时间:2023-08-24 17:15:59
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇人工智能教学课程范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
1背景
近年来,随着“互联网+”的快速普及,互联网跨界融合创新模式进入林业领域,利用移动互联网、物联网、大数据、云计算等技术推动信息化与林业深度融合,开启了智慧林业的大门。我国林业信息化、智能化建设逐步走上了有序、快步发展的轨道,取得了重要的进展。
2011―2013年,国家林业局先后开展了中国林业信息化体制机制研究和中国智慧林业发展规划研究,在此基础上出台了《国家林业局关于进一步加快林业信息化发展的指导意见》和《中国智慧林业发展指导意见》。2012―2013年,在深入研究的基础上,林业局编制了《中国林业物联网发展框架设计》,2016年3月正式了《“互联网+”林业行动计划》。
国家林业局制定的《中国智慧林业发展指导意见》指出,信息化、智能化在林业中的应用已经从零散的点的应用发展到融合的、全面的创新应用。随着现代信息技术的逐步应用,能实现林业资源的实时、动态监测和管理,更透彻地感知生态环境状况、遏制生态危机,更深入地监测预警事件、支撑生态行动、预防生态灾害。
人工智能是计算机科学中涉及研究、设计和应用智能机器的一个重要分支。国际上,人工智能的研究已取得长足的进展;在国内,也呈现出极好的发展势头,人工智能已得到迅速的传播与发展,并促进了其他学科的发展。我国已有数以万计的科技人员和大学师生从事不同层次的人工智能的研究与学习,人工智能已成为一个受到广泛重视并有着广阔应用潜能的庞大的、交叉的前沿学科。特别是经过近几十年的发展,智能技术及其应用已经成为各行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流等,对人类生活的方方面面产生了重要的影响。
近年来,人工智能已经在智慧林业相关领域中得到了广泛应用,例如,在智能机器人的应用方面,已经有大量的嫁接机器人、水果采摘机器人、农药喷洒机器人、果实分检机器人等投入使用;在专家系统的应用方面,森林病虫害诊断专家系统、病虫预测预报专家系统、林产品生产管理专家系统、专家咨询和人员培训专家系统等也得到了广泛应用。
随着人工智能在智慧林业中的广泛应用,涉林企业和事业单位对智能型林业高技术人才的需求也在不断加大。为了适应市场对智能型人才的需求,自2003年起,国内诸多林业高等院校在计算机科学与技术专业本科阶段、林业相关专业的研究生阶段陆续开设人工智能课程,同时不断加大人工智能课程的比重,因此,人工智能课程教学对于林业院校显得越来越重要。
2林业院校人工智能课程教学现状
林业院校开设人工智能课程的专业不多,但有不断增加的趋势。以中南林业科技大学为例,该校计算机科学与技术本科专业自2003年起就开设了人工智能课程,所用教材一直是蔡自兴教授主编的《人工智能及其应用》;另外,面向部分专业的硕士和博士研究生开设了人工智能相关课程,如农业硕士的农业信息化领域研究生开设了人工智能技术,森林经理和森林培育两个专业的博士研究生开设了人工智能与专家系统。
针对计算机科学与技术本科专业,人工智能课程主要使用蔡自兴教授主编的《人工智能及其应用》教材施教,但由于课时数仅有32学时,关于人工智能的一些高级应用,如神经网络、专家系统、机器学习等,采用专题的形式组织教学。该专业没有设置实验学时,仅在理论课堂上演示了一些仿真软件,如BP神经网络仿真环境。
针对农业硕士的农业信息化领域研究生和森林经理及森林培育两个专业的博士研究生,教学计划安排的学时数为40学时,没有指定教材,仅给学生列了蔡自兴教授的《人工智能及其应用――研究生用书》等几本参考教材。课堂主要以专题的形式组织教学,每一讲除了相关的理论以外,还介绍一些工程实践应用的例子,让研究生能够了解这些人工智能算法如何在实际中得到具体应用。
3林业院校人工智能课程教学存在的问题
全国各高等院校的人工智能课程教学都或多或少地存在一些问题,林业院校更有区别于其他类型院校的显著特征,而且林业院校开设该课程教学相对较晚,因此林业院校的人工智能课程教学存在更多的问题。
(1)师资短缺。在林业院校,林学相关专业开设该课程往往由林学相关专业的教师主讲。这些非计算机相关专业的教师虽然曾从事过人工智能个别算法或领域研究,但不具备全面的人工智能相关专业知识,在讲授不熟悉的人工智能知识点时显得力不从心。
(2)教学内容专业性不强。人工智能是计算机科学的一个分支学科,一般的人工智能教材都比较适合计算机相关专业的学生使用,但是农业信息化、森林经理、森林培育等专业的学生不管是专业基础还是行业应用背景均与计算机类专业学生不同,如果我们仍然按普通的教材施教,教学内容就缺乏林科特色,显得专业性不强,无法吸引学生的听课兴趣。
