导体的电流与导体的电阻又可能存在怎样的关系?并相互交流一下猜想的依据。

问题设计意图学生通过问题的领引大多会做出正比或反比的猜想,其根据都是源于自己在前面自主探究实验中改变滑动变阻器阻值大小,而看到的结论。借助于这样的问题设置,学生经历了猜想及假设的过程,科学探究中的重要方法得以浸润。

2.3思维碰撞,设计实验完成探究

在学生有了猜想后,笔者提出了几个问题引导学生进行实验的设计和方案的选取,驱动探究式教学进一步深化。

问题4既然有了上述的猜想,你觉得应该设计什么样的实验进行验证呢?根据自己的设想,能不能设计出具体的实验方案?

问题5从探究电流与电压的关系出发,思考需要选择什么器材,实验电路如何设计?

问题设计意图通过问题的设置让学生联系到“控制变量法”,同时学生将自己设计的电路拿出来进行交流,从学生的认知规律来看,首先他们会想到用灯泡进行实验,此时需要我们教师进行及时的引导,因为灯泡的温度变化会导致其阻值的变化,而我们的实验应控制电阻不变,所以应该选择定值电阻进行实验。学生再次设计出电路图(如图3)。

问题6利用上述电路图进行实验探究,会遇到什么麻烦?

学生通过连图进行实验操作后发现,只能测一组数据,如果要测多组数据要改变电池的节数,操作比较麻烦,而且偶然误差大。新的问题自然生成。

篇(3)

在电学的定律当中,欧姆定律是非常关键的一项,它贯穿于整个电学的始终。深入、系统和全面地理解欧姆定律是有效解决牵涉电学问题的基础和前提条件,针对欧姆定律的教学,教师需要做好如下的两个方面:

一、引导学生注重三个物理量之间的关系

“导体当中的电流,跟导体两端的电压成正比,跟导体的电阻成反比”,这就是欧姆定律。在此,教师应当引导学生注重三个物理量之间的关系。(1)欧姆定律强调电压与电阻决定了导体当中的电流,而不是由电源提供的电压,这跟电阻和电流是毫无关系的,电阻属于导体自身的性质,这跟电压和电流也是毫无关系的,因此是电压与电阻一起决定了电流。(2)注重计算关系。在公式:I= 当中,只要确定了任意的两个物理量,就可以对另外的一个物理量进行计算,这就需要引导学生熟练地掌握公式的变化。(3)注重这三个物理量一定要根据同一段的导体,比如,将R1与R2进行串联,接在30 V的电源上面,R1是10欧姆,经过R1的电流是0.2安,问R2的电阻与R2两端的电压是多少。教师在指导学生练习或者是讲解的时候,需要将电路图画出来,注明相应的物理量,突出需要注意的问题,以实现理想的教学效果。

二、拓展和应用欧姆定律

教师在讲解欧姆定律的时候,需要引导学生注重知识的应用和拓展。通过并、串联电路的电压和电流规律,对电阻规律进行推导,可以概括并联电路的规律是:(1)电流I=I1+I2;(2)电压U=U1=U2;(3)电阻 。可以概括串联电路的规律是:(1)电流I=I1=I2;(2)电压U=U1+U2;(3)电阻R=R1+R2,再应用电阻规律对一些实际问题进行解决。比如,教师在教学的过程中,可以提问学生下面的一些问题:为什么调节台灯的亮度按钮,灯泡能够变亮或者是变暗?为什么手电筒当中的电池使用时间长了之后,灯泡会变暗?这两个问题的原理是一样的吗?这样,学生就能够积极主动地探讨,纷纷发表自己的看法,课堂氛围顿时活跃起来。学生通过应用欧姆定律,对实际生活当中一些不好理解的问题进行了解释,从而调动了学生的学习兴趣。

总之,在初中物理教学当中,欧姆定律是非常重要的。教师一定要引起高度的重视,实施有效的教学策略,教授学生关于欧姆定律的知识。

篇(4)

1.理解欧姆定律及其表达式.

2.能初步运用欧姆定律计算有关问题.

能力目标

培养学生应用物理知识分析和解决问题的能力.

情感目标

介绍欧姆的故事,对学生进行热爱科学、献身科学的品格教育.

教学建议

教材分析

本节教学的课型属于习题课,以计算为主.习题训练是欧姆定律的延续和具体化.它有助于学生进一步理解欧姆定律的物理意义,并使学生初步明确理论和实际相结合的重要性.

