超高层建筑消防设计汇总十篇

时间:2023-09-01 16:49:30

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇超高层建筑消防设计范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

超高层建筑消防设计

篇(1)

中图分类号:TU991文献标识码: A 文章编号:

根据众多超高层建筑,最为常见的给水方式有并联供水、串联供水和重力供水这三种分区方式。

1、竖向分区方式的优缺点

1.1并联给水方式

并联给水典型方式为: 系统只设一套消防加压泵向整个消防给水管网供水,通过减压阀组方式进行竖向分区。当然也有每个竖向分区消防给水系统,设有各自独立的消防水泵向对应消防给水分区管网供水,采用此供水方式时,当两个消防分区之间发生火灾时,对消防水泵启动的要求不同,存在一定的安全隐患,这种方式已不常见,相关的文章和手册也有讨论和叙述,在此不再赘述。笔者主要对以减压阀组方式进行竖向分区的并联供水进行探讨。并联供水方式系统如图 1 所示。

图 1 并联消防泵给水系统

并联供水方式优点: ①系统管网简单明了,节约初期投资、施工方便,消防控制系统相对简单可靠,日后的管理和维护更为方便; ②避免了在超高层建筑中设置水泵等机械设备而产生噪音和振动,造成对上下邻层的影响,为业主提供了安静舒适的环境。

其缺点为对竖向分区的减压设备性能要求较高,主要考虑下列几个方面: ①作为竖向分区使用的减压阀应具有既减动压又减静压的功能。如果没有减静压功能或减压功能失效,则可造成减压阀后供水系统长期处于超压状态,从而带来系统安全隐患,系统安全得不到保证,是不允许的。②对供水系统只需要减动压的场合,建议采用只减动压的减压设备( 如减压阀、减压管等) ,以简化系统,节约投资。③对局部只需要减动压的部位,建议采用减压孔板、减压稳压消火栓等简单的设施,起到减压的作用。合理使用减压设备,在保证供水系统安全可靠的前提下,能有效降低消防管网的投资,这点在系统设计中应给予高度重视。

此外分区方式的选择还应从加压设备选型和建筑功能等方面分析,主要考虑以下因素: ①要满足150m 建筑高度的消防水压要求,设计系统工作压力接近 2.0 MPa,在此压力范围内,消防加压泵的选型比较容易、多样,便于设备的购买和安装; ②超高层住宅建筑高度大多在150 m 以下,此类建筑根据现行国家要求可不设避难层,只设避难间,而避难间面积有限,不能安装过多的消防设备(如中间转输水箱、消防水泵、喷淋水泵和消防稳压设施) 。采用并联供水方式,节约了超高层避难层(间) 中设备和管件等的安装面积,在能更多提供人员掩蔽空间的同时,也为业主争取到更多的经济利益。

综上所述,笔者认为减压阀组结合局部采用减压设施的并联分区供水方式,较适用于建筑高度在150 m 以下的超高层建筑。

1.2串联供水方式

在消防给水竖向分区中,各分区设置独立消防泵组向管网供水,并设置转输水箱和转输水泵,通过转输水泵向上级转输水箱供水,转输水箱、转输水泵、上部分区消防水泵一般设置在避难层(间) 内,如图2所示。

1.低压消防加压泵组,2.消防转输泵3.高区消防加压泵组 4.低区消防稳压装置5.高压消防稳压装置6.中间转输水箱

图2串联消防泵给水系统

串联供水方式的优点: ①系统管网工作压力不高且可控; ②消防水泵功率较小,无需降压启动,启动设备投资较省,启动可靠。

其缺点为: ①系统管网相对复杂; ②中间水箱及消防设备占用较多建筑空间; ③上下多级消防水泵的电气控制相对繁琐。

此外,分区方式的选择还应在加压设备选型和建筑功能等方面考虑以下因素: ①150 m 以上的超高层建筑,若继续采用并联分区供水方式,势必提高供水水泵扬程和管网、设备承压等级,造成前期投资过大,设备管材安装要求更高,系统长期处于高压状态,安全风险增大; 采用设置中间转输水箱和消防给水水泵的串联分区供水方式,可降低供水系统的工作压力,提高系统供水安全性。②150m 以上超高层建筑主要是以公共建筑为主,该类建筑按现行规范要求应设置避难层,在满足避难人员所需避难功能外可兼作设备层,为其他消防设备安装提供了空间,从而为串联分区供水方式提供了条件。③公共建筑(如办公、商业等) 内夜间人员较少,对环境噪音的要求相对较低,允许在中间层设置消防设备。

综上所述,笔者认为串联分区供水方式,适用于建筑高度在 150 ~200 m 之间的超高层建筑。

1.3重力供水方式

重力消防给水系统示意图见图3。在建筑物最高处的适当位置设置高位消防水池,且水池有效容积应满足该建筑在火灾延续时间内室内消防总用水量,消防水池的水以重力方式向以下各消防给水分区供水。消防水池应分为能独立工作的两格,补水管不应少于两条,其补水水泵的设计秒流量宜按该建筑室内消防设计流量选配。

图3 重力消防给水系统

重力供水方式的优点: ①屋顶消防水池储存了整栋建筑在火灾延续时间内所需的总消防水量,通过重力方式向下供水,从而避免了机械故障和火场供电中断对消防供水系统的影响,最为安全可靠; ②系统构成简单可靠,在发生火灾时,供水系统可迅速启动,投入灭火,可有效地保证人员生命和财产安全。

其缺点: ①增加了结构荷载; ②消防水池需占用较大屋面有效空间,一定程度上影响了业主屋面的使用; ③消防水池储存的消防用水需要定期更换,从而造成较多的水资源浪费。

此外还应从建筑功能和重要性等方面分析,根据国内现有资料分析,建筑高度在 200 ~250m 之间的超高层建筑,绝大多数为大型的重要公共建筑,多为区域性标志建筑,社会影响较大,其人员密集、装修标准高,且大部分设置有中央空调系统,火灾危险性大,当发生火灾时,人员不易疏散,外部救援困难,主要依靠建筑本身消防系统自救,而且根据笔者掌握的资料,目前国内上海环球金融中心、上海金茂大厦、珠江新城西塔、广州塔等重要公共建筑,均采用重力消防供水系统。

综上所述,笔者认为建设高度在 200~250m之间的超高层建筑消防供水系统,应采用重力供水的方式,该方式最为安全可靠。

2、消防水池、中间水箱及高位水箱容积取值

2.1消防水池容积

消防水池的最小有效容积应满足规范的要求,但对火灾危险性大、装修标准高的超高层建筑考虑火灾延续时间可能会超出规范设定的时间。另外消防水池的容积往往包含 1 h 的自动喷淋系统用水量,而自动喷淋管网庞大复杂、影响因素较多,水力计算结果可能超出规范假定的模型,造成实际喷水强度大于设计喷水强度,从而造成喷淋系统工作时间不能满足规范1h的要求,故建议这类建筑增加20% 的消防贮水量,即可以提高消防安全性,投资增加也不大,一般可以为业主接受。

2.2中转水箱容积

中转水箱容积在现行规范中未注明,参考上海市《民用建筑水灭火系统设计规程》第 6.1.8—1规定:“各级应设中间水箱( 高位消防水箱); 采用消防泵直接串联的各级水箱的有效容积不应小于18m3,采用中间水箱转输的水箱有效容积不应小于60m3,”这里的中间转输水箱有效容积为60 m3,相当于一类高层公共建筑的自动喷水和室内消火栓10min 用水量与中间转输水箱兼作下区消防管网的高位消防水箱容积( 18 m3) 之和,对于这个贮水量标准,笔者认为是合理的。但转输水泵应采用水位自控方式,工作较为简单可靠,当采用这种启动控制方式时,因启泵水位和停泵水位有水位差值,中转水箱有效容积应增加5m3的高低水位调节容积,故中间转输水箱的有效容积宜取为 65m3。

2.3高位消防水箱容积

篇(2)

随着我国经济的发展,超高层建筑近年来逐渐增多。而消防系统的设计,由于与人的生命和财产息息相关,显得尤为重要,下面以一工程实例进行讨论。

1 工程概况

沈阳某建筑占地面积约为92000,地上建筑面积约为80000,地下总建筑面积约为330000。项目包括一68层办公楼,约为350m,四层大型商场及四层地下车库。地下第三层、第四层部分为平战结合六级人防二等人员掩蔽所,包括车库,设备间等。

2 消防系统

本建筑为一类超高层民用建筑,耐火等级为一级。消防设计内容包括室内、室外消火栓给水系统,自动喷淋给水系统,灭火器配置系统,防火幕冷却保护喷淋系统,七氟丙烷气体灭火系统。

本项目消防水源由市政给水环网上分别引入两条进水管,在小市政成DN600环管。办公楼、商场及室外消火栓水缸各自从环管引出2根DN150水管进入各自消防水缸内。

2.1 消防系统用水计算

办公楼消防系统用水量

室内消火栓系统选用40L/S,运行时间为3小时,所需储水池容积为432m3,自动喷淋灭火系统选用30L/S,运行时间1小时,所需储水池容积为108m3,大净空自动喷淋系统选用60L/S,运行时间1小时,所需储水池容积为216m3,(自动喷淋灭火系统与大净空自动喷淋系统储水池容积只取较大者,所以按216m3计算)消防系统总计用水量为100L/S,储水池容积为648m3。与空调冷却塔补水(400m3)合用,储水池总容积为1048m3。

