欧姆定律方法汇总十篇

时间:2023-08-16 17:28:48

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇欧姆定律方法范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

欧姆定律方法

篇(1)

欧姆定律是初中物理教材中一条很重要的电学定律,是电学内容的重要知识,也是学生今后学习电磁学最基础的知识。欧姆定律无论在理论上还是在实际生活中运用都非常广泛,可是对于初中生来说,学习起来有很大的难度,因此,作为一名物理教师,有责任教会学生怎样学好欧姆定律。下面是我在教学实践中的几点尝试,仅供大家参考:

一、引导学生理解概念内涵

学习欧姆定律的关键是从理解概念入手,因为多年的教学经验告诉我:很多学生能够准确地背诵欧姆定律公式,但不会对公式进行巧妙的运用,更说不上对公式进行深入理解了。这种现象往往导致学生在考试时经常出错,纵观我们的中考试题,很多题目涉及概念题,所以说理解概念是非常重要的。因此,在学习欧姆定律时,我这样引导学生理解欧姆定律:1.导体中的电流与导体两端电压是成正比的,与导体电阻是成反比的。2.在实际的电路中有几个导体,即使是同一个导体,在不同的时刻I、U、R值也是不同的,因此在运用欧姆定律时应看清是不是同一导体、同一时刻的I、U、R值。3.要明白是电阻大小的一个计算公式,不是决定式,如果某段导体两端的电压变化几倍,它的电流也随之变化几倍,因此,比值R是一个定值。

二、引导学生解决实际问题

在物理教学中,教师不只是让学生掌握教材知识,更重要的是引导他们运用物理知识来解决生活问题,学生只有把书本中的知识运用到生活当中,才能适应社会发展的需要。例如在学习欧姆定律时,我给同学们出示了这样一个问题:在开汽车时,听听音乐可以减轻司机驾车疲劳,使乘车人身心愉快,某汽车上的收音机基本结构如图所示,

初中物理中的欧姆定律对学生来说是一个难点,教师只有运用恰当的教学方法,学生才能有所收获。在今后的教学中,我将继续研究新颖的教学方法,进一步提高物理课堂教学效率。

参考文献:

篇(2)

“欧姆定律”是在学生学习了电流、电压、电阻等概念以及使用电压表、电流表、滑动变阻器之后的内容,这样的安排既符合学生由易到难、由简到繁的认知规律,又保持了知识的结构性、系统性。通过学习“欧姆定律”,主要使学生掌握在同一电路中电学三个基本物理量之间的关系,初步掌握运用欧姆定律解决简单电学问题的思路和方法,同时也为下一步学习“电功率”以及“焦耳定律”等其他电学知识与电路分析和计算打下基础,起到了承上启下的作用。

2.教学目标

(1)知识与技能

通过实验探究电流跟电压、电阻的定量关系,分析归纳得到欧姆定律。理解欧姆定律,能运用欧姆定律分析解决简单的电路问题。

(2)过程与方法

运用“控制变量法”探究电流跟电压、电阻的关系,归纳得出欧姆定律。

(3)情感态度与价值观

通过对欧姆定律的认识,体会物理规律的客观性和普遍性,增强对科学和科学探究的兴趣。

3.教学的重难点

重点:理解欧姆定律,能运用欧姆定律分析解决简单的电路问题。

难点:对欧姆定律的理解和应用。

二、说教法

这节课可综合应用目标导学、讲授和讨论等多种形式的教学方法,提高课堂效率,培养学生学习物理的兴趣,激发学生的求知欲望。充分体现以教师为主导,以学生为主体的原则。

三、说学法

在物理教学中,应该对学生进行学法指导,应重视学情,突出自主学习,锻炼实验操作能力。在本节课的教学中,通过阅读例题,让学生在阅读过程中进行分析、推理,培养学生的自学能力与分析推理能力。

四、说教学设计

篇(3)

“欧姆定律及其应用”的教学目标是让学生理解欧姆定律,并应用欧姆定律进行简单计算;能根据欧姆定律及其电路的特点,更深刻理解串、并联电路的特点;通过计算,学会解答电学计算题的一般方法,培养学生逻辑思维能力,观察、实验能力以及分析问题、概括问题、解决问题的能力,并养成学生解答电学问题的良好习惯。通过实验探究等学习方法,激发和培养学生学习科学的兴趣,培养学生实事求是的科学态度以及认真谨慎的学习习惯。