(3)教学难度过大。林业院校涉林专业的学生一般只有计算机文化基础、C语言等简单的计算机课程基础,缺乏算法思想。而人工智能课程涉及很多高级、复杂的算法,不论从算法思想,还是从算法实现和算法应用,对非计算机类专业学生来说难度过大。因此,在教学内容和教学要求上要做一些取舍。
除此之外,还存在诸如缺少实验环节、教学手段单一、教学案例缺乏等其他普遍性问题。
4林业院校人工智能课程教学改革建议
通过分析林业院校人工智能课程教学存在的问题,结合自己近十余年来从事人工智能教学的经验,我们提出了一些改革建议。
(1)推行专题式教学,解决师资缺乏的问题。在师资缺乏的情况下,由一名教师完成整个人工智能课程教学比较困难,同时,可能有多名教师分别在人工智能的不同方面进行过深入研究。因此,可以将该课程按章节分成各个不同的模块,每一个模块设一个专题,如神经网络专题、专家系统专题、机器学习专题等,再由多名教师分别承担自己熟悉的专题进行讲授。这样既可以解决一位教师的知识不足,又可以让各位教师结合自己的科研将每一个熟悉的专题讲授得更加详细、更加有趣。
(2)教学内容与涉林专业紧密结合,解决专业性不强的问题。事实上,人工智能的各领域应用在林业行业都能找到对应的应用实例。例如,林果采摘机器人就是机器人在林业中的应用;林火识别和林木病虫害监测就是模式识别在林业中的应用;林火蔓延预测可以用到隐马尔科夫模型;PAID50专家系统平台就是专家系统在农林业中的应用典范等。因此,在教学过程中,我们可以考虑将人工智能知识与林业应用结合进行讲解,这样学生更容易接受也更乐意接受。更进一步,如果能够结合这些林业应用编写一本《人工智能及其林业应用》教材,将会更加适合涉林专业的学生学习这门课程。
人工智能课程是计算机类专业的核心课程之一,也是智能科学与技术、自动化和电子信息等专业的重要课程,其知识点具有不可替代的重要作用。该课程内容广泛,具有很强的综合性、应用性、创新性和挑战性[1],其开设能够更好地培养学生的创新思维和技术创新能力,为学生提供了一种新的思维方法和问题求解手段。同时,本课程能够培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平。通过课程的学习,学生对人工智能的定义和发展、基本原理和应用有一定的了解和掌握,启发了对人工智能的学习兴趣,培养创新能力。
中南大学人工智能课程开设于20世纪80年代中期。1983年,蔡自兴作为访问学者赴美国普度大学研修人工智能,并与美国国家工程科学院院士傅京孙(K. S. Fu)教授及清华大学徐光v教授合作研究人工智能。在傅京孙院士教授的指导下,蔡自兴和徐光v教授执笔编著《人工智能及其应用》一书,并于1987年5月在清华大学出版社问世,成为国内率先出版的具有自主知识产权的人工智能教材。本教材不仅为我校人工智能课程提供了一部好教材,而且促进了国内高校普遍开设人工智能课程。此后,又陆续编著出版了《人工智能及其应用》第二版、第三版“本科生用书”和“研究生用书”、第四版等,修读该课程的学生也与日俱增。该书第二版还获得国家教育部科技进步一等奖。经过近20年建设,该我校人工智能课程于2003年评为国家精品课程,并在2008年评为国家双语教学示范课程。这是至今国内唯一同时获得国家级精品课程和双语教学示范课程的人工智能课程。同时,我们还开发了人工智能网络课程,具有网络化、智能化和个性化等特色,被国家教育部评为优秀网络课程,供兄弟院校人工智能教学参考使用,受到普遍欢迎[2]。
作为国内第一门人工智能精品课程,我们按照教育部精品课程标准建设《人工智能》课程,尤其是在教学内容、创新性教学方法和教学模式上进行不断进行改革与探索,取得了很好的效果。本文即为我校人工智能精品课程建设与改革经验的初步总结。
1教学内容优化
1.1课堂教学内容优化
教学内容的确定是课程的首要任务。如何选好教学内容,使学生既能了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。
近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。
学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本人工智能课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。
近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。
随着科学技术的不断进步,在科学研究和工程实践中遇到的问题变得越来越复杂,传统的计算方法无法在一定时间内获得精确的解。为了在求解时间和求解精度上取得平衡,很多具有启发式特征的智能计算算法应运而生。这些算法通过模拟大自然和人类的智慧来实现对问题的优化求解。计算智能作为人工智能的一个新的分支是目前的研究热点,它主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在如模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用。另一个近10年来人工智能的研究热点是Agent和多Agent系统,其理论最早来自分布式人工智能,并随着并行计算和分布式处理等技术的发展而逐渐成为热点。
