时间:2023-08-31 16:38:00
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇高标准农田等级划分范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
中图分类号:F301 文献标识码:A
引言
建设高标准基本农田是我国土地整治改革领域中重要的组成部分[1-2]。国家高度重视对高标准基本农田的建设工作并颁布一系列相关文件,充分体现了基本农田建设任务的紧迫性和重要性,如:制定了建设全国高标准基本农田的相关专项规划和总体规划;开展农村土地整治重大工程建设,促进农田在受自然灾害的影响下仍能产出高质量的粮食[3]。本文以广东省为例,分析在政策的支持下具体地区是如何因地制宜进行高标准基本农田建设。
1 高标准基本农田建设的意义
高标准基本农田建设是通过土地整治的措施使农田达到集中连片、高量高质、设施配套、抗灾能力强等要求,体现了运用现代化经营方式和技术的新型基本农田,是保证粮食与人均占有量相均衡的基本途径,具有重大的现实意义和深远的现实意义。
高标准基本农田建设是保证粮食高产量和优质量的前提,同时对因自然灾害造成粮食不可预计的损害起到较强的抵御作用,为农田的安全形成一个“保护网” [4]。
高标准基本农田建设是防止水土流失的重要科学手段。广东省因地势、天气原因每年出现洪涝灾害次数较多,造成广东省的水土流失现象严重。为此,多次针对水土流失问题开展了治理工作,但取得的效果不明显。建设高标准基本农田是对水、村、林、路进行综合治理,整体改进交通、水利、环保等设施,主要目标是保护农田建设,能有效抵抗灾害所带来的影响,是治理水土流失的最有效的手段之一[5-7]。
高标准基本农田建设是创建新型农业模式的前提,是加快新农村建设的先决条件之一。自改革开放以来,广东省实行农田责任制,将农田承包给个体。这种经营方式是土地利用结构较为零散,阻碍了农田规模的壮大。随着科技的进步,农业应该利用现代化科技和新型的管理模式推进高标准基本农田建设的进程,建设集中连片的农田模式。
2 广东省高标准基本农田建设概况
2.1 广东省建设区划定形式
2.1.1 划定原则
广东省针对高标准基本农田的划分原则是以国家土地资源部颁发的关于《高标准基本农田建设规范》文件为方向,结合广东省的实际情况将划定原则划分为:集中连片、将农田进行集中化管理;重点整治土地潜力较大、取得效益较为明显的区域;将国家及各地区基本农田示范区作为参考标准与之相衔接;以不打破行政界限为前提进行建设高标准基本农田。
2.1.2 构建指标体系
结合广东省的实际情况,开展相关专家咨询交流会。其主要内容是将广东省的粮食生产能力、财政支持力度、基本农田的连片性、土地开发价值4个因素作为广东省建设高标准基本农田的重要考虑范围,并合理划分了这些因素的在工作中具体比重。农田连片性占重点建设区划分指标体系的40%,财力支持占25%,粮食生产能力占15%,耕地政治潜力占20%(潜力因子分为潜力一级、潜力二级、潜力三级跟别对应的量化标准是100、80、60)。
2.1.2.1 连片性
连片性农田进行集中管理,是我国基本农田建设的重要方面。该研究以广东省2010年1:10000土地利用变更数据为参考,结合县域行政界线与相邻基本农田融合起来[8]。在融合的过程中要进行2次操作,第1次是将带有公共边的农田图斑进行融合后,再将空间距离100m范围内的基本农田图斑进行第2次融合,每1次的操作过程的前后都要仔细核对面积、图斑个数等相关数据,保持数据正常化。
2.1.2.2 粮食生产能力
高产量、优质量的粮食出产是高标准基本农田建设的基本要求。因而,将地区粮食的生产能力考虑到划定重点建设区重点范畴内。广东省于2009年将其中的40个县(市、区)评为粮食大县。
2.1.2.3 财政支持
建设高标准基本农田需要重新整治土地资源,依靠现代化农业技术来发展,所以需要大量的资金支持。在资金投放之前要充分考虑并结合广东省近几年对建设高标准农田资金安排。
2.1.2.4 耕地整治潜力
确定耕地整治潜力级别可以直接引用广东省颁布的整治规划文件中的结果数据。
2.2 基本农田划定技术方法
基本农田划定技术方法首先以土地整治的现状对土地利用的调查信息为基础,结合土地的实际情况,将土地利用的总体规划结果对其进行评估、核实;要对基本农田保护片边界进行综合确定并将其编号、记录,提取农田保护片的地类图斑目前存在的信息;根据农用土地的分等成果提取基本农田质量相对应的等级信息,并按照规定录入基本农田图斑属性与基本农田保护片;建立有效的数据库并落实保护工作的顺利进行,达到基本农田的划定成果。通过对广东省建设高标准基本农田举措的具体分析,在建设过程中也出现了一些问题,发现并解决这些问题对建设高标准基本农田有着深远的影响。
3 高标准基本农田建设中应注意的要点
3.1 探究地貌地形、水文地质特点
自然因素中的地形地貌、水文地质因素直接关系到高标准基本农田规划方案的可行性和成效性。广东省位于南方,其丘陵地带与北方的平原地区存在着很大的差异。一定要进行地质条件的勘察。只有在全面掌握和了解这些基本情况之后,才能更加顺利的开展工作。地形地貌以及水文地质等这些条件的观察和分析,是为农田施工建设方案制定提供重要的信息和依据的途径。在施工前,相关设计工作人员一定要深入到施工现场,做好规划。要在实践中真正做到因地制宜,根据不同的勘察结果采用不用的施工方法,制定科学的施工方案。总之,在高基准农田建设过程中,一定要注重基础条件的分析和研究,综合考虑多方面的影响因素,应该充分结合项目的施工特点,严格按照施工标准要求开展工作。
3.2 农田建设要积极对接其他的基础设施
农田建设与水利工程项目建设之间存在着直接的联系。水利工程建设是农业发展的重要保障和基础。农田建设项目和水利工程建设的最终目标都是为农业生产和发展服务。在农田建设过程中,应该根据地方拥有的水利工程进行合理的规划和建设,要充分利用现有的水利工程,尽量避免对其造成不良的扰动和影响。在高基准水利建设和土地整治过程中,将“最后一公里”的任务落实到位,取得最为理想的成绩。
3.3 注重施工工程质量的监督与管理
农田建设施工质量控制和管理非常重要。只有确保工程施工质量,才能保障施工安全。在工程质量控制中,应该做好工程验收以及施工过程质量控制等方面的工作;与项目以及立项等方面的工作人员取得联系,调动全体管理以及工作人员的积极性。在工程实施的过程中,应该实施同步的监督与管理,将施工方与监理方的质量检验资料分类建档进行管理。对施工过程中发生的一些工程变更问题进行严格的审核。工程变更一定要坚持以工程质量为中心,在确保工程质量的同时进行工程变更。质量控制是一项比较复杂的工作。在实践中,一定要注重各种细节的管理,及时进行备报案等整理工作,将工程内业管理和外业管理相结合,确保工程质量的总体达标。
参考文献
[1] 沈明,苏少青,陈飞香.广东省高标准基本农田建设重点区域划定[J].安徽农业科学,2012,40(20).
[2] 沈明,陈飞香,苏少青等.省级高标准基本农田建设重点区域划定方法研究――基于广东省的实证分析[J].中国土地科学,2012,26(7).
[3] 邓建中,周惠红.基本农田保护分布图的编绘及标志牌的制作――以广州市花都区为例[J].地矿测绘,2012,28(3).
[4] 张满红.广东省基本农田保护工作20年回顾与展望[J].广东农业科学,2010,37(1).
[5] 吴曼乔.基本农田保护标志牌制作的技术质量实现[J].科技信息,
2013,(13)
[6] 王增刚.GIS在高标准基本农田建设中的应用研究[D].江西农业大学,
中图分类号:F301.21 文献标识码:A 文章编号:0439-8114(2016)05-1151-05
DOI:10.14088/ki.issn0439-8114.2016.05.016
High-standard Primary Farmland Construction Area Zoning in
Northwest of Hubei Province
QIU Li-juana,LIN Ai-wena,b,LI Hai-jianga,PENG Peia,ZOU Linga
(Wuhan University, a. School of Resource and Environment Science;
b. Key Laboratory of Geographic Information System, Ministry of Education, Wuhan 430079, Hubei, China)
Abstract: Taking Nanzhang county in northwest of Hubei province as case, selecting factors from four aspects of natural quality, producing condition, location and ecology, an evaluation model for zoning high-standard primary farmland construction area was established by AHP method, then an analysis of limited factors was conducted to define the construction direction. The results showed that the construction conditions in Nanzhang county indicated a certain spatial pattern. To be specific, conditions in the eastern area, southern area and the northwest area were the best, worse and the worst respectively. According to the evaluation results, 42 800.48 hm2 of primary farmland were zoned into the high-standard primary farmland construction area. Further, for the zoned construction area was deeply restricted by conditions of production and ecology, the constructions of infrastructure condition and ecological protection project should be strengthened. The evaluation model can quantify influencing factors effectively, especially its try of bringing in landscape indexes in describing ecological characterization, and combined with the farmland protection area radio and pollution intensity to quantify it, which provided a scientific basis for high-standard primary farmland construction area zoning.
Key words: high-standard primary farmland; construction area; zoning; AHP; northwest of Hubei; Nanzhang county
耕地保护和粮食安全问题一直是国内热点,耕地资源在庞大的人口下显得十分稀缺,改革开放以来日益加快的工业化、城市化进程又使耕地资源大量流向非农利用,耕地生态环境恶化,影响国家粮食安全[1]。在人类的历史进程中,确保人类粮食总体需求的根本途径只有两条,扩大粮食种植面积与提高单位耕地面积粮食的产量[2]。就当前发展形势而言,提升耕地产能无疑是保障粮食安全的重中之重。国家已从战略层面明确大力推进高产稳产基本农田建设为重点的农田整治。2010-2014年中央“1号文件”多次强调高标准基本农田的建设。
高标准基本农田建设兼顾了耕地数量、质量、生态管理的内涵,随着生态文明建设力度加大,基本农田承担越来越大的生态涵养功能和景观美化功能[3]。目前,高标准基本农田建设研究主要集中在潜力评价[4-6]、空间划定[7-10]、建设时序与模式分区[11-14]等方面。在空间划定研究的指标体系构建中,耕地质量与基础设施完备度的量化指标相对完善,但生态方面相对欠缺,一些学者对此进行积极地尝试,通过判断区域是否为重点生态保护区对生态影响进行量化[7],通过对研究区土地进行生态安全分级后对其内的基本农田赋值生态安全修正系数[8],引入田块集聚度对生态景观进行量化[9],用农田防护林相关指标来刻画农田的生态良好程度[10]。但这些研究所选量化指标相对单一,具有一定的片面性。本研究尝试引入景观指数结合农田防护面积比例及环境污染强度来定量刻画耕地的生态良好程度,并在此基础上探讨高标准基本农田建设区域的划定方法。鄂西北地区地形条件复杂,以南漳县为例,对其进行高标准基本农田建设区域划定研究,为鄂西北地区高标准基本农田建设工作提供科学依据。
1 研究区概况及数据来源
1.1 研究区概况
南漳县位于湖北省西北部,位于111°26′-112°09′E、31°13′-32°01′N,地处江汉平原北缘,南阳盆地南缘,荆山山脉东麓。地形复杂,西高东低,大致可分为中山地带、低山丘陵地带、平原岗畈地带三级阶梯。研究区属北亚热带季风性气候区,日照充足,年均温10~16 ℃,境内水资源丰富,自北向南分布有潍水、蛮河、漳河、沮河四大河流,自西向东穿越县境,泉眼众多,有水库130余座,为灌田提供了重要保障。全县耕地总面积85 211.68 hm2,基本农田面积58 547.11 hm2。
1.2 数据来源
空间数据主要从南漳县1∶1万土地利用变更调查矢量数据(2011年)、南漳县1∶1万土地利用总体规划(2010 ― 2020年)、南漳县农用地分等定级更新成果中提取,统计数据从南漳县统计年鉴(2012年)和实地调研得到。
2 研究方法
采用层次分析法,从自然质量、生产、区位、生态4个方面构建了高标准基本农田建设区域划定模型,基于已有数据利用ArcGIS 10、Fragstats 4.2软件获取指标值,并对其进行标准化,根据评价模型计算各基本农田片块的综合得分,根据评价结果划定高标准基本农田建设区域。
2.1 评价单元的确定