近几年,中考对“欧姆定律及其应用”的考查非常多,归纳一下,主要是从这么几方面进行考查的。

1、以欧姆定律为基础,结合串、并联电路的电压、电流、电阻特点,解决一些简单的计算。

例1、如图3所示, ,A的示数为2.5A,V的示数为6V;若R1,R2串联在同一电源上,通过R1的电流为0.6A,求R1和R2的电阻值。

图3

解析:此题考查了学生对并联电路特点的掌握和对欧姆定律公式的理解。在解物理题中,数学工具的应用很重要。本题可先根据并联电路的特点,找出R1、R2和总电阻的关系。

2、结合伏安法测电阻的相关知识,更深刻的理解欧姆定律的生成,强化电学实验操作技能的考查。

例2、给出下列器材:电流表(0~0.6A,0~3A)一只,电压表(0~3V,0~15V)一只,滑动变阻器(0~10 )一只,电源(4V)一个,待测电阻的小灯泡(额定电压2.5V,电阻约10 )一个,开关一只,导线若干,要求用伏安法测定正常发光时小灯泡灯丝的电阻,测量时,两表的指针要求偏过表面刻度的中线。

(1)画出电路图;

(2)电流表的量程选 ,电压表的量程选 ;

(3)下列必要的实验步骤中,合理顺序是 。

A. 闭合开关 B. 将测出的数据填入表格中

C. 计算被测小灯泡的灯丝电阻 D. 读出电压表,电流表的数值

E. 断开开关 F. 将滑动变阻器的阻值调到最大

G. 对照电路图连好电路 H. 调节滑动变阻器,使电压表的示数为2.5V

解析:欧姆定律的得出是根据伏安法测电阻的电路图来进行探究的,而伏安法测电阻同时也是欧姆定律的一个应用。所以伏安法测电阻与欧姆定律的应用其实是相辅相成的。对伏安法测电阻的相关知识的考查,其实更能帮助学生理解欧姆定律的生成。并且通过自己画电路图的过程,考查了学生对电路连接的作图能力和实验设计能力。

3、应用“欧姆定律”判断电路中各电表的示数变化

例3、如图1所示,电源电压保持不变,当滑动变阻器滑片P由左端向右移到中点的过程中,下列判断正确的是( )

A. 电压表和电压表A1,A2和示数变大

B. 电流表A1示数变大,电流表A2和电压表示数不变

C. 电流表A2示数变大,电流表A1,电压表示数不变

D. 条件不足,无法判断

解析:本题考查了利用欧姆定中电压、电流、电阻的关系来判断电流表、电压表示数变化的同时,也考查了学生对复杂电路的判断能力,电表测哪个用电器的电压,测通过哪个用电器的电流等。R1和R2是并联关系, 测电源电压; 测干路电流, 测R2的电流。

答案: B

4、通过解方程的方法结合欧姆定律,解决由于电阻变化而引起电压、电流变化的题。

例4、 如图2所示,变阻器R0的滑片P在移动过程中电压表的示数变化范围是0~4V,电流表的示数变化范围是1A~0.5A,求电阻器R的阻值、变阻器R0的最大阻值和电源电压U。

图2

解析:在电路中由于电阻发生变化引起的电流、电压变化的题,如不能直接用欧姆定律和串、并联电路特点直接求解,可考虑用方程解题。在设未知数时,尽量设电源电压、定值电阻等电路中不会变化的量。首先分析一下电路图,弄清电流表测量对象,同时可看出电压表示数为0V时,电流表示数最大为1A,电压表示数为4V时,电流表示数最小为0.5A。但根据已知,用欧姆定律和串联电路的特点能直接求出的量只有R0的最大电阻值,别的再无法直接求出,因此这里必须要列方程来解。

5、“欧姆定律”和生活实际的结合,提高学生观察生活的能力和解决实际问题的能力。

例5、下图是新型节能应急台灯电路示意图,台灯充好电后,使用时可通过调节滑动变阻器接入电路的阻值R改变灯泡的亮度,假定电源电压、灯泡电阻不变,则灯泡两端电压U随R变化的图象是( )

解析:灯L和滑动变阻器串联,电源电压U、灯泡电阻 不变。当滑片向左移动时,滑动变阻器的电阻变大,即电路中的总电阻变大,由 知,电路中的电流I会变小,则灯泡两端电压 也会变小。

答案:选C。

结论:授之以鱼不如授之以渔,以上总结的题目类型可能并不完全,但只要学生能掌握并真正理解欧姆定律的内涵,就能很好的应用它来解决生活实际中真正出现的问题,把理论转化为实践才是学习的真正目的。

参考文献

[1] 谢妮.欧姆定律教学的优化设计[J]. 职业

篇(4)

二、学习任务分析

本节重点是欧姆定律的内容和公式。通过实验探究,归纳总结出欧姆定律,让学生领悟科学探究的方法,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度,培养学生分析解决问题的能力;理解欧姆定律中电流I、电压U、电阻R的同一性是本节难点,在探究过程中通过适时引导、恰当点拨,利用实物电路使学生达到理解欧姆定律的目的。