以上两个内容都是人工智能的重要分支。因此,我们在《人工智能及其应用》第三第3版[3]和第四第4版教材[4]中已经顺应形势加入了这方面的内容,并将教学内容也进行了相应的扩展,加入了计算智能、分布式人工智能与Agent。由于不确定性推理和基于概率的推理方法应用也越来越广泛,我们也将此类非经典推理方法单独作为一章来进行教学。另外,还增加了一些新的内容,如本体论和非经典推理、粒群优化和蚁群计算、决策树学习和增强学习、词法分析和语料库语言学,以及路径规划和基于Web的专家系统等。图1给出本课程的教学内容大纲。
人工智能的教学内容涉及面广且内容较多,要在有限课时内完成教学计划并让学生掌握,具有一定难度。因此需要根据教学对象的需求有所取舍。中南大度。因此需要根据教学对象的需求有所取舍。中南大学在智能科学与技术、计算机、自动化三3个专业中均开设了人工智能课程,根据相关专业课程教学对象,对学时和教学内容进行适当调整。对于智能科学与技术专业,人工智能课程为必修课,共48个学时含实验8个学时。表1表示为相关专业的人工智能课程教学内容分配情况。对于计算机和自动化专业,人工智能课程为选修课,共32个学时含实验8个学时。许多兄弟院校的计算机专业都把人工智能定为必修课,课程学时也在50学时左右。因此,我们一再强烈建议我校的计算机专业把人工智能列为必修课,并适当增加学时。由于智能科学与技术专业开设有专家系统和智能计算选修课程,因此在人工智能教学内容中只将这两部分做简要阐述,而将重点放在知识表示和推理以及扩展应用上。对于计算机专业学生来说,除基本的知识表示和推理外,计算智能和Agent技术也是他们在软件开发和通讯技术理论学习中需掌握的重要概念。同时,计算智能、专家系统对自动控制和电气工程也十分重要,对自动化专业则应掌握该方面的内容。
1.2实验实践教学创新
国内人工智能课程在开设之初大多没有安排实验内容,仅为理论基础和概念讲授。由于理论比较抽象,很难理解,学习效果不理想,学生们对于其应用实现也十分困惑。此后,各高校也逐步在该课程中分配了实验学时,大多数采用prolog语言和专家系统作为实验语言和对象[5]。为了改进该课程的教学,我们也从没有实验到将实验学时从零调整为设置4个学时的实验课时,然后到现在的8个学时的实验课时。随着课堂教学内容的改革,实验内容也进行了优化和更新。
人工智能课程实验的目的是帮助学生掌握基本理论,发挥主动性,研究探讨人工智能算法和系统的运行和实现过程,提出思路并验证自己探索的思路,从而更好的地掌握知识,培养研究能力和创新能力。因此,在实验教学内容的设计上,实验项目应具备研究性和综合性。实验项目目标明确,要求学生带着问题和任务进行实验,但实验过程又要有一定的灵活性,学生可以根据自己的思考进行适当的调整。再者,充分采用虚拟实验方式进行实验,大大提高了学生的兴趣,提供了分析和探讨智能算法的很好平台。同时,学生的实验数据和实验结果分析既有格式要求,又给学生报告自己的研究的过程和结果留有空间,并在评分时加以充分考虑。这些做法能够鼓励学生,特别是鼓励优秀学生进行独立性研究,满足他们学习的需求。
1) 人工智能课程的实验环节不足和课时分配问题。
中南大学的人工智能课程的实验环节经历了从精品课程建设前没有到开设,一直到其内容和形式上的不断改进过程。但目前实验还主要处于演示性和编程的实验阶段,而非设计和训练阶段。此外,由于人工智能课程涵盖范围广、内容多,而课程所设置的学时有限。,如何分配好课堂教学与实验课时也是一个需要在今后课程建设中不断探索的问题。
对于某些专业的人工智能课程,可以考虑单独开设人工智能实验课程或人工智能程序设计与实验课程。
2) 人工智能技术发展迅速情况下如何保持该精品课程持续发展的问题。
人工智能作为一门高度融合的交叉科学,其发展速度迅速,不断有新理论、新问题涌现出来。我们的
人工智能教学既要注重基础理论知识,又要紧跟学科发展的步伐,势必要求对课程内容进行不断更新,这对我们的教学资源和教师素质都提出了更高的要求。
4结语
本文介绍了中南大学的精品课程――人工智能课程教学内容和创新性教学方法的一些探索,已在课堂教学内容的优化、实验环节的改进、教学方法的创新的实施上取得了很好的效果,充分激励了学生的学习积极性和主动性,多方位培养学生发现问题、分析问题和解决问题的能力。我们的想法和做法可供兄弟院校同行参考。不过,仍然存在一些不足之处。随着智能科学与技术的发展和更为广泛的应用,人工智能课程的重要地位必将更加突显,我们也需要继续努力,与时俱进,不断完善人工智能精品课程的建设。
注:本文受教育部质量工程国家级精品课程人工智能(2003)、全国双语教学示范课程人工智能(2007)项目支持。
参考文献:
[1] 薛莹. 创新教育新途径人工智能与机器人教育:哈尔滨市教育研究院张丽华院长访谈录[J]. 中国信息技术教育,2010(1): 20-22.