高标准基本农田是指在规划时期内,通过农村土地整治形成的集中连片、设施配套、高产稳产、生态良好、抗灾能力强、与现代农业生产和经营方式相适应的基本农田[15]。在以往高标准基本农田划定研究中常以基本农田图斑或耕地图斑作为评价单元[8-10],这可能会导致相互连接(有公共边)的地块中只有部分被选中,这样在最后的划定结果中连片性无形中就被削弱了。高标准基本农田强调规模生产,十分注重地块的连片性,为避免上述情况出现,同时考虑到高标准基本农田建设属土地整治范畴,土地整治是以行政村为具体实施单位,而基本农田片块是以村或自然地块为单位的耕地保护区域,即以村为单位对基本农田图斑进行融合后形成的区域,因此将基本农田保护片块确定为评价单元。
2.2 指标体系的构建
根据高标准基本农田内涵、相关标准[15,16],结合专家意见,从自然质量、生产、区位、生态4个方面构建高标准基本农田建设区域评价指标体系。自然质量条件主要体现在耕地肥力、规模、坡度等因素对工程建设难度的影响;生产条件主要体现在基础设施的完备度对建设工程量影响;区位条件体现在距道路、城镇、村庄的远近对农资投入效率、农产品商品化便捷度及耕作便利度的影响;生态条件的限制主要指农田防护、环境污染及农田景观对农田生态建设的影响。另因评价对象是基本农田,规划时已避开城镇规划区、有条件建设区、重点项目建设区等,故指标体系中不考虑此类政策因素。运用层次分析法结合特尔菲法确定指标因子的权重。同时为消除指标量纲影响,参照相关研究[8,17,18],采用分级给分法对指标进行标准化,由此建立高标准基本农田建设区域划定模型(表1)。
2.3 评价指标值的获取
自然质量等、连片性等空间指标是在ArcGIS 10的支持下,基于基本农田数据、土地利用变更数据、农用地分等数据,通过叠置分析、缓冲区分析、空间统计分析等功能获取的。农机化水平及环境污染强度由统计数据结合实地调查得到,并通过属性挂接的方式赋值给基本农田片块。指标的具体参数设置:①将相隔20 m以内的基本农田视为连片。②环境污染强度主要是指耕地中残留的化肥、农药、地膜造成的污染,三者残留率分别取64%、65%、42%[19,20]。③景观脆弱度采用的是脆弱度模型V=α×AWMSI+β×F+γ×D,其中α、β、γ分别取值0.59、0.28、0.13,AWMSI、F、D分别为面积加权的平均形状因子、分维数、分离度[21],通过Fragstats 4.2软件求得。
3 结果与分析
3.1 高标准基本农田建设区域划定
对南漳县6 152块基本农田保护片块进行评价,并用自然断点法对各片块的综合得分进行分级:Ⅰ级(高度适宜)、Ⅱ级(中度适宜)、Ⅲ级(低度适宜)、Ⅳ级(不适宜),结果见图1。
Ⅰ级区面积28 724.51 hm2,所占比例为49.06%,集中分布在东北部平原岗畈地区。该区地势平坦,土壤熟化度高,土层深厚,有机质含量高,一般在2.0%~3.0%之间,最高可达3.9%,连片规模均在150 hm2以上,形状规整,聚集度高,非常适宜大规模机械化生产。该地区同时也是南漳县经济发展的腹地地区,农业生产条件良好,石门、三道河、云台山三大水库加上密布的沟渠为该区的农田灌溉提供了可靠的保障,发达的交通路网及集镇为物资投放及农产品交易提供了充分的保证。
Ⅱ级区面积14 075.97 hm2,所占比例为24.04%,主要分布在南部丘陵地区及东部平原区的边缘地带。交通及集镇的发达程度虽不及平原区,但从该区穿流而过的沮河、漳河两岸分布有较大规模的冲击平原,土壤肥沃,质量等别高。农机化水平达到该县的中等水平,防护林分布较多,斑块形状较规整,农田生态条件较好。
Ⅲ级区基本农田面积10 679.19 hm2,所占比例为18.24%,主要分布在西部山区。这些地区土壤质地较差,肥力低,有的基本农田片虽然具有一定的规模,高者亦可达上百公顷,但复杂度高,外形多呈枝丫状,景观脆弱度大,易敏感,生态条件较差。
Ⅳ级区面积为5 067.44 hm2,所占比例仅为8.66%,集中分布在西北部山区及乡镇交界带上。受地形因素影响,该地区的土类多为砂石、砾石,土层薄,有机质含量低,破碎度高,坡度较大,易发生水土流失等地质灾害,生态安全度低。加上地处偏远,农路基础设施条件差,基本无灌溉水利设施。
根据以上分析,Ⅰ级区已基本具备建设高标准基本农田条件,Ⅱ级区需稍加改造可建设成为高标准基本农田,Ⅲ、Ⅳ级条件较差,不太适宜建设高标准基本农田,因此将Ⅰ、Ⅱ级区划为高标准基本农田建设区域,共2458个基本农田片块,面积合计42 800.48 hm2,占基本农田总面积的73.1%。
3.2 高标准基本农田建设方向
高标准基本农田建设应针对相应的限制性因素制定正确的方向,对限制因素采取科学合理有效的方式加以削弱和消除,打破低效均衡利用状态,充分挖掘基本农田生产潜力。针对划定的高标准基本农田建设区域,分别从自然质量、生产、区位、生态条件4个方面考察其限制区分布,根据各评价因素得分,划分为三个级别:优(≥80分)、一般(60~80分)、差(
自然质量条件限制区面积16 459.94 hm2,占划定建设区域总面积的39.48%,主要分布在西部及南部。该地区主要为山地丘陵,土层薄,有机质含量一般在2%以下,坡度多为Ⅱ级,连片性一般。该区可通过实施培肥地力工程提高耕地肥力水平,对于坡度较大的可实行坡改梯,增加农田的保水保肥能力,西部山区应注意辅以生态护坡工程,控制水土流失。
生产条件限制区面积共33 607.12 hm2,所占比例达78.66%,除东部经济发达区外,其余地区的生产条件均不理想。应加强水利及田间道路等农业基础设施建设,保障灌溉用水,提高田间道路通达度,改善农业生产条件,使农田的生产潜力得以发挥。
区位条件限制区面积共10 064.02 hm2,所占比例为24.31%,主要分布在乡镇边缘且距公路较远的地区,尤其是九集北部和巡检西部。可通过完善公路网,消除交通死角,提高农业物资投放效率及农产品商品化率。
生态条件限制区面积共39 076.12 hm2,所占比例高达90.19%,县内均有分布。由于南漳多山地、低岗,耕地的空间形态多呈枝丫状,形态复杂,分离度高,脆弱度大,农田防护面积比例小,多数地区基本无农田防护工程。加上长期大量使用农药农膜容易造成土壤理化性质变化,作物生长受到抑制,农田生物多样性降低。应大力推广精准施肥施药等环境友好型农业生产技术,降低农田环境污染负荷,实施土地平整和景观提升工程,优化农田的景观格局。
4 小结与讨论
以基本农田为评价对象,从自然质量、生产、区位、生态条件4个方面建立高标准基本农田建设区域划定模型,确定高标准基本农田建设项目区空间布局,并进一步地对划定区域进行限制因素分析,明确其建设方向。主要结论如下:
1)基于评价模型将南漳县基本农田划分为高度适宜、中度适宜、低度适宜和不适宜4个等级,面积分别为28 724.5 1、14 075.97、10 679.19、5067.44 hm2,且呈现出东部平原岗畈区较优、南部丘陵地区次之、西部山区最差的空间规律性。将基本已具备高标准基本农田条件的高度适宜区和稍加改造可建设成为高标准基本农田的中度适宜区划入高标准基本农田建设区域,共42 800.48 hm2,占全县基本农田总面积的73.1%。
2)分别从自然质量、生产、区位、生态4个评价因素出发,对划定的高标准基本农田建设区域进行分析,从而确定各要素的限制区范围及分布。其中,区位条件限制区面积最小,主要分布在乡镇交界处,可通过完善交通路网消除交通死角;其次为自然条件限制区,主要分布在西部及南部,应以地力提升工程为主;生产条件限制区面积较大且限制程度大,主要分布在西部及东南部,应加强农田基础设施建设,改善生产条件;生态条件限制区最广,应注重耕地生态建设,扩大耕地防护面积,推广精准化农业,减轻农田污染负荷,实施土地平整和景观提升工程,降低耕地脆弱度。
3)评价模型能够有效地量化各影响因素,为高标准基本农田建设区域的划定提供了科学依据,具有现实意义。在生态条件刻画上,尝试借助农田防护面积比例、环境污染强度、景观脆弱度来量化耕地的生态良好程度,弥补了以往研究对耕地生态方面刻画的不足。
参考文献:
[1] 邹 健,龙花楼.改革开放以来中国耕地利用与粮食生产安全格局变动研究[J].自然资源学报,2009,24(8):1366-1377.
[2] 李玉平,蔡运龙.区域耕地-人口-粮食系统动态分析与耕地压力预测――以河北省邢台市为例[J].北京大学学报(自然科学版),2007,43(2):230-234.
[3] 刘新卫,李景瑜,赵崔莉.建设4亿亩高标准基本农田的思考与建议[J].中国人口・资源与环境,2012,22(3):1-5.
[4] 郭凤玉,马立军.县域高标准基本农田建设潜力分区研究[J].湖北农业科学,2014,53(10):2287-2289.
[5] 方勤先,严 飞,魏朝富,等.丘陵区高标准基本农田建设条件及潜力分析――以重庆市荣昌县为例[J].西南师范大学学报(自然科学版),2014,39(3):122-130.
[6] 龙雨涵,杨朝现,程相友,等.西南丘陵区高标准基本农田建设潜力测算及模式探讨[J].西南师范大学学报(自然科学版),2014, 39(7):144-150.
[7] 沈 明,陈飞香,苏少青,等.省级高标准基本农田建设重点区域划定方法研究――基于广东省的实证分析[J].中国土地科学, 2012,26(7):28-33.
[8] 王新盼,姜广辉,张瑞娟,等.高标准基本农田建设区域划定方法[J].农业工程学报,2013,29(10):241-250.
[9] 薛 剑,韩 娟,张凤荣,等.高标准基本农田建设评价模型的构建及建设时序的确定[J].农业工程学报,2014,30(5):193-203.
[10] 王 晨,汪景宽,李红丹,等.高标准基本农田区域分布与建设潜力研究[J].中国人口・资源与环境,2014,24(S2):226-229.
[11] 冯 锐,吴克宁,王 倩.四川省中江县高标准基本农田建设时序与模式分区[J].农业工程学报,2012,28(22):243-251.
[12] 韩春兰,刘庆川,么欣欣,等.辽宁省清原县高标准基本农田建设类型分区研究[J].土壤通报,2013,44(5):1041-1046.
[13] 张 忠,雷国平,张 慧,等.黑龙江省八五三农场高标准基本农田建设时序分析[J].经济地理,2014,34(6):155-161.
[14] 马立军,郭凤玉.高标准基本农田建设时序与模式[J].湖北农业科学,2014,53(11):2661-2666.
[15] TD/T1033-2012,高标准基本农田建设标准[S].
[16] GB/T30600-2014,高标准农田建设通则[S].
[17] 郭 龙,张海涛,于 波,等.基本农田易侵占区域的划定[J].华中农业大学学报,2011,30(6):740-745.
[18] 董秀茹,尤明英,王秋兵.基于土地评价的基本农田划定方法[J].农业工程学报,2011,27(4):336-339.
中图分类号:F301.23 文献标识码:A 文章编号:0439-8114(2016)05-1311-06
DOI:10.14088/ki.issn0439-8114.2016.05.057
The Delineation and Construction Aequence of Lulong County
High-standard Farmland
CHEN Zhuoa,WANG Yan-huia,SU Xiong-zhia,ZHANG Jun-meib
(a.College of Resources and Environment Science;
b.College of Land and Resources, Agricultural University of Hebei, Baoding 071000, Hebei, China)
Abstract:Arable land is the material basis of food production, high-standard farmland construction is important initiatives to ensure our food security. In this paper, the study area is Lulong County, there are three major aspects, the natural conditions, the project conditions and the suitable for the operating conditions and select the soil texture and the other 11 sub-goals to carry on the evaluation of the suitability of high-standard farmland construction; to determine the buildable area of high-standard farmland of Lulong County carry out the policy “One vote veto” for the arable land which is more likely to be occupied or it is unsuitable for the construction of high-standard farmland. Ultimately, comprehensive evaluation and determine the time sequence of the construction of high-standard farmland of Lulong County. The results showed that: the waiting area of Lulong County for the construction of high standard farmland is 39 280.84 hm2, divided into three periods:Priority Construction Zone, Mid-construction Zone and Suspend Construction Zone, the area are 9 557.87 hm2, 18 644.33 hm2 and 11 078.64 hm2, accounting for 24.33%, 47.46% and 28.21% of the total construction area of high standard farmland of Lulong County. The study provide a scientific basis for the building and planning of the construction of high standard farmland of Lulong County.