三、学习者分析

学习了电路基础知识,学生产生了浓厚的兴趣,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有所了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。他们的思维方式逐步由形象思维向抽象思维过渡,教学中让学生自主设计研究问题的方案,是发展学生思维的有效途径。

四、教学目标

⑴知识与技能

会用实验的方法探究电流与电压、电阻的关系;

理解欧姆定律的内容、公式;

培养学生的观察、实验能力和分析概括能力。

⑵过程与方法

通过实验探究学习研究物理问题常用的方法──控制变量法。

⑶情感、态度与价值观

通过探究过程,激发学生的学习兴趣。培养学生实事求是的科学态度;认真谨慎的学习习惯。

重点:欧姆定律的内容和公式;

通过实验使学生知道导体中电流与电压、电阻的关系。

难点:理解欧姆定律的内容;

弄清变形公式的含义。

五、教法设计

依据本节课的知识特点、教学目标和学生实际,确定本节主要采用实验探究法。把学生视为学习的主人,教师当好学习的组织者和引导者。探究式学习可以激活学生已有的知识,在探究新问题时使知识活化、重组,形成知识结构并向能力转化;让学生体会科学发现的全过程,从中感悟科学思想和科学方法。

篇(5)

在物理复习的整个知识体系中,电学知识板块儿尤为重要。一是:它占整个三式合一理化试题物理部分的40%左右,即70分中的近30分属于物理电学试题。二是:电学知识在生产实践中的重要作用已凸显出来。而要学生全面掌握、领会初中阶段电学知识,对于相当一部分初中生来说具有较大的难度。从教以来我听过一些初中电学复习课:有的先把所要用到的电学公式板书在黑板上,再讲典型例题,接着练习;有的则通过学生作题中所反馈的问题对知识进行补充强调,再练习;有的直接强调万变不离其宗,让学生多看教材,然后讲例题等。复习中讲例题没错,但选择的例题过多,又无代表性,既延长了复习时间,又不能使学生的知识得到升华。久而久之,学生疲劳,老师厌烦。要使复习课在短时间内生动、奏效,应选择恰当的例题,在讲例题的基础上,对知识进行归纳和升华。

复习课,一要体现“从生活走向物理,从物理走向社会”,教学方式多样化等新课程理念;二要体现“知识与技能、过程与方法以及情感态度和价值观”三维目标的培养;三要优化学生的认知结构,让学生在教师的引导、帮助下,把学到的知识归纳起来,从而便于提练和记忆。所以对电学的复习要从学生喜闻乐见的小电器起步,从典型例题入手进行归纳总结。

例1:如图-1是一个玩具汽车上的控制电路。小明对其进行测量和研究发现:电动机的线圈电阻为1Ω,保护电阻R为4Ω。当闭合S后,两电压表的示数分别为6V和2V,则电路中的电流为?摇 ?摇?摇?摇A,电动机的功率为?摇?摇 ?摇?摇W。(这是陕西师范大学出版社出版,经陕西省中小学教材审定委员会2008年审定通过的《物理课堂练习册》中的一道题)

学生通常按下列方法计算电路中的电流:

R中的电流:I=U/R=2V/4Ω=0.5A,

电动机中的电流:I=U/R=4V/1Ω=4A,

由此得第一空电路中的电流就有两个值0.5A和4A。

于是第二空的对应值为:P=UI=4V×0.5A=2W与P=UI=4V×4A=16W。这就存在两个问题:

1.根据欧姆定律计算出两个串联元件中的电流不相等,与串联电路中电流的特点相矛盾。

2.由串联分压原理得:U:U=R∶R=1∶4,得:

①当U=2V时,U=8V,得到U+U=2V+8V=10V≠U源;

②当UM′=4V时,U′=1V。U′+U=1V+4V=5V≠U,这与串联电路中的电压关系相矛盾。

对此,应找出题中所涉及的知识点,分析这些知识点间的联系,那上面的矛盾就迎刃而解了。

首先,应对欧姆定律有深入的理解。

例2:如图2所示电路(R≠R≠R)。引导学生分析如下:

1.对电路状态的分析。

(1)当S、S、S都闭合时,R与R并联,并联后作为一个整体再与R串联。A测R中的电流,V测R或R两端电压。

(2)当S、S闭合S断开时,则由图-2演变为图-2(a)到(b)。

R与R串联,R处于断开状态,A测整个电路中的电流。

(3)当S、S闭合S断开时,则由图2演变为图-2(c)到(d)。

R与R串联,R处于断开状态,V测R两端电压。

2.欧姆定律中涉及I、U、R三个量间的关系。

(1)欧姆定律中的I、U、R三个量是针对同一个用电器或者同一部分电路而言的,即必须满足“同一性”。

当图-2中的S、S、S都闭合时,A测R中的电流为I,V测R两端电压为U。此时能否用U与I的比值来计算R或R阻值呢?(即R=U/I)。

如果R=R时,由于R与R并联,所以R两端电压U等于R两端电压U,即U=U=U。根据R=U/I得R=U/I,R=U/I。这样计算出的R2的值虽然是正确的,但属于不正确的方法得出了正确的结果,实属偶然巧合。

若R≠R时,那么R=U/I,若再按R=U/I来计算R的电阻值就没有上述的巧合了。因为电压相等是并联电路电压的特点,R、R中的电流是不相等的。上述中错误地认为R、R中电流相等。这里的电压是R两端电压,而电流是R中的电流,电压与电流是两个不同电阻(或用电器,或电路)的对应量,也就违背了“同一性”。

这就告诉我们,在应用欧姆定律解题时,一定要遵循“同一性”原则,切忌“张冠李戴”,电学中的所有公式都不能违背“同一性”原则。如:W=UIt、Q=IRt、P=UI等。

(2)欧姆定律中的I、U、R三个量必须是同一状态、同一时刻存在的三个物理量,即必须满足“同时性”。

在图-2中,当S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小是否相等?

在图-2中,当S、S闭合S断开时,不难看出,R与R串联:I=I=I则I=U源/(R+R);当S、S闭合S断开时,R与R串联:I=I=I,则I=U/(R+R)。因为R+R≠R+R所以U源/(R+R)≠U源/(R+R),即两次电流不相等。S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小不相等,这是因为S、S闭合时与S、S闭合时电路状态不同,R是在不同的状态下工作,不是同一时间内电流的大小,电流不相等。

在利用公式计算的过程中,不能用第一状态下的量值与第二状态下的量值代入关系式计算。如:要计算R的电阻值,就不能用第一状态下R两端的电压值与第二状态下R中的电流的比值来计算R的电阻值。在计算电流、电压时,也不能这样处理。

因此在利用公式计算时,带值入式的物理量必须是同一状态下的物理量,必须满足“同时性”。

(3)欧姆定律中的I、U、R三个量的单位必须同一到国际单位制,即I―A、U―V、R―Ω。即应满足“统一性”。

除各物理量的主单位外,还应记住常用单位及其单位换算关系,将常用单位换算为国际单位制单位,在利用其它电学公式计算时也要统一单位。

如:电功的公式W=UIt中,各物理量的对应单位:U-V、I-A、t-S;这样W的单位才是J。电热的公式Q=IRt中:I―A、R―Ω、t―S;这样Q的单位才是J。电功率的公式P=UI中:U-V、I-A,这样P的单位才是W。

我们要确定欧姆定律的适用条件。

1.欧姆定律只对一段不含电源的导体成立,即只适用于纯电阻电路。因此,欧姆定律又称为一段不含源电路的欧姆定律。

例1中涉及到电磁转换的知识,电动机工作时实质上也是一个发电机。电动机工作时,其闭合线圈切割磁感线会产生感应电流,所产生的感应电流对流过电动机线圈中的电流有一定影响。

实际上图1相当于一个“RL”串联电路,总电压的有效值不等于各分电压有效值的代数和,即U≠U+U。但得到的电流有效值的关系I=U/Z与直流(或部分)电路的欧姆定律相似,各元件上的分电压与该元件的阻抗(Z)成正比。

虽然电动机工作时产生的阻抗目前初中阶段无法计算出来,但无论电动机工作时产生的阻抗为多少,电路中的电流都等于电阻R中的电流,即I=U/R=2V/4Ω=0.5A。电动机两端的实加电压等于总电压(电源电压)减去电阻R两端的电压,即U=U-U=6V-2V=4V。则电动机的功率为:P=UI=4V×0.5A=2W。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

上述分析说明,电阻R所在的这部分电路与电动机所在的这部分电路有着本质的不同。从能量转化的角度看:电阻R所在的这部分电路是将电能全部转化为热能;而电动机所在的这部分电路电能只有少部分转化为热能,大部分转化为机械能。前者属于纯电阻电路,后者属于非纯电阻电路。

欧姆定律只适用于纯电阻电路,即用电器工作的时候电能全部转化为内能的电路。例如电熨斗、电暖气、电热毯、电饭锅、热得快等。而电动机、电风扇,等等,除了发热外,还对外做功,所以这些是非纯电阻电路,欧姆定律不再适用。由欧姆定律导出的公式也只适用于纯电阻电路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)