教法建议

教学过程中要引导学生明确题设条件,正确地选择物理公式,按照要求规范地解题,注意突破从算术法向公式法的过渡这个教学中的难点.特别需强调欧姆定律公式中各物理量的同一性,即同一导体,同一时刻的I、U、R之间的数量关系.得出欧姆定律的公式后,要变形出另外两个变换式,学生应该是运用自如的,需要注意的是,对另外两个公式的物理含义要特别注意向学生解释清楚,尤其是欧姆定律公式.

教学设计方案

引入新课

1.找学生回答第一节实验得到的两个结论.在导体电阻一定的情况下,导体中的电流

跟加在这段导体两端的电压成正比;在加在导体两端电压保持不变的情况下,导体中的电

流跟导体的电阻成反比.

2.有一个电阻,在它两端加上4V电压时,通过电阻的电流为2A,如果将电压变为10V,通过电阻的电流变为多少?为什么?

要求学生答出,通过电阻的电流为5A,因为电阻一定时通过电阻的电流与加在电阻两

端的电压成正比.

3.在一个10的电阻两端加上某一电压U时,通过它的电流为2A,如果把这个电压加在20的电阻两端,电流应为多大?为什么?

要求学生答出,通过20电阻的电流为1A,因为在电压一定时,通过电阻的电流与

电阻大小成反比,我们已经知道了导体中电流跟这段导体两端的电压关系,导体中电流跟这段导体电阻的关系,这两个关系能否用一句话来概括呢?

启发学生讨论回答,教师复述,指出这个结论就叫欧姆定律.

(-)欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.

1.此定律正是第一节两个实验结果的综合,电流、电压、电阻的这种关系首先由德国

物理学家欧姆得出,所以叫做欧姆定,全国公务员共同天地律,它是电学中的一个基本定律.

2.介绍《欧姆坚持不懈的精神》一文.

3.欧姆定律中的电流是通过导体的电流,电压是指加在这段导体两端的电压,电

阻是指这段导体所具有的电阻值.

如果用字母U表示导体两端的电压,用字母R表示导体的电阻,字母I表示导体中的电流,那么欧姆定律能否用一个式子表示呢?

(二)欧姆定律公式

教师强调

(l)公式中的I、U、R必须针对同一段电路.

(2)单位要统一I的单位是安(A)U的单位是伏(V)R的单位是欧()

教师明确本节教学目标

1.理解欧姆定律内容及其表达式

2.能初步运用欧姆定律计算有关电学问题.

3.培养学生应用物理知识分析和解决问题的能力.

4.学习欧姆为科学献身的精神

(三)运用欧姆定律计算有关问题

【例1】一盏白炽电灯,其电阻为807,接在220V的电源上,求通过这盏电灯的电流.

教师启发指导

(1)要求学生读题.

(2)让学生根据题意画出简明电路图,并在图上标明已知量的符号及数值和未知量的

符号.

(3)找学生在黑板上板书电路图.

(4)大家讨论补充,最后的简明电路图如下图

(5)找学生回答根据的公式.

已知V,求I

解根据得

(板书)

巩固练习

练习1有一种指示灯,其电阻为6.3,通过的电流为0.45A时才能正常发光,要使这种指示灯正常发光,应加多大的电压?

练习2用电压表测导体两端的电压是7.2V,用电流表测通过导体的电流为0.4A,求这段导体的电阻,

通过练习2引导学生总结出测电阻的方法.由于用电流表测电流,用电压表测电压,

利用欧姆定律就可以求出电阻大小.所以欧姆定律为我们提供了一种则定电阻的方法这种

方法,叫伏安法.

【例2】并联在电源上的红、绿两盏电灯,它们两端的电压都是220V,电阻分别为

1210、484.

求通过各灯的电流.

教师启发引导

(1)学生读题后根据题意画出电路图.

(2)I、U、R必须对应同一段电路,电路中有两个电阻时,要给“同一段电路”的I、U、R加上“同一脚标”,如本题中的红灯用来表示,绿灯用来表示.

(3)找一位学生在黑板上画出简明电路图.

(4)大家讨论补充,最后的简明电路图如下

学生答出根据的公式引导学生答出

通过红灯的电流为

通过绿灯的电流为

解题步骤

已知求.

解根据得

通过红灯的电流为

通过绿灯的电流为

答通过红灯和绿灯的电流分别为0.18A和0.45A.

板书设计

2.欧姆定律

一、欧姆定律

导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.

二、欧姆定律表达式

三、欧姆定律计算

1.已知V,求I

解根据得

答通过这盏电灯的电流是0.27A

2.已知求.