办公楼首层入口大堂净空高8―12m,喷淋系统选用流量为60 L/S,净空小于8m ,流量按30 L/S计算。

商场及地库消防系统用水量

室内消火栓系统选用40L/S,运行时间3小时,所需储水池容积为432m3,防火幕冷却保护喷淋系统选用200L/S,运行时间3小时,所需储水池容积为2160m3,自动喷淋灭火系统选用30L/S,运行时间1小时,所需储水池容积为108m3,大空间自动扫瞄定位喷水灭火系统选用42L/S,运行时间1小时,所需储水池容积为151.2m3,(自动喷淋灭火系统与大空间自动扫瞄定位喷水灭火系统储水池容积只取较大者,所以按151.2m3计算)消防系统总计用水量为282L/S,储水池容积为2743.2m3。与空调冷却塔补水(244.8m3)合用,储水池总容积为2988m3。

室外消火栓系统选用30L/S,运行时间为3小时,所需储水池容积为324m3。

2.2 消火栓系统

室外消火栓系统用水从设于地库四层的消火栓水池经专用消防水泵吸取加压后经过埋地的环网管提供。室外消火栓采用地下式。系统设两台室外消火栓水泵(一用一备), 扬程为0.6MPa,流量30L/S。

在首层设置三个室外消火栓系统消防水泵接合器。

室外消火栓消火栓充实水栓不少于13m,栓口静止压力不大于100m水柱和动压不大于50m水柱。另在每个消火栓处设消防软管卷盘。办公楼T1座及商场的室内消防系统均为独立系统及水缸。

2.2.1办公楼消火栓系统

办公楼消火栓系统用水从设于地库四层的办公楼消防及空调补水合用水缸经专用室内消火栓水泵(一用一备) 扬程为0.96MPa,加压后通过管网送至地库四层至十层的消火栓。另有消防转运泵扬程为1.4MPa,流量为40L/s(两用一备),把消防用水供给在23层的消防中间转运水箱(90立方米),该水箱将用作为转运及稳压之用。相同的消防中间转运水箱设于41层,59层用于运转和稳压,分区供给。在68层放置一个18立方米的高位水箱及稳压设施。

在首层设置三个办公楼消火栓系统消防水泵接合器。

2.2.2商场及地下停车库消火栓系统

消火栓系统用水从设于地库四层的消防及空调补水合用水缸经专用消火栓水泵(一用一备) 扬程为0.75MPa, 加压后通过管网送至各消火栓。系统用水流量为40L/s。在地库四层及三层设水平环网。在四层设一个18立方米的高位水箱和稳压设施。

在首层设置三个商场及地下停车库消火栓系统消防水泵接合器。

2.3自动喷水灭火系统

2.3.1自动喷淋系统

2.3.1.1办公楼自动喷淋系统

办公楼自动喷淋系统设计为中危险II级。办公楼自动喷淋系统用水从地库四层的办公楼消防及空调补水合用水缸经专用自动喷淋水泵(一用一备), 扬程为1.06MPa,送至地库四层至十层的自动喷淋系统。系统用水流量为30L/s。

办公楼自动喷淋系统用水从设于地库四层的办公楼消防及空调补水合用水缸经专用自动喷淋水泵(一用一备) 扬程为1.06MPa,加压后通过管网送至地库四层至十层的喷头。消防中间转运水箱(与消火栓系统用同一水箱)(90立方米)设于41层,59层用于运转和稳压,分区供给。在68层放置一个18立方米的高位水箱及稳压设施。在首层设三个喷淋水泵接合器。

2.3.1.2商场及地下停车库自动喷淋系统

商场自动喷淋系统用水从地库四层的商场消防及空调补水合用水缸经专用的喷淋水泵(一用一备), 系统用水流量为30L/s, 扬程为0.85MPa,吸取加压后再通过报警阀组输送至每一个的喷头。在四层设18 m3的高位水箱及稳压设施。

于首层设置二个消防水泵接合器。

2.3.2大空间自动扫瞄定位喷水灭火系统

办公楼L67层观光台装设大空间自动扫瞄定位喷水灭火系统。该系统设水泵两台(一用一备)于59层,系统流量为60 L/s,(4支9 L/s自动扫描水炮),扬程为0.9MPa。在首层设四个喷淋水泵接合器。

各商场中庭将会设置大空间自动扫瞄定位喷水灭火系统对该等场所进行灭火保护。该系统设水泵两台(一用一备), 系统用水流量为42L/s (6支7升/秒自动扫瞄水炮), 扬程为1.1MPa。在首层设三个水泵接合器。

2.3.3防火幕冷却保护喷淋系统

防火幕冷却保护喷淋系统设水泵六台(五用一备),系统用水流量为200 L/s,扬程为0.9MPa。首层设十四个水泵接合器。

2. 4灭火器具

灭火器系统按规范要求设置。 所有强电房、弱电房、资讯机房均只设火灾自动报警系统(感烟探测器)及手推车式灭火器。每个设置点放置四公斤三具。

2. 5七氟丙烷气体灭火系统

篇(3)

系统,对超高层建筑日常运行的经济性,以及消防时的安全性和可靠性是高层建筑给排水设计

最主要的问题。文章结合笔者的工作实践,对超高层建筑给水及消防的设计谈谈自己的心得。

关键词:超高层建筑;给水设计;消防设计

Abstract: in the ultra-high buildings, crowded conditions, relatively concentrated cloud, a fire hazard and more, once the fire, buildings evacuate difficulties, fire spread quickly, organization and implementation of the fire rescue is difficult. How to reasonably and drainage and fire fighting system design system, the tall building daily operation of the economy, and fire control safety and reliability is high building drainage design to the main problem. Combining with the author's working practice, and high building fire and water supply to the design of the talk about their experiences.

Keywords: tall building; Water supply design; Fire fighting design

中图分类号: TU97 文献标识码:A 文章编号:

近些年,在国内土地供应紧张的大型城市如上海、重庆、北京、广州、深圳高层和超高层建筑保持着快速增长的势头,超过100米以上的公共建筑属于超高层建筑。笔者作为一名建筑给排水设计师,根据工程实际设计经验与体会,结合国家规范要求,对超高层建筑给水系统设计、消防系统设计展开探讨。

一、给排水及消防设计中应注意的几个重点问题

超高层建筑有别于普通高层、低层建筑,具有层数多、高度大、振动源多、用水要求高、排水量大等特点,因此,对建筑给水排水工程的设计施工材料及管理方面都提出了新的技术要求。必须采取新的技术措施,才能确保给水排水系统的良好工况,满足各类高层建筑的功能要求。超高层建筑给排水及消防设计中应注意的几点问题:

1)生活给水系统竖向分区。

合理划分生活给水系统竖分区,也是生活变频调速供水设备节能的重要因素,分 区内层数较多,则会造成变频设备设计流量加大,在用水量较小的情况下,需开启水泵的负荷增加。另外,由于分区内系统压力较高,入户管设置减压阀的层数增加,能耗也更大。 超高层建筑每个分区独立设置一套变频调速供水设备,这样可以减少设置减压阀的层数,同时可以降低给水主立管的压力,增加供水的安全性和可靠性。

2)喷头设置问题

根据《高层民用建筑设计防火规范》GB50045-95(2001年版)中7.6.1要求,建筑高度超过1OOm的高层建筑,除面积小于5.Om 的卫生间、厨房和不宜用水扑救的部位外,均应设置自动喷水灭火系统。

3)减少减压阀在消防系统中的使用,增强系统可靠性。

高层建筑消防立足于自救,提高消防系统的可靠性是高层建筑火灾自救的关键所在,超高层建筑在条件许可的情况下,最好每个分区独立设置加压设备,减少减压阀在消防系统中的使用。如因建设初期资金限制或泵房面积所限等问题采用一套加压设备,高区利用加压设备直接供水,中、低区经减压阀减压后供水时,减压阀应考虑并联设置两套,一用一备,以增加系统的可靠性。

4)底层排水通气管设置问题

建筑内部的排水系统直接影响着人们的日常生活和生产,在设计过程中应首先保证排水的通畅和室内良好的居住环境,避免疾病的传染。尤其对于高层建筑的排水立管,因排水量大,建筑高度高,合理的设置排水通气系统和消能装置,对增加立管排水流量,保证排水系统的通畅有着重要的意义。

超高层建筑生活污水立管应设置专用通气立管,从最高层算起,污水管道每隔六层设置一消能装置,每隔三层设结合通气管同主通气立管相连接。对于高层和超高层建筑排水立管底部应增加结合通气管,底层排水管及通气管设计时应注意一下几点:①排水立管的底部应设置结合通气管②接入排水立管最低的排水横支管下增设一个结合通气管;③底层单独排水支管应直接接入转换层内排水主横管,或按照图1所示设计;当底层单独排水支管连接排水器具较多的时候,应设置环形通气管同主通气立管相连。