Key words:high-standard farmland;stability;suitability;construction sequence;Lulong county
粮食安全问题是关系到中国国民经济和社会稳定的重大问题,伴随着城镇化快速发展和人民生活水平的逐渐提高,中国对于粮食的需求也呈刚性增长,尽管国家通过土地利用总体规划、划定基本农田保护区、试行耕地总量动态平衡等一系列措施保护耕地,但耕地的总体质量仍呈现下降趋势,耕地保护形势依然严峻。高标准农田作为耕地的精华,是确保中国粮食安全的关键部分[1]。综合国内众多学者对于耕地质量评价、基本农田定义以及农田改造的相关研究,可以将高标准农田定义为:土地平整,集中连片,耕作层深厚,土壤肥沃无明显障碍因素,田间灌排设施完善,灌排保障较高,路、林、电等配套,能够满足农作物高产栽培、节能节水、机械化作业等现代化生产要求,达到持续高产稳产、优质高效和安全环保的农田。
2014年由国土资源部和农业部联合牵头制定的《高标准农田建设通则》(GB/T 30600-2014)[2]第一次将高标准农田建设与基本农田管制相结合,实现了耕地质量保护与土地利用规划、管制的有机结合,有效推动了基本农田建设过程中耕地的数量保护和质量管护。但是,通则中仅提出了高标准农田建设的一般性规定,缺乏对不同区域高标准农田建设的差异化管理和指导。《高标准农田建设通则》开启了中国对于高标准农田的研究,目前还处于起步阶段,主要是对农田路网系统、排灌系统、供电系统、地力支持系统进行技术集成方面的研究,并提出了编制土地整治规划、健全工作机制、创新资金使用和管理机制以及加大监管力度等对策和建议;宋海燕[3]以山东省农田防护林网为研究对象,系统研究高标准农田防护林营建关键技术;张超超等[4]结合丘陵山区的农田综合因素,确定了不同类型丘陵山区高标准农田产量指标和相关条件;宋祥刚等[5]综合考虑耕地的基本条件和所在区域的社会经济建设适宜性,提出基于四象限法的县域高标准农田建设布局与模式;杨绪红等[6]从地块单元受相邻地块的水平影响入手,采用最小费用距离模型,从社会经济基础、农业生态环境和水土资源条件三个方面构建分区阻力面指标体系,以高等级耕地作为扩散的“源”,依据累积阻力值的突变性将陕西关中地区高标准农田建设区划定为重点区、限制区和禁止区;王洪波等[7]认为,中国耕地平均等别偏低与基本农田高保护率的实际情况共同决定了划定的基本农田不可能全都是优、高等地,只有通过高标准农田建设等土地整治活动才能使大部分耕地满足高产稳产的要求。
本研究以河北省卢龙县作为样本区,分别从自然条件、工程条件、适宜经营条件三方面选取11个指标进行高标准农田的适宜性分析,以期为科学编制土地整治规划、提高资金使用效率、确保建设任务顺利落地提供参考。
1 研究区域与数据来源
1.1 研究区概况
卢龙县位于河北省东部,东经118°45′54"- 119°08′06",北纬39°43′00"-40°08′42",地处华北平原边缘地带,属于燕山南部低山丘陵区,地势北高南低,呈梯状倾斜地形优势明显。大秦铁路、京秦铁路、京山铁路及津秦公路、京沈高速公路等重要交通线路贯穿县境,为交通运输提供了便捷有利条件,地理优势显著。属暖温带半干旱半湿润的大陆性季风气候,且大陆性气候明显。年平均气温10.9 ℃,年平均降雨量725 mm,且主要集中于6-8月份。卢龙县地形地貌多种多样,南部为山麓平原区且多为山洪淤积平原,占全县总面积的17.94%,北部为低山区,占全县总面积10.43%,中部地区为燕山运动形成的低山脊,为丘陵地区,占全县总面积的71.63%。卢龙县全县总面积95 580.24 hm2,其中耕地面积43 909.56 hm2,占全县面积的45.94%,总人口42.2万人,人均耕地0.1041 hm2,略低于全国人均耕地水平。随着经济的快速发展,建设用地不断增加,无论是耕地数量还是耕地质量都受到了严重的威胁,人地矛盾日益突出。
1.2 数据来源
1)规划数据。《卢龙县土地利用总体规划(2006 ― 2020年)》相关资料及图件、卢龙县土地整治规划相关资料及图件、卢龙县2011年土地利用变更调查数据库(1∶10 000)、卢龙县DEM数据、卢龙县耕地质量等别更新成果相关资料及图件,图件经过数据格式转化,统一到ArcGIS格式,并进行投影变换和坐标校正,实现了数据的同步更新。
2)社会经济数据。卢龙县国民经济和第十二个五年规划、卢龙县2011年国民经济统计年鉴等。
1.3 研究方法
1.3.1 GIS空间分析法 本研究借助ArcGIS等地理信息系统的空间数据处理功能、空间分析功能和直观的可视化分析功能,结合其他相关统计技术,综合处理和应用分析卢龙县的多种来源的时空数据,包括土地利用现状数据、土地利用规划数据、土壤数据、地形数据、区域农户耕地利用空间信息数据等,以此进行卢龙县高标准农田空间稳定性分析、建设区域划定及建设时序等研究。
1.3.2 综合指标体系法 系统分析研究对象,构建综合性的高标准农田建设适宜性评价和稳定性评价模型,分析高标准农田建设的适宜性和农田稳定性,并依此确定高标准农田建设区域和建设时序。
2 评价指标获取及其分值确定
2.1 适宜性评价指标的选择
根据高标准农田的内涵与建设特征,遵循评价指标的选取原则,建立县域基础上的高标准农田建设评价适宜性指标体系,包括农田自然条件、工程条件与适宜经营条件三大方面11个评价指标。
本研究根据高标准农田建设的标准,借鉴农用地分等体系中的赋值标准[8],采用经验法和专家咨询法确定高标准农田评价指标分级赋值标准,其中数值型评价因子采用[0,1]的标准化处理赋值,阈值型评价因子则按照具体分级赋值标准,如表1、表2和表3所示。
高标准农田应具有较好的自然条件,因此借助农用地分等成果对农田的自然质量标准做出标准判断[9],即土壤的自然条件,土壤质量高的应优先选入高标准农田,参照农用地分等的成果,选取土壤质地、有效土层厚度、土壤pH和有机质含量4个指标,土壤质地是土壤的重要物理性质,能较好地表征土壤的耕作性能,通过影响土壤结构、水分渗透、通气等状况,进而影响耕地的生产力状况;有效土层厚度在一定程度上表征了该土壤的肥沃程度;土壤酸碱度对土壤肥力及植物生长影响很大,在农业生产中应该注意土壤的酸碱度,积极采取措施,加以调节;土壤有机质含量是重要养分容量指标,受气候、土壤类型、耕作措施等多种因素的影响,并直接影响耕地的生产能力,反映农田的本底质量,通过定量评价可以揭示卢龙县高标准农田自然条件的分布规律[10]。
农田的工程条件,是高标准农田建设过程需要考虑各个区域所存在的整治工程可改造和消除的各种限制性因素[11],工程条件因素选取田块坡度、灌溉保证率、排水条件、农田防护林条件四个子目标,排水条件主要体现耕地的抗涝能力;农田防护林反映农田防护情况。这些因素直接影响着农田可改造难易程度。
农田的适宜经营条件包括机械化程度、田块连片性和路网密度三个子目标,机械化程度越高的地块,越有利于高标准农田的规模化经营[12];田块连片性越大越有利于规模化经营和机械化生产,反映的是农田种植的适宜程度;路网密度反映了农田道路通达情况[13],适宜程度高的农田应优先选入高标准农田。
2.2 空间稳定性评价指标的选择
空间稳定性评价指标可以划分为缓冲渐变型和刚性否决型两类。缓冲渐变型,是指在高标准农田建设过程中,对稳定性的影响随着距离的变化而逐渐变化的指标。一般表现为距离该项指标值越近则稳定性越差,反之则稳定性越高。刚性否决型,是指对落入该项指标范围内的耕地实行“一票否决”的指标,即只要是落入该项指标范围内的耕地,就不进行建设。此外,空间稳定性还与地区经济发展水平密切相关,其发展水平是建设用地扩张的动力所在,因此,在空间稳定性选取时要对反映经济社会指标加以描述。
在经济发展的过程中,工业化、城镇化的快速推进促使耕地不断转化为建设用地,在高标准农田建设过程中或者完成后仍然存在此种风险。城镇建设用地扩张模式主要有沿主要道路的两侧的“跳跃式”增长和在现有建设用地的基础上进行“摊大饼”式的扩张两种,在此基础上选取距离城镇远近与到主干道的距离作为建设占用稳定性评价的主要指标,此指标属于缓冲渐变型;区位上的不稳定区域还包括土地利用总体规划所确定的允许建设区与有条件建设区,城市规划所确定的城市扩展区域。对于区位上的不稳定区域,近期内被建设占用的可能性较大,不适宜进行高标准农田建设,实行“一票否决”制,为“刚性否决型指标”,具体指标如表4所示。
2.3 建设的适宜性评价方法
高标准农田建设的适宜性评价是一个多目标决策的过程,目标之间存在着相互影响甚至是相互矛盾的现象,常规的线性加权评价难以满足高标准基本农田建设可行性评价的要求。在多目标决策过程中,优选理论中多目标系统优选、排序决策是较为有效的方法和可行途径。因此,本研究采用接近理想点排序模型开展高标准农田建设适宜性评价[14]。
1)构造规范化的决策矩阵。高标准农田建设可行性评价范围内的耕地评价单元组成了优选的对象集A={a1,a2,…,an},遵循可行性评价指标的选取原则构建高标准农田建设可行性评价指标体系,确定指标T={t1,t2,…,tn},评价单元aj{j=1,2,…,n}在指标tj{t=1,2,…,n}取值为xij并将各指标采用极值法进行标准化处理,组成规范化的矩阵。
R=(rij)m × n=r11 r12 … r1nr21 r22 … r2n… … … …rm1 rm2 … rmn
2)构造加权矩阵。将高标准基本农田建设可行性作为目标层,分别以自然质量、工程建设和经济社会条件作为准则层构建指标体系。
结合熵权法测算的指标权重,从而构建加权矩阵,即:
V=(vij)m × n=a1y1 a2y1 … any1a1y2 a2y2 … any2 … … … …a1ym a2ym … anym
3)确定理想解。为确定评价单元的整体优劣顺序,可以定义:
ri+=max(rij)ri-=min(rij) (i=1,2,…,m)
ri+即各属性值都达到各决策点的最优值,成为“理想点”,ri-到各决策点的最劣值成为“负理想点”[15]。而在实际操作中,“理想点”和“负理想点”并不存在,可以将单元评价值与理想值进行比较,以其接近程度作为评价的标准。
3 结果与分析
3.1 卢龙县高标准农田适宜性评价权重的确定
卢龙县现辖12个乡镇548个行政村。分别对11个评价指标进行原始数据矩阵构建、标准化处理、归一化处理、熵权值和权重值确定等,得到高标准农田适宜性评价指标权重表(表5)。
3.2 空间稳定性区域识别
高标准农田空间稳定性区域的识别主要借助Arcgis平台,提取土地利用变更数据中主干道和城镇等信息,进行道路和城镇不稳定区域的缓冲,缓冲区标准的确定参考农用地分等定级中宗地低价评估的标准,最终确定主干道的缓冲区为1 km,建制镇的缓冲区为2 km。在土地利用总体规划中,提取允许建设区和有条件建设区,叠加得到卢龙县高标准农田建设不稳定区域,并采取“一票否决”制,落在该区域范围内的耕地一律不允许搞其他建设(表6)。由表6可以看出,卢龙县高标准农田不稳定区域共18 743.49 hm2,其中卢龙镇不稳定区域最多,共有2 796.27 hm2,占全县不稳定区域的14.92%,其次是刘田各庄镇和石门镇,不稳定区域分别为 2 247.79 hm2和2 200.04 hm2,占不稳定区域面积的11.99%和11.74%,蛤泊乡和刘家营乡的不稳定区域面积最小,分别为826.30 hm2和827.36 hm2。
3.3 卢龙县高标准农田建设时序确定
在对不稳定区域进行“一票否决”之后,得到现阶段卢龙县高标准农田可建设区域,共39 280.85 hm2,其中卢龙县高标准农田优先建设区域9 557.87 hm2,占卢龙县可建设高标准农田总面积的24.33%,卢龙县高标准农田中期建设区域18 644.33 hm2, 占卢龙县可建设高标准农田总面积的47.46%,卢龙县高标准农田暂缓建设区域11 078.65 hm2,占卢龙县可建设高标准农田总面积的28.20%。
分乡镇统计结果见表7,由表7可以看出在卢龙县12个乡镇中,蛤泊乡的高标准农田优先建设比例最大,占蛤泊乡总面积的46.46%,其次是木井乡,其优先建设面积占总面积的33.91%,以刘家营乡高标准农田优先建设比例最小,为11.11%;燕河营镇的高标准农田中期建设比例最大,占燕河营镇总面积的68.74%,陈官屯乡和刘家营乡其次,分别占各自面积的62.49%和61.20%,印庄乡比例最小,占印庄乡总面积的31.57%;暂缓建设区以占总面积42.12%的印庄乡为最多,燕河营镇的暂缓建设区比例最小,只占燕河营镇总面积的3.87%(图1)。
在卢龙县9 557.87 hm2的优先建设高标准农田中,刘家营乡只有196.34 hm2,仅占卢龙县优先建设高标准农田的2.05%,其次是下寨乡,其优先可建设高标准农田的面积是421.71 hm2,占卢龙县优先建设高标准农田的4.41%,木井乡和燕河营镇的优先可建设高标准农田的面积最多,分别为1 230.29 m2和1 100.22 hm2,各占卢龙县优先建设高标准农田的12.87%和11.51%。卢龙县中期建设高标准农田共18 644.33 hm2,蛤泊乡只有854.60 hm2,仅占卢龙县中期建设高标准农田的4.58%,其次是刘家营乡和下寨乡,其中期可建设高标准农田的面积分别为1 082.00 hm2和1 093.17 hm2,分别占卢龙县中期建设高标准农田的5.80%和5.86%,燕河营镇和陈官屯乡的中期可建设高标准农田的面积最多,分别为2 761.64 hm2和2 310.57 hm2,各占卢龙县中期建设高标准农田的14.81%和12.39%。卢龙县暂缓建设高标准农田共有11 078.64 hm2,占卢龙县可建设高标准农田总面积的28.20%,双望镇和印庄乡的暂缓建设高标准农田面积最大,分别为1 738.20 hm2和1 500.58 hm2,蛤泊乡和燕河营镇的暂缓建设高标准农田面积最小,分别是244.60 hm2和155.46 hm2,仅为卢龙县暂缓建设高标准农田面积的1.40%和2.21%(图2)。
综合图1和图2可知,卢龙县高标准农田优先建设区在各乡镇均有少量的分布。刘家营乡中部和西南部有少量优先建设区分布,中部以中期建设区为主;潘庄镇优先建设区的分布较为分散,主要分布在潘庄镇北部地区;燕河营镇以优先建设区和中期建设区为主,只有东北部有少量暂缓建设区域;在陈官屯乡分布有大量的中期建设区域,北部分布着暂缓建设区,在印庄乡的东南部分布着印庄乡主要的高标准农田优先建设区;卢龙镇主要以中期建设区为主,分布在建制镇周围;刘田各庄镇优先建设区面积虽然大,但是分布较分散,中期建设区域主要在建制镇周围;蛤泊乡面积虽然不大,但其优先建设面积比例最大,主要分布在蛤泊乡中部和西部。西南部有少许暂缓建设区分布,中期建设区域主要分布在木井乡中部,东部和南部分布有优先建设区域;石门镇中部分布着大量的中期建设区域,城镇外部边缘有优先建设区和暂缓建设区交替分布;双望镇中期建设区域和暂缓建设区域交替分布,面积相当。西部分布着双望镇主要的优先建设区域;下寨乡西部为中期建设区东部为暂缓建设区,北部和南部有少量的优先建设区零星分布。
4 结论
1)对于高标准农田的空间稳定性区域识别,针对卢龙县全县范围内的土地,参考农用地分等定级中的宗地低价评估的标准,确定主干道和建制镇的缓冲区,从卢龙县土地利用总体规划中提取允许建设区和有条件建设区,进行叠加,最终得到卢龙县高标准农田建设不稳定区域共18 743.48 hm2,作为卢龙县的行政中心,卢龙镇的不稳定区域面积最大,达到了2 796.27 hm2,占全县不稳定区域的14.92%,刘家营乡的不稳定区域面积最小,为827.36 hm2。
2)在卢龙县高标准农田建设时序建设方面,卢龙县高标准农田分为优先建设区域、中期建设区域和暂缓建设区域3个区域,面积分别为9 557.87 hm2、18 644.33 hm2和11 078.65 hm2。其中优先建设区域主要集中在中部和南部,木井乡和燕河营镇的优先可建设高标准农田的面积最大,分别为1 230.2 hm2和1 100.22 hm2,各占卢龙县优先建设高标准农田的12.87%和11.51%。中期建设主要集中在卢龙县中部和北部,燕河营镇中期可建设高标准农田的面积最大,为2 761.64 hm2,占卢龙县中期建设高标准农田的14.81%,蛤泊乡只有854.60 hm2,仅占卢龙县中期建设高标准农田的4.58%。卢龙县暂缓建设区域主要分布在卢龙县的西北部,以双望镇和印庄乡居多,分别为1 738.20 hm2和1 500.58 hm2,又以蛤泊乡为最少,仅占卢龙县暂缓建设高标准农田面积的1.40%。
通过综合评价高标准农田建设适宜性和稳定性,具有较强的科学性和可行性,《高标准农田建设通则》有效推动了基本农田建设过程中耕地的数量保护和质量管护。日后高标准农田的研究将就如何把建设和后期管护有效并且高效的结合,深入开展并严格执行,将会是高标准农田标准深化研究的主要方向。
参考文献:
[1] TD/T1033-2012. 高标准基本农田建设标准[S].