[2] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.
[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.
[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010.
[5] 韩洁琼,闫大顺. 人工智能实验教学探讨[J]. 计算机教育,2009,(11):135-138.
[6] 刘丽珏,陈白帆,王勇,等. 精益求精建设人工智能精品课程[J]. 计算机教育,2009,(17):69-71.
Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course
――Construction and Reformation in Elaborate Course of Artificial Intelligence
CHEN Bai-fan, CAI Zi-xing, LIU Li-jue
人工智能(AI)[1]是计算机科学的重要分支,是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐明这些方法的一般性原理和基本思想,使得计算机更好得为人类服务。
1人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。
2人工智能教学实践
50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。
由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。
目前在整个教学过程中存在的主要问题[3]是:
1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。
2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。
3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。
4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。
3教学方法改进
3.1注重激发学生的学习兴趣
科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。
例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。
3.2注重教材选择
这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。
3.3运用现代化的多媒体教学手段
针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。
3.4加强对实验教学的重视
目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。
4结语
人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。
参考文献:
[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.
[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.
[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.
[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)06-0152-02
虽然人工智能的发展历史只有五十余年,但它已经广泛应用于专家系统、机器翻译、图像处理和机器人技术等领域。随着人工智能技术对社会经济发展的影响不断增大,人工智能课程不再是计算机专业独有的专业课程,国内外很多高校在自动化、智能交通等专业都开设了选修课,甚至在高中的信息技术课程中也在推广设置。吉林大学硕士专业“模式识别”将《人工智能》设为专业学位课程,同时也将其设为汽车、机械等其他学科的选修课程。由于研究生相关基础知识水平参差不齐,课程内容又比较抽象、生涩,为了提高教学质量,在本次教学改革过程中充分考虑学生学习新知识的心理演变过程,认真研究教学内容、教材、教学方法等诸多方面,力求在教授基本原理的同时,培养学生对智能系统进行理论分析、设计并编程实现的能力,为后期的论文研究阶段打下坚实的基础。本次教学改革受到了吉林大学研究生课程体系建设和核心课程建设项目的资助。
一、教学内容