解根据得

通过的电流为

通过的电流为

答通过红灯的电流是0.18A,通过绿灯的电流是0.45A

探究活动

【课题】欧姆定律的发现过程

【组织形式】个人和学习小组

【活动方式】

篇(5)

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

篇(6)

2.相同之处

欧姆定律适用于线性元件,如金属等,不适用于非线性元件,如气态导体等。

三、三点质疑

1.线性元件存在吗

材料的电阻率ρ会随其他因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

2.对所有非线性元件欧姆定律都不适合吗

在上述所有表述中都有欧姆定律适用于金属导体之说,又有欧姆定律适用的元件是线性元件之说,也就是说金属是线性材料,而我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,为了避免这种自相矛盾,许多资料上又说欧姆定律的应用有“同时性”,或者说“欧姆定律不适用于非线性元件,但对于各状态下是适合的”,笔者总觉得这样的解释难以让学生接受,有牵强之意,给教师的教造成难度,既然各个状态下都是适合的,那就是整个过程适合呀。

3.对欧姆定律适合的元件I与R一定成反比吗

I与R成反比必须有“导体两端的电压U相同”这一前提,在这一前提条件下改变导体的电阻R,那么通过导体的电流就会发生变化,因而导体的工作点就发生了变化,其制作材料的电阻率 ρ就随之变化,因此导致电阻又会发生进一步的变化,这样又会导致电流产生进一步的变化,所以实践中多数情况下I与R就不会成严格的反比关系,甚至相差很大。

四、两条教学对策

1.欧姆定律的表述需要改进

其实早就有一些老师对欧姆定律的表述进行过深入的分析,并结合他们自身长期的教学经验,已经提出了欧姆定律的表述的后半部分“I与R成反比”是多余的,应该删除,笔者也赞成这种做法,因为这种说法本身就是不准确的,这也是在上述三种大学普通物理教材中都没有出现这个说法的原因。

通过对欧姆定律发现历程的溯源,可知欧姆当时发现这一电路定律时也没有提出“反比”这一函数关系,只是定量地给出了一个等式,因此,笔者认为欧姆定律的现代表述有必要改进,既要传承欧姆当时的公式,也要符合实际情况,所以笔者认为欧姆定律应该表述为:通过导体的电流强度等于导体两端的电压与导体此时的电阻之比。

那么,为什么连“I与U成正比”也省去呢?当R一定时,I与U成正比是显然的,但如果在欧姆定律的表述中一旦出现“I与U成正比”的说法,学生就会很自然地想到“I与R成反比”,而这种说法是不对的,所以表述中最好不要出现“I与U成正比”和“I与R成反比”这两种说法。

2.线性还是非线性元件的区分不能以材料种类为判断标准

篇(7)

一、教材分析

《欧姆定律》的内容,在初中阶段已经学过,高中阶段《物理》安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了《欧姆定律》教学的教学目的和教学要求。教学不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

《欧姆定律》的内容在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定了基础。《欧姆定律》实验中分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,《欧姆定律》是后续课程的知识准备阶段。

通过《欧姆定律》的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用。《欧姆定律》内容的重点是进行演示实验和对实验数据进行分析。这是教学的核心,是教学成败的关键,是实现教学目标的基础。《欧姆定律》教学的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。

二、关于教法和学法

《欧姆定律》教学采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。

通过《欧姆定律》的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:

1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起了承上启下作用。

2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样既巩固了他们的实验知识,也调动他们尽早投入积极参与。

3.在进行演示实验时可请两位学生上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。

4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨。

5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提问请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象。

6.在得出实验结论的基础上,进一步提出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。

7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。

2.注意正确规范地进行演示操作,数据不能虚假拼凑。

3.注意演示实验的可视度。可预先制作电路板,演示时注意位置要加高。有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。

4.定义电阻及欧姆定律时,要注意层次清楚,避免节奏混乱。可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后。这样学生就不易将二者混淆。

5.所编反馈练习题应重点放在概念辨析和方法训练上,不能把套公式计算作为重点。

6.注意调控课堂节奏,避免单调枯燥。

篇(8)

全电路欧姆定律,又称闭合电路欧姆定律。闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。I表示电路中电流,E表示电动势,R表示外总电阻,r表示电池内阻。

闭合电路欧姆定律说明了闭合电路中的电流取决于两个因素即电源的电动势和闭合回路的总电阻。在解答闭合电路问题时,部分电路欧姆定律和全电路欧姆定律经常交替使用。

(来源:文章屋网 )