[2] 卢丽红.基于GIS的基本农田保护空间规划研究[D].南昌:江西农业大学,2012.
[3] 宋海燕.高标准农田林网建设技术研究[D].山东泰安:山东农业大学,2007.
[4] 张超超,黄 仁.我国丘陵山区建设高标准基本农田的几个问题探讨[J].农业经济问题,1999(10):44-47.
[5] 宋祥刚,朱跃文,马 辰,等.高标准粮田生产系统集成研究[J].现代农业科技,2010 (22):241-242.
[6]杨绪红,金晓斌,郭贝贝,等.基于最小费用距离模型的高标准基本农田建设区划定方法[J].南京大学学报(自然科学版),2014, 50(2):202-210.
[7] 王洪波,程 锋,张中帆,等.中国耕地等别分异特性及其对耕地保护的影响[J].农业工程学报, 2011,27(11):1-8.
[8] 王晓红.县域农用地综合分等法研究[D]. 武汉:武汉大学,2003.
[9] 刘名冲.县域高标准基本农田建设时序与模式研究[D].河北保定:河北农业大学, 2013.
[10] 王 波,郑宏刚,刘淑霞,等.云南省农用地分等成果在基本农田保护中的应用研究[J].云南农业大学学报,2009(1):99-103.
[11] 薛 剑,韩 娟,张凤荣,等.高标准基本农田建设评价模型的构建及建设时序的确定[J].农业工程学报,2014(5):193-203.
[12] 贾丽娟.重庆市高标准农田建设标准及模式研究[D].重庆:西南大学,2011.
中图分类号: F301.21 文献标识码:A DOI:10.11974/nyyjs.20161131019
“万物土中生,有土斯有粮”,土壤是粮食生产的物质基础。决定粮食综合生产能力的2大关键因素是耕地土壤的数量与质量,其耕地地力质量更是决定粮食产出的主要条件。要保障粮食安全,实现由“藏粮于仓”向“藏粮于地”的有机转变,就必须建立起以耕地数量保护和以耕地质量提升为重点的长效机制,坚持提升耕地地力质量,建设好粮食生产基地。
1 全州县耕地地力质量现状
全州县作为一个农业大县,自建国以来就非常重视提高耕地地力质量。20世纪50―60年代增施有机肥深耕改土,并发展以绿肥为主的有机肥与化肥配合使用;20世纪70年代继续发展绿肥并开始推广氮肥深施,在注重施用有机肥基础上增施化肥,开始实行有机、无机配合,氮、磷、钾配合施用,土壤肥力呈上升趋势,耕地地力质量得到较好的保护;20世纪80年代初期开展的第2次土壤普查,摸清了全州县土壤种类及情况、障碍因素、土壤肥力状况等,提出了因土施肥、稳定发展绿肥培肥地力、大力推行秸秆还田技术及增施磷、钾肥,注重氮、磷、钾“三要素”肥料配合施用等培肥地力、提高耕地地力质量的具体措施,耕地地力质量得到了快速提高,粮食生产也得到空前发展。2008年实施的测土配方施肥项目,对全州县耕地面积采取有代表性的5334个土样进行常规分析,累计化验87214项次,将分析结果与第2次土壤普查比较,全州县县域土壤肥力发生了比较明显的变化,其有机质上升8.00g/kg,全氮上升0.46g/kg,有效磷上升5.3mg/kg(见表1)。
根据全州县县域粮食产量的实际,按农业部《全国耕地类型区、耕地地力等级划分(NY/T309―1996)》、《广西耕地类型及耕地地力等级划分标准》,全州县2010年耕地土壤4.62万hm2面积等级划分是:高产耕地(1级、2级)面积为1.23万hm2,占耕地总面积的26.62%;中产耕地(3级、4级)面积为2.10万hm2,占耕地总面积的45.46%;低产耕地(5级、6级)面积为1.29万hm2,占耕地总面积的27.92%。其中:高产水田面积为1.23万hm2,占水田总面积的30.04%,占耕地总面积的26.62%;中产水田面积为1.80万hm2,占水田总面积的51.28%,占耕地总面积的38.96%;低产水田面积为0.48万hm2,占水田总面积的13.68%,占耕地总面积的10.39%。旱地地力较差,无高产旱地;中产旱地面积为0.30万hm2,占旱地总面积的27.02%,占耕地面积的6.49%;低产旱地面积为0.81万hm2,占旱地总面积的72.98%,占耕地总面积的17.53%(见表2)。
2 全州县粮食生产基地建设概况
全州县总人口79.46万人,其中农业人口68.36万人,耕地土壤总面积为4.62万hm2,其中水田总面积为3.51万hm2,农业人口及耕地面积均约占桂林市的1/4,是桂林市人口最多,耕地面e最大的农业生产大县,粮食播种面积常年在8万hm2左右,以水稻为主的粮食作物播种面积常年在6万hm2左右,年总产37万t以上,占粮食总产的88.09%。1987年全州县被列为全国第一批111个商品粮基地县之一,全州县粮食快速稳步上升。1990年,全州县被国务院授予粮食生产先进单位,2004年被区农业厅认定为水稻粮食无公害生产基地,荣获全区粮食生产先进县;每年为国家提供商品粮约20万t,其“藏粮于地”,不断提高耕地地力质量,稳定发展粮食生产基地建设,为国家做出了较大的贡献,2003年、2005年、2006年、2009年4次获得国家粮食生产先进县光荣称号。耕地的数量与质量是决定粮食综合生产能力的2大关键因素,但全州县耕地后备资源严重短缺,扩大耕地面积的潜力十分有限,又加上城镇化和工业建设发展不得不占用部分耕地的严峻现实;据全州县统计局统计数据显示,1983―2009年的26a间,全州县耕地面积净减0.22万hm2,年平均减少84.60hm2;2009年人均耕地仅633m2,人均水田473m2,由此可见,发挥全州县有限的耕地资源,建立起以耕地数量保护和以耕地质量提高为重点的长效机制,提升现有耕地质量,是稳定发展粮食生产基地建设与粮食安全的基本保障。
3 提升耕地地力质量,建设粮食生产基地
3.1 存在的问题
3.1.1 用地养地培肥地力重视不足,中低产田面积仍较大
目前,全州县一些农民片面追求眼前效益,长期采取掠夺性的方式经营耕地,对耕地重用轻养,奢望化肥增产,忽视有机肥积制、施用,冬种绿肥面积从20世纪80年代2万hm2下降到2009年1.33万hm2左右,约有30%农户完全种“卫生田”;农用化学物质投入不当及工业“三废”污染,加剧了耕地生态环境恶化,耕地土壤酸性化、板结,全州县耕地耕层土壤pH值比第2次土壤普查下降了0.8个单位,其多种原因造成中低产田面积仍较大,面积达3.39万hm2,占耕地总面积的73.38%。
3.1.2 耕地占补平衡重数量轻质量,耕地质量等级降低
占比平衡纯属是耕地数量上的平衡,耕地质量则远没有平衡。各种建设用地绝大部分占用的是城郊及平原地区的良田沃土,“占补平衡”开垦的耕地则大多是在丘陵或滩地,土壤肥力低,质量差,产量低,直接降低耕地质量等级,这部分新垦地粮食生产能力不能达到原来耕地的水平。
3.1.3 农田基础设施不适应农业生产发展的需求,农田沟渠设施老化
全州县大多数农田水利设施都是20世纪50―70年代建设的,目前已老化,由于全州县财政基础薄弱,财政对农业投入不足,一些农田水利设施得不到维修,防旱、排涝能力差,无法正常灌溉农田;高标准农田建设步伐缓慢,农田机耕不足,导致农田土壤耕层普遍性变浅,部分耕地土壤基础地力下降。本次调查全州县耕地水田耕层厚度平均为14.56cm,比第2次土壤普查时变浅了1.2cm,造成土壤养分含量不均衡,在一定程度上也直接影响了耕地质量的提高。
3.1.4 经费投入不足,施肥指标体系建设滞后
长期以来,开展耕地质量建设主要依赖上级下达的专项资金,但专项资金不是年年都有,没有持续性投入维持开展工作;地方性的相关施肥体系研究也未能同步进行,施肥的盲目性比较突出,难于保证提升耕地地力质量,建设好粮食生产基地。
3.2 主要对策
3.2.1 提高认识,夯实基础
深刻认识耕地在建设粮食生产的基地基础地位,狠抓粮食安全,坚定不移贯彻执行《中华人民共和国农业法》、《中华人民共和国土地管理法》、《基本农田管理条例》,鼓励、引导农民大力恢复绿肥生产,推广秸秆还田技术,多施有机肥,提升耕地有机质,培肥地力,切实解决对耕地“只用不养,重用轻养”和耕地养分非均衡化问题,把提升耕地地力质量作为建设粮食生产基地的基础,夯劳夯实。
3.2.2 积极争取项目资金,加强农业基础设施建设以改造中低产耕地,提高粮食生产的产业化水平,保障粮食生产基地建设
增加农田水利及改造中低产耕地等基本设施的投入,重点实施好全州县县域综合农业开发、耕地整治、现代农业、沃土工程、有机质提升等提高耕地地力质量为主的农业项目,加大中低产田改造力度。加强全州县县域灌江、石砚、源口、易家、磨盘、五福6大水利枢纽工程的加固以及灌溉主支渠清淤、防渗与维修工作,增强农业防灾、抗灾、救灾能力;加快改造中低产田步伐及标准农田建设力度,建设排灌分家、旱涝保收、便于机械化作业高标准农田,对中低产田改造真正做到改良一片、成功一片、收益一片,逐步扩大高产稳产农田的面积,并进一步重视新开垦、整理和复垦耕地质量建设,围绕土、肥、水、气、热,增施肥料、栽种豆科作物等快速培肥技术,加速新垦地土壤熟化,提升耕地地力质量,真正实现耕地的“占补平衡”;秉乘因地制宜、适当集中的原则,积极发展种粮大户,以及加强大、中型农机具添置及农田机耕道路建设力度,提高农业机械水平,推进粮食生产规模化、标准化、优质化、产供销一体化,努力提高粮食生产的产业化水平和经济效益,促进粮食生产基地建设。
3.2.3 利用耕地资源管理信息系统,进一步提高平衡施肥的针对性和科学性,不断提升耕地地力质量
通过健全土壤监测网络,利用耕地资源管理信息系统,开展经常性的土壤肥力与施肥效益长期定位检测,科学制定平衡施肥方案,最大限度的缩小平衡施肥的时空差异,提高测土施肥方案的时效性、针对性和可靠性的科技水平;以测土施肥等农业科技作支撑,采取“测土―配方―配肥―供应―施肥指导”一条龙服务,强化技术培训到户,配方肥推广到田,通过推广测土配方施肥技术,将平衡施肥技术普及到V大农民中去,不断提高测土配方施肥技术的覆盖率、入户率和到位率;重视土壤培肥,合理施肥平衡土壤养分含量,坚持有机肥与无机肥相结合,恢复发展冬季专用绿肥生产,使专用绿肥生产恢复到20世纪70―80年代水平,即绿肥种植面积在2万hm2左右。
3.2.4 依据国家法律规定,加强耕地地力质量管理,不断提升耕地地力质量,促进粮食生产基地建设
应将耕地地力质量指标作为承包责任书的一项重要内容列入承包责任书中的同时,从农业发展基金或其他经费中安排耕地地力质量管理经费,并采取有效措施对破坏耕地质量建设的违法行为依法进行处理;农业行政主管部门是耕地地力质量监管的主体,应立足当前,着眼长远,建立耕地地力质量监督管理制度,研讨耕地地力质量及其管理、粮食生产基地建设的有关问题,及时解决建设中出现的问题,并采取有效措施,着手制订中长期规划,逐步建立监管的长效机制。
参考文献
中图分类号 S15 文献标识码 A 文章编号 1007-7731(2014)03-04-66-04
党的十把生态文明建设放到了更加突出位置,提出“完善最严格的耕地保护制度” [1],要“给自然留下更多修复空间,给农业留下更多良田,给子孙后代留下天蓝、地绿、水净的美好家园”[1],彰显了党和政府对保护耕地的重视。人口增加和经济发展导致我国耕地总体质量不容乐观[2-3]乃至呈下降趋势[4-5]。保护耕地刻不容缓,然而提及保护耕地,大多数人忽视对耕地质量的保护。相对于耕地数量的有形减少而言,耕地质量的下降是隐性的,难以察觉,但其影响绝不亚于耕地数量减少,耕地质量的变化正对粮食安全、生态环境和社会经济发展构成严重威胁[6]。本文分析了盐城市进行耕地质量建设的必要性、现状、存在的问题及发展对策,以期对盐城乃至我国耕地保护的可持续发展提供参考。
1 加强耕地质量建设的重要意义
耕地质量,是指由耕地地力、田间基础设施、耕地环境等构成的满足农作物安全和持续产出的能力[7]。耕地数量刚性减少,耕地质量提高速度落后于社会发展速度,粮食需求又不断增加的背景下,提升耕地质量成为确保粮食安全的重要措施。盐城市是农业大市,肩负着保障粮食安全和保证农产品有效供给的重任,加强耕地保护和质量建设,在发展现代农业、建设农业强市中的基础地位不能动摇、至关重要。
1.1 保证粮食等农产品有效供给的需要 粮食增产丰收是农业生产的首要任务。加强农田基础设施建设,改善生产条件,改良培肥土壤,提高抗灾能力,是保障粮食安全、保证主要农产品有效供给的前提基础。近年来,盐城市各地大力实施标准粮田建设、测土配方施肥、商品有机肥应用和土壤有机质提升等重大项目,为盐城市粮食总产“十连增”、农业持续丰产丰收作出了重要贡献。在全国耕地数量下降不可逆转的形势下,要实现粮食产量连增,切实保证主要农产品有效供给,迫切需要进一步加强耕地质量建设,挖掘农业生产潜力。
1.2 夯实现代农业规模发展基础的需要 盐城市耕地类型多、人均耕地少、中低产田面积大,严重阻碍了标准化生产和规模化经营。现代农业的一个最显著特点,就是标准化生产和适度规模化经营[8]。加强耕地质量建设,因地制宜消除土壤障碍因素,改善生产条件,从根本上提高耕地基础地力,形成多元化、多层次、多形式农业经营服务体系,切实提高集约化种植水平,为推进农业标准化生产,实行适度规模经营创造前提条件,奠定坚实基础。