教学改革的关键是教学内容。人工智能与统计学、心理学、语言学、计算机科学、生物学、控制论等都有交叉关系,学科涉及的内容十分庞大。人工智能学科知识的繁多与授课学时有限之间的矛盾比较突出。作为国内模式识别专业的领军院校,如中科院智能所、清华大学、上海交通大学和南京理工大学等,他们所开设的《人工智能》课程学时和内容也不尽相同。我们参考了上述院校的授课内容,同时考虑到本校本学科的学术研究方向,精心归纳、优化教学内容,力争做到教学内容系统、精炼和实用。目前,我们讲授的教学内容主要包括:智能化智能体系统、盲目搜索方法、启发式搜索方法、局部搜索方法、约束满足问题、博弈树搜索方法、知识表示方法、不确定知识与推理、规划与机器学习等,共40学时。
另外,人工智能领域中新问题、新理论交错涌现,这就要求教学大纲要定期修订,教学内容要及时更新,同时教师也需要不断提高自身的学术水平,以便提高硕士课程的研究性内涵。
二、教材选用
要搞好课程建设,教材是一个很关键的问题。我们广泛阅读和研究了国内外的经典教材,经过一番斟酌之后,我们选用了Stuart Russell和Peter Norvig所著的《人工智能-一种现代方法(第二版)》。首先,选用国外教材能够更快地追踪最新研究成果。同时该教材已经被世界上900多所大学采用,符合促进高校的教学内容向国际水准靠拢、与国际接轨的理念。另外,人民邮电出版社在2002年曾经出版该书的英文版的第一版,双语学习能有助于提高学生的英语水平,为学生后续的查阅英文文献,甚至发表英文文章奠定基础。
三、教学方法
在国内,比较有影响的是中南大学以蔡自兴教授为首的教学团队为计算机科学与技术本科专业开设的人工智能课程,该课程在2003年被评为全国高等学校首批精品课程[1]。2007年该课程又开始进行全国双语教学示范课程建设,成绩斐然[2]。多年来,我们不断汲取同行的成功教学经验[3],结合本学科的硕士专业特点、考虑学生的知识结构和实践能力,不断改革和尝试,总结了一套行之有效的教学方法。我们一切以学生为主体,在教学过程中充分考虑学生学习新知识的心理演变过程,采用灵活多变的教学手段。让学生从感兴趣,保持兴趣,到收获用所学知识解决实际问题的成功喜悦,并进一步增强投身于科研论文研究的热情。
课程伊始,通过多媒体演示人工智能技术已取得的杰出成就,激发学生的学习兴趣。然后布置学生查阅资料,列举人工智能发展史上的重要事件和最新研究的热点问题,课上再组织学生做报告。通过上述活动,一方面拓展了学生的专业视野,另一方面锻炼了学生的表达能力。
随着课程内容的深入,让学生组成兴趣小组,任意选择问题实例,利用每节课学习的理论、算法不断地更新该实例的解决方案,评价性能优劣。学习小组可以培养学生科研协作的精神。另外,课堂上每组轮流做报告阐述各自的研究进展,演示编程效果。其他同学或给出修改意见,或提出个人观点。最后老师及时总结,引导学生提高分析问题的深入性和广泛性。充分的课堂讨论能够提高学生多角度思维的能力,培养学生善于钻研和勇于创新的精神。同学间的这种学术交流也可以让学生有机会了解彼此的学习状况与能力,促进学生展开良性的学习竞赛,也为学生接受和理解老师最后给出的课程成绩做了心理铺垫。老师总结时要对学生的努力多肯定,激发他们的学习热情和潜能,让他们感到学习知识的快乐。
四、考核方式
实践表明笔试测验的方式不能全面反映学生的学习情况,所以本课程尝试采取自选实验设计题目,根据实验报告、上机演示结果和口试等方式综合评定成绩。其中,实验报告要求学生根据实验题目详细介绍设计思路,阐述编程方法,分析实验结果。口试是老师当场就报告中的问题提问,并对学生的回答进行讲评。课程成绩中,实验报告设计分析占60%,上机成果演示占30%,口试占10%。
通过实验设计的考核方式,学生的学习积极性得到了很大的调动,充分发挥了学生的自主创新能力,锻炼了学生知识综合应用技能。但美中不足的是该方式不像笔试那么客观,学生的成绩容易受教师的主观性影响。另外,人工智能作为一门学位课,其成绩往往直接影响学生的奖学金评定,学生和相关领导对成绩的评定原则十分关心和重视。为了减少人为因素对学生成绩的干扰,避免师生因课程成绩产生分歧,我们规定了完善的考核细则。考核细则发给同学,作为实验报告的首页,方便记录每一个环节上学生的得分情况,做到成绩评定有据可查。
非笔试的成绩评定方式对任课教师的要求也提高了,我们教师团队还规定了详细的教师工作守则。首先要求教师认真细致地阅读学生的实验报告,给出报告得分,并准备口试时提问的问题,得分和问题都要在实验报告的首页做好记录。询问每个同学的问题都不能重复,上机演示和口试环节都是公开的。问题可以是设计不合理的思路,或是阐述不清的步骤等,教师要注意掌握问题的数量,尽量做到均衡。上机演示时,学生经常因为紧张而漏掉部分功能的演示,因此,教师要跟学生加强沟通。口试时,根据学生的状态,可以给予适当启发,但要在成绩评定上做出相应调整。经过多年的摸索,我们将上机演示按照实验报告成绩的倒序方式进行,这样有利于在口试过程中由浅入深,逐渐加深问题的难度,有效避免重复。教师评价时应严格缜密,让学生正确认识自己的设计水平,对课程成绩的认定跟老师达成一致。
经过教学团队的不懈努力,“模式识别”专业的“人工智能”课程建设在教学内容、教学方法、教材选用、考核方式等方面的研究都取得了一些成绩,教学实践表明教改措施已见成效,教学质量有了明显提高。
参考文献:
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
