时间:2023-09-24 10:27:40
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇能源动力工程专业方向范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
2.1能源动力工程思路方向
基于当前国情,要加大传统能源开发利用程度。众所周知,我国现实国情即能源资源少利用效率不足,因此,还需要专业人士对如何提高传统能源开发利用效率程度加以研究,也是我国今后能源动力工程研究工作的重中之重;同时,要重视新型可再生能源的开发。石油煤炭等不可再生能源,其开采受程度和年限制约,由此可见,未来能源市场主战场将转向可再生能源的开发利用,且不能因匮乏资源而放慢经济发展的脚步,所以专业人士千万不能止步不前,要注重新型可再生能源的开发,从而确保我国工业能长期持久的发展;第三,实践理论要并行。由于不同于其他专业,能源开发利用将直接作用国家经济发展与环境保护,可转化为直观的工业产品和经济成果,所以专业人士在校学习时,就要做到理论实践并行,既要专研书本知识,又要进行科学探究和工业时间,促使得出实际结合理论的科技理论成果,从而促进能源的发展经济的腾飞。
2.2能源动力工程环保方向
环境污染不仅威胁着人类的生活,更制约了经济建设社会发展,若没有良好生活环境及可长期利用的能源,那么社会将止步不前,人类也会失去确保发展生存的基础。为实现我国四个现代化,和中国特色社会主义国家的建设,最首要关注的问题便是环境与能源,遏制为发展而先污染后治理现象;同时,要加强环境管理力度,但凡改建扩建新建、建设经济开发区等,都必须遵循环境评价标准,坚持使用环保建设设备及建筑工程主体共同施工设计投产制度;再次,经济发展方式要积极改进,要淘汰陈旧设备选用先进的机械设备,严格禁止污染严重能源消耗多的产品生产;最后,环保资金的投入力度要大,健全完善环保法制制度,严格按国家规定排放标准执行,确保环境保护是在法制下进行。
2.3煤炭清洁技术的利用
(1)净化处理燃烧前煤炭,其流程为:清洗选取煤炭,将煤炭中的灰分等杂质清除减去,洗选处理效率务必要达95%以上;民用煤炭加工,将粉煤与低品位煤炭用机械设备制成相应形状的煤炭产品。(2)净化处理燃烧后煤炭,以湿式或干式脱硫法,确保使用率达到90%左右;以静电除尘方式处理大型电厂燃烧后煤炭,保证除尘率在90%左右。
【摘 要】为了满足现代社会对能源领域应用型人才的需求,并提高学生在就业择业过程中的竞争力,三峡大学结合该校培养“高素质、强能力、应用型”人才的办学方针,对学校新建的能源与动力工程专业进行了改革,提出“弱化专业方向,提炼专业共性,增厚专业基础”的人才培养改革思路,并以此为指导制定专业人才培养方案和建立校内外实验/实践基地。实践表明,本次改革取得了较好的效果。
关键词 能源动力;人才培养;改革
基金项目:三峡大学(高等)教育科学研究项目(1307,1345);三峡大学教学研究项目(J2013008)。
作者简介:陈从平(1976—),男,湖北荆州人,三峡大学机械与动力学院,副教授。
能源是国民经济的命脉,是国家可持续发展的重要物质基础和根本保证。能源与动力工程类专业正是致力于培养能从事能源开发与利用的技术与管理人才。目前,全国有200余所高校开设了能动相关本科专业,其中大部分已经建设较为成熟,部分985和211高校的能动专业在国内已具备一定的影响力且具备鲜明特色[1]。而三峡大学的能动专业于2011年才开始立项建设,并同年开始招生。作为地方高校新开设的能动专业,在人才培养方面必须适应社会和行业需求,符合我校 “高素质、强能力、应用型”的人才培养的目标,因而,在专业建设伊始,就不能完全照搬其他高校能动专业人才培养模式,需要结合实际情况,大胆改革和创新,才能在国内同类专业中快速占领一席之地,并以高起点快速稳健发展。
1 国内外研究现状
欧洲和美国的大学将能动类专业设置在机械工程系中,且不以专业来单列,而只是机械类的一个方向,称为热流科学(Thermal and Fluid science)或能量系统(Energy system),而核工程与核技术则一般单独设立,或者设在化工系中,例如美国麻省理工学院、佛罗里达大学等,机械工程的教学与研究范围覆盖了目前国内本科生专业目录中的机械类、能源动力类的范围,这样就大大扩展了能动专业的学科基础和专业领域,以此来适应“应用型”人才培养的需求,使学生获得坚实的专业理论和宽广的专业知识。
我国能源动力类专业形成于20世纪50年代[2],当时在苏联教育体制的影响下的分为10个三级专业,经1993、1998、2012年三次修订最终合并为1个专业:能源与动力工程,使得专业覆盖面被大幅度拓展,要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。要实现以上人才培养目标,关键在于如何紧跟行业需求并结合高校自身情况,制定科学的人才培养方案并认真执行。然而,经前期大量调研结果表明,目前国内高校尤其是地方院校在能动专业人才培养上存在以下特点或不足:
(1)专业划分过细,口径太窄。大部分高校在能动专业中设置了多个专业方向,如水力发电、火力发电、清洁燃烧、供暖、制冷等,并将专业课分方向模块进行教学,这极大地限制了学生的选择空间,不利于学生专业知识拓展,使学生在择业时被固定在某个方向上,缺乏竞争力。
(2)人才定位不尽合理。经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。
2 三峡大学能动专业人才培养模式改革
三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:
(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。
(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。
(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。
3 改革效果
近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:
(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。
(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随
(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。
(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。
4 结语
能源动力类专业是实践性、技术性很强的专业,且专业覆盖的技术领域非常广泛,针对具体的应用领域其技术专业性又较强,而高校在该专业人才培养的过程中一方面不可能面面俱到,设置过多的专业方向,另一方面又不能过于集中,而使得学生的专业知识领域过窄,导致就业方向没有选择余地。因而,在人才培养过程中要更多地考虑专业领域的共性,增厚专业基础,拓宽专业口径,使学生获得尽量宽广的专业综合知识,才能具备一定的竞争力,以适应现代能源动力领域对专业人才的需求。
参考文献
[1]徐翔,余万,陈从平,方子帆,李响,赵美云.三峡大学“能源与动力工程”专业培养方案的制订与完善[J].科教文汇:上旬刊,2014(6):60-61.