图1

5)管材的选择

超高层建筑给排水管道承受的压力高,相应的管道材料应做多方面比较和选择。室内消火

栓系统和自动喷水灭火系统一般选用内外壁热镀锌钢管;生活给水系统承压较高的主管建议

采用钢塑复合管,既保证水质又能延长给水管寿命。供水主管承受很大压力,采用无缝钢管,

法兰连接;普通高层建筑一般采用UPVC管或卡箍式排水铸铁管,超高层建筑因较高故排水铸

铁管接口不实,容易造成底层水压过大而漏水等现象,应采用柔性接口机制排水铸铁管;转

换层内的排水横管可采用柔性接口机制排水铸铁管。

6)集水井、潜污泵的设置。地下停车库低于室外地面,其污水不能自流排人市政排水管网,

在地下室设置集水井,通过潜污泵提升至室外。潜污泵流量的选用考虑到:a.地下停车库洗

地排水量Q1 ;b.车道出入口处的雨水量Q2;c.火灾消防用水的排水量Q3。对于与车道出人

口集水沟相连的集水井,其排水量取Q2与Q3中的大者,泵房集水井考虑消防试泵时的排水

量,其潜污泵的流量应满足消防试泵的要求,其余集水井取Q3。而Q1不与Q2及Q3同时发生,

且其值较小,可略去不计。每个集水井均设置两台潜污泵,电气均考虑两台同时工作,平时

一台工作。如果水位达到报警水位,则两台泵同时工作,以便及时排除地下室积水。

二、 超高层各系统设计的典型案例分析

1、工程概况

天津渤海银行大厦位于天津市,是一座集办公、会议及接待等多功能于一体的现代城市超

高层建筑。分为地上和地下两部分,其中地上51层,地下部分共3层,地下1、2层为设备用房(发电机房)及一类地下停车库(停车>300辆),地下3层平时为设备用房(水泵房)和一类地下停车库(停车>300辆),战时为六级人防。总建筑面积约18.7万m2, 总建筑高度约250米,定性为一类高层建筑,其19层、33层设置避难层。

2、 给水系统

2.1 室外给水设计

本工程由两路市政预留口接入本项目给水管网,并于室外成DN300环状布置,环网上每隔100米左右设室外消火栓。最高日用水量约284m³/天。

2.2 室内给水设计

对于超高层的建筑物,如何合理的对给水系统进行分区,在满足使用要求的大前提下,更好的节约能源,方便管理是设计的重点。本工程根据大厦的用水要求和用水特点,在竖向上分区供水,而各分区又根据各特点采用不同的给水方式。具体的给水系统分区如下:

1区:-3~2层:市政管网供水;

2区:3~8 层:由设在19层生活水箱重力供水。

3区: 9~15 层:由设在19层生活水箱重力供水。

4区: 16~22 层:由设在33层生活水箱重力供水。

5区: 23~29 层:由设在33层生活水箱重力供水。

6区:30~38层:由设在屋面的办公生活水箱供水。

7区:39~46层:由设在屋面的办公生活水箱供水。

8区:47~51层:由设在屋面变频供水设备供水。

各个分区的供水点压力,在局部楼层设置支管减压阀。本工程最高日用水量约为284m3/d, 地下三层生活水池容积为50m3;避难层的生活转输水箱共2个,分别设于19层及33层避难层,容积均为30m3;屋面设高位水箱1个,容积为12 m3;系统图如图2所示:

图2 生活给水系统图

3、消防给水设计

合理的选择消防水灭火系统,是超高层建筑消防水设计的关键。什么地方需要什么样的灭火系统,对于火灾时的扑救起着至关重要的作用。本工程除了常见的消火栓系统和湿式自动喷水灭火系统以及气体灭火系统(气体灭火系统本文不再赘述)外,在空间净高大于12米部位设置智能水炮灭火给水系统(消防水炮)。

本工程的消防水量如下:室外消火栓30L/s,火灾延续时间3h;室内消火栓40L/s,火灾延续时间3h;自动喷水系统35L/s,火灾延续时间1h,智能水炮30L/s,火灾延续时间1h。地下三层消防水池储存消防延续时间内,室内消火栓用水量和自动喷水灭火用水量,共计650m³,分成2格设置。

3.1 消火栓系统设计

本工程室内消火栓系统设3个区:

1区(地下3层~19层):环网设在地下三层顶板下和18层顶板下;

2区(20~33层):环网设在20层避难层顶板下和32层顶板下;

3区(34~51层):环网设在34层顶板下和最高天面屋面;

地下室消防水泵房设消火栓提升泵,提升消防水至19、33层消防转输水箱,然后由本层的消火栓给水泵(2台)加压。出水口成环后供给各区消火栓,各区消火栓底部消火栓经减压阀减压后成环供给。当消火栓栓口的出水压力大于0.50MPa时,采用减压稳压消火栓。

屋顶设18m³消防水箱一座,另设置消火栓系统增压装置一套,以满足最不利点消火栓静

压要求。

3.2 自动喷水灭火系统

自动喷水灭火系统对于扑灭建筑火灾的重要性和有效性,已经得到了广泛的认可。根据规范

要求,建筑高度超过100m的高层建筑及其裙房,除游泳池、溜冰场、建筑面积小于5.00m2的

卫生间、不设集中空调且户门为甲级防火门的住宅的户内用房和不宜用水扑救的部位外,均

应设自动喷水灭火系统。本工程的地下室,商业裙房,办公区,公寓均设置了自动喷水灭火

系统。地下汽车库按中危II设计,办公区及公寓均按中危I设计。

本工程的自动喷水灭火系统共分3个区:

1区(地下3层~14层)湿式报警阀设在地下3层水泵房;

2区(15~32层)湿式报警阀设在19层避难层;

3区(33~51层)湿式报警阀设在33层避难层;

地下室消防水泵房设自喷系统提升泵,提升消防水至 19、33层消防转输水箱,然后由本层的自喷系统给水泵(2台)加压。出水口成环后供给各区报警阀,保证阀前压力不大于1.20MPa。转输水箱出水管2条,保证报警阀前环状供水。屋顶设18m³消防水箱一座,另设置自喷系统稳压装置一套,以满足最不利点喷头水压要求。

3.3自动跟踪定位射流灭火装置(消防水炮)

本项目室内净空高度超过12m的部位采用智能水炮灭火给水系统(消防水炮),设计流量为30L/s,火灾延续时间时间为1h,喷头水压不少于0.6MPa。火灾消防用水量由设于33层消防水箱(110m3)供给,33层消防水箱至水炮安装高度几何高差不小于60米。

三、 结束语

超高层建筑是一个城市发展水平的体现,也是一个城市的重要名片。从工程角度来说,它功能较多,结构更为复杂。它的给排水及消防设计,除满足功能上的需求外,如何更好的安排系统的合理性以利于节能及后期管理,也应该是我们每一个设计人员所要注意的问题。

篇(4)

Abstract: with the construction of high-grade, high, and the commercial, construction drainage design is becoming more and more important. How to reasonably and drainage and fire fighting system design of high-rise building system daily operation of the economy and when fire safety and reliability are of great significance. Based on the engineering example, talk about in the tall building water supply and fire control design of the experience.

Keywords: tall, water supply design, fire protection design

中图分类号:TU991 文献标识码:A文章编号:

随着经济的飞速发展,建筑行业、房地产业也进入的黄金时代,各种高层、超高层建筑不断涌现,各种新、奇、特的地标性建筑不断建成,人类在一次次刷新世界最高建筑的记录。提到这些高层建筑,我们就不得不提到消防设施系统,由于高层建筑物的火灾特点,决定了建筑物内必须设置消防给水设施以自救为主,因其对扑灭初期火灾的成功率高而得到广泛应用。消防给水系统是高层建筑消防灭火系统中的重要组成部分,也是建筑物中一项必不可少的建筑安装工程。

1、 工程概况

某项目集商业、办公、公寓、办公为一体的超高层综合商业体,由A、B、C三栋塔楼、四层商业裙房、三层地下车库组成,建筑面积约2.5万平方米。其生活及消防水泵房设于地下三层。

2、给水设计

2.1 室外给水设计

本项目最高日用水量约2800m³/天。水源为市政自来水供水管网两路供水,并于室外成DN250环状布置,环网上每隔100米左右设室外消火栓。市政供水管道的供水压力为0.20MPa。

2.2 室内给水设计

对于超高层的建筑物,如何合理的对给水系统进行分区,在满足使用要求的大前提下,更好的节约能源,方便管理是设计的重点。本工程根据商业裙楼及各栋塔楼的用水要求和用水特点,在竖向上分区供水,而各分区又根据各栋特点采用不同的给水方式。具体的给水系统分区如下:

一区:车库部分及地上一层:市政管网供水。

二区:商业二层~四层:商业给水变频泵组供水。

三区及以上:

办公区(A栋5层~45层,B栋6层~19层)

A栋(办公):

5层~15层:由设在19层的办公生活转输水箱供水。

16层~31层:由设在屋顶的办公生活水箱减压后供水。

32层~43层:由设在屋顶的办公生活水箱供水。

44层~45层:由设在屋顶的办公生活水箱经加压后供水

B栋(办公):

6层~13层:由A栋19层的办公生活转输水箱供水。

14层~19层:由A栋屋顶的办公生活水箱减压后供水。

办公生活转输水箱的供水由地下3层的办公生活转输泵组供给。

公寓区(B栋20层~49层,C栋5层~46层)

公寓1区:C栋6层~16层,由公寓1区变频泵组供水。

公寓2区:C栋17层~26层,由公寓2区变频泵组供水。

公寓3区:C栋27层~36层及B栋20层~30层,由公寓3区变频泵组供水。

公寓4区:C栋37层~46层及B栋31~40层,由公寓4区变频泵组供水。

公寓5区:B栋41~49层,由设在19层的公寓生活转输水箱经加压后供水。

公寓生活转输水箱的供水由地下3层的公寓生活转输泵组供给。

各个分区的供水点压力,办公超过0.45Mpa/公寓超过0.35MPa时在给水支管上设减压阀。生活用水在水箱或水泵出水供水主管上采用紫外线杀菌仪进行消毒。

本工程最高日用水量约为2800m3/d, 地下三层生活水池容积为500 m3,分为2个;避难层的生活转输水箱为2个,容积均为18m3;系统图如图1所示:

图1 生活给水系统图

3 消防给水设计

合理的选择消防水灭火系统,是超高层建筑消防水设计的关键。什么地方需要什么样的灭火系统,对于火灾时的扑救起着至关重要的作用。本工程除了常见的消火栓系统和湿式自动喷水灭火系统以及气体灭火系统(气体灭火系统本文不再赘述)外,在中庭位置还设置了自动跟踪定位射流灭火装置(消防水炮)。

本工程的消防水量如下:室外消火栓30L/s,火灾延续时间3h;室内消火栓40L/s,火灾延续时间3h;自动喷水系统40L/s,火灾延续时间1h。地下三层消防水池储存消防延续时间内,室内消火栓用水量和自动喷水灭火用水量,共计576m³,分成2格。

3.1 消火栓系统设计

本工程的室内消火栓系统分为四个区:

一区:地下3层~地上4层;

二区:A栋5层~19层;B栋5层~20层;C栋5层~17层。

三区:A栋 20层-34层;B栋 21层~35层;C栋 18层~32层。

四区:A栋 35层-45层;B栋 36层~49层;C栋 33层~45层。

消防水池设消火栓低区提升泵,提升消防水至A栋19层消防转输水箱,然后由本层的消火栓高区给水泵(双出口,2台)加压。高压出水口成环后供给四区消火栓,三区消火栓由三四区之间的减压阀减压后供给。消火栓高区给水泵低压出水口成环后供给二区消火栓,一区消火栓由一二区之间的减压阀减压后供给。当消火栓栓口的出水压力大于0.50MPa时,采用减压稳压消火栓。

屋顶设18m³消防水箱一座,另设置消火栓系统增压装置一套,以满足最不利点消火栓静压要求。A栋19层设消防转输水箱1座,容积为96m³。系统图如图2所示:

图2 室内消火栓系统原理图

3.2 自动喷水灭火系统

自动喷水灭火系统对于扑灭建筑火灾的重要性和有效性,已经得到了广泛的认可。根据规范要求,建筑高度超过100m的高层建筑及其裙房,除游泳池、溜冰场、建筑面积小于5.00m2的卫生间、不设集中空调且户门为甲级防火门的住宅的户内用房和不宜用水扑救的部位外,均应设自动喷水灭火系统。本工程的地下室,办公区,均设置了自动喷水灭火系统。地下汽车库业按中危II设计,办公区及公寓均按中危I设计。

本工程的自动喷水灭火系统共分3个区

一区:地下3层~地上4层,报警阀设在地下1层;

二区:A栋 5层~22层,报警阀设在19层;

B栋 5层~20层,报警阀设在20层;

C栋 5层~17层,报警阀设在17层。

三区:A栋23层-45层,报警阀设在34层;

B栋21层~49层,报警阀设在35层;

C栋18层~46层,报警阀设在32层。

消防水池设自喷系统低区提升泵,提升消防水至A栋19层消防转输水箱,然后由本层的自喷系统高区给水泵(双出口,2台)加压。高压出水口成环后供给三区和B、C栋二区的报警阀,保证阀前压力不大于1.20MPa。低压出水口成环后供给A栋二区的报警阀。消防转输水箱经减压阀减压后供给地下1层的一区报警阀。转输水箱出水管2条,保证报警阀前环状供水。A栋屋顶设18m³消防水箱一座,另设置自喷系统稳压装置一套,以满足最不利点喷头水压要求。系统图如图3所示:

图3 自动喷水灭火系统原理图

3.3自动跟踪定位射流灭火装置(消防水炮)

本项目室内净空高度超过12m的部位采用自动跟踪定位射流灭火装置(消防水炮),设计流量为10L/s,火灾延续时间时间为1h,喷头水压不少于0.6MPa。本系统供水由A栋二区的报警阀供给,位于19层。消防水泵和自喷系统合用。

篇(5)

引言

随着我国经济的不断增长,综合型建筑、超高层建筑等大型建筑项目在城市里越来越多,这样也对其的施工质量要求随之提高。但是,由于在施工前的设计不够严谨完善等原因,大型建筑的一些基础设施和系统例如排水、消防系统经常出现问题,这就对整个建筑的安全使用造成了障碍。下面我们就如何对这些系统设计进行讨论分析。

1 工程概况

某建筑地下3层,与同一地块的B楼(30层办公楼)地下室连为一体,主要功能为停车库、设备机房和酒店辅助用房。地上42层,其中1~4层为裙房,为酒店服务区(包括接待、餐饮、休闲、商业等);6~19层为酒店客房区;21~42层为办公区。不计入屋顶设备机房高度,建筑总高度为153.5m,地上总建筑面积约为7.2万m2。

2 给排水系统设计

2.1 给水系统

2.1.1 冷水系统设计

大楼为超高层综合楼,针对不同用户具有不用性质的用水特点,采用了分区、分质供水的方式。

分质供水方面,在地下3层生活泵房内设置一套水质净化、软化处理设备,并分别设置原水池、净水池、软水池。软水供给酒店洗衣房,净水供给除洗衣房外的酒店其他区域,而办公部分则采用自来水。

分区供水方面,裙房部分采用生活水池水泵用水点的变频供水方式,裙房及其屋顶冷却塔分开独立设置变频泵;酒店客房区和办公区各独立采用生活水池水泵高位水箱用水点的高层建筑传统供水方式,其中酒店客房高位生活水箱位于20层避难层内;办公采用两级串联供水,在35层避难层内设置中间生活水箱,此水箱既作为21~34层办公生活水箱,又兼作为向屋顶36~42层办公生活水箱供水的水池。

2.1.2 热水系统设计

大楼集中热水供应的区域主要包括酒店的客房、厨房、包房、SPA、游泳池等,根据业主的建议,办公部分根据用户实际需要就地制备热水。

考虑到不同功能区热水使用上的差异,热水系统也做了适当的分区。酒店厨房、包房、SPA共用一套热水系统,在地下3层换热间内设置3台导流型半容积式热水器。为保证冷热水系统分区相同且冷热水压差不大于0.02MPa,酒店的客房又分为6~10层、11~15层、16~19层三个热水次级分区,在5层避难层换热间内分别为6~10层、11~15层独立设置2台导流型半容积式热水器;由于16~19层冷水采用20层中间水箱加压供水,为减少多余管程,就近在20层换热间内为16~19层设置2台导流型半容积式热水器。为进一步改善冷热水压力平衡,除传统的同程回水措施外,本设计热水立管和回水干管的连接采用了导流三通(见图1),它具有进、出两个回水干管接口和一个垂直于干管的回水支管接口,回水支管内端插入导流三通内且开口方向朝向三通的出水端;通过导流三通,回水支管内的热水能够顺利进入回水干管,并与干管内水流方向保持一致,从而消除远、近热水环路内循环流量的不平衡现象。

另外,在裙房4层设置一个小型恒温室内游泳池,池水采用了太阳能与80℃高温热媒水联合加热的方式。太阳能热水作为热媒通过板换与游泳池循环水间接换热,当热量不足时可由80℃高温热媒水作为辅助热源。

2.1.3 节水、节能与降噪

(1)给水系统除了传统的采用阻力小的管材、管件和节水型器具外,合理安装计量表则是利用经济杠杆进行节水。大楼每层和具有独立产权的小单元,以及厨房、游泳池、冷却塔、各类水箱进水、洗衣房等具有特别功能的用水点均设置了远传数字式水表,并将用水信息传递至控制中心,实时监控用水使用情况。

(2)在上述标准中要求各用水点压力不应大于0.2MPa,因此当引入管入口压力大于0.2MPa时,为避免高压下龙头出流量较大,在支管上设置专用的小型减压阀减压供水。

(3)对于用水特点差异较大的功能分区分开独立设置变频泵组,如洗衣房、厨房和冷却塔都分设变频泵组;同种功能分区用水波动较大的采用多台变频泵,如厨房及其包房则设置了3台变频泵。在设计流量变化范围内,各台泵保持在高效区运行;在额定转速时,水泵最不利工况点在高效区段的右端点。为避免小流量时水泵频繁启动,每套变频泵组均设置了隔膜式气压水罐。

(4)热水系统采用强制机械循环,热水设备、供回水管和热媒管均做了保温处理,在热交换器的热媒进出水管上均设置了流量计。换热器按分区就近设置,避免了管路过长造成的热损失。

2.2 排水系统

2.2.1 污废水设计

室内采用污废水合流,卫生间污水立管均设置专用通气立管,不同的功能分区分设排水系统,避免互相干扰。21~35层办公污水立管在20层避难层内汇合后通过主水管井接至室外;裙房3、4层内包房、SPA管井与6~19层客房管井对应,因此两者污水立管在2层汇合后通过主水管井接至室外。为了分散立管排水压力、减少坡降和抗事故冲击性,每种功能区的汇合立管均不少于2根,并与其他功能区的汇合立管分开设置。厨房独立设置废水立管,并与其他废水分开排放,降低了隔油设备的负荷。