2.欧姆定律适用于金属导体和通常状态下的电解质溶液;但是对于气态导体(如日光灯管中的汞蒸气)和其它一些导电元器件,欧姆定律不成立。欧姆定律对某一导体是否适用,关键是看该导体的电阻是否为常数。当导体的电阻是不随电压、电流变化的常数时,其电阻叫线性电阻或欧姆电阻,欧姆定律对它成立;当导体的电阻随电压、电流变化时,其电阻叫非线性电阻,如:电子管、晶体管、热敏电阻等,欧姆定律对它不成立。

3.欧姆定律只有在等温条件下,即导体温度保持恒定时才能成立。当导体温度变化时,欧姆定律对该导体不成立,因为电阻是温度的函数。

在讲解欧姆定律的应用时,常举白炽灯的例子,实际上白炽灯的钨丝在温度变化很大时电阻具有非线性,随着电流的增大,钨丝的温度升高很多,其电阻也随着变化。对非线性电阻,欧姆定律不成立,但是作为电阻定义的关系式R=U/I仍然成立,只不过对非线性电阻,R不再是常量。

综上所述,例1中第一空电路中的电流有两个值0.5A和4A,一个是在纯电阻电路(电阻R)中用欧姆定律算出的电流0.5A。另一个是用欧姆定律计算在非纯电阻电路(含电动机的电路)中的电流为4A,显然不对。

通过对例1的全面、透彻的分析,我们对电学知识得到了进一步升华:(1)判断电路的连接方式;(2)判断电表的作用;(3)利用欧姆定律解决实际问题时必须注意“三性”;(4)复习了电功率、焦耳定律等相关电学公式;(5)欧姆定律的适用范围。

学生能够领悟到,复习不是为了解题,而是要掌握知识的前后联系,优化知识结构;仔细观察,认真分析;发散思维,以点带面;举一反三,融会贯通。这样,从而体现出知识与技能、过程与方法,以及情感态度和价值观的培养。

参考文献:

[1]王较过.物理教学论.陕西师范大学出版社,2003.

[2]阎金铎,田世坤.初中物理教学通论.高等教育出版社,1989.

[3]梁绍荣等.普通物理学―电磁学高等教育出版社,1988.

篇(6)

关键词:物理选修3-1;焦耳定律;欧姆定律;纯电阻电路

人民教育出版社普通高中课程标准实验教科书物理选修3-1课本对焦耳定律的引入过程如下:

电流通过白炽灯、电炉等电热元件做功时,电能全部转化为导体的内能,电流在这段电路中做的功W等于这段电路发出的热量Q,即

Q=W=UIt

由欧姆定律

U=IR

代入上式后可得热量Q的表达式

Q=I2Rt

即电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比,这个关系最初是焦耳用实验直接得到的,我们把它叫做焦耳定律。

这里用公式推导的方式得出了焦耳定律的公式和内容,笔者认为不太恰当,理由如下:

第一,焦耳定律是焦耳通过大量实验总结出来的规律,科学实验是自然规律最直接的反映,科学理论正确与否必须接受实验的检验,正如课本上所说焦耳定律是焦耳用实验直接得到的,焦耳定律本身就是一个实验规律,这是焦耳通过大量实验总结得到并经过无数次实验验证了的实验结论,我们不应该淡化科学实验在焦耳定律建立过程中所起的巨大作用,公式推导的方式掩盖了焦耳定律的真实面目。

第二,这里Q=W应用了能量转化与守恒定律来推导焦耳定律,而实际情况是焦耳本人是在得出焦耳定律后,又进行了长期的、大量的、精确的科学实验,在大量实验事实面前焦耳提出了能量转化和守恒定律.并且电流通过导体时所做的电功和导体发出的电热相等是焦耳得出能量转化与守恒定律的重要实验基础.由此看来,用能量转化和守恒定律来推导焦耳定律是不符合科学发展的实际历程的。

第三,上述推导过程用到了欧姆定律,欧姆定律的表达式应该为[I=UR],不应该用U=IR,另外,欧姆定律是只能在纯电阻电路中才适用的规律,用欧姆定律来推导焦耳定律会使学生认为焦耳定律也只适用于纯电阻电路,对电动机等非纯电阻元件求电热不适用的错误认识.学生一旦建立这样的错误认识再来纠正是比较困难的.

基于以上考虑,笔者认为引入焦耳定律的过程可以做一些调整.建议设计“电流通过电学元件时产生的电热与谁有关?”的探究实验(或者介绍焦耳所做的实验).通过探究实验得出Q=I2Rt,即焦耳定律.然后结合能量转化与守恒定律在纯电阻电路中电流做功全部转化为电热W=Q,即UIt=I2Rt,可以得到[I=UR]。由此可见欧姆定律是能量转化与守恒定律在纯电阻电路中的具体反映和内在要求.