能源动力工程专业是伴随着近现代工业革命发生、发展、加速过程成长起来的传统专业,在新的能源形势和建立工业强国的需求下承担着崭新而重大的培养责任。我国目前设有能源动力大类专业的学校有130余所。经过几十年的努力,我国能源动力的工程教育有了长足的进步,但总体来看,整个工程教育体系没有发生本质的变化,还不能很好满足现代工业对工程技术人才的需求。[3]能源动力领域的高等工程教育主要存在四个方面的不足。
1.缺乏明确的工程教育定位
很多研究型大学的目标是培养科学家,而不是工程师。而工程教育和科学教育是两种不同的教育。科学家从事研究发现,工程师进行创造发明。培养工程师和培养科学家需要两种不同的教育体系。作为一个典型的工程学科,能源动力专业的培养目标应该是以培养工程师为主。在现实需求下,就是培养既有创新能力又能解决实际工程问题,同时具备国际竞争力的高级人才。
2.工程教育体系陈旧
在课程设置上,能源动力专业的课程改革基本上是在原有课程体系下的完善,没有从根本上打破原有的课程体系。随着新知识的不断出现,由于缺乏课程间的整合机制,课程有增无减,使学生不得不面对越来越多的课程。在教学模式上,通常是以教师为中心的讲授式教学,而不是以学生为中心的启发式教学。学生的分析、想象、创造能力的培养受到限制。在教学内容上,工程教育基础课程太偏理论,教学中缺乏实际应用的环节。不少专业课程跟不上科技发展的节奏,内容几十年不变,总体上比较陈旧。教学实验以验证性为主,测试手段比较落后,设备比较陈旧。
3.缺乏与企业的互动
作为一个实践性很强的学科,不了解工程界的需求而一味纸上谈兵不仅不能培养出合格的现代工程师,而且对于学科发展也是极其不利的。工程界对工程教育的教学内容和实践水平有严格要求,但不少工科教师缺乏必要的工业经验和工程背景,学生也缺乏必要的实训机会和体验。4.缺乏工程教育的国际化随着世界经济全球化进程的加速,能源动力领域需要更多的按照国际标准培养的工程人才。在工程教育体系中,需要更多地接纳来自不同国家的学生,在教学和科研中注入更多的国际化内容,与国外大学加强校际交流与合作,培养具备专业知识和能力的国际化现代工程师。总之,长期以来,能源动力工程领域习惯于从系统性和科学性出发组织工程教育体系,较少以学生和工程界需求出发进行考虑,无法真正适应社会的变化和现代大工程教育观念。
二、能源动力工程领域的高等工程教育探索及实践
针对能源动力领域的工程教育问题,近年来上海交通大学机械与动力工程学院对能源动力专业的本科工程教育体系进行了积极探索和实践,主要归纳为三个方面。
1.明确培养主体
首先明确了能源动力专业的培养目标就是培养合格的现代工程师。培养的主体就是学生。从华沙世界工程教育会议和美国“2020工程师”计划[4]对新一代工程师的要求来看,现代工程师首先要对工程或技术有热情,因此在充分考虑学生需求和实际办学条件的基础上,选拔对成为未来工程师有强烈意愿的学生进入教育部的“卓越工程师教育培养计划”特色班,希望能培养出未来企业界的领军人物。这样,学生在培养过程中可以保持较高的热情,有利于教学和实践工作的开展。
2.制订“工程教育特色”培养计划
新的培养方案中的课程设置主要分为四个部分,如图1所示。第一部分通识教育课程主要由人文、社科、经济管理、外语、体育等课程组成。第二部分专业教育课程包括了能源动力领域必备的数学、物理、化学、电子电工、材料、设计制造、热学、流体力学等最基本的知识(必修)和各个研究方向(包括热能工程、车用发动机、叶轮机械、制冷与低温工程)的专业课程(选修)。第三部分专业实践课程涵盖了各类实习、实验和毕业设计。第四部分个性化教育课程由学生根据需要自主选择。相比原来的非工程教育课程体系,新的课程设置有下面几个很大的变化:
(1)淡化了各研究方向的具体差异,强调通用基础知识的学习。目前国际上普遍认为应该注重“基础知识”,而“专业知识”可以在工作以后继续增加积累,甚至终身都要不断地学习。在“基础知识”中,国际上的观点更强调的是“通用基础”。
(2)对课程进行有效整合。原先的课程多而杂,在教学内容上出现重叠,加上许多课程学分少,学生为了凑学分需要同时学习多门课程,所以学习负担很重,不少学生都有“考完即忘”的经历,没有达到要求的教学效果。在新的课程体系中,考虑上述问题,对课程进行大范围整合:取消小学分课程(学分),设置高学分课程(学分),除个别课程外,多数课程都在3个学分以上。另外,突出了工程实践类课程和基本理论课,减少了拓展理论课的数量。以专业教育课程为例,可以看出新旧课程设置的差别,见表1。由表可见,专业基础课的必修总学分提高11分,但门数减少2门;专业方向课选修的总学分减少7分,可选的课程也减少了三分之二。
(3)强调工程意识和实践能力的培养。由于我国的基础教育是按科学教育的体系构建的,所以工科学生进大学后难以马上适应工程教育,使教学效果打了折扣。在新的课程体系中,特别设置了“工程学导论”必修课程,向学生介绍工程问题及其解决方案的基础知识,同时培养学生提出工程问题、通过团队合作研究并设计解决方案的能力以及交流、写作的基本能力。该课程要求学生在一年级学完,希望能够弥合高中教育和大学工科教育之间的鸿沟。另外,在热工核心基础课程如传热学、工程热力学和流体力学等中增加课程设计和团组大作业,课题取自生活和企业,在解决实际问题过程中增强学生对知识的实际应用能力。
(4)增设企业课程模块。为使学生尽早地接触企业,了解企业需求和产品设计规范标准,在新的培养计划中增加了企业课程模块,包括“企业项目管理”、“质量管理及控制”、“精益六西格玛管理”等课程供学生选修。授课老师都是来自优质企业的具有丰富工程经验的工程师,可以提供大量新鲜而实用的案例,提高学生的学习兴趣,加速学生适应工程实践的进程。
(5)采用合适的优秀工程教材。现代工程技术的发展给能源动力类专业课程的教学提供了极其丰富的素材,如纳米微米的应用、燃料电池、新能源开发、污染物减排等。优秀的教材能够及时恰当地反映工程技术的这些新变化,并以学生容易接受的形式表达出来。在这一点上,国外有些教材做得更出色。能源动力类各专业课程精心挑选了取材丰富、构思新颖、内容先进的教材,而且要求使用中文教材的课程必须提供优秀的英文参考书。例如,工程热力学课程就选用了中文教材《工程热力学》(沈维道、童钧耕编著)和美国的Moran、Shapiro编著的英文教材《FundamentalsofEngineeringThermodynamics》,不仅有益于知识的互补,而且能开拓视野、活跃思维、引导学生去感受理论与实践的重要性。
3.增强实践教学和工程实训环节
实践是实现工程教育的必要环节。在新的培养计划中,特别注重了实践教学环节的设计和规划。整个实践体系分成四部分:理论课实验及课程设计、工程设计类、各类实习及各级工程实验/实践活动。如表2所示。
(1)理论课实验及课程设计。这类实践主要包括涉及课程知识的原理性验证实验和基本设计等,与工程实践内容相差较大,但却是夯实理论知识基础有效的手段,不可缺少。在新的课程教学大纲中,除了保留传统教学实验和设计外,还增设了综合性和实践性较强的训练项目,如在传热学、工程热力学和流体力学等核心基础课程中增加课程设计或团组大作业,题目具有一定的启发性和现实性,希望能够增强学生的综合运用能力和驾驭理论实践相互转化的能力。
(2)工程设计类。工程设计系列课程的主要目标是贴近工程实际,搭起学校学习与工程实践的桥梁。包括:“工程学导论”,通过课程学习将一年级学生引进门,建立对工程的认识和兴趣,如前所述;“工程设计1”,进行符合二年级所学内容的具有一定难度的项目设计;“工程设计2”,进行符合三年级所学内容的有较大难度并和专业相关的项目设计,如结合数理化、热机电等基础知识,设计电子元件冷却系统、余热回收利用系统等;“毕业设计”。在四年级,结合企业实际项目,以产品为对象,实现较大的工程项目的综合训练。毕业设计可与生产实习衔接,共同在企业完成,给予毕业设计充分的时间和质量保障。工程设计类课程以项目为导向,强调设计的实用性、经济性与开放性,同时强调团队合作、沟通与领导能力的培养。项目有的来自上海通用、宝钢、航天八院、商飞、泰科等优质企业,有的是与海外大学合作联合承接海外公司的项目,进行海外实习,开拓了学生的国际视野,培养了其全球工作的能力。
(3)各类实习。这类实践包括了传统的金工实习、认识实习和生产实习。其中认识实习和生产实习都在企业完成,生产实习又和毕业设计紧密相关,这样使实习目的更加具体,不仅促进了企业和学生的相互了解,更保证了双方合作的积极性。
