时间:2023-11-07 09:55:16
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇生物质燃料优势范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
中图分类号:TK223 文献标识码:A 文章编号:1672-3791(2013)07(c)-0117-01
随着社会经济的发展,能源需求不断增加,同时能源使用生态化理念也应运而生,节能减耗清洁生产已经成为企业生产与政府研究的重要课题。在国家生态经济战略推进落实过程中,众多的小型燃煤火电因耗能与污染生产而关停,电力企业也在不断开展能源研发与资源利用技术创新工作,以求实现资源利用最大化。这种情况下,众多火电企业将目光投向了生物质改造利用,因此小型燃煤火电机组转换生物质燃料技术的可行性研究提上日程。笔者在本文中着重分析了小火电生物质改造转化技术的必要性与系统性,并就其应用风险进行了阐述。
1 小火电机组进行生物质改造的意义分析
近年来,一些小型火电电力生产运营过程中存在着污染严重、耗能过多等弊端,这与当今生态和谐社会建设要求严重不符,因此小型燃煤火电发电机组进行生物质燃料改造具有必要性。此外,生物质改造能够降低生产成本,还能提升企业生产生态效益,具有明显的推广优势。
1.1 小火电进行生物质改造的紧迫性
与大型发电机组生产运营情况相比,小火电具有高耗煤、低产量、高污染、低经济效益的“两高两低”特征,因而被冠以“能源消耗与环境污染大户”的专称。随着近年来国家经济结构调整措施的落实,小型火电已经成为经济结构调整的重点整顿对象,并对一批严重耗能与污染的小火电实施了关停政策,迫于形势压力,小火电必须进行生产结构调整,并着重进行能源改造,加大新能源创新与应用研发。
生物质燃料具体表现为柴薪等有形物质,区别于太阳能与风能等清洁可再生能源,生物质燃料的情节性主要取决于燃料改造技术,但是生物质具有一项明显的能源优势便是可再生并且可运输,这就为生物质开发应用提供了便利,也为小型火电进行生物质气燃料改造提供了条件。
1.2 小火电生物质改造技术及其应用意义
现阶段,国家不断提倡进行能源改造与清洁能源研发,这为生物质能源转化应用提供了政策支持,国家还对生物质能源转化应用进行经济政策规定,为生物质能源转化应用提供了良好的外部环境。小型火电进行生物质能源转化主要是进行就地取材,既节省了煤耗,还降低了污染,而且企业发展还享有国家基金与经济倾斜,能为企业经济效益的实现提供保证。
2 小型燃煤火电发电机组生物质改造的可行性与风险性分析
2.1 小火电生物质改造技术可行性分析
小型燃煤发电机组进行生物质燃料转换具有明显的可能性。进行生物质能源改造需要资金少,而且还可以进行生物质燃料混燃,其中的各种改造方案都具有明显的可能性。小型燃煤发电机组改造活动集合理化设计、整合技术、试验验证等各环节于一体,因而生物质能源改造具有系统性。生物质能源改造技术的可能性与系统性决定了该技术具有可行性。
2.1.1 生物质能源改造的可能性
现阶段,我国小型火电发电机组进行生物质能源改造主要有三类设计,每种方案设计都具有可能性。
小型火电生物质燃烧利用主要分为生物质纯燃与生物质混燃两种,这两种应用技术都具有可能性。所谓生物质纯燃即指生物质直燃,该种技术应用不存在难点,但是具有一定的应用弊端。生物质直燃技术的应用首先要进行燃料机改进,以使燃料设备能应用于生物质燃烧,还要在生物质燃烧过程中进行纯燃弊端克服。生物质混燃技术在现阶段应用比较广泛,主要是将生物质与煤等碳化燃料进行混合燃烧应用,该技术能够有效降低氮氧化物的排放,而且在混燃过程中还能有效降低生物质的活性指数,有效降低温室气体的排放,具有良好的生态效益。
小型燃煤发电机组生物质燃料改造还包含流化床燃烧技术设计与层燃炉燃烧技术设计,这两方面技术主要是根据生物质燃烧进行的技术设计。其中流化床燃烧技术主要是进行生物质的流态化燃烧,该技术能够保证生物质的充分燃烧,而且能满足生物质多元燃料混合燃烧需求,燃料普适性较高。流化床燃烧技术因为这些优势具有广泛的应用前景。而生物质层燃炉燃烧技术主要是应用层燃炉排进行生物质燃烧,该种燃烧技术应用时间较长,流化床燃烧技术便是基于该种燃烧技术进行的燃烧技术创新,相比于层燃技术,流化床技术能够有效降低火电运行成本,且操作设备简单,易于推广。