1.3 促进农业增效和农民增收的需要 农业增效、农民增收很大程度上依赖于耕地质量的提高。实践证明,只要耕作层深厚、土壤质地适中、营养条件均衡、肥料使用科学,农田基础设施完好,就能保证耕地高产。因此,将良种、良法、良田有机结合起来,从提高单产上下功夫,能有效提高农作物产量、农产品品质,进而提升农产品市场竞争力,为实现农业增效、农民增收奠定牢固的物质、技术基础。
1.4 实现农业可持续发展的需要 耕地质量对农业的可持续性有直接影响。农业可持续发展需要有可持续的农产品数量和质量作保证,而农产品的数量和质量又依赖于耕地的生产力和清洁度。加强耕地质量建设,不仅能提高耕地质量水平,提升耕地的抗灾、抗逆能力,还能促进化肥等农业投入品的合理使用,有效减少环境污染,改善农村生态环境、农业生产环境,实现农业的可持续发展。
2 耕地质量建设的现状分析
近年来,盐城市各地认真贯彻落实中央和省、市关于耕地质量建设的决策部署,以提高农业综合生产能力,建设资源节约型、环境友好型现代农业为目标,开拓进取,勇于创新,扎实工作,耕地质量建设与管理取得明显成效。
2.1 耕地质量水平稳步提高 按照高标准农田建设标准要求,切实加强高标准农田建设项目管理,落实关键措施,高质量地完成了高标准农田建设的任务,盐城市高标准农田比重由2006年的35%提高到2013年的44%。指导农民科学利用好人、畜、禽粪便,减少资源浪费,提高农家肥利用效果。加快有机废弃物无害化和资源化利用,每年推广商品有机肥5万t以上。目前盐城市耕地土壤肥力普遍提高,与第二次土壤普查相比,土壤有机质含量上升了6.77g/kg,增幅达49.35%;土壤全氮含量上升了0.26g/kg,增幅达26.45%。
2.2 测土配方施肥技术全面推广 盐城市测土配方施肥工作,2005年开始试点,2008年全面实施,2011年启动整建制推进,2013年开始推进“全覆盖”。截至2013年底,盐城市先后实施了近4 500万元的国家和省测土配方施肥项目,形成了多项技术成果,获得省推广一等奖1项、三等奖1项,市科技进步奖2项,近30篇,累计推广测土配方施肥技术466.7多万hm2次。通过采土测土和田间试验,掌握了盐城市耕地质量状况、变化规律和作物需肥规律,建立了土壤养分丰缺指标和作物施肥指标体系,建成了县域耕地资源管理信息系统和测土配方施肥专家系统,实现了测土配方施肥数字化。积极开展宣传培训和示范推广,测土配方施肥技术迅速得到普及应用。建立了“统一测配、定向生产、连锁供应、指导服务”的运行机制和“五个一”测土配方施肥技术服务模式(县有一个耕地资源管理信息系统、镇有一幅施肥分区图、村有一张施肥推荐表、户有一张施肥建议卡、经销网点一次性供齐配方肥)。农民施肥方式由“经验”施肥走向了“精准”施肥,有力地提高了肥料利用率,减少了农业面源污染。
2.3 耕地质量监管效能显著提升 盐城市完成了2个国家级、43个省级、86个市级和129个县级耕地质量监测点标准化建设工作,建成了覆盖全市、功能齐全、运作规范的耕地质量监测体系,对耕地质量开展动态监测。扎实开展耕地地力评价,各县(市、区)完成了对耕地地力等级的科学划分,定期耕地质量监测报告,为指导农民科学施肥、辅助政府宏观决策提供了依据。
2.4 土肥新技术逐步推广 根据不同土壤的主导障碍因素,按照灌溉改良型、盐碱耕地型、障碍层次型、瘠薄培肥型中低产田类型,采取农艺、生物、工程相结合的措施进行改造,不断提高中低产田肥力水平,实现中产变高产、低产变中产的目标,农业生产条件得到明显改善[9-10]。先后实施“平衡施肥”、“补钾工程”、“农作物秸秆综合利用”、“有机质提升”等重大项目,推广精确施肥、有机质提升、秸秆还田、化肥深施、少免耕技术等耕地利用综合技术,截至2013年底,推广商品有机肥40万t,应用面积14.3万hm2;保有秸秆还田机械近3 000台,机械化秸秆还田19.33万hm2;境内拥有有机肥企业11家,消纳有机肥17.5万t[11]。促进耕地用养平衡,遏制农田土壤退化、地力下降趋势。
2.5 耕地质量管理工作取得突破 《江苏省耕地质量管理条例》于2012年4月1日起正式施行,标志着江苏省耕地质量建设和管理走上了法制化的轨道[12]。盐城市及时召开了学习贯彻《条例》座谈会,各地充分利用广播、电视、报刊、网络等新闻媒体,采取多种形式,掀起宣传贯彻热潮,提高了《条例》的社会影响力。各级农业部门根据《条例》要求,调整完善了工作机构,健全了工作机制,强化了责任落实,努力做到管理有机构、工作有手段、行为有规范,为履职尽责奠定了坚实的基础。此外,盐城市成立了全市耕地质量评定委员会,开展了耕地质量评价、补充耕地质量验收、毁损耕地质量鉴定等工作,耕地质量管理工作逐步走入规范化运作轨道。
3 耕地质量建设存在的问题
第二次土壤普查距今已有30a时间,由于生产方式变革、土地利用强度增加以及外源物质的大量投入,土壤理化性状发生了巨大变化,土壤质量变化剧烈,原有的土壤信息已不能反映土壤质量现状。
3.1 基础设施老化,农田基本建设弱化 受建设时经济和技术条件限制,许多田间工程建设标准低,配套设施简陋,运行时间长,老化严重。尽管近些年来,各级逐步加大灌区改造工程和生态环境建设力度,部分骨干水利设施状况有所改善,但田间工程的整治相对滞后,抗御旱涝灾害能力脆弱。
3.2 耕层厚度变浅,耕地养分失衡 近年来,由于农业投入品过度施用及不合理耕种,土壤中有益微生物和小动物减少,耕层平均厚度由第二次土壤普查时的14.6cm下降到11.5cm,土壤容重由1.29g/cm3上升到1.32g/cm3,已影响到土壤水、肥、气、热条件和作物根系在土壤中的生长,从而影响作物产量。大量研究表明,大量的使用化肥造成了土壤板结,地力下降,农产品受到严重污染,质量逐步下降[13];长期实行少免耕制度,土壤物理性状普遍变差,耕层厚度日益变浅,土壤容重增加[14]。盐城市耕地养分非均衡化现象日趋严重,与第二次土壤普查相比,30a来含钾肥料使用少,全市土壤速效钾平均含量下降4.74%,部分长期进行粮棉生产的地区,正由“富钾”向“缺钾”转变;含磷肥料过量使用,全市土壤有效磷平均含量上升幅度达384.96%,但区域分布不平衡,部分粮棉主产区缺磷,城郊菜地则明显过量;土壤pH有下降趋势,平均由7.93下降到7.45,长此以往将严重影响农作物的正常生长。
3.3 “三废”排放加剧,耕地污染加重 大量未经处理的工业“三废”、生活污水、规模养殖场畜禽粪便等肆意向农田排放,以及化肥农药的过量施用、重金属累积等,已造成耕地的显性和隐性污染。耕地被污染后,不但农作物产量降低,而且严重影响农产品质量,危害人类的身体健康。与2006年相比,43个省级监测点土壤样品6个土壤重金属指标中5个指标、六六六、DDT等含量都有不同程度的上升,土壤环境质量存在退化趋势,但土壤总体清洁。
3.4 耕地占补重数量轻质量,以次补好[15] 各种建设用地占用的多为城郊的良田沃土,而补充的耕地则是沿海滩涂、荒地,土壤肥力低,后续培肥措施跟不上,地力明显不如被占耕地。这些补充耕地即使采取积极有效的培肥措施,也需要几年的耕种,粮食生产能力才能达到一定水平。
4 加强耕地质量建设的对策建议
耕地是农业最基础的生产资料,也是农民最基本的生产保障,耕地质量关系国计民生,加强耕地质量建设是一项既紧迫又艰巨的任务。
4.1 深入开展测土配方施肥,着力提高科学施肥水平 在完善粮食作物施肥指标体系的基础上,向经济、果蔬、园艺作物拓展,扩大技术覆盖面,力争到“十二五”末,盐城市测土配方施肥技术实现所有农户、主要作物“全覆盖”的目标。大力推广数字化技术,做到配方单到厂、建议卡到户、配方肥下地。一是深化农企合作。按照“双方自愿、优势互补、公平公开、择优合作”的原则,选择积极性高、信誉好、实力强的肥料企业参与配方肥生产与供应。鼓励企业运用连锁、超市、配送等现代物流手段,构建基层肥料直供网点,为农民提供质量优良、配方科学、价格合理的配方肥料。二是加强培训示范。加强对基层农技人员和肥料经销商的培训,在关键农时季节,开展田间巡回指导和现场指导服务。突出抓好肥料经销商技术培训,努力将肥料经销网点打造成帮助农民选肥配肥的助推器、测土配方施肥技术的传播者、数字化测土配方施肥技术集成应用的展示窗、配方肥销售推广的主力军。要按照有包片指导专家、有科技示范户、有示范对比田、有醒目标示牌的“四有”要求,确保“示范片”到村。三是及时更新成果。积极开展周期性采土测土和针对性肥效试验工作,及时更新县域耕地资源管理信息系统和测土配方施肥专家咨询系统数据,适时指导基层智能化配肥供肥网点根据最新的数据配肥供肥。要扩大触摸屏查询和智能化配肥机的配备,扩大测土配方施肥手机短信平台的运用,方便农民快捷地查询主推肥料施用配方、施用数量、施用时期和施用方法。
4.2 扎实推进高标准粮田建设,不断提高耕地产出能力 实施标准粮田建设项目是提高农业综合生产力的重大举措,也是促进农业增产和农民增收的重要抓手。要以实施好高标准粮田建设项目为抓手,按照灌排设施配套、土地平整肥沃、田间道路畅通、农田林网健全、生产方式先进、产出效益较高的建设标准,大力推进高标准农田建设。一要加快项目实施进度。统筹考虑建设条件和施工季节,科学合理安排工期,加强田间灌渠、排水沟、排灌站及涵洞、闸门等配套小型农田基础设施建设,实施土地平整、沟系疏浚、机耕道路、农田林网建设,做到早建设、早收益。二要加强项目建设管理。严格按照项目批复文件组织实施,不得擅自变更项目建设地点、建设内容、建设规模和拖延建设工期。严格实行项目建设法人负责制、招投标制、工程监理制、合同制,提高工程建设质量,确保建设成效。三要做好建设项目储备。科学制定总体规划,选定建设区域,明确建设内容,合理安排年度计划,按照省农委印发的高标准农田建设项目编制大纲要求,提前编制下年度项目可行性研究报告,建立项目储备库,做好后续项目储备和申报准备。
4.3 切实加强有机肥推广应用,稳步提升耕地地力水平 千方百计引导农民增加对农田有机肥的投入,努力提高耕地地力。一方面,要规范推广应用商品有机肥料。根据无公害与现代农业的发展要求,积极推广应用商品有机肥料和有机无机复混肥料,消纳规模畜禽养殖等产生的农业有机废弃物,改善土壤生态环境。要优选项目实施区域,做到相对集中连片。加强对中标企业所供肥料质量的监督管理,确保农民用上放心肥。力争每年全市商品有机肥推广应用规模达10万t以上。另一方面,要积极推广多种形式的秸秆还田技术。积极推广机械化秸秆还田、墒沟埋草、秸秆覆盖、行间铺草、生物腐熟等行之有效的秸秆还田技术,努力实现秸秆全量就地还田,杜绝田间焚烧秸秆现象。同时,在沿海盐碱良地区,积极发展冬季绿肥种植。
4.4 全面强化耕地质量监测,掌握耕地质量变化动态 建立健全耕地质量监测预警机制,为耕地质量建设提供科学依据。一要建立完善耕地质量监测体系。积极争取地方政府的重视和支持,着力推进市县两级配套监测点建设,建立长期定位综合监测点和试验示范区,改善监测设施装备,推进装备水平优化升级,逐步形成较为完备的全市耕地质量监测体系。二要扎实推进耕地地力评价。全面建成全市县域耕地资源管理信息系统,建立基本农田质量管理数据库。启动全市区域地力评价,对耕地进行分等定级评价。同时,以补充耕地质量评定为切入点,积极推进补充耕地质量建设与管理,切实提高补充耕地质量。三是建立完善耕地质量信息与预警报告制度。充分发挥耕地质量管理数据中心功能,对耕地质量监测、耕地地力评价数据进行开发应用,规范耕地质量动态信息与预警报告,为耕地质量保护和建设提供宏观决策依据。
4.5 切实加强组织协调,做好耕地质量管理工作 耕地质量建设与管理是一项系统工程,各级农业部门要加强统筹协调,创新体制机制,确保工作措施落实到位。一方面加强组织领导。积极争取党委、政府的重视和有关部门的支持,建立完善的领导工作机制,形成主要领导亲自抓,分管领导具体抓,各相关部门分工协作,齐抓共管的工作格局。稳定和加强耕地质量建设与管理机构和技术队伍,进一步明确职责分工,规范工作程序,细化工作措施,完善工作制度,保障工作条件,确保组织领导到位、宣传培训到位、资金保障到位和技术指导到位。一方面加强多方合作。耕地质量建设与管理工作涉及面广,各级农业部门要进一步增强合作意识,加强沟通协作,形成共赢局面。通过信息沟通、工作交流、项目合作、联合执法等,加大农业系统内外联系,提高耕地质量建设与管理的社会影响力,推动耕地占补平衡、量质并举目标的实现。与企业合作,全方位、多模式推广应用配方肥,真正打通配方肥落地“最后一公里”的瓶颈,不失农时,供肥到点,应用到田。与科研院所协作,联合攻关,推进技术创新与集成,为科学施肥水平的提高、退化与污染土壤的修复治理、耕地质量提高和农业生态环境改善提供有力的技术支撑。
参考文献
[1].坚定不移沿着中国特色社会主义道路前进 为全面建成小康社会而奋斗[M].北京.人民出版社,2012:39.