中图分类号:G642.3 ; ; ; ; ;文献标识码:A ; ; ; ; ;文章编号:1007-0079(2014)17-0079-03
近年来,关于高校课程建设与改革的话题受到持续关注,因为“课程”是大学整个教学活动的基础和核心,同时高校的课程建设也是一个相当复杂的系统工程,如课程内容的选择与界定、课程之间的合理组合等,都会直接受到培养目标、教育目的、教育观以及认识论等因素制约。此外,高校课程的结构是否合理、教学内容是否适当,反过来又会影响到高校人才培养质量和水平的高低。“课程群”的概念正是在这样的背景下被提出来的,它既是世界范围内科学和教育的发展之需,也是我国高等教育改革的现实要求。
一、课程群及课程群建设的发展现状
关于“课程群”是什么,教育界有着不同的看法,概括起来主要有四种。第一种认为“课程群”是由在内容上紧密相承、相互渗透、互补性较强的几门同系列课程组合而成的有机整体,各自配有相应的课程大纲,并按照大课程框架组织课程建设,以获得课程体系的整体优化,是具有学科优势的课程。第二种认为“课程群”是某一学科内多门课程的集合,通过学科来划分群与群间的界限。第三种认为“课程群”是指多门彼此互相独立但是又密切联系的课程,课程群建设的目的是为使各门课程能协调发展、齐头并进,追求整体效益,以达到最佳的效果。第四种认为“课程群”是由承担不同的任务,在课程内容上各有不同特点,但为完成同一个教育目标而形成的多个子课程组成的有机系统。
目前,一般高校倾向于第一种观点,因为它首先是将“课程群”看成是相互联系,相互渗透的有机整体,其次认为“课程群”是一个具有整体优化效果并且有一定学科优势的课程群体。总体来说,“课程群”是本学科或与之相近的学科的几门联系紧密的课程间进行有机的整合,以达到预定的教学目标和适应社会发展的需要为标准,建设出的使整体效果最大化的课程群体,是一种与单门课程相对应的课程建设方式。因此,“课程群建设”实际上就是根据高校人才培养目标及培养模式的要求,研究分析课程与课程体系间在逻辑和结构上的相互关系,通过破除课程间的壁垒,优化整个课程体系,进一步融合和更新教学内容、教学方法等的过程。随着高校专业课课程门类与学时数的压缩,“课程群”的建设显得尤为必要,它顺应了网络时代教育和人才培养的发展趋势。
“课程群建设”是近年来高等院校课程建设实践中出现的一项新的课程开发思路,其基本思想是把内容联系紧密、内在逻辑性强、属同―个培养能力范畴的同一类课程作为―个课程群组进行建设,打破课程内容原有的归属性,从学生培养目标与层次把握课程内容的分配、实施、保障和技能的实现。
我国高校以多门课程组合的方式进行课程建设, 至今已有近二十年的历史。北京理工大学1990年开始,在课程建设中应以教学计划的整体优化为目标的方针指导下,首先提出要注重“课群”(课程群的早期称谓)的研究与建设。随后,一批高校相继开展了一系列虽名称相同或相似但差异较大的课程群建设和改革实践。[1-4]
二、课程群相对于“独立课程”的优势比较分析
相对于“独立式”的课程观,“课程群”在教学设计上独具特色和优势。主要体现在以下三个方面:第一,“课程群建设”与学科建设相结合,充分发挥相关学科建设力量强、基础好的优势,将学科建设与课程群建设有机结合。一些高校还把科研能力强、学术水平高的教师集中到教学一线具体参加课程群的建设工作,以“教学团队”的形式进行攻关,锻炼了高校教师教学和科研的整体协作能力。第二,以系统科学为指导,注重整体效果,将内在联系紧密的相关课程纳入“课程群”中统筹考虑,注重相互间的有机结合与互相促进,达到了整体优化的目的,同时提高了课程建设的效率和效益。第三,区别于过去的“独立式课程”,“课程群”把理论教学与相关实践环节通盘考虑,不仅对理论教学开展系统研究,对实践教学环节也进行了相应的改革,实现了全方位、多途径提高教学效果。[5,6]
三、课程群与课程体系的对比分析
国内有关学者高校课程群及课程体系进行了比较,研究指出:高校课程体系的建设主要是针对课程结构、所占比例、模块设置等进行宏观指导,明确课程的教材、大纲以及教学计划等,虽然能够较好地促进教学质量的提高、达到国家的教育目的、高校的人才培养目标, 对于指导课程建设的原则、方法、目标具有重要意义, 但是难以实现不同学校的办学特色、专业建设与特色课程建设。近些年来实施的重点课程建设主要是针对某一门课程的教学内容、体系结构、教学方法、评价方法等来开展的,体现在对某门课程的“点”――教学大纲、教学计划、内容结构等的建设,有力地保障了课程教学目标的实现,但高校的人才培养目标不是由一门课程就能实现的,各门课程在学生的知识传授、能力培养中只占一小部分。此外,由于每一门课程都强调其系统性和完整性,在教学实践过程中容易产生内容多与课时少的矛盾。
“课程群建设”属于中、宏观层面意义上的课程建设,主要针对某一受教育群体,将相关的课程进行整合,删减其中重复和过时内容,增加提高人才培养素质和提高竞争力的新内容,以提高教学效率及教学质量;通过对原课程群的进一步整合,可产生新的课程群,具有更新的人才培养目标,实现课程建设的规模效益,具有很强的可操作性及实用性。
通过对比分析可知,课程体系建设以整个人才培养计划中的课程体系为对象,其主要工作是调整各课程模块的比例。课程群建设则是以课程群为对象,对课程群内的有关课程教学内容进行有机融合,是对课程的重新设计,并将课程群的宏观设计与课程教学实践有效地结合起来,以提高整体教学效果。[7,8]
四、优秀课程群的建设方法及启示
课程群内相关课程的选择与设置,是当前课程群建设中的关注焦点和建设难点,同时也存在诸多争议。从专业教学角度看,目前课程群主要有两种界定方法:一是“以专业方向划分的专业课程模块组成的课程群”,对于该种模式,国内高校已有相关专业达成了共识,并已在学生专业知识、创新能力及综合素质培养等方面发挥了重要作用;另一种是综合考虑多学科的交叉与融合,培养宽口径人才,即“依托学科组建的课程群”,这种模式有助于增强学科实力,提高学科的建设水平。
对于优秀课程群的建设,方法是关键。建设过程中,要充分发挥课程群的特点与优势,一要注重群内课程内容的整合与新知识的更新。在充分融合孤立课程的内容、挖掘相关学科和领域最新知识的基础上,将相关学科的最新研究成果融入教学和科学研究过程,优化教学资源,注重学生的能力与素质培养。二是要分清群内课程建设的主次。从专业人才培养目标出发,根据专业知识在人才素质培养中的不同要求,可紧密依托专业办学特色和创新人才培养目标,在课程群内以专业主干课程为突破,抓住主要矛盾,分主次进行建设,避免因精力的均分而影响课程群的整体建设效果的提高。三是要充分考虑课程群内课程的关联性及在支撑专业人才培养上的协同作用,应在课程群建设实践中注重群内课程要彼此依托、相互促进、共同提高。这样的课程群组织建设,有利于群内教师间的交流沟通、课程与课程间的交叉融合,可及时反馈教学信息与教学效果,建立起有效的专业教学调控与响应机制,同时也可以通过对课程群规范的过程管理和质量评估,进一步促进群内课程教学质量的共同提高。[9]
五、卓越工程师培养背景下“热能与动力工程”专业的课程建设与发展
截止2010年,我国开设工科专业的本科院校有1003所,占本科院校总数的90%,高等工程教育的本科在校生达371万,研究生47万。[10,11]而目前工科专业毕业生还存在诸多问题,主要有:缺乏工程实践能力和工程创新意识、专业面狭窄、动手能力差、综合素质低下、所学知识陈旧等。[11]提高工科专业人才培养质量,对实现国家走新型工业化道路,建设创新型国家和建设人力资源强国三大战略有着十分重要的意义。
“卓越工程师教育培养计划”是高等教育针对《国家中长期教育改革和发展规划纲要(2010-2020年)》实施的重大改革项目,是提高我国高等工程教育质量、促进我国由工程教育大国迈向工程教育强国的战略举措。传统的课程体系、教学内容和教学环节已经不能适应“卓越计划”对工程人才培养的要求,必须通过重新设计课程体系、更新教学内容和重新组织教学活动来实现卓越工程师的培养。教育部日前的教高[2011]1号《教育部关于实施卓越工程师教育培养计划的若干意见》文中明确要求:大力改革课程体系和教学形式。依据本校卓越计划培养标准,遵循工程的集成与创新特征,以强化工程实践能力、工程设计能力与工程创新能力为核心,重构课程体系和教学内容。