小型火电生物质改造主要是针对生物质燃烧进行设备改造,基于此小型电厂进行了燃烧设备与系统改造处理,还进行了发电机组锅炉低成本设计改良。此间的设计与改造主要根据企业经济条件、设备运行情况实际情况进行的改良,具有明显的可行性。
2.1.2 小火电生物质改造系统性分析
小型火电生物质改造作为一项系统化的技术,其技术要点从设计环节到技术可行性预测再到技术方案的确定都经过科学论证,有效提升了改造技术的可行性。
在生物质改造技术中着重进行了燃料供应量设计与工艺系统改良,并基于小型火电设备运行与需求情况进行了锅炉参数设计。小型火电生物质改造转化中还进行了燃料可供性与入炉形式预测分析。生物质供应是影响企业生产运营成本的重要因素,确定合理化的生物质供应也能影响项目成败;而生物质入炉形式是影响生物质能否全面燃烧的关键因素,还能影响到燃烧设备的使用性能,不科学的入炉形式会缩短设备的使用寿命,还能影响企业生产运营的安全可靠性。
2.2 小火电生物质改造转换技术风险性分析
小型火电生物质转换改造技术在应用中尚存在一定风险,主要表现为技术风险、市场风险、实施与投资风险等,这些风险的存在主要影响技术管理水平,需要进行有效的技术管理措施加强。小型火电生物质技术的技术风险主要表现为锅炉改造与生物质燃烧技术。我国的生物质改造技术尚未发展成熟,也并未形成与国际技术的接轨,因此技术设计与应用中管理措施的不到位引发风险不由必然性。此外,生物质改良转换技术还具有一定的市场风险与投资风险。该种风险主要是由于生物质的供应与生产回报具有众多的不确定因素,以致风险指数较高。
3 结语
小型火电生物质燃料改造与转换技术具有十分明显的可行性,但是也具有一定的风险性,虽然风险的存在并不会影响技术的实施与应用,但是我们仍应该加大技术的风险管理,以全面提升转换技术的科学化与可行性水平。
中图分类号 S572;S216 文献标识码 A 文章编号 1007-5739(2017)05-0243-02
Abstract The biomass solid fuel is a new high efficience and clean fuel.Its utilization status in tobacco flue-curing of Jinggu County was introduced.The application prospect of biomass solid fuel was analyzed,and in view of the existing problems,countermeasures were proposed for further development.
Key words biomass solid fuel;tobacco leaf;curing;status;prospect;Jinggu Yunnan
生物质固化燃料是将作物秸秆、稻壳、木屑等农林废弃物粉碎后送入成型器械中,在外力作用下压缩成需要的形状,然后作为燃料直接燃烧,也可进一步加工形成生物炭[1]。生物质固体燃料的主要形状有块状、棒状或者颗粒状等[2]。生物质固体燃料具有体积小、容重大、贮运方便,易于实现产业化生产和大规模使用;热效率高;使用方便,对现有燃烧设备包括锅炉、炉灶等经简单改造即可使用;容易点火;燃烧时无有害气体,不污染环境;工艺和设备简单,易于加工和销售;属可再生能源,原料取之不尽,用之不竭等特点[1,3]。
1 景谷县烟叶烘烤燃料使用情况
景谷县位于云南省普洱市中部偏西,地处东经100°02′~101°07′、北纬22°49′~23°52′,总面积7 550 km2,人均占有土地2.67 hm2,人口密度38人/km2。有热区面积48.8万hm2,占总面积的64.6%,北回归线从县城附近通过,总地势由北向南倾斜,最高海拔2 920 m,最低海拔600 m,典型的南亚热带地区。由于生态环境良好、土地资源丰富、光热水气条件优越,适合烤烟种植,烟叶清香型风格特征较明显,具有香气绵长、透发、明快,留香时间较长,饱满丰富感较好,烟气较为柔和等特点,具有较高的使用价值,深受省内外卷烟工业企业的喜爱。目前,烤烟已成为景谷县重要的农业经济作物之一,成为财政收入的重要来源和烟农脱贫致富的重要途径。2016年景谷县烟叶种植面积4 546.67 hm2,收购烟叶1.075万t,全县烟叶烘烤燃料以煤炭为主,按照1 kg干烟叶耗煤量1.5~2.0 kg[4]计算,景谷县2016年的烟叶烘烤用煤达到16 125~21 500 t,在烟叶烘烤中大量使用燃烧煤炭释放出的烟尘、SO2、NOX、Hg、F等对大气环境造成污染[5]。