2.2.2 雨水设计

大楼的雨水主要来自主楼屋面、裙房屋面和不容忽视的侧墙,经测算毗邻裙房以上1/2主楼侧墙正投影面积约为3300m2,几乎等于主楼和裙房屋面面积之和。主楼屋面较小,采用87型雨水斗按重力流布置立管;裙房屋面承接了主楼侧墙雨水,考虑雨水量较大,传统悬吊管泄流量小等原因,裙房则取10年重现期,采用虹吸雨水排放系统,对屋面雨水分块集中设立管排放。由于屋面面层厚度较小,为安装虹吸雨水斗,结合结构梁的布置,采用了局部梁间降板的措施。另外,根据规范在屋面适当位置设置若干溢流口,减少雨水对建筑结构本体的危害。

超高层建筑雨水在立管中下泄时,压力和速度都增长较快,减速降噪实属必要。除采用金属管材外,大楼雨水立管在5、20、35层避难层,采用简单的Π型管件进行雨水消能,缓解了管道的压力。

3 消防系统设计

3.1 消火栓系统

大楼整体按照一类高层综合楼设计消火栓系统,室内消火栓用水量取为40L/s,室外消火栓用水量取为30L/s。采用消防泵直接串联的分区系统,高区消火栓泵和低区消防水箱设置在20层避难层。为解决低区水泵切换等短时间内的特殊供水,应设管道从低区水箱内抽水,因此条文将低区水箱容积从18m3增加至30m3。为保证最不利消火栓栓口处的静水压力不小于0.15MPa,高低区在消防水箱出水管上均设置了增压泵。值得注意的是当计算消火栓栓口处的静水压力时,很容易忽略增压泵的出水压力;因设置增压泵的目的就是为了维持最不利栓口处的静水压力,所以在分区时应考虑增压泵的出水压力。

3.2 自动喷水灭火系统

大楼地下部分危险等级为中危险Ⅱ级,地上部分为中危险Ⅰ级,作用面积均为160m2;由于入口门厅处高度大于8m且小于12m,可按非仓库类高大净空场所中的中庭考虑,上述规范中将此类场合的喷水强度定为6L/(m2・min),作用面积定为260m2,并将系统最小设计用水量定为40L/s,大楼依此选取低区喷淋泵流量为40L/s,而高区则按中危险Ⅰ级选取水泵。大楼采用喷淋泵直接串联的分区系统,与消火栓系统共用消防水箱,高区喷淋泵吸水管布置原则与消火栓系统相似。

3.3 特殊消防系统

大楼内部设有变配电站、柴油发电机房、燃气锅炉房等场合,因其火灾的特殊性,工程设计中常用气体灭火系统或水喷雾灭火系统进行控火灭火。但传统的气体灭火系统对大气臭氧层有破坏作用或对人体健康有影响,而水喷雾灭火系统存在喷头必须直接喷向着火或被保护部位的限制。因此,设计对上述场合采用了近几年发展起来的高压细水雾灭火系统。细水雾灭火机理是利用水从喷头喷出时,形成粒径在40~200μm的水雾遇火后迅速气化,体积可膨胀1700~5800倍,将火灾区域整体包围或覆盖,使燃烧因缺氧而窒息灭火。具有均衡的表面冷却、高效吸热、窒息灭火、冲击乳化和稀释、阻隔热辐射、电绝缘性好、洗涤烟雾和废气等特点。针对大楼内需要防护的区域较多,距离供水装置远近高低不同,系统设计流量比较大(防护面积最大的燃气锅炉房系统流量为417L/min)等特点,设计采用了泵组式的全淹没系统。在地下室泵房内设置1个储水池和3台(2用1备)高速水喷雾泵,系统持续供水时间为20min。采用开式高压细水雾喷头,布置比较灵活,可用正方形、矩形或菱形均匀布置喷头,但喷头间距不应大于3m,距离被保护对象表面不应小于0.5m,距离边墙不应大于1.5m。

大楼机房屋顶设有一个停机坪,可满足中、小型直升机起降。因涉及油类火灾,由专业设计单位配置一套H2级泡沫灭火设备,每次火灾至少需要5m3消防水,与屋顶高区消防水箱合并设置,容积由18m3增加至24m3。

4 结语

总的来说,超高层综合楼的使用功能复杂,我们要考虑到建筑给排水各个层面的问题。在进行设计的时候来说,我们不仅要满足大楼的基本功能需求,还应该有意识地运用新技术、新材料,使建筑朝节能、节水、环保等绿色建筑方向发展,这样才能创造更多的经济和社会效益。

篇(6)

【关键词】超高层;消防弱电系统;安全

1 超高层建筑的火灾危险性

超高层建筑的服务功能比较齐全,内部装修比较豪华,建筑标准都比较高,投资规模都比较大,因此涉及到的安全问题比较多,但消防安全比任何安全问题都重要,建筑其他安全问题如果真的发生,造成的损害也只是局部的,涉及的人员也是少数。但一旦发生火灾,产生的危害就非常大,后果无法估计。

超高层建筑的火灾危险性有以下几方面特点:

1.1 火险隐患多

超高层建筑主体建筑高,层数多,功能复杂,大多数超高层在主体建筑底层建有裙楼,作为商场、餐饮、娱乐等商业功能使用,主体建筑多数作为住宅、办公、宾馆等使用,此外,在建筑内部用电设备多,可燃物集中,火灾荷载密度大。

1.2 人员疏散困难

超高层建筑着火时,要使人员迅速疏散到地面或避难空间十分困难。由于层数多,垂直疏散距离长,疏散时间也要长许多。往往烟气的流动速度要比人员疏散的速度快上100多倍,而且,人的疏散方向与烟气蔓延方向相反,进一步增加了人员疏散的艰难和危险性。

1.3 装备要求高,扑救难度大

超高层建筑与普通建筑相比,火灾扑救难度相对较大。因此,超高层建筑很难通过消防车实施人员营救,一般立足于自救,即主要依靠建筑内部自身的消防设施来保障。

于2012年1月参与投标的大连海创国际产业大厦消防项目,位于大连市高新园区,旅顺南路沿线,属于一类高层民用建筑,总建筑面积为9.7万m2,地下二层、三层平时为汽车停车库、设备用房,战时为核六级二等人员掩蔽所及区域电站。地下一层为设备用房、餐饮用房及部分停车库,地上一层为大堂、便利店、银行和餐厅;二层至五层为休闲健身、会议室和其他配套用房。六层以上为写字间出租。

本建筑地上三十五层,地下三层,建筑高度为150米,属于超高层建筑。

2 超高层建筑消防设计的执行标准

按规定,我国的建筑高度为24米及以下的建筑物的消防系统设计按国标《建筑设计防火规范》执行。24~100米高的建筑物按国标《高层民用建筑设计防火规范》执行。地下工业或民用建筑按《人民防空工程设计防火规范》执行。国标是属于强制性技术规定,是约束业主、设计单位、施工单位和验收单位的共同标尺。

超高层建筑尚无相应国标,属于相应的适用设计与验收规范暂缺阶段。在实际工作中只能参照有关国标及国际标准,按照当地消防主管部门意见,本着安全第一的精神,尽量仔细周详地完成设计工作。

同时,按国标GB501 16-98《火灾自动报警系统设计规范》要求,建筑物作为火灾自动报警系统的保护对象,共分三级,即特级、一级、二级。凡建筑高度超过100米的建筑为超高层建筑,属于特级保护对象。其火灾报警与联动控制系统的设计要求高于一般建筑,其技术方案必要时需经专家论证。

3 “海创”项目消防弱电系统的设计要求

由于超高层建筑高度的特点,大连海创国际产业大厦消防项目消防设计立足于建筑内部消防系统的自身建设,努力完善火灾探测、报警、扑救等自动功能,且设计要求高、功能齐全,将火险消灭萌芽状态。特别在火灾探测器布置标准、报警手段、报警探测器安装场所、火灾报警系统智能化、避难层消防安装、挡烟垂壁设置、电动防火卷帘门、正压送风和防排烟、自动喷水灭火等方面都有了严格的配置和要求。

3.1 火灾自动报警系统

3.1.1 火灾探测器布置标准较高:一般高层建筑感烟探测器保护面积为60平方米,保护半径为5.8米。但超高层建筑则提高标准,此项目平层探测器的布置一般以接近正方形布置,较为经济,感烟探测器保护面积为40 50平方米。

3.1.2 报警探测器安装场所:“海创”项目中超过5平方米以上的房间均设探测器,即使卫生间也不例外。电气竖井不论大小,因其火灾发生可能性大,作用重要而逐层进行了设置。手报的设置半径为步行距离30米,一般设于楼梯间及出口等逃生通道附近,以便人员在逃离火场方便报警。

3.2 避难层的消防安排

避难层的设置是超高层建筑的特殊应急措施。它用于火灾避险时人员暂留,以弥补超高层给消防设备带来的灭火能力不足(国内尤甚)。一般每隔50米高度设一个避难层,100-200米高度设两个避难层。在避难层中一般不设日常办公或生活场所,即其建筑空间仅用于救灾应急。但为了解决超高层实际问题,也为了满足消防自身的需要,通常在保证人员躲避火灾需要的前提下,设置部分设备机房,如防烟正压风机、排烟风机、空调机组、新风机组等,并且要求避难层的正压进风系统独立设置,送风量不小于每小时30立方米。避难层的排烟风机和正压风机在火灾时用同时工作区段,排烟口和进风口不应贴邻布置。

“海创”项目共设计了两层即六层和二十层作为避难层,屋顶上设有二层设备机房层。避难层除了主要作为机房和人员避难外,在其它方面又做了详细要求:

3.2.1 避难层的烟感器布置条件也是保护半径不大于5.8米(如设置温感探测器,保护面积不大于20平方米)。

3.2.2 手动报警按钮也是设于出入口近旁,每个防火分区至少设置一个手报,每个手报的负责范围半径不大于30米,一般距地

1.4 米左右墙上安装。

3.2.3 为了保证紧急情况下的通讯畅通,避难层应每隔20米设置一个消防专用电话分机或电话插孔。

3.3 挡烟垂壁的设置

超高层消防从严把握的一个体现是消防措施齐全,手段多样,互为补充。根据火灾的一般规律,初始阶段产生大量烟雾,烟雾先向上升到天花板,然后沿天花板横向蔓延。针对这一规律,在地下各层及裙房各层(这些地方一般易燃物品多)设置挡烟垂壁,当火灾发生时,挡烟垂壁下垂(一般1.5米),使产生的烟雾在短时间内限制在预先设定的区域,争取人员逃离、救火的宝贵时间、延缓火灾危害扩张的速度。显然,在超高层建筑中设挡烟垂壁,并与消防控制室的联动控制柜相连是十分必要的。

3.4 电动防火卷帘门的设置

电动防火卷帘门主要起隔离作用,其设置位置一般在地下汽车库、裙房商业区及自动扶梯周围,按建筑的防火分区界限安排。一般的电动防火卷帘门内外侧各设一对烟感器、温感器,除了控制箱(一个)可设在内侧或外侧外,内外侧还应各设一个手动启停按钮,距地1.4米左右明装,而位于自动扶梯周围的电动防火卷帘门,其烟感器、温感器只设在外侧(本层工作区一侧)。

无论哪种电动防火卷帘门,在超高层建筑中整个消防系统的一个组成部分,其动作不是独立的。因此,电动防火卷帘门两侧从属于卷帘门控制箱的烟感器、温感器,均应与火灾报警系统的探测器回路相接并在一个系统内工作。

3.5 正压送风系统

篇(7)

中图分类号:TU208文献标识码: A

引言

超高层建筑是指高度超过100m的高层建筑,因其建筑高度高、功能复杂,所以消防灭火必须立足于自救,因而消防供水设计的安全可靠性就变得尤为重要。消防给水方式一般有以下3种:串联加压给水、一次加压减压给水、高位水箱重力给水方式。结合某超高层消防设计,对消防设计中的供水方式、消防分区等问题进行了讨论,以期为类似工程提供参考。

1工程概况

某综合楼总建筑面积为60047m2,总建筑高度为166.9m,地上36层,地下为2层。其中地下1层及地下2层为汽车库及设备用房,消防水池、泵房等设备用房设置于地下2层,地上为36层的超高层办公楼及5层商业建筑,12层及23层为避难层。

2消防给水系统分区

对于室内消火栓系统,根据《高层民用防火规范》(GB50045-95)(2005年版,以下简称“高规”)第 7.4.6.5条规定,消火栓栓口的静水压力不应大于1.00MPa,当大于此值时,应采取分区给水系统。结合本工程避难层位置,确定分区如下:共分为三区,12层以下为低区,12~22层为中区,22层以上为高区。

3消防给水方案研究与比较

①串联加压系统

串联加压系统是指消防给水管网竖向分区时,每个区由消防水泵或串联消防水泵分级向

上供水,串联加压又可分为直接串联和转输串联。直接串联是指在地下室设置消防主泵,中间设备层或避难层仅设置串联加压水泵,通过高低区水泵直接串联向高区供水,简图如图1所示。转输串联是指在中间设备层或避难层设置中间转输水箱及高区消防泵,高区消防泵通过转输水箱向高区供水,其中转输储存15~30min消防用水量,且有效容积不小于60m3,简图如图2所示。当低区和中区发生火灾时,由设置于地下室的低区消防泵供水,当高区发生火灾时,由高区消防泵供水,并连锁启动地下室转输水泵,需要指出的是,直接串联和转输串联水泵开启顺序是不同的,直接串联是先开启转输水泵,后开启高区消防泵,而转输串联刚好相反,先启动高区消防泵,后开启转输水泵。

②一次加压减压给水系统

一次加压减压给水系统的做法是地下室设置消防水池和消防主泵,消防主泵的供水压力

满足整栋建筑供水要求,高区由主泵直接供水,其余几区采用由在给水主管上设不同减压值的减压阀后供水,简图如图3。

③高位水箱重力给水系统

高位水箱重力给水系统是指在建筑物屋顶上设置大型消防水池及消防泵房,消防水池储存一次火灾消防用水量,除去建筑最高几层采用临时高压系统外,其余均采用重力供水。考虑到整栋楼也需要分成若干区,静压超过1.0MPa的区分别采用减压阀或则减压水箱减压后供水。应该说,此种方式在安全性上是最高的,一般火灾甚至不用开启消防泵,直接用消防水池重力供水,但是考虑到在屋顶设置这么大的消防水池(如本工程需要612吨)对结构造成了不利影响,所以经济型较差,一般用于超过250m的超限高层,对于本工程则不予考虑。

图1直接串联图2转输串联

图3一次加压减压给水系统

④系统选择

按以上所述,排除高位水箱重力供水系统,则本工程需在直接串联、转输串联以及一次

加压减压给水系统中选择一种。串联加压给水系统优点是每个区的压力均不高,可以采用常规的水泵、管道和阀门,安全性较一次加压式要高,缺点是中间加设了水泵及水箱,经济性较差。一次加压减压给水系统的优点主要是由于没有中间水泵及水箱,不占用上部建筑面积,经济性好,缺点则是地下室的消防主泵扬程较高,需要采用高压泵,耐高压管道和阀门,这种方式采用减压阀分区,低区减压阀需要采用较大的减压值,减压阀经过长期使用,存在失效的可能性,从而造成低区管网超压,影响系统安全。本工程高度166.9m,再加上地下室的高度,净高差有将近180m,若选用一次加压方式,则消防主泵的扬程将达到2.30MPa左右,已经接近2.40MPa的限制,从安全性考虑,不选用一次加压减压给水系统。剩下的问题则在于直接串联和转输串联中选择,由于本工程避难层面积小,放置60 m3转输水箱存在一定的困难,故经综合考虑,选择了直接串联给水方式。

⑤设计体会

1)两级水泵需要连锁启动,启泵时先开启低区水泵,再开启高区水泵,停泵时顺序相反,

因此水泵质量和控制系统是整个消防系统是否安全、耐用的关键。

2)直接串联由于水泵直接串联,存在高区管网压力由于接力水泵在小流量高扬程时出

现的超压现象,需要设置完善的超压回流管。

3)消火栓系统由于22层和23层火灾时,上下层消火栓需同时作用,此时需要高区和

低区消火栓泵同时启动,所以消火栓系统电气功率应按照低区消火栓泵、转输泵、高区消火栓泵功率之和考虑,而对于喷淋系统,则可以根据低区喷淋泵和转输泵、高区喷淋泵之和中较大的选取。

4)23层避难层内设置了消防水泵房,而上下层均为办公层,需妥善解决隔振降噪问题,本工程采取了如下措施:水泵基础均做隔振,泵房内支架选用弹性支架,另和建筑专业商量,泵房墙壁及顶板做了隔音处理。

4结论

(1)对于150~200m超高层建筑,消防给水方式首选串联加压系统。

(2)随着水泵质量及控制系统可靠性的提高,可以选用水泵直接串联加压方式供水以在安全前提下相应减少造价。

参考文献:

[1]GB50045-95高层民用建筑设计防火规范,2005年版

篇(8)

二、概述

某大厦,总建筑面积11万多平方米;D栋塔楼35层,屋面高度119.8米,一至六层为商场,七至三十一层为写字楼(其中二十 一层为避难层);A、B、C栋塔楼29层,屋面高度96.0米,为商住楼;裙楼六层,作为商场;地下一层,作为设备用房及车库;现主 要介绍D栋塔楼的消防给水系统,另根据业主要求,由于资金问题,该大厦的设计按分二期使用考虑,一期为地下室至六层及裙楼部分,二期为七至三十五层。

三、消炎栓系统及竖向分区

《高层民用建筑设计防火规范》(GB50045-95),下面简称《高规》,第7.4.6.5条规定:消火栓口的静水压力不应大于 0.80Mpa时,当大于0.80Mpa时,应采取分区给水系统,消火栓口的出水压力大于0.50Mpa,消火栓处应设减压装置,根据规范要求,本工程消火栓系统采取分区给水,通过对多种方案的对比,研究以计算,最火后确定,消火栓给水系统采用高位水箱供水以及高位 水箱结合减压阀进行减太分区供水的供水方式。

《高规(GB50045-95)第7.4.6.2条规定:消火栓的水枪充实水柱应通过水力计算确定,且建筑高度不超过100m的高层建筑 不应小于10m,建筑高度超过100m的高层建筑不应小于13m,本建筑消火栓处补充水柱按13m计,消火栓箱内设置DN65消火栓接口一个,DN65衬胶水带长25m一套,φ19枪一支,消防卷盘一套(DN25胶管长25米一套,特制水枪一支),报警按钮一个,各供水分区最不 利点消火栓口压力按公式:Hd=AdLdq2+q2/B计算,经计算Hd 为22.0m水柱。