能源动力广泛应用于各行各业,是国民经济的基础产业,也是国家科技发展的重要基础方向之一,关系到国家的根本利益和经济社会的健康持续发展。
我国能源动力类的热能与动力工程专业形成于20世纪50年代。由于受当时的历史条件限制,专业分割很细,形成了以工业产品生产引导高等学校能源动力类专业人才培养目标的基本格局,也在一定程度上适应于我国当时的经济社会发展。随着改革开放及经济社会发展,社会对能源动力类专业人才的培养提出了新的要求。为了适应社会的要求,能源动力类专业历经多次教育部的多次调整,已由原来的几十个小专业,逐步合并为一个大专业热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和能源动力领域新问题的提出,浙江大学率先将“热能与动力工程专业”改造成“能源与环境系统工程专业”,得到广大青年学子和社会各界的认同;2004年,清华大学将“热能与动力工程专业”改造成“能源动力系统及自动化专业”。国内还有一些高校也陆续地根据专业办学特色,进行了热能与动力工程专业名称的调整。在教育部新颁布的《普通高等学校本科专业目录(2012年)》中已将能源动力类专业统一整合为能源与动力工程专业。
经过一系列的专业教育改革,本专业的人才培养口径大大拓宽,体现在学生的基本知识面得到拓展,对市场需求的适应性大大加强,就业市场更为广阔。但是因各高校的专业定位、地域分布、历史继承及国家和社会需求等的不同,形成了开设本专业的高校间课程设置、专业重点及特色、培养模式多样化的态势。
由教育部启动的“卓越工程师培养计划”,旨在为我国各行各业培养优秀工程师的后备军。它要求高校转变办学理念、调整人才培养目标定位以及改革人才培养模式等。国内开设了热能与动力工程专业(现能源与动力工程专业)的相关高校,也相继加入热能与动力工程专业的“卓越工程师培养计划”行列。相关高校结合自身专业重点和办学特色,在专业课程建设及课程群建设方面进行了一些有意的探索和实践,主要体现在:面向学生综合素质的培养,开展了“能源清洁利用技术”课程群建设;[12]针对专业方向的培养特点,构建了“热能与动力工程”大专业多方向课程体系;[13]进行了热能与动力工程专业课程设计教学改革的探索与实践;[14]进行了基于精品课程建设为平台的汽轮机系列课程改革与实践;[15]进行了高职高专热能动力装置专业课程体系的改革与创新[16]等工作。这些课程改革与研究实践,尚未涉及到能源动力类专业卓越工程师培养的课程群建设,相关研究需要开展。
六、结论
第一,作为一种新形式的课程建设模式,当前开展的课程群建设不同于单门课程改革以及课程体系建设,既适应高校教学改革和人才培养的要求,也反映了课程教学改革的新趋势。
第二,热能与动力工程专业按照传统的以产品为导向的课程设置和体系建设,不太适合当前卓越工程师培养目标及要求,特别是存在一些课程的教学大纲和教材内容明显老化,课程内容呈现较多重复,导致培养出来的学生存在知识面狭窄、知识内容陈旧、动手及实践能力不强等弊端,制约了能源动力类专业卓越人才的培养。
第三,在已开展的能源动力类专业的课程建设与改革中,尚未在卓越工程师培养视角下组织实施能源与动力工程新专业的专业核心课程群的建设与改革。需要结合新专业的调整以及专业卓越人才培养要求,修订新专业人才培养计划,改革现有课程体系及结构,研究并构建适合新形势下能源动力类专业卓越人才培养要求的课程群。
参考文献:
[1]李慧仙.论高校课程群建设[J].江苏高教,2006,(6):73-75.
[2]孙存昌.论高校课程群“四级体系”建构[J].大学教育科学,
2008,(5):46-48.
[3]王嘉才, 杨式毅,霍雅玲,等.课群及其质量检查评估指标体系的研究[J].高等工程教育研究,1999,(S1):71-73.
[4]赵朝会.浅谈课程群建设[J].中国科教创新导刊,2008,(14):17-18.
[5]龙春阳.课程群建设:高校课程教学改革的路径选择[J].现代教育科学,2010,(2):139-141.
[6]曹滨,王莹.后现代高校课程群建设思路及原则研究[J].中国校外教育,2009,(2):37.
[7]郭必裕.课程群建设与课程体系建设的对比分析[J].现代教育科学,2005,(4):114-116.
[8]郭必裕.对高校课程群建设中课程内容融合与分解的探讨[J].现代教育科学,2005,(2):66-68.
[9]钱云.关于质量工程背景下优秀课程群建设的思考[J].现代教育科学,2008,(6):144-145.
[10]张兄武.创新视野下的“卓越工程师教育培养计划”[J].苏州科技学院学报(社会科学版),2011,28(4):80-83.
[11]林健.高校工程人才培养的定位研究[A].第二期全国高校工程类创新型人才培养工作专题研讨会[C].2010.
[12]李志敏.面向素质培养的“能源清洁利用技术”课程群建设[J].中国电力教育,2011,196(9):191-192.
[13]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考[J].高等教育研究,2011,28(4):44-48,71.
[14]王运民,李录平,明勇.汽轮机系列课程教学改革的研究与实践[J].中国电力教育,2011,(3):174-175.
中图分类号:G642 文献标识码:A 文章编号:1673-9795(2013)09(b)-0080-02
为了适应社会和行业对能源动力类人才的发展要求,培养具有实践能力和创新精神的卓越精英人才,并且让学生能够接受符合自身特性的个性化实践教育,我们重新构造符合经济、社会、科技发展和人才培养规律的、结合国家实践基地的立体化实践课程体系,探索实践课程授课方法,把社会需求和人的全面发展需要结合起来,促进学生自主学习和个性发展。
华中科技大学能源与动力工程学院作为首批入选实施“卓越工程师教育培养计划”的院系之一,通过依托学科和专业优势,积极利用现有资源条件,充分挖掘专业潜力,对“卓越工程师教育培养计划”的进行系统的探索与实践,致力于培养具备能源动力素质的卓越工程师,在卓越班教学计划中突出具有专业优势和特色的基础上,特别加强工程实践课程和实践教学环节的改革。
本文围绕卓越工程师人才培养目标,依托卓越工程师培养计划,探讨能源动力类实践教学环节培养的改革,通过加强校企的紧密合作,立足国家工程实践中心,校企合作进行实践教学,推进卓越工程师的教育改革,为满足适应社会发展需要的能源工程领域的卓越人才培养需求进行有益探索。
1 课内教学与课外实践相结合,提高学生动手能力
学院在专业基础课程建设中积极将课内教学与课外实践结合起来构建专业基础知识结构。在组织《能源与动力装置基础》课程教学时,主动以“认知+实证”为突破口,因为该门课程涵盖了以往热能与动力工程专业所有专业方向的专业主干课程基本内容的能源类综合课程,课程内容涉及到能源动力工业中几乎所有装置、设备的工作原理和基本结构。为了使课程学习生动形象,该课程不仅在课件中加入了大量动画等多媒体素材,而且因课制宜,与课程同步进行现场课外实践,使学生的感性知识与理性知识相互交融,加深了对理论的理解认知和对机器的实证。学生通过理论知识的学习,然后通过课外现场的实践再学习,有利地提高了学生动手能力。
能源动力类本科专业是一个宽口径专业,涵盖了多个不同的专业方向,由此,近几年,在建设能源动力类各专业方向课程同时积极共建实验课程。结合能源动力类硕士二级学科平台与本科专业方向对接共建实验课程,更新实验教学体系,将涵盖以往的十余门课程二十余个单项实验,改造成四门独立实验课程(见表1),各16学时。四个专业方向的模块课程对应着四门独立实验课程,四个专业方向的模块课程的课内教学与课外实践的独立实验课程同步进行,有效地做到了课内教学与课外实践有机结合。其中每一个综合实验可实现多个相关的实验联系,可使学生对实验内容有较完整更全面的认识,以得到综合性的训练。
在具备能源动力类专业设备的宏观框架知识结构后,结合学院各专业方向的细化课程相继开设。创建的“认知+实证”的特色专业平台课程,由于课堂教学与课外实践同步进行,化复杂为具体、化抽象为形象,使理论与实践密切结合,培养了学生的创新意识,提升了学生的动手能力。
2 校内实习与校外实习相结合,提高学生实践能力