2 生物质固体燃料应用现状
2.1 生物质固化成型设备研发现状
生物质固化成型技术根据不同加工工艺可以分为热成型工艺、常温成型工艺、碳化成型工艺等几种类型;根据成型压缩机工作原理不同,可将固化成型技术分为螺旋挤压成型、活塞冲压成型和环模滚压技术[6]。我国在生物质固化成型设备上也进行了较多的研究,王青宇等[7]O计了斜盘柱塞式生物质燃料成型机,可以完成连续出料,为生物质颗粒成型提供了一种新思路。张喜瑞等[8]设计了星轮式内外锥辊固体燃料平模成型机,整机工作过程中噪音低,经济效益与生态效益明显,为热带地区固体燃料成型机的发展与推广提供了参考。目前,我国生物质固体成型设备的生产和应用已实现商业化,可以满足生物质燃料固化成型加工需求。
2.2 生物质固体燃料在烟叶烘烤中的应用现状
20世纪90年代,叶经纬等[9]在烟叶烘烤上研制了生物质气化燃烧炉,使用这种生物质气化燃烧炉能源利用率提高了50%以上,同时优质烟叶的比例也有所提高。张聪辉等[10]研究表明,使用烟杆压块的生物质燃料部分代替煤炭,可以满足烟叶烘烤的需求,并且烘烤成本比使用煤炭更低。徐成龙等[11]通过对比不同能源类型密集烤房在烘烤成本、经济效益及烤房温度控制方面的烘烤效果,认为使用生物质燃料的燃烧机烤房改造方便、空气污染小、节能环保,是最具推广价值的烤房。
3 应用前景分析
景谷县为云南省第二大林业县,全县林地总面积为595 862.4 hm2,活立木蓄积48 324 350.0 m3,每年森林采伐量约1 537 300.0 m3;全县农作物平均种植面积40 385.9 hm2,粮食平均产量为467 425.2 t,具备开发生物质燃料的潜力。路 飞等[12]研究表明,景谷县生物质理论资源量高达1 355 647.3 t,资源优势较为明显,可以加工成生物质固体燃料,满足全县烟叶烘烤需要。2014年,普洱市申报的国家绿色经济实验示范区获得国家发改委批复,为普洱市的发展提供了巨大的机遇,目前全市已开展多个生物质能源项目[13]。景谷县在烟叶烘烤中,创新烟叶烘烤模式,推广使用生物质固体燃料,降低烟叶烘烤能耗,减少主要污染物的排放,改善环境质量,符合普洱“生态立市,绿色发展”的发展需求。
4 存在的问题
4.1 认识不到位
目前,烟叶烘烤主要以燃煤作为原料,烘烤设备较为成熟且烘烤工艺较为完善;使用生物质固体燃料,可降低烟叶烘烤污染、维护农村生态环境、促进烟叶烘烤可持续发展等优势,但尚未引起广泛关注。
4.2 配套不完善,投入成本高
开发生物质固体燃料前期投入高,不确定因素较多,风险较大,收益难以控制。目前,景谷县尚无生物质固体燃料加工企业,生物质固体燃料产业配套不完善,燃料使用成本高。将传统烤房改造成生物质燃料烤房需对原有设备进行改造更换,短期内难以大量推广。
4.3 缺乏政策支持
生物质固体燃料在烟叶烘烤中具有良好的社会效益,但政府、烟草行业对生物质固体燃料的生产、传统烤房的改造等未制定明确的扶持措施和奖励办法,没有形成加工使用生物质固体燃料的长效机制。
5 对策
5.1 加强宣传力度,树立可持续发展理念
大力宣传使用生物质固体燃料在节能减排、农林废弃物循环利用、减工降本、提质增效方面的积极作用,让全社会都充分认识到使用生物质固体燃料所具有的良好的经济效益、社会效益和生态效益,为全面推进使用生物质固体燃料营造良好的舆论氛围。
5.2 开发利用生物质固体燃料,提高绿色生态烘烤能力
景谷县林产工业较为发达,农林废弃物资源丰富,目前国内生物质固体成型燃料技术和设备已较为成熟,可就地规划建设生物质固体燃料生产基地,就地消化农林废弃物,保护环境卫生,实现绿色烘烤。
5.3 加大政策和Y金扶持,调动参与积极性
在生物质固体燃料生产、废弃物回收、烤房设备改造利用等方面出台相应的扶持和补贴政策,提高社会和烟农参与使用生物质固体燃料的积极性和主动性。
6 参考文献
[1] 王庆和,孙勇.我国生物质燃料固化成型设备研究现状[J].农机化研究,2011(3):211-214.