王湘浩在北京大学数学系学习,如鱼得水,才能得到充分发挥,成绩遥遥领先,是著名数学家江泽涵教授的高足。在三四年级时他获得了最高奖学金。
1937年,王湘浩在北京大学数学系毕业时恰值爆发,北京大学南迁。王湘浩在西南联合大学当了助教,1939年成为江泽涵教授的研究生,专攻拓扑学,1941年毕业,担任西南联合大学讲师。1946年夏,他到美国普林斯顿大学,在著名代数学家E・阿廷指导下攻读学位,1947年夏取得硕士学位,1949年春又取得博士学位,其博士论文《关于格伦瓦尔德定理》纠正了格伦瓦尔德定理的错误,将该定理做了推广,重新证明了迪克森猜想。他的这项工作一直享誉代数学界。
1949年6月,王湘浩启程回国,在母校北京大学数学系任副教授,1950年晋升教授。1952年院系调整时,他到东北人民大学(后改名为吉林大学)数学系任系主任。1955年他被选为中国科学院学部委员(院士),年仅40岁。
1958年,王湘浩以其敏锐的洞察力,率先认识到开拓计算机科学研究的重大意义,毅然从代数方向转向计算机科学方向,创建了控制论专业,开展了计算机理论研究,使吉林大学成为国内最早开展计算机科学研究的单位之一。
20世纪60年代,王湘浩在“多值逻辑”和“自动机理论”两方面取得了具有国际先进水平的研究成果。
在那个被扭曲了的岁月中,王湘浩作为学术权威,遭受到了不公正待遇。而且还被莫须有地说成是员,被强制去住“牛棚”,遭受了严重的摧残。“”被粉碎后,王湘浩又振作起来,投身于他所热爱的教学和科研工作。那时,他虽然已经年过花甲,但仍然承担起吉林大学副校长的工作,承担起刚刚开始的博士生导师的重任。
1977年,王湘浩在国内最早提出要开展人工智能的研究,并于1980年受教育部委托,在吉林大学举办了全国性的人工智能讨论班,随之成立了全国高校人工智能研究会。王湘浩在定理机器证明的归结方法上做出了研究成果。1982年王湘浩和他的学生研究了归结方法中的取因子问题并提出了广义归结方法。
王湘浩很早就指出,越是有成就的教授,越要上基础课,为低年级学生上课。这是他从自己的成长道路获得的一个启示。他不仅坚持这一观点,而且身体力行,率先垂范。他的一个学生回忆道:“1957年,当我刚进入吉林大学数学系时,就是王湘浩教授为我们主讲数学分析课和高等代数课。名教授的点拨与教诲,对于我掌握这些课程,包括培养科学的治学态度,培养分析问题和解决问题的能力,都具有极其重要的作用。他不仅亲自为我们讲课,连讲课的讲义也是他亲自编写的。”这就是1960年代全国高校的通用教材《高等代数》和《离散数学》等。
此后,王湘浩教授仍坚持为低年级学生上课,几乎每年入学的一年级学生的高等代数,都由王湘浩教授主讲。正是这样的传统,使得吉林大学数学系的学生,不仅受到严格的训练,而且学者们严谨的治学态度、德艺双馨的人格魅力,成为学子们在大学期间乃至以后人生受用不尽的精神食粮。
王湘浩教授讲课,清晰、简练、明快、逻辑性极强。他善于抓住事物本质,并且引导你一下子就去研究问题的要害。这也就特别有益于学习他分析问题和解决问题的能力。他这样做时,自己也特别投入,往往是把精力全部集中于引导学生积极探索和深入思考之中。因此,有几次,当他一手拿粉笔,一手拿香烟时,他竞在不知不觉中,把粉笔当成香烟,塞进嘴里。每每在这时,他自己也会和同学们一起会心地笑起来。
王湘浩还业余从事红学研究,红学大师周汝昌(1918--2012)晚年以90多岁的高龄评价王湘浩的《红楼梦新探》道:“谁解其中味?君书动我心。同时不相识,字字惜千金。”
周汝昌说:“我艰难地坚持读完了王湘浩教授的《红楼梦新探》,不禁万感中来,悲喜交集,心中实难平静。这册书部头不大,编收论文只有6篇,正文不过108页,然而在近年红学专著中,这是我所见的一部令我心折的、学术品格很高、思力识力很深的著作。它的问世,意义之重大,必将逐步为学术文化界认识与评价。为什么重大?他是一位卓越的自然科学家。这样的学者,与一般‘红学家’显然不尽相同,由他来研
1993年5月4日,王湘浩逝世于大连,时年78岁。
他的《病榻感怀》是:
死去原知万事空,但悲未见教苑荣。
他的墓碑上镌刻着他的
这经文,若能背,微积分,便学会;
n次幂,算微商,乘以n,降一方;
赛因x,作微分,结果是,柯赛因;
柯赛因,求导数,得赛因,加个负;
0前言
现代社会发展呈现出有别于传统社会特征的信息化、快节奏、高压力和高竞争等特征,这就对我们的包括高等教育在内的学校教育的人才培养提出了新的要求,即培养适应现代社会生活的具备一定社会适应能力的合格劳动者。在社会学中,社会适应是指个人或群体调整自己的行为使其适应所处社会环境的过程,其实质就是个体的社会化过程。体育是个体社会化的重要方式,与他人和群体的联系是体育活动的必要条件。4学校体育课程的学习过程不仅体现为个体认知性知识的积累、深化,更体现为个体体能的增强、技能的掌握和行为态度的改变等方面,具有参与性、实践性特点,因此学校体育课程在个体社会适应能力培养方面将承担重要的责任。籍此,教育部在2002年颁布的《全国普通高等学校体育课程教学指导纲要》中指出社会适应能力培养是高校体育课程的课程目标之一,并进一步提出“表现出良好的体育道德和合作精神;正确处理竞争与合作的关系”是我国高校大学生社会适应能力培养的基本目标。