[2]任笑嫒.强化我国耕地质量建设的对策研究[J].安徽农学通报,2012,18(22):5-6.
[3]李爱青.浅析我国耕地质量现状,下降原因及强化建设对策[J].安徽农学通报,2012,18(02):1-2.
[4]沈仁芳,陈美军,孔祥斌,等.耕地质量的概念和评价与管理对策[J].土壤学报,2012,49(6):1 210-1 216.
[5]李应中.2012年我国粮食形势综合分析(二)[J].中国农业信息,2013,5:6-9.
[6]倪绍祥,刘彦随.试论耕地质量在耕地总量动态平衡中的重要性[J].经济地理,1998,18(2):83-85.
[7]江苏省耕地质量管理条例[J].江苏农村经济,2012,5:72-74.
[8]曹静,宝胜.发展现代农业的科技需求和政策思考[J].理论观察,2013,5:76-78.
[9]倪丹,王礼焦,孙皓.连云港市耕地质量建设现状与发展措施浅议[J].耕作与栽培,2010(6):14-15,19.
[10]张清华,史琢,韩翠萍,等.扎兰屯市耕地质量现状与改良措施[J].内蒙古农业科技,2009(4):89-90.
[11]秦光蔚,陈爱晶,周祥,等.盐城市低碳农业探索和实践[J].安徽农业科学,2011,39(6):3 527-3 529.
[12]徐茂.江苏省推动耕地质量管理法制化建设的做法与成效[J].中国农技推广,2013,7:37-39.
[13]刘春梅,黄子乾,唐宗明.合浦县施肥对生态农业的影响及对策[J].现代农业科技,2013,3:261-263,265.
何为永久性基本农田
基本农田是指根据一定时期人口和社会经济发展对农产品的需求以及对建设用地的预测,根据土地利用总体规划而确定的长期不得占用的耕地。其功用就是满足一定时期人口和社会经济发展对农产品的最基本的需求。永久性基本农田建立在基本农田之上,它的基本功用应与基本农田一致。它有别于基本农田的地方又表现在哪里呢?
――从功用上看,突出对国家粮食安全的保障。基本农田保障的是一定时期人口和社会经济发展对农产品的需求,而永久性基本农田所保障的应是一定时期人口和社会经济发展对粮食的需求,不仅要解决区域内人口吃饭的问题,而且更重要的是保证国家对商品粮的需求。
――从质量上看,突出在旱涝保收、稳产高产。永久性基本农田既然要起到保障国家粮食安全的重大作用,它必须是基本农田中农业设施配套最好,地力最肥沃,抗灾能力最强,并且是主要生产粮食作物的这一部分耕地。
――从保护上看,突出措施的严格性和时效的长期性。基本农田是根据土地利用总体规划而划定的,保护时效一般为10年或20年。永久性基本农田既然突出了“永久”二字,就应该在长期一段时间内绝对不可以减少、不可以调整,面积只能增加,质量只能提高。
因此,可初步设定永久性基本农田的概念为:在基本农田范围内划定出农业配套设施完善、土壤肥沃、地力上等、抗灾能力强的一部分作为永久性基本农田,用于保障一定时期商品粮供应和辖区内人口对粮食的需求。对永久性基本农田实施最严格的保护措施,实行农田用途管制,加强农田基础设施建设,对土壤地力实施综合保护。一经划定,长期不变。
怎样划定和保护永久性基本农田
如果以上永久性基本农田的概念成立,那么划定永久性基本农田的前提是通过一定的评价方法把永久性基本农田从基本农田中分离出来。因此,划定并保护永久性基本农田应分为:评定等级、划分片块、建立资料、健全制度等环节。
(一)评定基本农田等级。指对一定区域或片块内基本农田的耕地地力、生态环境、交通环境、水利环境、产出效益等进行综合性评价,并划分等级。基本农田可划分为三个等级:
一级基本农田:指土层深厚、质地适中、地力上等,有完善的排灌设施、旱涝保收,田块规整、集中连片、复种指数达到200%以上,产量水平较高,单季粮食亩产达500公斤以上,生态环境保持良好的基本农田。
二级基本农田:指土层较厚、质地适中、地力较好,有基本的排灌设施、能基本保证灌排,集中连片、复种指数达到100%以上,单季粮食亩产达400公斤以上,没有生态环境污染的基本农田。
三级基本农田:指土质一般,地力较差,易受自然灾害影响,存在一定程度环境污染,易受到非农业建设占用影响,粮食作物产量较低的基本农田。
(二)划定永久性基本农田片块。指依据基本农田等级评价结果,综合考虑经济社会发展的各项规划的影响,划定永久性基本农田。原则上以原有保护片块为基本单位,也可根据实际情况和不同等级标准适当拆并片块,突破村组界线。划定的标准及范围可定为:
对片块面积大于100公顷的一级基本农田、片块面积大于200公顷的二级基本农田,且非农业建设用地规划期内基本不会占用,适宜于种植粮食作物,经营权相对集中的划定为永久性基本农田。
实施过高产农田建设、农业土地综合开发等项目的、农业科研教学试验田等,应当优先划定为永久性基本农田。
(三)对永久性基本农田保护与建设的措施:
――实行农田用途管制。在基本农田“五不准”的基础上,规定或者倡导农民在永久性基本农田保护区内种植水稻、小麦、油菜等粮食作物。目前,只能倡导,因为有诸多法律的、经济的障碍,在相关配套政策出台后,可实行真正的农用地用途管制。
――定人、定责实施保护。进一步健全基本农田保护网络,做到县级有领导小组,乡镇有保护专班,每村有协管员,小组有信息员、户户有责任义务明白卡。同时,对永久性基本农田的保护,可像“护林员”一样,以乡镇为单位聘请2~3名专管员。
――加大对永久性基本农田的建设力度。对永久性基本农田相对集中的地区,要大力推进高产农田建设,力求进一步完善农田基础设施,提高耕地质量。
――落实基本农田保护资金。在实际工作中,资金用于建设的多,用于保护的少。湖北省的做法可以借鉴,即按每年每亩2元的标准列出基本农田保护经费,专项用于基本农田保护的基础业务建设、保护网络建设、动态巡查及违法案件查处等工作。
对建立永久性基本农田的建议
(一)统筹规划布局,充分体现科学发展观。既然永久性基本农田是全国13亿人口粮食安全的保障,在其划定范围和比例上,就应打破传统基本农田划定方法的局限性,采取全国统筹或者是以省为单位统筹安排。要充分考虑粮食生产的适宜性,突出集中连片,把重点放在粮食主产区。可以按一定时期的粮食需求,以全国或省为单位来测算一个保护面积和划定比例,依据各地的地理条件、气候条件、农业特色、产出效益、耕地面积等因素来合理分配划定指标。
中图分类号:F301.21(226) 文献标识号:A文章编号:1001-4942(2014)12-0088-08
耕地作为三大产业的主要生产要素,是国民经济和社会发展的宝贵资源和财富,耕地产能是粮食安全核心所在。近年来,我国社会经济高速发展,工业化和城市化大步推进,有限的耕地资源日益减少,质量大步下滑,“瓶颈”效应日益凸显,耕地生态环境呈现恶化趋势、利用区域布局不够合理、耕地集约度低下等问题日益威胁着中国的粮食安全;而西部区域虽然地域广阔,但耕地面积相对较少,且破碎化程度高,质量不高,生产能力表现出极端的生态脆弱性。这些问题严重影响着耕地的人口承载力,威胁着地区及国家的粮食安全。研究典型区域耕地利用潜力的时空分布规律及其限制因素,对缩小产量差、实现产能提升和耕地可持续利用、满足我国社会经济发展的需要具有重要意义。
De Datta首先提出和使用产量差(即耕地利用潜力)这一概念,并将形成产量差距的因素定义为产量限制因子[1]。随后,Fresco、Lobell、Sumberg等人丰富完善了产量差的概念[2~4]。国内对耕地利用潜力的定义则多为耕地理论产能、可实现产能和实际产能3个产能层次依次的差值,表示耕地利用水平提高后和当前可实现的增产潜力[5,6]。不同层次的产量差形成的主要原因是不同的,化肥施用量、土壤养分、灌溉、虫害、作物品种、海拔、气候条件等为已有研究成果提及的主要影响因子[7~11]。研究尺度则从实验室、田块尺度进展为区域尺度[11~14]。研究对象主要有小麦、玉米、木薯等当地主要粮食作物[11,14]。由于耕地利用潜力的限制因素较多,且因素间相互关联,对此许妍等对耕地利用潜力与分等因素进行相关性分析,并与各级单产进行回归分析,探讨影响产能提升的主导因子[5];张玉铭、郭笃发等分别运用通径分析、主成分分析法研究了土壤肥力中各要素之间的相互关系及其对玉米的增产作用;王树涛等则采用回归树分析探讨了自然和管理因素对耕地产能的影响[15~18]。
综上可知,国内对于耕地利用潜力时空分布规律及其限制因子的研究较少,且大多针对某一特定农作物,不具可比性;对于限制因素的研究大多为单一要素,也多为自然要素,对于人为管理和社会经济要素考虑较少,缺乏定量化的综合性研究。本研究基于达拉特旗农用地产能核算成果和耕地等级变化监测实地问卷调查结果,将农作物产能统一为国家标准粮的产量,研究耕地利用潜力的时空分布规律,并运用逐步分析法,减少变量间共线性的影响,综合研究影响耕地利用潜力的包括自然、管理、社会经济等各项因素,探讨其主要的限制因子,为区域耕地产能提升、可持续利用、高标准农田建设提供理论支持和建议。
1 材料与方法
1.1 区域概况
达拉特旗位于的西南部,鄂尔多斯高原北面,地理坐标为东经108°58′43″~110°42′58″,北纬39°48′15″~40°32′42″。地处蒙中经济区,是最主要的“呼和浩特-包头-乌海”产业带与连通我国中西部的神骅铁路产业带的“T”字型结合部。2009年末全旗总人口34.85万人,人均耕地0.43公顷。地势南高北低,西高东低,阶梯状分布。地形从北至南分别为黄河南岸冲积平原区、库布沙漠区和低山丘陵沟壑区。共有5个土类,粟钙土、风沙土、草甸土、盐土和沼泽土。属于温带大陆性半干旱季风气候,年平均降水311.75 mm。由黄河及其10条支流构成达拉特旗的主要水系,10条黄河支流由西向东分别为毛布拉格孔兑、布日嘎斯太沟、黑赖沟、西柳沟、罕台川、壕庆河、哈什拉川、母花沟、东柳沟、呼斯太河。
1.2 数据来源
1.2.1调查样点布置将达拉特旗地貌、土壤、土地利用系数、土地经济系数等分区进行空间叠加,将全区划分为46个单元,再将面积较小的单元进行归并,最终划分20个监测分区。根据监测点选择原则、技术要点和要求,共选取37个固定监测样点和6个动态监测样点(图1)。
1.2.2数据来源及处理本文理论和可实现产能样本数据主要来源于达拉特旗产能核算工作的外业调查数据,实际产能和限制因子数据来自耕地等级变化监测。其中理论单产样本值为2009年玉米区试产量,可实现产能为指定作物(玉米)近3~5年无重大自然灾害的正常年份下的最高单产,实际产能样本值及47个对耕地利用潜力可能造成影响的自然和人为因素(表1)的样本资料主要通过对43个监测点的农户进行实地走访和抽样问卷调查获得,每个样点调查3~6份问卷,共发放调查问卷149份,收回有效问卷132份。
达拉特旗耕地利用潜力时空分布规律分析采用ArcGIS10.0软件完成,耕地利用潜力限制因子分析采用SPSS软件完成。
1.3研究思路及分析方法
耕地利用潜力为3个层次的耕地产能之差,因此首先基于农用地产能核算的方法建立理论产能和可实现产能的核算模型,计算得到2009~2011年各分等单元和乡镇的理论产能和可实现产能;其次将各监测样点的实际单产数据,乘以产量比系数(春小麦为1.00,玉米为0.61,马铃薯为0.15),通过面积加权处理得到每个调查样点的实际标准粮单产并落实到调查样点所代表的该监测区各个分等单元中去,得到各分等单元和乡镇的实际产能。然后分析耕地利用潜力的时空分布规律;对耕地等级变化监测中调查到的影响耕地利用潜力的自然和人为因素进行逐步回归分析和共线性诊断,探讨达拉特旗耕地利用潜力的主要限制因子。
2耕地生产能力及耕地利用潜力核算模型
收录样本地块国家自然质量指数Ri/利用等指数x i和理论单产yi″/可实现单产yi′的样本值(玉米区试产量/正常年份下的最高单产)进入农用地产能核算数据库后,分别建立两者对应的线性函数关系模型,经过数理分析和论证检验,确定各乡镇理论和可实现单产核算模型(表2)。
3结果与分析
3.1耕地利用潜力时空分布规律分析
将所有分等单元的耕地自然等/利用等指数代入线性方程,对分等单元进行产能和耕地利用潜力核算。其中分等单元中理论利用潜力的最大值为4 491.46 kg/hm2,最小值为-4.35 kg/hm2,将其分为-4.35~0、0~1 000、1 000~2 000、2 000~3 000、3 000~4 000和4 000~5 000六个层次。可实现利用潜力的最大值为4 025 kg/hm2,最小值为-3 342 kg/hm2,分为-4 000~0、0~1 000、1 000~2 000、2 000~3 000、3 000~4 000和4 000~5 000六个层次,各层次分布面积如表3。再乘以对应分等单元面积,汇总得出各乡镇耕地利用潜力总量数据(表4)。
2009~2011年达拉特旗的理论利用潜力绝大部分集中在0~1 000和1 000~2 000两个层次,总比例达到95%以上。三年中-4.35~0和0~1 000等较低的理论利用潜力层次的比例下降, 1 000~2 000等较高的理论利用潜力层次的比例有所上升。乡镇中理论利用潜力总量最低为吉格斯太镇,约0.9万t,昭君镇最高,约为3.7万t(表3,表4)。
总之,较大的理论利用潜力地块分布于达拉特旗十条主要水系的流域范围内,远离河床的理论利用潜力较小,整体耕地理论利用潜力呈现扩大趋势(图2)。
从实施农村土地整治、基本农田保护示范区建设等项目区粗线范围的耕地理论利用潜力变化来看(图2),除昭君镇靠近西柳沟的项目区内土地或因洪水淹没造成产能降低后,该区的国家自然等指数调低,理论利用潜力降低外,大部分区域颜色不变或变深,数值扩大。总体说明项目区内各项基础设施的建设对由耕地自然质量决定的耕地产能的提升在短时间内不能体现其成效。