[2] 李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008(5):116-118.
[3] 邱凌,甘雪峰.生物质能利用现状与固化技术应用前景[J].实用能源,1990(3):21-23.
[4] 王卫锋,陈江华,宋朝鹏,等.密集烤房研究进展[J].中国烟草科学,2005,26(3):12-14.
[5] 严金英,郑重,于国峰,等.燃煤烟气多污染物一体化控制技术研究进展[J].热力发电,2011,29(8):9-13.
[6] 周冯,罗向东,秦国辉,等.浅谈生物质燃料因化成型技术[J].应用能源技术,2016(8):54-55.
[7] 王青宇,蓝保桢,俞洋,等.斜盘柱塞式生物质燃料成型机的设计[J].木材加工机械,2014(3):48-50.
[8] 张喜瑞,甘声豹,李粤,等.星轮式内外锥辊固体燃料平模成型机研制与实验[J].农业工程学报,2014,30(22):11-19.
[9] 叶经纬,江淑琴,高大勇.生物质能在烤烟生产中的应用技术[J].新能源,1991,13(6):35-39.
[10] 张聪辉,赵宇,苏家恩,等.清洁能源部分代替煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.
大东流苗圃曾经使用过多种供暖方式,但要么费用高昂、要么供暖达不到要求,始终没有找到最合适的供暖方式。经历过燃煤锅炉、地源热泵和燃油锅炉的使用摸索后,在这个供暖季里,大东流苗圃终于找到了最心仪的供暖方式,即用生物质能源供暖。
这是北京首个大规模使用生物质能源供暖的项目,它打破了北京供暖基本以天然气和煤炭为燃料的格局。与此同时,国内其它地区也已经开始建设生物质供暖/热的项目。
生物质颗粒供暖
小汤山镇的大东流苗圃是北京主要的种苗花卉培育生产基地,因位置相对比较偏远,市政供暖管网无法覆盖。在此之前,大东流苗圃曾经尝试过好几种供暖方式,主要用的是燃油供热和地热泵机供热两种相结合的方式,可是这两种方式的费用都比较高,在只有2万平方米温室供暖的情况下,所消费的燃油费用和电费总共约380万元。如果要使全部的温室都正常供暖,费用则高达近千万元,这让苗圃是难以承受的。
在此情况下,大东流苗圃与吉林宏日新能源合作,采用以生物质颗粒为燃料的供暖方式,2013年秋天,北京首个大规模以生物质供暖的项目在大东流苗圃正式投入运营。
生物质颗粒燃料与其他能源相比,最大的优势即经济上划算,并且属于符合环保要求的可再生能源。
宏日新能源公司北京办事处副主任刘庆胜给《能源》记者算了一笔账,根据2013年市场行情,如果将生物质颗粒的单位有效热量费用设为1,相应的管道天然气、燃料油、柴油、电力分别的费用则为1.48、1.75、2.61和2.81,均高于木质颗粒,而煤炭费用相对较低为0.72,但煤炭所隐藏的环保成本则高于生物质颗粒。
对大东流苗圃而言,在2013―2014这个供暖季,超过6万平米的温室大棚和办公区供暖共消耗2600吨生物质颗粒燃料,算上人工费、维护费等(不包括前期投入),运行费用仅300万元左右,远低于天然气、燃油、地热泵等供暖方式,同时,其所排放的二氧化硫和氮氧化物等物质远低于燃煤。
不过,燃料的远距离运输是目前北京生物质供暖项目发展的一个不利条件。大东流苗圃所使用的生物质颗粒是从山东青岛的工厂运输到北京的,每吨颗粒的运输费用约为100元。
“其实北京市内就有很丰富的生物质能源原材料,都可以加工成生物质颗粒燃料。”站在大东流苗圃的温室边上,中国农业大学副教授朱万斌指着身边的树木惋惜地对《能源》记者说,“北京市每年产生的园林绿化和林果枝叶达到数百万吨,枯枝等生物质垃圾非常多,由于处理成本高,有的就被丢弃和就地焚烧了,不仅浪费了资源还污染环境,如果加工成生物质颗粒,就是很好的燃料,用于替代郊区小锅炉燃煤。”
根据《北京市2013-2017年清洁空气行动计划重点任务分解》方案,到2015年,全市要完成600蒸吨改造任务,实现城六区无燃煤锅炉。如果全部实行“煤改气”,气源短缺和高成本的问题就难以解决,生物质能源供暖则成为“煤改气”之外最经济可行的方案。