篇(9)

二、牛顿第二定律。在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应注意公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

三、万有引力定律。教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力常量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

四、机械能守恒定律。这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不做功或所做的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

五、动量守恒定律。历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

篇(10)

姓名:

【学习目标】

1、掌握欧姆定律,能熟练地运用欧姆定律计算有关电压、电流和电阻的简单问题。

2、培养学生解答电学问题的良好习惯。

【学习重、难点】

欧姆定律的内容、数学表达式及其应用。

【自主预习】

1、欧姆定律的内容:

2、公式:

【课堂导学】

上一节课的实验得出的实验结论是什么?把上一节课的实验结果综合起来,即为欧姆定律:

1、欧姆定律的内容:

2、公式:

公式中符号的意义及单位:

U—

R—

I—

——

说明:

欧姆定律中的电流、电压和电阻这三个量是对同一段导体而言的。

3、应用欧姆定律计算有关电流、电压和电阻的简单问题。

(1)、利用欧姆定律求电流:应用公式:

例1:一条电阻丝的电阻是97Ω,接在220V的电压上,通过它的电流是多少?

(2)、利用欧姆定律求电路的电压:由公式

变形得

例2、一个电熨斗的电阻是0.1KΩ,使用时流过的电流是2.1A,则加在电熨斗两端的电压是多少?

(3)、利用欧姆定律求导体的电阻:由公式

变形得

例3、在一个电阻的两端加的电压是20V,用电流表测得流过它的电流是1A,,则这个电阻的阻值是多少?

4、通过以上的简单电学题目的计算,提出以下要求:

(1)、要画好电路图,在图上标明已知量的符号、数值和未知量的符号。

(2)、要有必要的文字说明,物理公式再数值计算,答题叙述要完整。

我的收获:

课后反思:

课堂练习

1、对欧姆定律公式I=U/R的理解,下面哪一句话是错误的:(

)

A.对某一段导体来说,导体中的电流跟它两端的电压成正比;

B.在相同电压的条件下,不同导体中的电流跟电阻成反比;

C.导体中的电流既与导体两端的电压有关也与导体电阻有关;

D.因为电阻是导体本身的属性,所以导体中的电流只与导体两端电压有关,与电阻无关。

2、如果某人的身体电阻约在3000Ω到4000Ω之间,为了安全,要求通过人体的电流不能大于

5mA,那么此人身体接触的电压不能大于:(

A.5V

B.15V

C.30V

D.36V

3、甲、乙两导体通过相同的电流,甲所需的电压比乙所需的电压大,则它们的阻值大小关系是:(

)

A.R甲>R乙;

B.R甲=R乙;

C.R甲

D.无法比较

4、有一电阻两端加上

6

V电压时,通过的电流为

0.5A,可知它的电阻为

Ω,若给它加上

18

V电压,导线中电流为

A,此时导线电阻为

Ω,若导线两端电压为零,导线中电流为

A,导线电阻为

Ω。

5、要想使1000Ω的定值电阻通过8mA的电流,那么应给它加________V的电压;如果该定值电阻所允许通过的最大电流是25

mA,那么它两端所能加的最大电压是_________V。

6、一个定值电阻接在某段电路中,当电压为1.5V时,通过的电流为0.15A,当电压增大为原来的2倍时,则下列说法正确的是(

A.电流为原来的2倍

B.电阻为原来的2倍

C.电流为原来的1/2

D.电阻为原来的1/2

7、将2Ω和4Ω的电阻串联后接人电路,已知2Ω电阻通过的电流是0.5A,则4Ω电阻上的电压和电流分别为:(

)

A.1

V、0.5

A;

B.2

V、0.5

A;

C.2

V、1

A;

D.0.5

V、1

A。

8.一个20Ω的电阻,接在由4节干电池串联的电源上,要测这个电阻中的电流和两端的电压,电流表,电压表选的量程应为

(

)

A.0~0.6A,0~3V

B.0~0.6A,0~15V

C.0~3A,0~3V

D.0~3A,0~15V

9.如图所示电路,当图中的开关S闭合时,电流表的示数为1.2A,电阻R的阻值

是2.6Ω,电压表有“+”、“3V”、“15V”三个接线柱,问电压表应使用的是哪两

个接线柱?

10、如图所示的电路中,A、B两端的电压是6V,灯L1的电阻是8Ω,通过

的电流是0.2

A,求:

(1)

上一篇: 女生生理健康教育 下一篇: 简述素质教育的特点
相关精选