实习环节安排在大学期间的二、三年级,在整个本科生培养的课程体系中起着承上启下的作用。校内实习体现了对先修的一些基础课程知识的综合应用,校外实了知识的综合应用外还为后续相关专业课程的学习乃至未来的技术工作奠定基础。由此,校内外实习的有机结合,学生的感性知识与理性知识进一步得到相互交融,加深了对理论的理解和对机器的认知。校内实习实行随时开放自己动手实践的模式。在教师的指导下,让学生自己动手拆装各种机器,观察结构,研究其工作原理,讨论其操作与控制系统,而且可以多次反复进行,学生在实习过程中还可以进行一些创造性的设计,利用开放式的试验装置,如冰箱、空调综合实验台等,自行试验,不仅提高了动手能力,而且培养了学生的独立工作能力和创造性的思维。校内实习有一定的优越性,但与校外实习的在线生产实际有一定的区别。校外实习可以弥补校内实习的不足,通过企业调研,和工程技术人员交流,了解行业前沿的学科动态及产品发展趋势,寻找工程实践中的技术难题,去自主学习、研究性学习、探索解决方案。企业技术人员结合生产现状,对学生进行讲解,进一步加深对产品和生产过程的了解,加深对专业工程实际的认识,同时扩大视野,树立工程、系统、设备装置、现代化生产的概念,并提高到理论上来理解,触发理论到产品的思维。
学院在校内外实习交替安排在三、四、五、六学期的四个学期(见表2),前三个实习环节由学院统一安排,第四个环节根据学生选定的专业方向分散到相应的一到两个厂家进行实习。
通过校内外的实习,使学生很好地掌握本专业的一些实验的理论方法和步骤,并对实验和生产流程具有实际的动手运行操作能力及处理突发故障的能力提升。同时,为学生充分展示了专业广阔的前景,营造浓郁的气氛激发各类学生的兴趣。让学生有深入实际的时间,有消化理论,对实践有延续深入洞察,有可能进入创造思维的机遇。校内、校外相结合,开拓了学生由理论到产品的视野与思维,提高了实践能力。
3 设计性环节与课外科技相结合,提高学生创新能力
设计性教学环节在培养课程体系中是非常重要的环节,高校的设计性教学环节占学生在校4年时间的25%左右。传统设计环节的内容、方法、要求已经不适应现代教学形式与环境的变化,设计性教学环节的改革也严峻的提到教学日程上来。通过设计性教学环节与课外科技创新结合,结合学科优势及科研成果,利用学生课外科技活动,共建实践创新的设计课程,有效地实现了“设计课程+课外科技”的结合。
设计环节是学生综合运用所学知识解决实际问题,培养创新能力的最好阶段。热能与动力工程专业的设计实践环节有三个:机械零件课程设计,专业课程设计和毕业设计。为了使学生能长期不间断地受到理论与实际应用相结合的训练,培养学生工程设计和科学研究的能力,改变过去三个设计各自孤立进行,互不相干的作法,将三个设计在时间安排上结合起来进行,相继覆盖两年。
在设计环节改革中,强调结合教师科研、课外竞赛进行专业理论、技术和基本工程设计规范的训练,并注重培养学生综合运用各学科知识,进行产品、工程设计。在毕业设计选题时,指导教师结合学生的科技活动中的课题设下创新点,有计划地在设计环节指导过程中启发诱导学生来攻闯创新关。通过引导、学习、实践的项目周期训练,使学生能够将理论知识灵活应用,激发和创造学生的潜能。学院学生在近几年的科技活动和全国节能减排大赛中成绩喜人。在设计环节的管理上,把课外实践活动纳入学分管理,调动了学生进行课外实践活动的积极性。以上措施有效地实现了“课程设计+课外科技”的结合。
在本专业的设计性教学环节中,要求能运用已掌握的科学技术知识去分析问题,在能源动力类的机器设计制造、工程的计算与设计过程中,针对设备的结构尺寸公差的配合、工艺中的规程和精度配合、复杂系统的控制过程问题、复杂程序计算过程等,均能及时作出准确的判断、正确的结论,提出可行的办法,使问题得到解决。设计性环节与课外科技相结合,为学生知识水平、能力与素质同步提升,落实人才的多样化和个性培养,促进学生自主学习和个性发展,为促进人才培养质量的提高起到了重要作用。
4 毕业设计与企业实践相结合,提高学生综合能力
毕业设计环节为学生未来的技术工作和发展起着重要的作用,为推进“卓越工程师教育培养计划”的实施,进一步提高学生的工程素养,培养学生的工程实践能力,工程设计和创新能力,提高企业在人才培养中的作用,根据社会对能源领域人才的需求类型,经过深入调研,学院将在共建工程训练教学实践平台和与企业共同指导毕业设计和学位论文等方面进行合作建设,将主流技术和工程方法引入教学实践中,将企业成功实施的项目实践引入课堂教学,并鼓励学生将最新的科学研究成果进行技术化、工程化。
高年级学生跟随导师结合工程项目和课题进行科研训练,部分保研生可提前修读硕士阶段课程。毕业设计和研究生阶段实行学校和企业双导师制,根据产业界需求,结合研究课题,加强项目流程等工程训练,进行个性化培养。实践毕业设计双导师制和考核方式改革等措施,在学校配套政策的大力支持下,结合国家级实践基地,探讨毕业设计实践研究,在四年级学生的毕业论文阶段,请企业相关人员作为指导老师,独立或结合校内教师对学生进行毕业论文的指导。
在大约一年的毕业设计环节中,首先明确学生的校内指导老师和企业指导老师,由指导老师对本科阶段的企业培养计划进行整体规划和指导。本科阶段毕业设计论文题目由学校导师和企业导师共同商讨后确定,可结合硕士阶段的方向设置企业实践的重点和应达到的具体指标。学生下企业的具体时间根据课题研究的需要灵活确定,为课题研究提供现场运行数据和资料,以及进行试验或验证的机会。要求导师严格把关,以解决工程实际问题为出发点,确定研究课题。注重培养实践研究和创新能力,为企业培养“留得住,用得上”的高端人才为主要目标。
近几年,学院在实践环节的培养上以实际应用为导向,以职业需求为目标。教学内容强调理论性和应用性课程的有机结合,突出案例分析和实践研究;教学过程重视运用团队学习、案例分析、现场研究、模拟训练等方法。建立健全校内外双导师制,以校内导师指导为主,校外导师参与实践过程、项目研究、课程与论文等多个环节的指导工作。同时,加大实践环节的学时数和学分比例,学生提交实践学习计划,撰写实践学结报告。学位论文选题侧重来源于应用课题或现实问题,体现研究生综合运用科学理论、方法和技术解决实际问题的能力,以培养硕士工程型的后备卓越工程师为目标。
以上针对能源动力类卓越人才实践环节培养方面进行的一系列建设和改革,有益的推进了卓越工程师教育改革发展。
中图分类号:F407.42 文献标识码:A 文章编号:
一、前言
当热能转换成动力,并且应用在人们的生产生活中时,不仅改变了人们的生产与生活的方式,而且为资源能源的可持续利用、高效利用提供了空间。热能动力机械以其科学性和先进性亟待在人们的生产实践中有着更大范围内的应用。
二、热能动力机械专业的适应方向
无论日常生活,还是工农业生产;无论交通运输,还是航天领域,都离不开动力。热能是这些动力的主要来源之一,如冬天燃煤取暖是利用煤燃烧所产生的热能;火箭发射人造地球卫星利用的动力来自燃料燃烧所产生的热能;蒸汽机车牵引火车的动力来自于蒸汽的热能;热电厂所产生的低品位蒸汽供给工厂热能,在寒冷地区提供暖气;动力设备产生的废热用作制冷动力等。热能除了能被直接利用外,还可以通过转换装置变成电能,得以更广泛地利用,如火力发电、核能发电等。该专业的主要适应方向有:
(一)适应火力发电、核能发电行业。任何一家火力发电厂都是利用锅炉将化石燃料的化学能转化为蒸汽的热能,利用汽轮机将蒸汽的热能转化为机械能带动发电机发出电能;锅炉、汽轮机及其热力系统的运行,由热工测量设备进行测量和监视,由自动化装置实行自动控制。核能发电除利用受控核裂变反应所释放的热能将水加热成蒸汽不同于火力发电外,其它生产过程基本上同于火力发电。湖南橡胶厂、冷水江铁厂等大企业的自备电厂的生产过程亦同于火力发电厂。
(二)适应于石化行业。炼油厂、化肥厂、制碱厂、维尼纶厂等企业,都必须有热动力设备产生热动力来满足生产的要求,如工业锅炉、换热器、泵与风机等动力设备。
(三)适应于冶金行业。冶金行业需要大型的热动力设备,如高炉所需要的热空气由锅炉产生再由风机送到高炉中去。
(四)热力设备的设计和生产制造行业。修完本专业的全部课程后,具备一定的设计和生产制造能力。
(五)制冷行业。大型制冷设备的动力来源于锅炉所产生的热能,制冷工质的循环理论同于热动力工质循环理论,制冷专业与热工专业实际上是相关专业。
(六)船舶工业。舰艇、轮船多以锅炉产生蒸汽,以汽轮机为原动机带动船桨推动舰船航行。
(七)航天领域。运载火箭的推力是通过燃料燃烧,产生巨大的热能推进火箭升空。
(八)建材生产行业。如水泥、玻璃、陶瓷等的生产。