系统分为四个区,I区根据使用要求,设计为独立的消火栓系统,设置于七层处的水箱充分利用了裙楼的屋顶空间,系统压 力由设于裙楼天面处的一套稳压装置保证,该稳压装置的气压水罐其调节水量为两支水枪与5个喷头30S的用水量(水火 栓系统与自动喷水系统合用),水箱为生活消防合用水箱,火灾发生时,水枪喷水灭火,系统压力降低,消火栓泵启动,从地下贮 池抽水向系统供水灭火,(消火栓泵设于地下室的水泵房中),消火栓泵的启动由系统压力控制直接启动,也可以通过消火栓处的 报警按钮或消防控制中心启动消火栓泵,Ⅱ区为屋顶高位水箱经减压阀减压供水,减压阀设置于避难层中,采用减压代替减压水箱 ,增加了建筑物的有效使用面积,且便于管理与维修,消火栓口处出水压力大于0.50mPa时设减压孔板减压,Ⅲ区为屋顶高位水箱直 接供水,屋顶水箱底距Ⅲ最不利点消火栓的最小垂直距离按式:H=Hf+Hd计算。经计算,管道阻力损失Hf小于3m水柱,按3m计,由此可得出H为25m,Ⅱ、Ⅲ区火灾初期十分钟消防用水量由屋顶高位水箱供给,十分钟后的消防用水,由专用消防泵从地下贮水池将 水提升至屋顶高位水箱,再由屋顶高位水箱向系统供水。专用消防泵通过消火栓处的报警按钮直接启动或通过消防控制室启动,IV 区为增压给水系统,由于屋顶高位水箱供水不能满足Ⅳ区消火栓口处的水压要求,我们采取了气压罐与消防主泵相结合的给水罐的 调水量同Ⅰ区,火灾发生时,通过系统压力变化直接启动屋顶消防主泵,向系统供水灭火,同时启动设于地下室水泵房中的专用消防泵,向高位水箱供水,Ⅳ区增压给水系统为消火栓系统与自动喷水灭火系统合用,自动喷水灭火系统于湿式报警阀前与消火栓系 统分开设置,设于屋顶的消防主泵选取运行特性曲线平缓的水泵。

四、自动喷水灭火系统与竖向分区

《高规》第7.6.1条规定:建筑高度超过100m的高层建筑,除面积小于5.00m的卫生间,厕所和不宜用水扑救的部位外,均应 设自动喷水灭火系统,又《自动喷水灭火系统设计规范》第5.4.5条及第5.2.5条规定:自动喷水灭火系统管网内压力不应大于1.2kg /cm2;闭式自动喷水灭火系统每个报警阀控制的喷头数不宜超过800个,本建筑自动喷水灭火系统按规范要求设置了

组湿式报警阀,根据使用要求,地下室至六层及裙楼部分为I区,该区设置一级自动喷水灭火系统消防喷水泵,系统稳压由设于楼裙 屋面的一套稳压装置保证。(该装置为消火栓系统与自动喷水灭火系统合用,如前所述),火灾发生时,由系统压力变化自动控制消防喷水泵的启动,或由消防中心控制消防喷水泵的启动,Ⅱ、Ⅲ区由高位水箱经减压阀减压供水,Ⅳ区由高位水箱直接供水,Ⅴ区为增压给水系统,其增压设备为消火栓系统与自动喷水系统合用,见前述,这里不再重复。火灾期间,自动喷水灭火系统用水量按 延续时间一小时计,本建筑屋顶高位水箱贮存了一个小时的自动喷水灭火系统用水量,Ⅱ、Ⅲ、Ⅳ、Ⅴ区不再在地下室水泵房处设置自动喷水灭火系统消防喷水泵。系统设置,减少了一组消防喷水泵,简化了管道系统,且联动控制简单,维修方便,供水安全可靠。

五、屋顶重力水箱的容积确定

屋顶重力水箱为生活消防合用水箱,本建筑本着预防为主,立足于自救的原则,为确保消防供水的可靠性,充分地发挥自动 喷水灭火系统的作用,将火灾有效地控制在初期阶段,屋顶重力水箱容积设计为220M3,其中贮存一个小时自动喷水灭火系统用量(108M3),十分钟消火栓系统用水量(24M3),合计消防贮水量为132M2,其余88M3为生活用水量,水箱中生活出水管高于消防用水水位,以确保消防供水的可靠性,十分钟后,Ⅱ、Ⅲ、Ⅳ区消火栓系 统用水量由专用消防泵从地下贮水池将水提升至屋顶水箱,再由屋顶水箱供水灭火。

六、问题探讨

《高规》第7.4.7.5条规定:除串联消防给水系统外,发生火灾时由消防水泵供给的消防用水不应进入高位水箱。根据其条 文说明解释,本人认为这里所指的消防水泵出水管直接与消火栓系统连接的消防泵。(注:这种情况下,如果消防泵启动后,消防用水进入水箱,消火栓口处所需的压力就难以保证),本系统设置与《高规》要求没有抵触,且能保证消火栓口处水压要求,同时保持压力恒定。

七、优点与结论

超高层建筑消防给水系统采用高位水箱重力供水,对于静水压力大于80m水柱的分区采用高位水箱结合减压阀减压分区供水 的供水方式具有以下优点:

1、与并联供水系统比,其管网所承受的压力大大降低,系统各供水分区均不存在高压管道,压力恒定,不会出现超压现象。

2、与设置中间传输水箱的供水方式比,设备少,系统简单,管路简化,维修方便,便于管理,系统联动控制简单,同时增加了建筑物的有效使用面积。

篇(9)

中图分类号:TU97文献标识码: A

城市现代化发展迅速,高层建筑不断涌现,因此高层建筑的消防安全问题显得尤为重要。对建筑设计人员的要求也就更加严格,要高标准严要求设计好每一项工程。超高层建筑一般都处在市中心位置,由于超高层建筑特点楼层多,建筑高度高,对消防的规定也比普通的高层建筑高,相应的建设资金投入大,运行设备多,安全运行标准高,因此设计的复杂性也增加了很多。如果发生火灾,消防电气装置对于应对火灾灾情起着至关重要的作用,因此保障消防电气装置的安全可靠运行非常重要。 下面从几方面阐述问题分析:

1、防火卷帘门的控制问题

电动防火卷帘门在火灾发生时主要起隔离作用,一般在电动防火卷帘门内外两侧各设一对烟感器和温感器,在距地1.4米左右,内外侧都可以设一个手动启停按钮明装,但是在自动扶梯周围的电动防火卷帘门,其烟感器、温感器只设在外侧。电动防火卷帘门有两种工作方式:1、隔离式:通常设在防火分区边界的出入口,当有火灾发生,探测器开始报警时,防火卷帘门降到最底并喷淋。2、疏散式,通常设在疏散通道上,烟感器报警并经确认后降到距地1.8米处,如火势发展迅猛,温度继续升高,那么温感器动作后防火卷帘门会降至地面。这两次动作时间间隔便于门内人员逃离。

电动防火卷帘门两侧受烟感器、温感器控制与火灾报警系统的探测器回路相接并在一个系统内工作。 电动防火卷帘门是超高层建筑消防系统的一个重要组成部分,应严格按照规范规定要求执行,结合实际工程认真领会规范实质,根据具体情况区考虑问题才能做出合理的设计。

2、手动报警按钮的设置出现的问题

根据相关规范规定:每个防火区域都应设置一个手动火灾报警按钮。防火分区到手动火灾报警按钮的距离不超过30m。手动火灾报警按钮应设置在所有公共场所的出入口处。譬如:在商业区30m附近有两个疏散出口,但同属一个防火分区,而有的设计人员却只在中心设一个按钮,没有达到在公共出入口设置的要求。当发生火灾时,因为按钮不在逃生人员必经的疏散路线上,报警的可能性就降低了,起不到什么作用了。显然,对这样的设计问题,我们要灵活运用规范,满足报警按钮设在公共活动场所的出入口处要求并遵循“30m”和“每个防火分区应至少一个”的原则。而只按30m的原则设置报警按钮是不合理的,不能完全满足规范要求,发挥不了应有的特征。

3、加强自然排烟设计及安全疏散设计问题

目前,高层建筑中玻璃幕墙和竖向管道是火势蔓延的主要途径,形成火势跳跃防火分区,使火灾损失增大,烟是高层建筑火灾中主要杀手,因此,设计好防排烟与安全疏散设施的设置是高层建筑防火设计中非常重要的环节。我国明确规定电梯前室及相关地方必须增设防排烟系统,疏散楼梯间增设正压送风系统,并且要加强自然排烟设计。自然排烟是一种简单经济有效易操作的排烟方式,应首先采用,但因为热压差的存在,烟气会充满整个楼梯间,使人们不能很快疏散,因此,要求楼梯间有一定的开窗面积,并且排烟窗应设在墙面上方能方便开启的地方。转贴于 233网校论文中心

4、非消防电源的切除问题。

当出现火情时,消防控制室确认火灾情况并及时切断有关部位的非消防电源,主要是便于扑救火灾,防止消防队员有触电事故。由于消防设备总能量小于普通设备负荷总量,为保障消防设备的用电安全,防止过载使电气线路起火,因此在消防人员进入火场进行扑救之前应切断非消防用电。切断非消防电源时应在一定范围内,即起火的防火分区或楼层。确认火灾发生,探测器和消防泵启动后,才能切断非消防电源,防止因探测器误报引起的不必要的恐慌和事故。

5、火灾报警系统总线制中的问题。

火灾自动报警系统通常采用总线制。当采用横向敷设时,火灾自动报警系统传输线路穿导管布线,不同防火分区的线路不能穿入同一根导管内,当采用总线制布设无需考虑此问题。当火灾自动报警系统总线发生故障时,隔离模块将起作用,能找出故障部位,使其隔离保证其他系统正常工作,当修理好故障部分的总线后,隔离器自行恢复投入正常工作。