刘庆胜说:“根据目前各种能源产品的价格和政府的环保要求,我们在北京开拓更多的业务是很有希望的,在北京配建加工厂也是水到渠成的,我们已经计划在北京建立一个生物质颗粒加工厂。”
当宏日新能源公司在北京的木质颗粒加工厂建成后,如果北京未来建更多的生物质供暖项目,“就地取材”也就会变成可能。
产业破壳良机
说起生物质能源,大多数人对它的认识还停留在农村沼气的印象里,但实际上,生物质能源的种类是非常多元的,其资源量也十分巨大。生物质颗粒燃料就是一种可广泛使用的生物质能源,两院院士石元春等多位专家在接受《能源》记者采访时都认为,将其作为供热燃料具有很强的经济、社会价值。
生物质颗粒燃料一般是用林业“三剩物”(采伐剩余物、造材剩余物和加工剩余物)、秸秆、稻壳、花生壳、玉米芯、油茶壳、棉籽壳等原料加工产生的成型燃料,它是一种热值接近燃煤的可再生清洁燃料。
直接燃烧“三剩物”等原料与燃料加工后的生物质颗粒相比,有何不同?朱万斌解释说,燃烧的效率和所产生的废弃物与该物质所处的物理状态有关,将原料压制成固体颗粒后,有助于充分燃烧,让燃烧速度可与分解的速度相匹配。同时,使用专业的辅助设备燃烧,也有利于生物质颗粒燃料提高热值并且降低有害物的排放。另外,将农林废弃物制成固体成型燃料可以减少其体积,更方便储存和运输。
以秸秆为例,秸秆被压缩成生物质颗粒燃料后,燃烧效率由原来的不足20%提高到80%以上;秸秆颗粒燃烧的热量为3500大卡/公斤,平均含硫量只有0.38%,2吨秸秆的热值相当于1吨煤,而煤的平均含硫量约达1%;此外,充分燃烧后的秸秆灰渣还可作为肥料还田。
据石元春介绍,瑞典等欧洲国家对生物质颗粒燃料的使用已经比较普遍,2008年瑞典的生物质供热就占到了该国供热能源消费总量的71.6%。我国的生物质颗粒燃料的资源潜力十分巨大,“绝大多数资源都还没有开发出来,我们应该学习借鉴瑞典的经验。”石元春说。
目前,由于油气价格快速上涨,以及迫在眉睫的雾霾治理需求,我国已经有越来越多的地区开始提倡使用生物质颗粒燃料,冬季供暖和工业企业的供热需求让生物质供热产业逐渐发展壮大起来,该产业已经到了破壳而出的临界点。
生物质成型燃料产业的相关发展规划也已经出台。《国家可再生能源中长期发展规划(2007-2020)》中指出,到2020年要生产和使用生物质成型燃料5000万吨;《国家生物质能发展“十二五”规划(2012)》则提出,到2015年要生产和使用1500万吨。而截至2011年底,生物质成型燃料总产能约为500万吨,市场增长空间还有很大。
在这方面,吉林省走在了全国的前面。今年年初,吉林省政府《吉林省发展生物质经济实施方案》,称该省生物质资源丰富,年可收集秸秆、稻壳、林业剩余物等生物质资源9400多万吨,未来要重点发展颗粒燃料、城市锅炉供热、大型生物颗粒燃料工厂,部分替代城市燃煤供热、工业集中区燃煤供气和居民用煤。
上述方案还提出,吉林省将主要依托吉林宏日新能源、固得为等企业,形成500万吨农林生物质成型燃料、150万吨生物液体燃料剩余物成型燃料、50万吨能源植物成型燃料生产能力,用于满足城市分布式供热、工业集中区供气等需要。
作为中国农业生产大省,四川在利用和开发生物质能源上有着得天独厚的优势,拥有丰富的可供开发的生物质能源原材料。例如,四川甘薯产量占到世界产量的16%,在燃料价格不断上涨的今天,利用甘薯进行燃料酒精的生产无疑具有很高的经济价值。
四川还是油菜籽生产大省,常年种植面积稳定在1200万亩左右,年产菜籽110―130万吨,占全国产量的10%以上,油菜籽在榨油生产过程中产生的废弃酸化油正是进行生物柴油生产的廉价原材料。
据估计,四川的野生麻风树有16万亩以上,近年来人工栽培面积也有15万亩以上,这些麻风树是生产生物柴油极佳的原材料,且对保持环境、水土和植被有不可估量的价值。