可实现利用潜力绝大部分集中在0~1 000、1 000~2 000、2 000~3 000和3 000~4 000 kg/hm2四个层次,总比例达到90%以上。三年中2 000~3 000和3 000~4 000的比例下降,-4 000~0、0~1 000、1 000~2 000、4 000~5 000的比例有所上升。乡镇中最低为展旦召苏木,2011年约1.42 万t,昭君镇最高,约为4.1万t(表3、表4)。
总之,达拉特旗东北部和昭君镇北部潜力在缩小,西北角潜力在扩大。2011年除南部哈什拉川流域可实现利用潜力较高外,总体呈现北部和西部高,南部和东部低的空间分布格局。全旗可实现利用潜力在缩小,说明项目区内农田管理投入因素、经济政策因素的转变对挖掘耕地可实现利用潜力的效果较好。
另外,从项目区粗线范围的耕地可实现利用潜力变化来看(图3),2009~2011年达拉特旗可实现利用潜力变动较大。除达拉特旗西北角和部分补充耕地项目外,其他项目区内土地耕地可实现利用潜力都呈现降低的趋势。说明基本农田保护示范区建设、农村土地整治重大工程示范区和高标准基本农田建设区内由于政府积极采取相应措施、经济发展较迅速、农民的耕作意愿得到加强,较大幅度地提高了耕地实际产能,缩小了耕地可实现利用潜力。
3.2耕地利用潜力限制因素研究
利用SPSS软件分别对耕地理论利用潜力和可实现利用潜力与46个备选影响因素进行逐步回归分析和共线性诊断,探讨达拉特旗耕地利用潜力的主要限制因子。
最终耕地理论利用潜力模型7中保留了灌溉次数X27、污染状况X7、灌溉水源X14、侵蚀状况X6、排水方式X20、海拔X10、是否在土整区X26共7个限制因子。调整的R2增大到0.692,模型有较好的拟合性;经过 F检验和t检验后,证明模型及其常数项、7个自变量均有统计学意义(表5);且绝大多数学生化残差绝对值不大于2(图4),可诊断理论利用潜力为独立变量。
因此,建立理论利用潜力的“最优”方程为:
y1=-1119.655+230.786X27+266.375X7+294.427X14+351.750X6+477.312X20-1.332X10+150.032X26
对回归模型进行共线性诊断,其容忍度、方差膨胀因子VIF和条件指数均在正常值范围内(表5、表6),可认为7个自变量共线性较弱或不存在。
比较变量间的标准化回归系数,可知对理论利用潜力的贡献大小依次为灌溉次数>灌溉水源>侵蚀状况>污染状况>海拔>排水方式>是否在土整区。因此农作物对水分需求的满足程度、土壤退化和污染情况是理论利用潜力的主要限制因素。模型表明了灌溉次数越多,水源越远,即对水分需求得不到满足,侵蚀和污染情况越严重,理论利用潜力则扩大。说明保障农作物对水分的需求及防治土壤退化和污染是缩小理论利用潜力的首要途径。
可实现利用潜力模型最终筛选出了14个自变量,但对其进行共线性诊断时,从第11个变量开始,条件指数>30,容忍度变小,共线性变严重。因此保留了模型10中实际单产X43、地形X11、是否受灾X16、机械投入X35、灌溉水源X14、污染状况X7、灌溉方式X18、剖面构型X3、化肥投入X30、地下水矿化度X15共10个限制因子。拟合优度检验、F检验和t检验证明,模型及其常数项、10个自变量均有统计学意义(表7)。模型10经共线性诊断认为10个自变量共线性较弱或不存在(表8)。
比较变量间的标准化回归系数,可知对可实现利用潜力的贡献大小依次为实际单产>地形>是否受灾>灌溉水源>剖面构型>机械投入>灌溉方式>污染状况>化肥投入>地下水矿化度。因此农户目标因素中的实际单产,自然因素中的地形、是否受灾、灌溉水源和农田投入因素中的机械投入、灌溉方式是可实现利用潜力分异的主要的限制因子。模型表明了实际单产越小,耕地自然条件越好而利用水平不高,发生过灾害天气,单位面积机械投入越多而利用率不高,灌溉技术越落后,可实现利用潜力越大。说明在耕地利用水平较高如交通和经济条件较好的村镇或地区,促进耕地集约化利用,形成规模经营,降低单位农田投入成本,并采用先进灌溉技术,提高灌溉有效率,是挖掘可实现利用潜力、提升产能的重要手段。
4结论与讨论
4.1结论
(1)达拉特旗理论利用潜力各乡镇总量最低为吉格斯太镇,最高是昭君镇,总体不高。较大潜力地块分布于达拉特旗十条主要水系的流域范围内,远离河床的理论利用潜力较小。可实现利用潜力乡镇中最低为展旦召苏木,昭君镇最高。2011年除南部哈什拉川流域可实现利用潜力较高外,总体呈现北部和西部高,南部和东部低的空间分布格局。
(2)2009~2011年达拉特旗整体耕地理论利用潜力呈现扩大趋势,总共扩大0.11万t。可实现利用潜力中东北部和昭君镇北部潜力在缩小,西北角潜力在扩大,全旗可实现利用潜力共5.76 万t,在缩小。
(3)2009~2011年土地整治及高标准基本农田建设项目红线范围区内理论利用潜力绝大部分不变或扩大;可实现利用潜力除达拉特旗西北角和部分补充耕地项目外,其他项目区内土地耕地可实现利用潜力都呈现降低的趋势。
(4)耕地理论利用潜力的前4大限制因子为灌溉次数、灌溉水源、侵蚀状况、污染状况。可实现利用潜力的前7大限制因子为实际单产、地形、是否受灾、灌溉水源、剖面构型、机械投入和灌溉方式,因此自然因素仍为可实现利用潜力主要限制因素,其次为农户耕作目标因素,最后为农田投入管理因素。
4.2讨论
(1)耕地利用潜力研究的重点在于揭示产量差的变化幅度和空间分布差异,分析其限制因子以及提高耕地单位实际产量的措施,初步探讨增产途径。目前耕地利用潜力定义、研究对象和方法差别较多,数据的可比性较差。本文将耕地生产能力统一为国家标准粮的产量,增强其数据的可比性。
(2)一般核算农田实际产能是利用统计年鉴中以行政村或者行政镇为单位的粮食总产,再加上其他产量折算的产量,但产量落实不到各个分等单元,且是总产,而非粮食单产,统计中由人为因素造成的误差较大,因此本研究以实地调查的农田单位产量为基础测算耕地实际产能,以弥补上述情况造成的不足。
(3)限制因素的研究综合了耕地自然因素、农田投入管理和农户耕地利用目标变化因素等,较全面地考虑了缩小耕地利用潜力和提升产能的影响因子。但还缺乏气候因素的详细数据,如光照、温度、降水等,西部生态脆弱区由于局地小气候造成的耕地利用潜力变化较多,接下来需添加这方面的资料综合研究其对产量差的影响。
(4)监测样点调查的各个限制因素间存在一定程度的相关性,需采用新的研究方法进一步剔除自变量的共线性,更好地分析耕地利用潜力缩小的途径,为区域高标准农田建设、耕地保护和国家粮食安全提供技术支撑。
参考文献:
[1]De Datta S K. Principles and practices of rice production[M].New York, USA: Wiley-Interscience Publications,1981.
[2]Fresco L O. Issues in farming systems research [J]. Netherlands Journal of Agricultural Science, 1984, 32: 253-261.
[3]Lobell D B,Ortiz-Monasterio J I. Regional importance of crop yield constraints: Linking simulation models and geostatistics to interpret spatial patterns [J]. Ecological Modelling, 2006, 196(1/2):173-182.
[4]Sumberg J. Mind the (yield) gap(s) [J].Food Security, 2012, 4(4):509-518.
[5]许妍,吴克宁,程先军,等.东北地区耕地产能空间分异规律及产能提升主导因子分析[J]. 资源科学,2011,33(11): 2030-2040.
[6]相慧,孔祥斌,武兆坤,等.中国粮食主产区耕地生产能力空间分布特征[J].农业工程学报,2012,28 (24):235-242.
[7]林毅夫.再论制度、技术与中国农业发展[M].北京:北京大学出版社,2003.
[8]顾焕章,张景顺,宋俊东,等.中国农业增长的源泉与技术进步[J].农业技术经济,1991,20(1):5-8.
[9]杨华.中国粮食综合生产能力分析[D].武汉:华中农业大学, 2007.
[10]Aggarwal P K, Kalra N. Analyzing the limitations set by climatic factors, genotype, and water and nitrogen availability on productivity of wheat.Ⅱ. Climatically potential yields and management strategies [J].Field Crops Research, 1994, 38(2):93-103.
[11]郑娜,刘秀位,王锡平.利用产量差距方法进行华北冬小麦产量受气候影响规律的分析――以河北省栾城县为例[J].中国生态农业学报,2014,22(2): 234-240.
[12]Sun K G, Wang L G. Effect of different fertilization practices on yield of a wheat-maize rotation and soil fertility [J]. Pedosphere, 2002, 12(3): 283-288.
[13]万克江,薛绪掌,王志敏.不同水分处理小麦品种比较试验的产量结构统计分析[J].灌溉排水学报,2005,24(3):35-38.
[14]Fermont A M, van Asten P J A, Tittonell P,et al. Closing the cassava yield gap: an analysis from small-holder farms in East Africa [J]. Field Crops Research, 2009, 112(1):24-36.
[15]赵宝军,宫永红.早实核桃产量及其构成因子研究[J].林业科技通讯,2001(8):25-26.
人口多、人均耕地少、耕地后备资源有限是我国的基本国情。近年来,随着人口的增加,工业化、城镇化进程的加快,以及生态环境建设力度的加强,耕地保护正面临着多重压力。在这种形势下,如何做好耕地保护工作已成为当前土地管理工作亟待解决的问题之一。
一、我国耕地保护的现状与面临形势
(一)耕地保护现状
为保护好耕地,自1998年8月29日修订通过的《中华人民共和国土地管理法》实施以来,我国制定了一系列耕地保护的相关政策。如《中华人民共和国土地管理法》中规定的土地用途管制制度、耕地占补平衡制度、耕地总量动态平衡制度、基本农田保护制度、土地开发整理复垦制度,《中华人民共和国刑法》等法律、法规规定的耕地保护法律责任制度,《基本农田保护条例》中规定的耕地保护目标责任制度,《中华人民共和国耕地占用税暂行条例》中规定的土地税费制度等等。其中,最核心的政策为土地用途管制制度与耕地占补平衡制度。
――土地用途管制制度
《中华人民共和国土地管理法》第四条第一款规定:“国家实行土地用途管制制度。”该条第二款规定:“国家编制土地利用总体规划,规定土地用途,将土地分为农用地、建设用地和未利用地。严格限制农用地转为建设用地,控制建设用地总量,对耕地实行特殊保护。”
在我国编制的第二轮土地利用总体规划中(规划期为1997―2010年),贯彻落实了土地用途管制制度,在第三轮土地利用总体规划中(规划期为2006―2020年),进一步贯彻落实了土地用途管制制度,细化了各类土地用途区,并针对各用途区制定了差别化的管制制度,严格控制农用地转为建设用地,实现对耕地的保护。
――耕地占补平衡制度
《中华人民共和国土地管理法》第三十一条第二款规定:“国家实行占用耕地补偿制度。非农业建设经批准占用耕地,按照占多少、垦多少的原则,由占用耕地的单位负责开垦与所占用耕地的数量和质量相当的耕地;没有条件开垦的或者开垦的耕地不符合要求的,应当按照省、自治区、直辖市的规定缴纳耕地开垦费,专款用于开垦新的耕地”。
2008年《关于进一步加强土地整理复垦开发工作的通知》(国土资发〔2008〕176号)及2009年《国土资源部关于全面实行耕地先补后占有关问题的通知》(国土资发〔2009〕31号),先后提出对非农建设占用耕地全面实行“先补后占”,以及“以补定占”,形成耕地占补平衡倒逼机制,进一步强化了耕地占补平衡制度对耕地的保护。
通过各项耕地保护政策的实施,在一定程度上遏制了耕地快速减少的势头,实现了耕地占补平衡。1997―2005年间,全国年均非农建设占用耕地305万亩,而同期通过土地开发整理补充耕地数量达到年均379万亩。但从耕地保护政策的实施效果看,各项政策对耕地质量的保护和提高力度明显不足,1997―2005年间,全国灌溉水田和水浇地等优质耕地分别减少1397万亩和449万亩,而同期补充的耕地灌排设施的比例不足40%。根据《中国耕地质量等级调查于评定》结果,全国耕地质量评定为15个等别,平均等级为9.8等,等级总体偏低,按照1-4等、5-8等、9-12等、13-15等划分,优、高、中和低等地面积占全国耕地评定面积的比例分别为2.67%、29.98%、50.64%、16.71%。低于平均质量等级的10-15等地占全国耕地评定面积的57%以上,并且从目前的实际情况看,耕地总体质量仍呈下降趋势。
(二)耕地保护面临的形势
1.耕地数量锐减,后备资源日渐匮乏