根据《消防联动控制系统》规定,报警回路每隔32个编址单元至少使用一个隔离模块。总线回路中的隔离模块应按照防火分区进行设置,当某一个防火分区发生火灾时,其线路被烧毁,在模块的隔离作用下,就可以避免故障范围扩大,降低报警系统的使用功能。

6、火灾报警系统智能化的提高。

对于超高层建筑项目,在消防设计中应综合考虑系统智能化。超高层建筑都是采用智能型地址编码探测器,中小普通型建筑多采用非编码探测器,并以回路形式区分建筑区域。由于超高层建筑体积大,面积多,它的使用面积的分割不确定性很大,为了适应各种条件的变化,每条报警回路都应留出一定的探测器数量余量。

超高层建筑一般为重要大型建筑,如果发生火灾不及时补救将造成巨大损失,后果非常严重。所以,我们要采取系统联动方式争取在火灾前期掌握主动权。超高层的重要部位、重要办公用房、财务出纳、贵重物品库要设置入侵报警系统,考虑入侵报警位置、传输信号方式。网络传输或专用有线传输、电缆线,考虑机械强度、信号衰减和电压降的要求。例如,将火灾报警系统与保安监控系统结合,在火灾初期,通过监控室的摄像机可将现场画面迅速传至中央控制室,通过画面反映的情况,值班人员可以迅速判断,采取一系列应急措施如:排烟、广播、119报警、启动消防泵、喷淋、切断非消防电源等。将火灾报警系统与车库管理系统结合,当有火情发生时,就可以声光报警,进出口栏杆就会强制抬起,车辆就能迅速逃出车库。此外,火灾报警系统还可与广播音响、楼宇控制系统、门禁系统等联动。通过这些系统的联动控制使火灾消灭在萌芽状态,使损失最小。

通过上述分析结果来看,超高层建筑人员密集大,对消防的要求安全可靠性很大。超高层建筑的消防设计应立足于建筑内部的消防系统建设,满足智能化要求,不断完善火灾自动报警探测功能。消防系统是一个由建筑、设备及电气等专业相结合的整体,各专业间的应密切配合,这些应是保证超高层建筑安全的基本思路。

参考文献:

[1] 郭经志 邹海.超高层公共建筑消防电气设计中的几个技术问题[J].城市建设理论研究(电子版)

篇(10)

2、给水设计

2.1分质供水

生活用水与中水分别接自城市不同的给水管网。中水主要考虑居住型公寓每户的冲厕用水及地下车库冲洗地面所使用的水,水源接自市政中水管网并在小区形成环状管网。分质供水从系统上划清了供水界限,将不同的用水设备在使用过程中可能引起的水质污染降到最低;也充分体现了水的优质优用,低质低用的原则。

2.2用水量

一期住宅共687户,每户人数按3.5人

(1)计用水量标准为120 L/日•人。最高日用水量:Qd=288m3/d;最高时用水量:Qh=27.6 m3/h。

(2)水中用水量标准为40 L/日•人,最高日用水量:Qd=96.18m3/d,最高时用水量Qh=9.2 m3/h。

2.3供水方式

选择合理的给水方式是高层建筑生活给水系统设计的关键,它直接关系到生活给水系统的使用效果和工程造价。对于高层建筑,城市给水管网的水压一般不能满足高区部分生活用水的要求,高区部分生活用水由水泵加压供给。初步设计前期去当地自来水公司咨询,当地自来水公司要求设计采用变频调速水泵直接供水。因此,根据《建筑给水排水设计规范》规定及职能部门的要求,居住型公寓均采用变频调速水泵直接供水。

2.3.1生活给水系统的分区

《建筑给水排水设计规范》(GB50015-2003)第3.3.5条规定:“高层建筑生活给水系统应竖向分区,竖向应符合1.各分区最低卫生器具配水点处的静水压不宜大于0.45 MPa;特殊情况下不宜大于0.55MPa;2.水压大于0.35 MPa的入户管(或配水横管),宜设减压或调压设施;3.各分区最不利配水点的水压,应满足用水水压要求。”

2.3.2中水给水系统的分区

市政中水给水压力为0.25~0.35 MPa。中水给水系统分四个区:五层及以下由市政给水管网直接供给;6~14层为低区;15~23层为中区;24~32层为高区。高中低区各设一组变频调速水泵直接供水。

2.3.3分区压力的控制

分区压力的控制是根据变频泵的扬程,既能保证最小供水压力,又不大于用水设备的承受能力来确定的。高层住宅的最小压力是指每个分区最高层进户管的供水压力。根据《住宅设计规范》GB50096-1999(2003版)和《建筑给水排水设计规范》(GB50015-2003)的规定,本次设计最小给水静压力按10 m计算,最大限度满足了住户对水压的使用要求。

2.4热水设计

每户设容积式燃气热水器。为确保热水管网内的温度均匀,在每户的阳台设一组热水回水泵机械循环,满足用户对热水的使用要求。

3、排水设计

室内污废水合流,设置专用通气管。专用通气管与污水管间用H型通气配件连接。本次居住型公寓卫生间排水采用同层排水系统。做法是将卫生间底板降低300 mm,排水支管不穿楼板,与卫生器具同层敷设并接入排水立管。排水管安装后需做闭水试验和通水试验,经检验合格后,再对降板部分用填充物现场填实覆盖,最后铺设面层。采用同层排水的好处是排水管道不用穿越楼板,减小了渗漏机率;而且同层排水不会干扰下层住户,排水噪声小,成为完全独立的卫生空间。

4、消防设计

本工程消防水池一、二期合用,水池、消防泵设在一期公建地下车库内。

4.1消火栓系统

4.1.1用水量

室内消防水量:15 L/s;室外消防水量:20 L/s。

4.1.2消火栓给水系统

室内消火栓系统由消防专用贮水池消防泵环状干管各栋塔楼的消防环状管网组成。居住型公寓消火栓系统分二个区:十五层以下(含地下车库)为低区,十六层以上为高区。每个分区在消防泵房内各设2台加压水泵,室内消防加压管道成环状布置。在室外设水泵接合器分别与各分区消防环管相连,以便消防车利用室外消火栓取水直接救援。屋顶消防水箱设在酒店式公寓屋顶并保存10 min消防水量。

4.1.3消火栓布置

按《高层民用建筑设计防火规范》第7.4.2.条规定,在居住型公寓每层每单元设消火栓2只以确保消防安全。

地下车库按《汽车库、修车库、停车库设计防火规范》GB50067-97,每层设若干套消火栓。当消火栓栓口出水压力超过0.5 MPa时,设置减压稳压型消火栓。

4.2自动喷水灭火系统

4.2.1用水量

居住型公寓为轻危险级。按天津市消防局意见:在每层公用部位设自动喷水灭火系统。喷水强度为4 L/min•m2作用面积为160 m2。地下车库为中危险级,喷水强度为8 L/min•m2,作用面积为160 m2。室内喷淋水量:30 L/s。

4.2.2喷淋给水系统

根据《自动喷水灭火系统设计规范》GB50084-2001第6.2.3.条规定“一个报警阀组控制的喷头数应符合湿式系统、预作用系统不宜超过800只”;第6.2.4.条规定“每个报警阀组供水的最高与最低位置喷头,其高程差不宜大于50 m。”;第8.0.1.条规定“配水管道的工作压力不应大于1.20 MPa,并不应设置其它用水设施。”根据建筑高度和每个报警阀控制的喷头数以及系统管网内的工作压力原则进行竖向和水平分区。居住型公寓喷淋系统竖向分二个区:十五层以下为低区;十六层以上为高区。地下车库内喷淋系统为低区。汽车坡道入口处、露天采光天井、采光带附近的喷头采用易熔金属型(72℃),其它喷头采用玻璃球型(68℃)。每套居住型公寓每单元按竖向分区各设一组湿式报警阀;地下车库一期为低区共需设湿式报警阀5组。每个防火分区、每个楼层均设置水流指示器。在消防泵房内设2台高区喷淋加压水泵;2台低区喷淋加压水泵。在室外设水泵接合器分别与高低区喷淋环管相连。

4.3灭火器配置

根据《建筑灭火器配置设计规范》在建筑物内配置灭火器。居住型公寓的配电房按带电火灾,其余按A类火灾,为轻危险级;地下车库参照中危险级A类火灾考虑。

5、生活水泵房设计

在地下车库泵房内设两座60 m3生活水池(生活水泵房设在地下车库B2层)。水泵房内共设生活泵3组(每组3台,二用一备),供应基地内5栋居住型公寓楼生活用水。为充分利用地下车库,保证停车位的最大化,设计了多种方案进行反复比较,并征得了甲方的同意,采用了不锈钢潜水给水泵。设计时将不锈钢潜水给水泵直接放入生活水池内,减少了泵房占地,增加出3个车位。虽然前期投资相对普通给水泵有所增加,但综合经济比较及甲方以前的使用经验采用不锈钢潜水给水泵具有安全、高效、省电、无噪声、少维护等优点,而且多出的车位也能更好的满足用户的要求。

高层住宅建筑给排水设计不仅要满足设计规范,而且要求设计者在满足甲方的要求同时还要符合当地职能部门设计规定;更要对用户的需求充分了解,真正做到以人为本,在设备选择与空间布置上更好地满足人们对居住环境的要求。

参考文献:

上一篇: 法律规范的要素 下一篇: 护理安全概念
相关精选
相关期刊