此外,四川的畜牧业和川菜餐饮业在加工过程中产生了大量的动植物油脂废弃物,利用生物质能源开发技术可将其变废为宝,生产出生物柴油。
在四川农村中大规模、集约化的禽畜饲养每天排出大量的禽畜粪便,将其用作沼气生产的发酵原材料,可使之成为一种重要的生物质能源。
最后,四川大量的农村剩余劳动力为充分开发生物质能源提供了充足的人力条件。
二、四川生物质能源产业发展现状
四川省的生物质能源开发尚处于积极的初期尝试。
经过多年的研发,四川省的沼气技术逐步成熟,已经高度专业化。现在四川农村的沼气建设开始尝试利用各种渠道募集资金,构建生物质能源高效转化利用的生态产业链。在技术上已实现在农村建立以村为单位的集体沼气供给系统。
四川发展燃料酒精的主要原材料依赖于不属于主粮的甘薯,现在四川的甘薯生产燃料酒精项目主要是进行甘薯育种栽培和小规模的燃料酒精生产。由中石油与首都国际投资集团合资的首佳能源已在甘薯上投资了200万元进行育种开发。
四川对于生物柴油的开发工作处于初期。四川省政府通过与中石油签订合作开发生物质能源框架协议确定了建立10万吨利用麻风树生产生物柴油的规模。由于种植麻风树投资少、收益高,麻风树的种植很早就吸引了很多新能源投资资金的介入,包括一些外资。
三、四川发展生物质能源产业存在的问题
一是以户为单位的沼气池建设,无法实现规模经济,也无法在将来利用能源交易市场将沼气产品在市场上进行交易,不利于该项目的持续发展和技术进步。
二是应清醒地认识到甘薯酒精的生产将受限于原料市场价格波动的冲击。首先,现在四川的燃料酒精项目盈亏预算是以低粮价时代的甘薯价格计算的,粮食商品的涨价趋势、燃料酒精项目实施对甘薯需求的冲击,势必会对该项目产生巨大的影响,这值得政府、企业仔细斟酌。其次,现有的甘薯生产酒精技术对水的大量需求将对水环境造成巨大的压力,如果排污不能得到有效控制,对产地的环境会产生破坏性的作用。最后,燃料酒精生产企业还必须应对我国油料零售市场的垄断格局和国家控制的成品油价格体制造成的不透明、不确定的价格波动,这些都增加了燃料酒精生产的成本。
三是生物柴油在四川虽已有小规模生产,但是受制于麻风树生长周期和废弃物的收集技术,以及外部的油价涨跌,这一技术还未充分发展。另一主要问题是其生产过程产生的废水和固体废弃物的处理问题。再就是国内成品油市场的寡头垄断导致了有生产渠道,无销售渠道的问题。
四、四川发展生物质能源的产业思路
(一)加强生物质能源生产技术的研发,发展具有四川特色的生物质能源产业
生物质能开发是一项技术密集型的产业,其产业优势体现在新技术的引入,新生物质能源原材料的使用,这个行业不是靠资金和劳动力的多寡推动的,若希望四川在今后能够相较其他省市具备比较优势,技术和人才储备是关键。也只有拥有充足的技术和研发实力,才能充分利用四川的自然禀赋优势,建立有本地特色的生物质能源开发产业。
(二)大力发展生物质能源开发利用系统集成和相关服务
现存的生物质能源开发产业链过短,缺乏系统集成,上下游企业和农户脱节,整个产业链显得非常脆弱,下一步开发市场的思路应该集中在如何实现系统集成,提升和建立生物质能源开发各项环节的服务水平上。这方面,政府可以提供帮助和政策扶持,但主要应该依靠企业的自主、自愿投入。
(三)建立面向国内和国际市场的生物质能源技术创新基地
四川发展本地的生物质能源开发应该立足国内市场,引进国际先进技术,要有自己的技术、专利,要有能够占领国际技术制高点的决心。要学习其他省市开发科技产业的方法,建立生物质能源技术创新基地,利用研发单位的集聚效应,增强知识和技术在研发者中的传递,才能在将来获得和巩固其领先地位。
五、四川发展生物质能源的政策取向
首先,在垄断性的国内能源市场,国有石油公司利用自身的行政优势和影响力可以非常低的代价获得石油、天然气的开发权,他们无心进行新能源开发,甚至有动力阻止新能源开发企业对其垄断市场的冲击,阻止技术进步和能源产品的多样化。现阶段怎样协调垄断者和竞争者的冲突、引入竞争者,是对地方政府经济管理能力的最大挑战,也是眼下发展生物质能源最大的瓶颈。