本世纪头20年是我国社会经济发展的重要战略机遇期,同时,也是资源环境约束加剧的矛盾凸显期。预计到2020年,我国人口将达到14.5亿,城镇化率将达到58%。这就意味着一方面随着人口的增加,对耕地的需求量也将不断增加,另一方面,随着镇化水平的不断提高,还将有大量耕地转为建设用地,用于保障城镇建设的用地需求。据统计,2005年我国耕地后备资源总潜力不足2亿亩,其中60%以上分布在水源不足和生态脆弱地区,随着近几年的不断开发,生态环境建设力度的不断加大,剩余可用于开发的耕地后备资源日渐匮乏,且开发难度越来越大。
2.耕地总体质量不高,且呈下降趋势
目前,我国中低产田面积已占耕地总面积的70%以上,有效灌溉面积只有48.6%,旱涝保收高标准农田比例很低。未来一个阶段,随着城镇化、工业化步伐的加快,还将有大量的分布于城镇周边的优质耕地将被占用,而新开发的耕地往往质量相对较低,若不加大对耕地质量提高的力度,耕地总体质量还将继续呈下降趋势。
3.耕地生态环境破坏严重,环境隐患加重
生态环境的持续恶化一直是制约我国社会经济可持续发展的一个重要因素。近年来每年都有大量的土地退化、沙化、碱化,水土流失情况也愈发严重,仅2005年,全国水土流失面积就达53.4亿亩。为保护和改善生态环境,每年都有大量的耕地需退耕还林、还草、还湖,这也是近年耕地面积锐减的主要原因之一。另外,部分地区产业用地布局混乱,土地污染严重,城市周边和部分主干道以及江河沿岸耕地的重金属与有机物污染严重。这些都对耕地保护构成了严重威胁。
二、土地整理的概念及发展情况
(一)土地整理的概念
土地整理是指采用工程、生物等措施,对田、水、路、林、村进行综合整治,增加有效耕地面积,提高土地质量和利用效率,改善生产、生活条件和生态环境的活动。土地整理包括农地整理和非农地整理。我国现阶段的土地整理主要为农地整理,整理的主要目标是增加有效耕地面积,提高耕地质量,改善农业生产条件和生态环境。
(二)国外土地整理发展情况
土地整理自16世纪中叶起源于欧洲的德国。从国外土地整理的发展历史看,大致经历了三个阶段:16世纪中叶至19世纪末,土地整理是有组织、有规划地归并地块、调整权属、改善农业生产条件,其目的主要为改变因土地私有和继承的分割使农用地日渐细碎、零散的现状,促进农业的规模经营和使管理更加有效;20世纪初至50年代,土地整理主要围绕城市建设和大型基础设施建设进行,其目的主要是实行新的城市规划、解决城市发展用地,为基建建设提供土地,同时消除工程建设给土地带来的不利影响;20世纪60年代以后至今,土地整理主要为综合土地整理,其主要目的为以促进地区经济发展,缩小城乡差距,增加收入,保护和改善生态环境、居住环境为主要内容的综合土地整理。
以德国为例,土地整理的任务是农村地产的重新调整,目的在于改善农业和林业的生产条件与劳动条件,促进农村和人口密集地区的发展和自然平衡的保护,其具体措施包括田块调整、公路建设、村庄更新、土壤保护、水利经济、景观保护等。德国的土地整理具有较完备的法律法规和相关政策,联邦德国于1953年颁布了第一部《土地整理法》, 1976年修改和颁布了《土地整理法》,为土地整理工作的有序开展提供了有力保障。此外,德国的土地整理还格外的注重土地权属调整,重视生态环境的保护和建设,注重公众的积极参与,重视融资研究和信息技术的应用。
(三)我国土地整理发展情况
我国土地整理概念的正式提出以1998年修订通过的《中华人民共和国土地管理法》为标志。《中华人民共和国土地管理法》中明确提出“国家鼓励土地整理”,土地整理逐步得到重视,自1998年以来,通过土地整理补充耕地的数量呈逐年增加趋势,土地整理对实现耕地占补平衡,确保18亿亩耕地红线具有重大意义。尤其是在“十一五”时期,我国的土地整理得到了快速发展,从开展初期简单的地块合并、土地平整发展到对田、水、路、林、村的综合整治,在提高土地利用率、改善农业生产环境以及提高耕地质量等方面都起到了积极作用。
与国外土地整理不同,考虑到我国的特殊国情,我国土地整理是基于解决粮食安全问题和实现耕地总量动态平衡提出的,因此,我国的土地整理更加注重对农地的整理,突出其在增加有效耕地面积、保持耕地总量动态平衡方面的作用。由于我国土地整理工作开展的相对较晚,在土地整理相关法律、法规的健全上,土地整理权属调整、重视生态环境保护、拓宽融资渠道、吸引公众参与、信息技术采用等诸多方面还需要不断吸取外国的先进经验,来不断完善发展。
三、土地整理对耕地保护的意义
(一)稳定耕地数量
在耕地数量锐减,后备资源日渐匮乏的形势下,通过大规模的土地开发来实现耕地占补平衡的难度将越来越大,而通过土地整理增加有效耕地面积,已成为未来实现耕地总量动态平衡的一个更为有效的措施。按照《全国土地利用总体规划纲要(2006―2020年)》,规划期内通过土地整理补充耕地面积为2730万亩,占规划期内补充耕地总面积的49.6%。
(二)提高耕地质量
在耕地数量日趋减少的形势下,如何提高耕地质量,提升耕地产能已成为保护耕地,保障粮食安全的又一个重点。按照《全国土地整治规划(2011~2015年)》,规划期内,全国将建设旱涝保收高标准基本农田4亿亩,经整理的基本农田质量平均提高1个等级,粮食亩产能力增加100公斤以上。未来土地整理将成为提高耕地质量,保障粮食生产能力的有效途径。
(三)改善耕地生态环境
通过土地整理项目的实施,加强农田水利工程中的生态环境建设,营造防风林、生态林,改善生态环境,加强耕地抵御自然灾害的能力,减少自然灾害损毁耕地的数量,从而实现真正意义上的经济、社会、环境效益的最大化。
四、结语
未来的耕地保护将不再是单一的数量保护,而将是对数量、质量、生态的全面管护。按照这一发展趋势,土地整理工作的开展将对耕地保护具有重大意义,为各项耕地保护目标的实现提供有力保障。
参考文献:
[1]何姣云,贺荣兵,龙振华,余周武.从国外土地整理特点看我国土地整理的意义与原则[J].农村经济与科技,2010,06期:75-76.
总体目标:利用测土配方施肥数据,在对有关图件和属性数据收集整理的基础上,建立测土配方施肥数据库和县域耕地资源信息管理系统,对耕地地力进行评价,摸清耕地地力状况,逐步建立和完善耕地质量动态监测与预警体系,为科学施肥、改良土壤、提升耕地质量提供服务。
主要任务:建立县级耕地资源数据库和耕地资源管理信息系统;完成耕地地力评价和各种专题评价;编绘耕地地力等级图、土壤养分图等数字化图件;编写耕地地力评价技术报告、工作报告和专题报告,编辑出版《县级耕地地力评价》书籍,形成公共基础资源,为广大农民群众和相关单位提供查阅服务。
二、重点工作
1、收集相关资料。主要包括图件资料、属性数据资料和其他资料。图件资料包括:地形图、行政区划土、县级土地利用现状图、第二次土壤普查成果图件、基本农田保护区划区定界图等相关图件。属性数据资料包括:第二次土壤普查基础资料、土地详查资料、近三年农业生产统计年报,土壤监测、田间试验、各乡镇历年化肥、农药、除草剂等农用化学品销售投入情况,主要污染源调查资料(地点、污染类型、方式、排污量等),农作物(含菜田)布局等。其他资料包括:土壤改良、生态建设、土壤典型剖面照片、当地典型景观照片、特色农产品介绍(文字、图片)、地方介绍资料(图片、录像、文字、录音)等。
2、建立耕地资源基础数据库。利用测土配方施肥所取得的调查、测试、试验数据和第二次土壤普查资料数据,建立规范的县域耕地资源空间数据库和属性数据库。
3、建立县域耕地资源管理信息系统。利用农业部统一提供的系统平台软件,与先期建成的空间数据库、属性数据库建立连接,建立本县耕地资源管理信息系统,可以有效地管理、分析、利用包括测土配方施肥在内的数据资料,并为耕地地力评价提供数据来源。
4、确定耕地地力评价指标体系。根据重要性、易获取性、差异性、稳定性、评价范围等原则,确定我县以下评价指标:质地、PH值、有机质、有效磷、有效钾、有效锌、有效硫、有效铁、有效锰、水溶态硼、排涝模数、灌溉模数等12个评价指标。
5、确定评价单元并赋值。耕地评价单元是具有专门特征的耕地单元,在评价系统中是用于制图的区域,在生产上用于实际的农事管理,是耕地地力评价的基础。利用数字化的标准的县级土壤图和土地利用现状图叠加产生的图斑,作为评价单元,评价单元不宜过细过多,要进行综合取舍和其他技术处理。一般一个土壤类型有1500个左右评价单元。
根据各评价指标的空间分布图和属性数据库,将各评价指标数据赋值给评价单元,每个评价单元都必须有参与评价指标的属性数据。对点位分布图,采用插值的方法将其转换为栅格图,再与评价单元图叠加,通过加权统计给评价单元赋值;对失量分布图,将其直接与评价单元图叠加,通过加权统计、属性提取,给评价单元赋值;对线性图,使用数字高程模型,形成坡度图、坡向图等,再与评价单元图叠加,通过加权统计给评价单元赋值。
6、建立评价模型。主要包括4项关键技术:一是确定各评价指标的隶属度。对定性数据采用特尔斐法直接给出相应的隶属度;对定量数据采用特尔斐法与隶属函数法结合的方法确定各评价指标的隶属函数,将各评价指标的值代入隶属函数,计算相应的隶属度。二是确定各评价指标的权重。采用特尔斐法与层次分析法相结合的方法确定各评价指标的权重。三是计算耕地地力综合指数(IFI)。采用累加法计算每个评价单元的耕地地力综合指数。四是划分耕地地力等级。根据耕地地力综合指数分布,采用等距法或累计频率曲线法确定地力等级分级方案,划分耕地地力等级。
7、评价结果归入全省耕地地力等级体系。依据《全省耕地类型区、耕地地力等级划分》,归纳整理各级耕地地力要素主要指标,形成与粮食生产能力相对应的地力等级,并将各等级耕地归入全省耕地地力等级体系。
8、评价结果的汇总。包括编绘规范的耕地地力等级图、土壤适宜性评价图、各种土壤养分图等数字化图件;编写耕地地力评价技术报告、工作报告与耕地质量评价与改良利用、粮食生产能力与粮食安全、耕地质量评价与平衡施肥、耕地质量评价与种植业布局等专题报告,编辑出版《县级耕地地力评价》等。
三、时间安排
1、培训准备阶段(2012年4-6月)。抽调技术人员,并对技术人员进行培训,编制工作方案,确定评价指标,开展耕地地力评价工作,完成空间数据和属性数据资料的收集工作,建立县域耕地资源空间数据库、属性数据库。
2、建立县域耕地资源管理信息系统阶段(2012年6-7月)。完成空间数据、属性数据及多媒体数据的录入,建立县域耕地资源管理信息系统。
3、评价效果阶段(2012年7-8月)。进行专题制图、空间分析、耕地地力评价、耕地适宜性评价、土壤养分丰缺评价、测土配方施肥实施效果评价。
4、总结验收阶段(2012年9月)。对耕地地力评价结果以及全年项目实施工作进行总结,迎接省级验收。
四、保障措施
1、加强领导,建立机构。耕地地力评价工作涉及面广,技术性强,工作量大,各乡镇及县直有关部门要充分认识该项工作的重要性、艰巨性,切实加强组织领导,保证人员、设备、经费,确保按时完成任务。为加强对耕地地力评价工作的领导和技术指导,在宕昌县测土配方施肥领导小组和技术专家组指导下,成立宕昌县耕地地力评价技术专家组,组长:成员:。技术专家组负责制定技术方案、研讨技术问题、解决技术难题。
事实上,最初用于商业生产的转基因食品,本就是打着“农药不再”的旗号,给饱受虫害困扰而不得不依靠农药的天然作物转入能抗虫的基因。其结果是,初代转基因量产伊始,其收获物的安全性——至少在农药使用层面——已经凌驾于无公害食品甚至绿色食品,可直接与有机食品同席;而且,由于不怎么需要人为调控,转基因食品的种植有着远比高标准管理化生产的有机种植更低的成本。
另一方面,由于部分业界人士并不认同转基因的靶向安全性,所以“初代抗虫转基因在人体内没有相应受体,无法被吸收或产生毒性”之类的说法仍旧存在争议。同时,由于转基因逃逸现象(指转入的基因在临近物种身上出现)导致的“超级野草”——既不怕虫也没有其他强势竞争对手——普遍存在于单一化种植的转基因商业农田周遭,初代转基因成功的开始过后,进入了不停追加除草成本的怪圈,这当中甚至包括使用比以前更高毒性的农药!
知名科普网站对“黄金大米”的“辟谣”
科学松鼠会果壳网某篇帖子针对“绿色和平”爆料的转基因“黄金大米”作了相关的安全性辩解。
该站食品工程博士云无心认为,许多第一代的转基因产品引发争议的问题都是不存在的。比如说,它的目的是增加胡萝卜素的含量,并不能增加植物的生存优势,所以那些基因即使“漂流”到野外也不会产生“超级野草”;黄金大米是金黄色的,跟普通大米明显不同,消费者的“知情权”和“选择权”完全可以保障。他特别指出,世界上没有一种食品是“绝对安全”的,对于转基因食品以及其他各种新的食品,科学上评判安全的标准是“是否比传统食品有更高的风险”。如果没有,就认为其安全性跟传统产品“实质等同”,从而认为它是“安全”的。而黄金大米的开发安全性的检验已经完成,结论是其“健康风险不比传统大米高”。
转基因与食物多样性
基于云无心的言论,转基因食品对人体健康的直接危害又一次被严谨地否决了;不仅如此,就连转基因作物对生态环境的可预见干扰,都无法在“不能增加植物生存优势”的转基因品种身上获得例证。至于“抗虫害转基因诱导的蛋白在人体内无法吸收,而添加营养素转基因的产品会进入消化系统,是否在吸收后产生不良影响”之类的命题,连应有的验证价值都没有了——会有人对吃大米的时侯一同服用维生素制剂或是胡萝卜有什么担忧吗?
然而,这看似无懈可击的复合转基因食品,在给贫困人口增添了营养来源的同时,并没有考虑到饮食多样性的改变。
诚如云无心所言,诸如黄金大米这样的新一代转基因产品,由于并没有植入增加生长优势且不属于营养素的抗虫基因之类的外源性物质,理论上既不会与其他作物竞争,也不会产生难以克制的超级野草,更不可能对人体产生毒性。
但是,且不说转基因逃逸的中长期全面评估仍旧缺乏,单就人为可控的作物选择而言,完全可能回到初代转基因单一种植的歧途:如果种两亩黄金大米的综合效益高过分别种一亩普通大米和一亩胡萝卜的效益,难道不应该优选黄金大米?
于是乎,本来吃两种食物的,现在只吃一种食物了……这种看似加法实则减法的终点,兴许可以引用一位友人的质疑:服一颗号称蕴含各种营养的植物胶囊,真的比吃一篮子蔬菜来得营养和高效么?