这样设计的好处是还原了人们认识自然规律的实际历程,体现出了科学实验在科学理论建立过程中的巨大作用,使人们认识到焦耳定律是一条实验规律,物理学科是一门实验科学,能真实反映自然规律.通过探究实验的设计我们可以引导学生像科W家那样设计实验方案,探究、总结得出规律,使学生在实验中体会科学实验对自然科学的重要意义,也能使学生获得科学研究的方法.

篇(7)

高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的。教材在设计中意在从能量守恒的观点推导出闭合电路欧姆定律,从理论上推出路端电压随外电阻变化规律及断路短路现象,将实验放在学生思考与讨论之中。为了有效提高课堂教学质量和教学效果,我们特提出在《闭合电路欧姆定律》教学中创设“问题情境”的教学设计。

1.《闭合电路欧姆定律》教学目标分析

《闭合电路欧姆定律》教学目标主要有以下几个方面:一是,经进闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力;二是,了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力;三是,通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法;四是,利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的,其中涉及到了“电动势和内阻”、“用电势推导电压关系”、“焦耳定律”以及“欧姆定律”等诸多内容,这些内容之间具有一定的联系, 只要能够为其构建一个完善的体系,将这些知识有机的结合起来,就能够得出闭合电路的欧姆定律。以建构主义教学思想为基础,采用创设“问题情境”的教学设计,对于提高课堂教学有效性具有积极意义。

2.创设“问题情境”的教学设计具体实践

首先,通过问题的提出激发学生的求知欲。例如:将一个小灯泡接在已充电的电容器两极,另一个小灯泡在干电池两端,会观察到什么现象?并展示生活中的一些电源,演示手摇发电机使小灯泡发光和利用纽扣电池发声的音乐卡片实验,使学生进行思考这些现象出现的原因。通过观察学生会发现手摇发电机是将机械能转化成电能的过程,停止摇动就没有电能,灯泡就不会亮,而干电池、蓄电池是将化学能转化成电能,其化学能能够为干电池提供持续供电的功能,因此小灯泡能够持续发光。然后教师再在这个基础上提出问题:什么是电源的电动势?之后指出电源电动势的概念,帮助学生认识电源的正负极,并画出等效的电路图,利用学生已知的知识,如电势相当于高度,电势差则相当于高度差,这样学生就能够很好的对电势差以及电源电动势的内电压和外电压等概念进行理解了。

其次,在教学中可采用类比、启发、多媒体等多种方法进行教学。教师在课堂教学汇总可借助于多媒体播放flash课件, 借助于升降机举起的高度差或者儿童滑梯两端的高度差,帮助学生更好的理解电源电动势。另外还可以从能量的角度引导学生对其进行理解,例如小花去买衣服,共有100元,其中10元用于打车,90元用于买衣服,在这里,100元就相当于电源的电动势,车费相当于内电压(必要的无用功),买衣服的费用就相当于外电压(有用功),从而使学生掌握内外电压的本质属性。

最后,要通过实验来引导学生进行探究。物理学是一门以实验为基础的科学,观察和实验是提出问题的基础,在实验教学中应鼓励学生观察要细致人微,要善于从实验中发现问题,直观、形象的实验现象能激发学生思考。可以让学生通过实验来探究路端电压与外电阻(电流)的关系,得出路端电压与外电阻(电流)的关系,再从理论上进行分析。然后演示电动势分别为3V和9V(旧)的电源向一个灯泡供电实验,引发学生学习的兴趣,让学习进行讨论,解释现象原因。通过这种方式能够让学生很容易就明白流过灯泡的实际电流不仅与电源的电动势有关,还与电路中的总电阻有关,从而顺理成章的得出闭合电路欧姆定律,完成课堂教学任务。

篇(8)

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

篇(9)