(九)服务行业。现代宾馆、酒楼的采暖通风、供水供汽的动力设备的生产与管理。
(十)适用于热能动力设备的生产、技术管理工作。
(十一)适应于其它需要热动力的行业。以上说明,凡是涉及到热动力的行业,都需要热能动力工程专业人才,意即该专业具有广泛的适应性。
三、热能动力机械专业的高技术性
大型的热能动力设备,系统非常复杂,集机械、电力、电气、电子、液压、计算机等多学科于一体,自动化程度很高。从生产上来看,热力设备的运行基本上实现了自动、远动控制和计算机监视。全计算机控制已基本实现,并是今后的发展方向。火电厂的锅炉、汽轮机及其辅机的运行,早已是自动控制或远动操作,新建的大型火力发电机组应用了计算机控制,如30MW汽轮发电机组,正常运行时锅炉产蒸汽量在100t/h以上,锅炉本体的高度超过som,燃煤达10t/11以上,若用人力来烧这样的锅炉是根本无法实现的,但是采用集散控制系统,实现全计算机控制,一台锅炉有两名操作人员就够了。对于工业锅炉,亦采用机械进煤的方式,运用自动或远动控制其运行。冶金、化工等行业的热力设备,也具有相当高的自动化水平。可见,热力设备的运行,采用了大量的高尖技术。热力设备一般在高温高压的条件下工作,要搞好热力设备的安全运行,必须经常地进行维护和定期的大小修,为了提高热能利用效率,必须利用新技术对设备进行技术改造,利用先进管理手段进行管理,因此,需要既有理论知识又有丰富实践经验的工程技术人员。
四、我国的热能动力工程发展现状
我国能源动力类热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细。在热能与动力工程专业中就先后包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业,形成了以工业产品生产引导高等学校人才培养目标的基本格局,一定程度上与我国当时的发展相互适应。随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代力工程的基础。
五、热能动力工程的发展方向
(一)热能动力及控制工程方向(含能源环境工程方向
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
(二)热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
(三)制冷低温工程与流体机械方向
掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
(四)水利水电动力工程方向
掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
(五)热能动力机械中工业炉的发展
工业炉是工业加热的关键设备,广泛应用于国民经济的各行各业,量大面广,品种多,影响极大。据不完全统计,全国12个行业县以上企业,工业炉装备11万台以上,机械行业占7.5万台(占炉窑总数66%)。工业炉中燃料炉约6万台,占炉窑总数55%以上,电炉绝5万台。工业炉是耗能大户,能耗占全国总能耗的1/4,占工业总能耗的60%。工业炉中燃料炉能耗占工业炉总能耗的92%,其中固体燃料约占70%,液体燃料绝占20%,气体燃料仅占工业炉总能耗的8%左右。可见燃料炉在我国工业炉中起着举足轻重的作用。
(六)热能动力机械在能源方面的发展
热能动力工程在能源方面的发展热能与动力工程专业将重点围绕国家能源战略,以“新能源、核能、智能电网、常规能源、节能减排”为主线,培养能适应国家能源领域(尤其是电力行业)快速发展要求的高级研究应用型人才。能源是人类社会赖以生存和经济可持续发展的重要物质基础。纵观人类社会发展的历史,人类文明的每一次重大进步都伴随着能源的改进和更替。能源的合理开发和有效利用极大地推进了世界经济和人类社会的发展。我国经济的高速可持续发展同样离不开能源,目前我国是世界上第二位能源生产国和消费国。能源供应持续增长,为经济社会发展提供了重要的支撑。
八、结束语
综上所述,随着自身的发展以及在控制工程、汽车工程、水利水电工程、工业炉以及能源方面的应用,热能动力机械将会释放出更大的生产力,极大的带动经济的发展和社会节能理念的转型。
中图分类号:F407文献标识码: A
一、热能动力机械专业的高技术性
大型的热能动力设备,系统非常复杂,集机械、电力、电气、电子、液压、计算机等多学科于一体,自动化程度很高。从生产上来看,热力设备的运行基本上实现了自动、远动控制和计算机监视。全计算机控制已基本实现,并是今后的发展方向。火电厂的锅炉、汽轮机及其辅机的运行,早已是自动控制或远动操作,新建的大型火力发电机组应用了计算机控制,如30MW汽轮发电机组,正常运行时锅炉产蒸汽量在100t/h以上,锅炉本体的高度超过som,燃煤达10t/11以上,若用人力来烧这样的锅炉是根本无法实现的,但是采用集散控制系统,实现全计算机控制,一台锅炉有两名操作人员就够了。对于工业锅炉,亦采用机械进煤的方式,运用自动或远动控制其运行。冶金、化工等行业的热力设备,也具有相当高的自动化水平。可见,热力设备的运行,采用了大量的高尖技术。热力设备一般在高温高压的条件下工作,要搞好热力设备的安全运行,必须经常地进行维护和定期的大小修,为了提高热能利用效率,必须利用新技术对设备进行技术改造,利用先进管理手段进行管理,因此,需要既有理论知识又有丰富实践经验的工程技术人员。
二、常用的热能动力机械
动力机械是把能量转化为机械能而做功的机械装置。其中,由热能转化为机械能的机械称为热能动力机械。常用的热能动力机械有三种。一是燃气轮机。燃气轮机的工质是燃气和空气。这种机械的主要特点是运行平稳,机动性好,噪音污染小。所以应用广泛。未来燃气轮机会向提高效率、利用核能发展燃煤技术的方向发展。二是蒸汽机。说到动力机械就不得不说蒸汽机。蒸汽机的工质是蒸汽,它是将内能转化为功的装置。蒸汽机的产生曾引起了世界上重要的“工业革命”。跨入21世纪之后,才渐渐被内燃机和汽轮机取代了领先地位。蒸汽机的使用之所以持续了两个多世纪归功于它对所有燃料都可以由热能转化成机械能。但是蒸汽机的运作依赖于笨重庞大的锅炉,因此最终被轻巧灵活的内燃机所取代。三是内燃机。内燃机是将化学能转化为机械能的装置。因为燃料在机械内部直接燃烧,所以称为内燃机。内燃机是目前运用最广泛的热机,它以汽油或轻柴油作燃料,虽然热效率高,但热料消耗率高,而且内燃机噪声是动力设备噪声的主要来源。因此,未来内燃机的发展将注重于提高机械效率,减少噪声,降低排放量来严格要求燃料的清洁度,实现节能减排的目标。
三、我国的热能动力工程发展现状
我国能源动力类热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细。在热能与动力工程专业中就先后包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业,形成了以工业产品生产引导高等学校人才培养目标的基本格局,一定程度上与我国当时的发展相互适应。随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代力工程的基础。
四、动力机械带来的环境污染及解决办法
动力设备引起的环境问题主要有热污染、噪声污染和空气污染。热污染是指工业生产和生活中排放的能量以热能形式传给环境,造成大气和水被污染的现象。尤其是火力发电厂、核电站、造纸厂排放出来的含有大量废热的气体和液体对水生植物和鱼类生存繁衍造成了极大的威胁,各种有害成分还会随着水资源的流动被陆地上的树木,蔬菜吸收,进而被人类食用,引起重大的流行疾病等。要减少工业废物的余热对环境的影响,就要减少排放,并且充分利用余热,或者寻找和开发新能源。使用清洁的水能,风能不仅降低了污染物的排放,还保护了环境。
1、空气污染也叫大气污染
从近年来的全国雾霾天气可以看出,空气质量与人们生活息息相关。空气污染直接影响了人们的出行。大气污染源来自于工业废气、汽车尾气、居民生活供暖设备等。在大城市中,汽车、火车是不可或缺的交通工具,但它们消耗煤或石油产生的直接排放进空气的废气,是雾霾天气的主要“凶手”。而且近几年的许多极端天气也是因大气污染引起的。空气污染的防治要靠全国人民的共同努力,调整能源结构,植树造林等都是目前比较流行的办法。
2、噪声污染