“元认知学习”是现代学习理念的一种新观念。这种新的学习理论在教育观念上强调的不仅仅是“学会”,而更主要的是“会学”,以及对学习动机、学习方式、学习结果的调节与监控。元认知学习理论所倡导的是学生个体自身对学习的监督和调控及学习过程结束后的自我反馈,要求每个学习个体学会学习、学会生活、学会生存。元认知学习理论指导高校体育学习将彻底改变以往的传统的体育教学思想,并使每个学习个体对自身学习进行调节和监控,这也是元认知体育教学促进大学生社会适应能力发展的理论依据。本研究旨在探讨体育的元认知教学对大学生社会适应能力的影响,进而为高校公共体育教学的社会适应教学目标的实现寻找一条可行途径。
通过查阅大量的参考文献,并进行综述研究之后,本研究提出以下假设:
①元认知教学可有效提高大学生的元认知水平;
②元认知教学是达成高校公共体育课程社会适应目标的有效途径。
1研究对象与研究方法
1.1研究对象
本研究以大学一、二年级的大学生(开设公共体育课程)为研究对象,样本为某高校开设公共体育课程的大一、大二部分大学生,共75人,其中男生36人,女生39人。
1.2研究方法
1.2.1文献资料法。查阅了国内外大量的文献资料,掌握了有关元认知和社会适应问题的相关研究成果,为本次研究奠定了较好的理论基础。
1.2.2问卷调查法。本文采用国内研究者根据Gregory .Schrawd等人编制的元认知意识量表(Meta一cognition con-sciousness questionnaire)翻译修订而成的中文版量表。该量表采用10等级记分法,从元认知知识、元认知体验和元认知技能三个维度测量了被试的元认知水平。马建锋研究表明该问卷具有较好信效度,适合中国背景下的大学生。
根据社会适应能力的相关研究成果,并结合大学生公共体育课程课堂教学实际与课外体育活动情况自编大学生社会适应能力问卷,该问卷采用5等级记分法,并主要从对活动的规则、纪律的遵守、活动中的人际互动、活动中的自我激励、自我调控、团队意识(竞争、合作、集体荣辱感)等社会适应方面对大学生进行考察。该问卷的重测信度:=0.94(时间间隔为3周),另外就问卷的内容效度对多所高等院校的心理学、体育学专家进行了访谈,最终的反馈结果表明该问卷内容效度良好(每个条目与问卷总分的相关系数在0. 31-0.66之间),能全面、有效地反映所要研究的问题。因此该问卷具有较好的信效度,可以为本研究服务。
1.2.3实验法。采用单因素完全随机等组前测后测实验设计方法并随机选取对照组与实验组(分组时对其元认知水平和体育社会适应水平进行了均衡化处理)。实验组与对照组课堂教学活动内容相同,时间共16周,并由同一教师教授(实验组接受元认知教学培训)。对照组按教学计划学习,不进行任何干预。实验组在按教学计划学习的同时,一是教师在教学过程中提示学生注意运用元认知的方法进行学习,二是实验者在学习现场进行言语指导,让学生注意采用元认知的方法进行社会适应训练。最初和最终学生在体育活动中的社会适应水平由同一教师按同一问卷进行调查。在实验过程中,注意到了教师及学生主观期望效应可能对实验结果的影响,并加以控制。
1.2.4数理统计法。本研究测量所得数据均运用SPSS for Windows 11.0统计软件进行处理。
2实验组进行的元认知教学培训说明
2.1教学目的
对实验组学生进行另外的元认知能力培训,以提高其元认知能力。
2.2教学方法
一是采用课堂教学法对实验组学生讲授元认知的理论知识,以及提高元认知能力的方法;二是在公共体育课堂上采用现场言语指导的方法提示学生注意使用元认知有关的技能进行学习活动(主要是体育活动的社会适应方面)。
2.3教学内容
2. 3.1有关元认知理论方面的内容。元认知的基本含义、实质和要素。元认知与体育活动的社会适应方面结合起来,让学生理解、体会体育活动的社会适应方面的元认知知识、元认知体验、元认知技能。体育活动的社会适应方面的元认知知识是指对体育活动的社会适应方面认知的知识,即学生对自己的体育社会适应认识活动过程与结果及其影响因素的知识,包括三个方面内容:个人、任务和策略。体育的元认知体验是指伴随着体育认知活动的体育认知体验或体育运动的情感体验,它包括知的体验,也包括不知的体验。体育的元认知技能是指学生在运动学习过程中对动作活动进行调节的技能。
2.3.2培养、训练元认知的一般方法。自我提问法:在元认知训练中,通过提供给学习者一系列自我观察、自我监控、自我评价的问题,不断地促进学生进行自我反省而提高问题解决的能力。
相互提问法:让学生每两人分成一组,给每个学生一份类似于上述自我提问的问题单,让学生在尝试解决问题的同时根据问题单相互提问并做出回答。这种方法能有效地促进学生的思考和竞争,提高元认知水平。
知识传授法:通过传授元认知理论的有关内容,使学生认识到元认知在学习中的重要性,自觉地将元认知运用于学习中,以提高学习效果。
元认知培训和训练的各方法在体育课程教学活动中实施(主要与大学生体育课程活动的社会适应方面相结合而开展)。
2.4元认知理论教学进度安排