其次,国家出台《中华人民共和国可再生能源法》和农业部制定的《农业生物质能产业发展规划》对生物质能源的开发加以鼓励和支持。中央支农建设、农民增收的政策、退耕还林政策和长江上游的水土保持政策,对四川利用自身地理、气候优势进行生物质能源的原材料开发也有推动作用。在这样的大环境下,四川省也推出了不少细化的政策鼓励生物质能源的开发,例如,《四川省高新技术产业及园区发展实施方案》中关于新能源的扶持和四川的能源发展目标定位方针等。
中图分类号:F127文献标志码:A文章编号:1673-291X(2010)28-0128-03
生物质能是植物通过光合作用将太阳能转换为化学能而固定下来并储存于生物质中的能量。主要包括植物、农林废弃物、有机废水和畜禽粪便等 [1]。现代生物质能源的研究与利用主要指借助热化学、生物化学等手段通过先进的转换技术,生产出不同需求的固体、液体、气体等高品位的新能源来替代日期枯竭的化石能源。生物质能源目前已占世界能源消费的14%左右,排在化石能源煤、油、气之后而位居第四[1~2]。 贵州是一个富煤缺油缺气的山区省份,长期欠开发、欠发达,充分利用优越的自然气候资源、丰富的生物资源,积极开发利用生物质能源,缓解能源短缺压力,是事关国家能源安全、生态安全,确保国民经济可持续发展和社会进步的重大研究课题,是国家能源发展战略的必然选择。发展生物质能源有利于探索能源替代新途径,缓解能源压力;有利于贵州喀斯特山区的石漠化治理,改善生态环境;有利于拓展农业生产功能,增加农民经济收入。有鉴于此,拟通过对贵州主要自然气候资源、能源植物资源及产业技术现状、存在问题和发展对策进行分析探讨,以期促进贵州生物质能源产业持续稳步发展。
一、贵州发展生物质能源的优势及条件
“十五”计划以来,随着中国《可再生能源法》的正式实施,生物质能源发展日益受到各级政府和全社会的密切关注。国家先后颁布了《中华人民共和国可再生能源法》,制定了《可再生能源中长期发展规划》、《可再生能源“十一五”规划》及《生物燃料和生物化工原料基地补贴办法》、《生物能源及生物化工非粮引导奖励资金管理暂行办法“财建[2007]282号” 》、《秸秆能源化利用补助资金管理暂行办法“财建[2008]735号” 》等相关政策及资金补助措施。根据中国经济社会发展需要和生物质能源利用技术状况,明确提出到2010年,增加非粮原料燃料乙醇年利用量200万t,生物柴油年利用量达到20万t;到2020年,生物燃料乙醇年利用量达到1 000万t,生物柴油年利用量达到200万t,总体实现年替代约1 000万t成品油的目标。农村沼气、燃料乙醇、生物柴油、致密成型固体燃料等广泛应用于生物质发电、汽车燃料、民用生活领域,能源植物筛选、高效节能技术一直被视为生物质能源研发的重点。贵州位于中国西南地区的东部,地处云贵高原向广西丘陵过度的斜坡地带,介于东经103°36′~109°35′、北纬24°37′~29°13′之间,平均海拔1 100m左右,属亚热带季风湿润气候区,大部分地区年平均气温在15℃左右,日照时数在1 200h~1 400h之间,年均降水量在1 100mm~1 300mm之间,年相对湿度高达82%,立体气候明显、温暖湿润,生物资源种类繁多、富有特色,是全国重要的动植物种源地之一。
根据贵州省(2006―2050)喀斯特石漠化和小流域综合防治规划,贵州省现有200万hm2宜林荒山荒地,在喀斯特地貌的山区种植小油桐、黄连木、光皮树、乌桕、续随子、油桐、蓖麻、甘蔗、木薯、甘薯、芭蕉芋等能源植物资源,对推动山区农村产业结构调整,实现能源农业、能源林业产业化,生物质能源及其他农业废弃物十分丰富,开发应用基础好。按照国家发展生物质能源应坚持不与人争粮、不与粮争地、不破坏生态环境的“三不”原则,贵州发展生物质能源的自然基础条件较其他平原地区优越。
贵州自21世纪开始,已经启动从优势能源植物筛选、利用评价、良种培育、基地建设到加工生产技术工艺等系列基础试验示范工作,基本建立了以小油桐、乌桕、光皮树、芭蕉芋为主的优质高产栽培和良种繁育技术体系,掌握了高转化率的加工工艺和技术,为生物质能源产业进一步发展奠定了一定的基础。