动力机械等设备运行时由于机械振动而形成噪声。噪声污染短期内或许没有太大伤害,但处于这样的环境一段时期后就会使生物的听力受损,严重的还会诱发多种疾病。因此,防治噪声也是刻不容缓的事情。对污染源来说需要降低声源噪音,控制噪音传播。而对于人们来说,可以采用吸音设备来阻挡噪声的传播。
六、热能动力工程的发展方向
1、热能动力及控制工程方向(含能源环境工程方向)
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
2、热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
3、制冷低温工程与流体机械方向
掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
结束语
热能动力工程是社会生产力发展的一个重要组成部分,它推动了人类从人力劳动向机械生产的“进化”。作为国民生产的动力,能源已经成为了每家每户的必需品。其中,热能是能量传递和动力机械领域中使用得最多的一种能源形式之一。而现在随着热能转化装置以及动力机械的广泛应用,已经出现了许多全球化的问题。本文针对热能动力工程的相关设备和环境保护做一些基本介绍,仅供参考。
参考文献
中图分类号:TK223文献标识码: A 文章编号:
一、热能动力工程
热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能与动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。
二、我国的热能动力工程发展情况
随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。
三、热能动力工程在锅炉风机方面需要解决的问题
风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。
四、热能动力工程中锅炉及工业炉的发展
1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。
五、热能动力工程炉内燃烧控制技术运用
锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:
1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。
2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。
六、仿真锅炉风机翼型叶片
锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。
七、热能动力工程的发展方向
1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
结束语
热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2014)33-0118-02
生产实习是高等院校工科类专业重要的实践性教学环节,生产实习的质量直接关系到学生的实践能力、创新能力及综合素质的培养过程。[1,2]在能源与动力工程专业的教学计划中,生产实习尤为重要,旨在将专业理论知识与工业现场相结合,使得学生对发电厂设备的启停、运行以及日常的监控维护方法及程序有一个较为深入的了解。学生通过生产实习,能够提升学生综合运用各学科知识的能力,分析和解决实际发电厂运营问题的能力。[3]为了培养独立从事能源与动力工程行业的应用型工程技术人员,适应21世纪创新型人才、复合型人才的社会需求,结合近年来指导的能源与动力工程专业生产实习的实践经验,对该专业生产实习教学模式做了一些新的探索。
一、能源与动力工程专业生产实习教学改革的必要性
目前三峡大学能源与动力工程专业分为热动和水动两个专业方向,热动方向的学生主要在热力发电厂完成生产实习任务,水动方向的学生则在大型水电站完成生产实习任务,实习时间均为2周。基于能源与动力工程专业的人才培养方案,目前的这种实习模式基本能够完成培养方案规定的生产实习内容,但也存在一些不足亟待改进。
1.实习基地建设需要加强
三峡大学能源与动力工程专业与大型水力发电厂、热力发电厂进行合作,建立了稳定的校外实习基地。目前,开设能源与动力工程专业的大部分高校生产实习都集中安排在大三下半学年或大三结束时进行。在这期间,各个电厂除了接待能源与动力工程专业的学生之外,还需接待电力系统及自动化专业、自动化专业、化学专业、管理专业等与电厂运营相关的其他专业的学生进行生产实习任务,这直接导致了短时间内大部分学生集中涌入各个发电厂。而现代的大型发电厂 一般都是大容量、多参数集中控制,接待能力十分有限。同时,各个发电厂受生产任务、安全指标、经济效益等多种因素的制约,一般也不愿意接待大批学生进行生产实习。这样,最终使得学生的实习内容受到限制,实习计划难以实施,实习过程比较草率,实习效果一般,难以达到锻炼学生,提高学生综合能力和创新能力的目的。
2.实习形式单一
三峡大学能源与动力工程专业的校外生产实习沿用了其他工科专业普遍采用的实习形式,即由专任教师组织学生去各个发电厂进行参观式学习,各个发电厂抽调技术骨干对锅炉、汽轮机、化学与水系统、除硫除尘装置以及电气设备等各个系统进行讲解。通过这种方式,以期学生对发电厂的整个运营流程有初步的了解,对电厂的日常维护、运营监控以及问题处理方式有一定接触。然而,在实习过程中,各个发电厂抽调的技术骨干有的善于表达,有的不善表达,并且他们对学生专业知识的掌握情况也不十分了解。实习内容的设置比较有限,实习内容的讲解也受限于讲解老师的经验水平,学生在实习过程中很难有机会深入细致地学习,学生的创新能力、综合能力难以得到有效提高。
3.实习内容不尽合理
由于电力行业管理严格,对员工的综合素质要求极高,而对学生而言,鲜有机会上岗操作,学生的生产实习过程与校园内的课堂学习无异,依旧沿于听老师讲解,看老师操作,很难掌握电厂设备和系统的启停、运行及事故处理的方法。整个实习的内容也与课堂上的教学内容也有较大的重复性,而这些常规性实习内容很难激发学生的学习兴趣和创新意识,不能有效地培养学生的创新精神和工程实践能力。同时由于实习学生在一家单位的停留时间十分有限,一般为1周时间,实习单位客观上也难以安排完整、全面的实习内容。此外,电厂在运行过程中,电力事故的发生偶然性太强,学生在短时间内接触到的几率很小,对电厂的事故处理及分析方法还是只能听老师讲解。
4.实习考核标准软化
在现行的生产实习模式中,实习指导教师及发电厂的技术骨干处于主导地位,学生处于被动接受的地位,实习指导教师及发电厂的技术骨干商讨确定好相应的实习内容,学生跟随教师的节奏完成实习任务,该方式很难激发出学生的主观性和创造性。在实习过程中,发电厂的技术骨干讲解分配的实习内容,其他一切问题包括实习纪律和实习安全等,全靠实习指导教师协调解决。在大班实习过程中,实习指导教师一般为1名或2名,精力十分有限,难以兼顾全部学生,对学生实习缺乏有效指导和监督。实习结束之后的成绩评定主要取决于平时成绩和实习报告成绩,由于很难监控学生的整个实习过程,因此平时成绩很难把控,而仅仅依靠实习报告给出实习成绩,有失公允,没有真正考核到学生的整个实习过程。
综上可知,能源与动力工程专业现行的生产实习教学体系在实习基地、实习形式、实习内容以及实习考核标准等方面都还存在一些不足,难以满足现代企业所需的厚基础、宽口径、强能力、高素质的创新型人才、复合型人才的培养需求。
二、创新型生产实习教学模式的改革与探索
1.构建虚实结合的生产实习新模式
所谓虚实结合的生产实习模式,即将原来要求在电力生产现场完成的生产实习任务,分成在校内的虚拟平台和实际电力生产现场两方面进行。虚拟平台主要以仿真支持系统为主,内容全面但感性体验不够,实际电力生产现场针对性较强,但内容有限,深度不一。通过虚实结合,既能全面了解电力生产过程,又能有较强的感性体验。
面对能源与动力工程专业生产实习存在的实际问题,采取计算机及其他信息技术进行虚拟实习是一种新的尝试,目前也已经有了一些成功案例。[4]在学校的大力支持下,三峡大学(以下简称“我校”)针对热动方向专门建立了300MW发电机组仿真支持系统,针对水动方向建立了水轮发电机组仿真演示模型,通过调整生产实习的教学模式,加大仿真教学力度,既能保证实习内容的完整性,又能在一定程度激发学生的实习兴趣。