利用体育课程以外的时间,采用课堂教学的方法对实验组学生进行元认知能力的培训,培训共4次课,每次30min,并布置课后作业。教学进度安排如下:
课次1:元认知理论知识的培训。
课次2;元认知与体育运动的关系、在体育运动中的作用等方面的知识培训。
课次3:训练、提高元认知的方法的培训。
课次4:对所培训内容复习,巩固所培训的知识。
3结果与分析
3.1元认知教学效果考察
实验组经元认知培训后,其元认知水平较对照组呈现下表所示变化(调查数据统计采用配对样本t检验方法)。
结果显示实验组在经过元认知教学后,整体元认知水平有了显著提高(实验组整体元认知水平实验前后比较P- I) . 046,达到显著差异),且元认知知识、元认知体验、元认知调控水平也都有显著性提高,而对照组无论整体元认知水平p=0.446),还是分维度水平前后测均未出现显著性变化。实验结果说明元认知教学可有效提高大学生元认知水平,证实了研究假设。这进一步说明个体的元认知能力不仅是在个体长期的学习过程中形成和发展起来的,而且元认知能力是可以教授的,即经过系统、专门的教学培训,个体的元认知毙力可以在相对较短的时间内得以提高。该结果可解释为:通过提问、讲授等元认知培训方法的实施并在实践中加以锻炼,可使学习者个体更好地掌握自我的元认知知识,加深元认知体验,增强元认知技能,进而提高个体整个元认知水平。
3.2大学生体育方面的社会适应能力考察
实验前对普通专业103名大学生(大一、大二)的体育方面的社会适应能力进行了调查,结果如下表:
表2显示大学生体育社会适应情况:规则适应方面相对较好,达到基本适应水平,且个体差异不大;人际互动、自我调控、团队意识方面表现较差,且人际互动、自我调控方面的个体差异较大。总体而言,大学生社会适应的整体水平与我们的基本培养目标间还存在一定差距。造成这一差距的原因是多方面的,如由于受中小学应试教育环境影响,学生的社会适应教育得不到足够重视,缺乏足够的锻炼;社会适应能力培养的实施存在一定的难度,由于学生个体差异较大,因此较难采取统一的培养措施。
对性别变量进行考察(表3),发现:男生在人际互动、团队意识方面好于女生,在规则适应、自我调控方面差于女生。除规则适应方面,女生显著好于男生外,社会适应其它方面不存在显著性别差异。另外统计显示大学生的元认知水平与社会适应能力之间的相关系数为0. 45,为中度相关,说明两者之间存在一定程度的共变关系。
3.3体育教学对大学生社会适应能力的影响考察
实验组接受元认知培训和元认知教学及相应体育教学,对照组接受相同体育教学。实验结束后,实验组和对照组大学生的体育方面的社会适应水平前后呈现表4所示变化。
表4表明,实验前后实验组与对照组大学生体育方面的社会适应各维度均存在显著性差异,实验组与对照组不同组别大学生体育方面的社会适应各维度均存在显著性差异,且交互作用不明显,即实验后实验组大学生体育方面的社会适应各维度较实验前有显著性改善,实验后实验组大学生体育方面的社会适应各维度较对照组均有显著性改善。统计结果说明元认知体育教学可有效改善大学生的体育社会适应水平,结合对元认知教学效果的考察,这一结论可理解为元认知教学提高了学习者的元认知水平,而提高的元认知水平又在个体的体育社会适应实践方面发挥作用,即在体育活动实践中通过比较、反馈、自我暗示、自我调控等手段,逐步提高自我的体育社会适应水平。元认知体育教学以学生的发展为中心,突出学生的主体地位和主观能动性,在社会适应的教学中,学生不再处于从属、被动的“他控”地位,他们的社会适应是主动的,并对适应的过程和结果具有深刻的感受和体验,对自我的社会适应具有高度的自控,因而可有效地促进大学生适应能力的发展。
4结论与建议
4.1结论
通过本实验研究,可以得出以下结论:在教学中实施现有的提高元认知水平的方法、措施可在相对较短时间内提高大学生的元认知水平;大学生体育方面的社会适应情况处于基本适应状态,与相关培养目标存在一定差距;元认知体育教学有效地提高了大学生的体育方面的社会适应能力。
4.2建议
元认知理论与现代教育思想紧密相关,并对学校教育目标的实现将起到很好的促进作用。在高校体育教学中采用元认知教学手段,必将为体育教学的各学习目标的实现提高一条可行性途径。
4.2.1因本次实验条件的局限,还应进一步考察实验效果的外部效度,为其应用、推广提供可靠的理论依据。
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行教育体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能足球机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。
(三)提倡课堂辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列辩论会。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验报告。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.