欧姆定律是电力计算的基础,在初中阶段我们只是简单地对欧姆定律做一些介绍,但是许多同学还是对于基本概念问题感到疑惑,如果学生在欧姆定律的基本概念上犯了错误的话,将会对于今后的学习生活带来更大的错误.欧姆定律的内容是,在同一段电路中,通过导体的电流与导体两端的电压成正比,与电阻成反比.随着社会快速的发展,欧姆定律逐渐被人们看重,世人也逐渐明白欧姆定律的重要性.在初中物理中,老师主要建立学生对于欧姆定律的根本认知,让学生了解定律中的内涵,在变换知识重点时也可以迎刃而解.欧姆定律只适用于最简单的纯电阻电路,但是这在初中范围内已经十分实用了,不考虑在工作时的损耗,电能直接转化为内能.在解决欧姆定律的问题时要使用标准的国际单位制,单位使用伏(V)、安(A)、欧(Ω).例如在题目中对于欧姆定律的公式进行进一步的理解,在电流流过时改变长短、改变横截面积、改变导线的材质等方法,这些因素是否会改变导线的电流变成了学生和老师进行探讨的课题.根据公式,改变横截面积与改变导线的材质会使电流的大小改变.电阻的概念问题是学生学习的重点与难点,很多同学不知道电阻其实是导体本身的属性,取决于导体本身的材质与属性,电阻值只是为了计算时方便使用的一种计量单位与外加的电压与电流并没有什么关联,所以要改正学生所想的电阻随着电压改变的错误观点,要及时在学生的脑中建立正确的物理概念.

2.基本概念的应用问题

欧姆定律中的基础元件其实很简单就是导线中的电阻,欧姆定律中主要讨论的就是电压、电流与电阻三者之间的关系,要理解他们之间的关系,让学生理解电流随着电压与电阻的变化而变化,对于多个变量的问题要尽量将变量统一成为一个,这样方便学生对于事物的处理能力,在初中学习生活中要使学生尽量掌握这种方法帮助解决其他的物理问题,当学生掌握这些知识时,可以进一步地学习电学知识和简单的电力计算,这也是初中物理的重点知识.在基本元件使用时,学生要注意电阻在电路中是串联还是并联,在使用情况不同的场景下,电阻所起到的作用是一样的,但是电流与电压的关系却恰恰相反.在并联的情况下,每条支路的电流总和为从电源出来的电流,这条定律在现在大学的知识中依旧使用,只是变得更加高级———在一个节点流入和流出的电流之和为零;并联电路的电压都是相同的.在串联的情况下,回路中的电阻的电流都是相同的,电压根据电阻进行分压.在使用基础式子时,学生要理清串联与并联之间的关系,通过变量之间的关系才可以记住繁琐的知识点.在题目中我们经常看到通过改变支路的个数或者电阻的个数来讨论电流与电压的大小,经过这样的问题,我们要时刻保持警惕,清楚准确地了解并联与串联的关系导致电流电压的不同.

3.基本元件的使用问题

在初中物理知识中,主要使用的基本元件是电流表、电压表和变阻器,这些元件是最基本的,不仅仅要在题目中能分辨出它们,还要在现实生活中可以自在地使用这些元器件.这些内容是学生无法立即掌握的知识,要经过长时间的演示才可以让学生明白这些仪器的使用与操作.这项工作要直接将学习的内容建立在学生的头脑中,不要让学生对于这项实验有误解,不带有一丝疑问地学习下去,认真地做好演示.在研究方法上我们将选择在上述中说过的控制变量法,对于所拥有的三个变量进行限制:如固定电阻不改变,研究电流与电压的关系;固定电压不变,研究电流与电阻的关系,在这样的情况下我们才可以看清变量之间的实验关系.要直接在电源的正极开始,按照正极入、负极出的原则进行接线,要将线路连接起来形成一个闭合回路,电压表要并联在电阻上,这样不会使线路断路,不要忘掉电源和滑动变阻器在线路中的重要作用,可以根据真实的题目来进行连线.这时候电流表所显示出来的数为所接线路上的电流值,电压表所显现出来的数字为所并线路上的电压数值.

4.欧姆定律的变量问题

在初中物理的欧姆定律的讲解中,变化量的问题往往是难住学生与老师的一类的题型,难住学生使学生无法在知识中找到有效解决这类问题的方法,难住教师是因为教师因为这类题目过于繁琐,无法将这类知识有效地、系统地将学生教会,所以找出有效的方法教给学生是解决变量问题得分少的方法.本着从易到难的原则,先从一个电阻的问题讲起,再扩展到两个电阻、三个电阻的情况,在此基础上逐渐拓宽学生的思路,逐渐掌握所学知识,让学生找到学习的目标以及方法.当定值电阻接在电源两端后,电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少呢?很简单利用欧姆定律的概念就可以解出ΔU=ΔI•R,通过这个公式可以得到电阻的值.当难度增加时,由一个电阻变为两个电阻,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上将变化电阻上的电压与电流之比转化为定值电阻上电压与电流之间的关系就可以了,将变化的问题转化为固定的关系之间的数值,明显地简化了许多变量问题的计算.当变量变为三个电阻时,难度进一步的增大,大部分学生认为这是一项不可能完成的任务,大部分学生放弃了这类题,在遇到这类问题时我们要将三个电阻尽量化为两个电阻的问题,在这个问题上学生可以恢复自信心,跨过思维障碍.通过电压表与电流表的位置,将电阻进行合并,这样不管有多少电阻都可以化简为两个电阻,这样学生会感觉题目简单多了.