指导教师通过引导学生关注一些仿真实习中存在的问题及处理方案,学生带着这些问题,在现场实习时通过与技术人员讨论,加深理解。电力企业员工也非常乐意与学生进行技术交流,不仅调节了单调的工作气氛,也提高电力企业职工的基本素质。
2.优化实习内容
根据能源与动力工程专业人才培养方案来制订具体的实习内容,使得学生实习之后,能系统地了解大型水力发电厂、热力发电厂等从事运行、管理等方面的工作流程。
我校能源与动力工程专业热动方向的生产实习内容重点是了解锅炉设备系统、汽轮机设备系统、脱硫除尘设备系统、化学设备系统及其他与之有关的主要辅助设备和系统的运行特性和维护管理。此外,在仿真实习平台上主要是掌握机组的启动、停运步骤,设备与系统的故障模拟、故障分析、故障排除等,了解或熟悉故障发生的前因后果。
我校能源与动力工程专业水动方向的生产实习内容重点是了解水电厂的水工建筑物、水电厂的电能生产过程、水轮发电机组及其辅助设备和电气设备的作业布置及相互关系,220kV开关站的接线方式及主要配置,厂用6kV系统与发电机组的配接方式、接线方式及厂用电相关配置等。在水电站仿真平台上,要求学生掌握水轮机的工作原理,水轮机运行、管理、检修、维护、水轮机选型设计以及水轮机调节系统、水轮机控制系统等。
3.增强实习指导
在生产实习过程中,学生能否有所收获在一定程度上取决教师的指导水平。为了使实习指导教师更好地发挥主导作用,需要聘请专业基础扎实,实践经验丰富,有较强实践能力的专业教师对实习学生进行跟班指导。
我校能源与动力工程系以青年教师为主,长期深入电力生产一线的机会比较欠缺,工程实践能力整体情况还不高。为了使青年教师更好地发挥主导作用,一方面要充分发挥老教师的传、帮、带作用,另一方面还需定期组织青年教师深入电力企业生产一线,充分准备实习内容以及实习的重难点,增强青年教师的科研能力和工程实践能力,提高实习指导水平。
此外,采用虚实结合的实习教学模式后,对实习指导教师的任务加重了,要求提高了,责任变大了,为此实习指导教师尽量做到相对稳定、搭配合理,这样不仅能保证生产实习的长远发展,还能够维持生产实习的课程建设质量。
4.规范实习考核标准
在实习过程中,除了需要通过有效的监管机制保证实习顺利实施之外,还需采用有效的激励机制对学生的实习表现进行评判,包括实习纪律以及实习项目的表现情况,随机抽查学生笔记、对学生进行提问、要求学生讲解实习过程等。
实习结束之后,需要提交实习报告,而通常仅依据实习报告给定实习成绩是不合理的。为了充分调动学生的实习积极性,并且使学生能够充分重视实习过程,生产实习的考核评价至少需要反映“平时表现(占40%),实习报告(占40%),答辩成绩(占20%)”等几个方面。
为了生产实习的持续发展,还应广泛收集学生、教师、实习单位的评价意见,重点反映实习内容是否全面,实习安排是否合理,实习效果如何以及学生的综合素质和专业技能是否达到实习单位需求,通过总结经验,发现不足,不断提高生产实习的教学质量。
三、结语
生产实习是实践教学的重要环节,能源与动力工程因为专业的特殊性,生产实习范围相对其他工科专业而言比较有限,在经济效益驱动下,生产实习面临着很大挑战。生产实习基地的建设,实习内容的优化,实习师资队伍的建设,实习教学质量的提高等均是一个长期积累的过程,需要长期探索,不断调整。未来还需从更深层次探索生产实习的改革与发展,不断完善生产实习的教学模式,以期取得更好的实习效果,培养出具有实践能力强、创新能力高、综合素质全面的应用型本科人才。
参考文献:
[1]孟广波,王树群,高祥永.能源动力类专业校外实习改革措施的探讨[J].沈阳工程学院学报(社会科学版),2012,8(2):259-261.
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)19-0086-
诺贝尔奖获得者李振道先生在西北师范大学百年校庆典礼上提出:“培养青年人才,不能仅依靠课堂教学和靠高科技工具,人才的培养要在实践当中去培养,在培养的过程中,使学生变成老师的助手。”[1]由此可见,实践教学作为创新型人才培养中的重要环节,对于提高学生综合素质、培养创新能力,具有不可替代的重要作用。
实践教学环节包括实验操作、生产实习、毕业设计、毕业实习等环节,是对学生实际操作能力培养的重要环节之一,也是教学质量最直观的反映。尤其对高等工科院校而言,要培养高素质应用型人才,更应重视实践教学。只有通过实践操作,才能使学生在实践中检验所学知识,发现新的问题,掌握科学方法,培养创新意识,从而提升综合素质。因此,加强实践教学是提高人才培养质量的关键环节,也是培养理论与实践相结合的创新型人才的有效途径之一。[2]
一、能源动力类专业实践教学改革的必要性
近年来,高等院校对实践性教学环节的重要性的认识逐年提高,实践性环节的教学条件逐年改善,教学效果也有所改善。但是,国内高校特别是一般高校在实践性环节教学中依然存在以下困难与不足:[2]
1.对实践性环节的重要性普遍认识仍不够到位
认为实践教学仅仅是为了巩固理论教学的辅助手段,使实践教学缺乏设计性、创新性。学生实验时往往是简单的“依样画葫芦”,单纯依据指定的操作步骤完成实验内容,提交实验报告,仅仅是掌握了最简单的操作技术,而忽略了对学生创新能力的培养。
2.实践性教学环节所占时间比例偏小,难以达到培养学生综合能力的目标
近几年来,工科专业教学计划中实践性环节所占比例有明显的增加。但总体来看,集中实践环节教学的总周数占总教学周数的比例约为20%左右,仍然偏低;特别是课程教学中,大部分课程实验学时数占该课程总学时数的比例只有10%左右,而在欧美国家,这个比例可占30%~50%,甚至更高。
3.项目设置欠合理,内容陈旧,信息量小,学生反映收获不大
几十年来,大学工科专业实践性环节的教学内容变化很小,套路基本不变。现以某院校热能与动力工程专业的实践性环节为例进行分析。
(1)该专业的金工实习工种设置为车、钳、刨、铣、磨、焊接、热处理,实际操作以钳工为主,车、焊接次之。这种做法坚持了几十年,基本没有变化和创新,现代加工技术以及非金属材料的加工未列入教学内容。
(2)机械零件设计、锅炉原理、汽轮机原理、热力发电厂四门课程安排了课程设计,但设计内容年年相同,每个学生的设计成果基本一样,无法真正培养学生的创新能力、动手能力、独立分析问题和解决问题的能力。
(3)课程实验的设置欠合理,实验内容零碎,综合性差,重复内容较多;实验的档次不高,多为验证性实验,未能充分发挥学生的主观能动性;实验设备的台套数少(有些贵重实验设备只有1~2套),造成有些实验变成了演示性实验。
(4)生产实习和毕业实习虽然在时间、场地方面得到了保证,但由于经费紧张,学生只能整班地安排在较近的某一个企业内实习,人员拥挤;企业因安全生产的需要,不能让学生进行实际操作,从而达不到预期效果。
(5)毕业设计是最为重要、安排时间最长的实践性环节,也是最为重视的实践性环节。目前,毕业设计因师资力量、设计场地和条件等方面的原因,导致部分选题在前沿性、创新性、综合性等方面达不到要求;少数教师在指导毕业设计过程中只注重对具体问题本身的解决,忽视了对学生研究方法的指导和能力的培养。
4.方法和手段落后
实践性教学环节使用的方法和手段有些仍然比较落后,计算机技术、多媒体技术、本领域内的优化设计软件平台等新的设计手段和方法应用得比较少。如,在进行课程设计时,学生的大部分时间花在重复性手算上,变成了计算工具,而不是将主要精力放在设计方案的拟定、分析比较、方案优化上。长期以来,课程设计在培养学生独立分析问题、综合问题能力以及创新能力方面是不令人满意的。又如课程实验教学,从检测方法和手段到实验数据的分析方法和手段都跟不上科学技术的发展,有些实验手段和方法甚至相当“原始”,实验效果也就可想而知了。[3]
能源动力类专业主要培养能源清洁转换与利用和热力环境保护领域既有扎实的理论基础,又有较强实践和创新能力的人才,以满足社会对该学科领域的教学、科研、工程技术、经营管理等各方面的人才需求。本专业具有明显的行业背景特色,拥有良好的实践教学条件,为实践教学改革创造了良好的条件。
二、创新型实践教学内容体系的改革与探索
针对能源动力类专业的特殊行业背景和人才培养目标的需要,以“厚基础、宽口径、强能力、高素质”为总体要求,以强化工程实践能力培养为目的,改革了实践教学模式,构建了“实验+实习+设计+课外实践”四模块的实践教学内容体系。