5.实验中遇到的问题

篇(10)

闭合电路欧姆定律是电路中的一条重要规律,对于思维能力尚不是很完善的高中生来说,还是具有一定的难度。“知识不是被动接受的,而是认知主体积极建构的”,因此在教学过程中教师应积极的换位思考,针对学生的能力水平来尝试多种教学方式方法,

使学生切实掌握相关知识。此知识点之所以成为难点的重要原因和问题主要为:概念抽象,理解困难;传统教学方法单一;知识点容易混淆;应试教育,不能活学活用。所以,对以上问题提出一些突破教学难点的思路和方法,以供参考。

一、激发兴趣,打破抽象

在本章的教学内容中,对这一定律的概念和相关知识较为抽象,偏重理论的数学分析和推理,并且缺少直观的实验,使学生学习和理解起来存在着很大的难度。只是一贯地依靠教师的讲解难以达到良好的效果,反而有可能会适得其反,使学生感到枯燥乏味。因此,教师首先应该通过巧妙有效地向学生导入学习内容,最大限度地提高学生对新知识的好奇心和学习动机,俗话说得好:“兴趣是最好的老师”,营造一个可以使学生提出问题的学习情景。

通过简单实验和提出问题,来激发学生的学习热情和学习兴趣,

为下面对此难点的讲解分析做了良好的开头。使学生能主动地进行实验研究,在探索中产生学习兴趣,了解物理研究方法,增强综合实践能力。

二、分组实验,总结结论

在传统的教学中,常规的是先在之前所学知识的基础上推理出闭合电路欧姆定律的公式,再以此对其进行分析,得出变化规律。在此,应大胆地打破这种常规,这种方法只是简单的数学演绎推理,无法让学生感知认识到物理的规律变化。所以,接下来就要以更为具体、多样的实验,探索其中的规律。让学生分组实验,每组进行多种不同的实验进行对比,然后组员之间进行自由讨论,

再通过组员代表进行发言,最后通过教师的总结得出结论。在这样的通过分组实验、自主探索、合作交流、总结规律和解决问题的方法中,不但可以使学生深刻理解闭合电路欧姆定律的知识规

律,而且能提高学生的主动性,培养学生敢于探索、团结协作的精神,达到事半功倍的效果。

三、深入解析,避免混淆

通过以上的实验学习,学生基本掌握了闭合电路欧姆定律的基本知识,由于在学习闭合回路欧姆定律之前,学生已经学习过欧姆定律,这使得学生很容易产生概念混淆。所以,接下来教师应该对此知识点进行深入的分析,为学生讲解电动势、外电压、内电压、外电阻等概念,且其核心内容是了解闭合电路与部分电路的不同,教师可以通过实验让学生实际的理解闭合电路以及分电路、

内电路、外电路等等相关知识。这些内容较为复杂,学生容易混淆,在有了前面一系列实验的基础上,再进行这些知识的讲解,学生可以更好地理解,避免了知识点的混淆。

四、领悟思想,学以致用

通过实验提出问题进行导入,进而通过学生主动积极实验、观察、交流和讨论分析,加以教师的归纳总结,对于闭合电路欧姆定律的知识学生基本已经掌握,对课程的难点、重点也得到了直观的分析和解答。在此之后教师应该及时地对学生进行知识的扩展,结合到生活中,在课后作业中尽可能联系到实际生活环境,家庭中常见电路现象,使学生更深入地理解并掌握相关知识,领悟物理的思想方法和认识规律的本质,将所学知识运用到实际生活之中,达到活学活用、学以致用的效果。不仅及时巩固知识、查漏补缺,同时引导学生主动学习,从而保证了学生的学习速度和学习质量。

随着科技的发展,教学方式也在随其变化。物理教学过程中不能只是一味地“灌输式”的应试教育,应该让学生主动起来,把课堂归还给学生,在学习活动中提高学生的自主学习能力、创新意识,在学生遇到问题时教师应该对学生进行点拨、启发和激励,这样自然而然的突破教学中的难点、重点,找到解决问题有效的方法。尽管教学有一定的方法,但“教无定法”,怎么教学,怎么上课,也视学习环境和学生情况而定,更在于教师本人的长处和短处。所以,在教师教学过程中应该因地制宜,因材施教,通过不断地优化教学方法,充分发挥学生学习的主体作用及教师的主导作用。

上一篇: 银行业务特点 下一篇: 房地产销售的专业素养
相关精选