二、贵州生物质能源发展现状及存在问题
1.产业研究发现状
贵州省自2000年以来就开始关注并积极推动农村沼气、燃料乙醇、生物柴油等资源发掘及技术研发工作。在省委、省政府的重视支持下,相关部门先后从农村废弃物生产沼气,从芭蕉芋、马铃薯、甘薯、甘蔗、木薯制备燃料乙醇,从小油桐、光皮树、续随子、蓖麻、乌桕制备生物柴油等方面对贵州生物质能源产业发展进行了摸底调查和相关研究。已从资源评价、良种培育、配套栽培、加工工艺、综合利用及产业化技术等方面展开试验示范研究。2008年全省沼气用户超过149.6万户,实际利用141.5万户,年产气76 682.6m3,秸秆生物气化产气集中供气点达二十余处 [1~5]。在能源资源的调查及筛选评价中,已基本查清全省主要生物质能源植物资源种类、数量、分布区域及主要优势资源,完成30种贵州木本能源植物的种质资源迁地保育,繁育基地及5~10种主要造林树种轻基质容器育苗技术,特别在小油桐、芭蕉芋等的能源植物资源收集、新材料创制和良种繁育方面取得一定进展,已选育出并通过省级审定芭蕉芋品种两个。一是良种繁育技术体系基本建立。二是原料基地建设进展顺利。三是生产加工工艺比较成熟。特别是生物柴油化学生产技术已经形成比较完备的生产加工技术体系和方法,固体催化剂转化率达到99%,甲酯回收率大于95%,并获多项国家发明技术专利。
目前已建有小油桐产业示范基地1.6万hm2,芭蕉芋产业示范基地近1.5万hm2,甘薯产业示范基地近20万hm2,马铃薯产业示范基地50万hm2,甘蔗产业示范基地近2万hm2。油桐产业示范基地30万hm2,黄连木、光皮树、乌桕、蓖麻等还在研究积累初期 [4~6]。已有贵州中水能源股份有限公司、贵州江南航天生物能源科技有限公司、贵州金桐福生物柴油产业有限公司、黔西南康达生物能源科技有限公司均建成了年产1万~3万t的生物柴油加工示范生产线,并将生物柴油作为新产业,逐步建设年产10万t以上的生产能力。按亩产300kg原料计算,目前能源油料种植面积要在2.5万hm2以上。乙醇生产方面:糖厂有现成的乙醇加工设备和技术,年需求原料甘蔗面积也在1.5万hm2左右 [2~4]。贵州大学、贵州醇酒厂的淀粉干片发酵技术还在进一步研究中,不久也会有相应规模的生产线建成投产,加上其他产业的原料竞争,原料不足已导致企业3/4产能闲置,仅靠地沟油、泔水油生产生物柴油很难形成产业化。
虽然生物能源开发利用前景广阔,但生物质能源研发利用技术目前还没有实现关键性突破,在发展过程中还面临优势植物资源缺乏、生产成本高、原料供应不足、市场风险大、综合利用率低、产品标准不一、市场销售不畅等诸多问题。
2.存在问题
(1)对发展生物质能源产业的认识不足。从一个新兴产业的角度和自身发展规律来看,生物质能源产业仍然存在基础积累、市场发育、支撑体系、技术攻关等许多关键环节问题。许多企业或经营者首先想到的是抓基地、建厂房,争取国家的政策性补助。而在产业链的基础环节、市场培育和技术保障方面还存在一定的盲目性,产业体系未建立,导致许多基地经营水平低、示范效果差、农户持观望态度,对发展原料生产没有信心,原料供应严重不足。
(2)研究基础薄弱,原料成本较高。生物质能源产业是一项多学科联合的现代综合性产业,产业链较长,涉及多项技术工程,生物质液体燃料近期主要是生物柴油和燃料乙醇,未来主要技术是木质素和纤维素生产液体燃料。目前主要依赖于油料植物的产量和含油量,许多木本油料植物都呈野生或半野生状态,缺乏强有力的科技支撑是生物能源产业长期做不大的原因之一,产出率不高主要还是资源和技术的双重制约。由于研究时间短,技术基础薄弱,特别是专用原料植物的良种选育及配套生产技术还未真正破题,原料生产成本较高,据测算,13t甘蔗可生产1吨乙醇,需土地1 400m2左右,按蔗价280元/t计算,原料成本价为3 640元,7t木薯生产1吨乙醇,木薯原料成本价4 000元左右,加工成本需500元~800元;按2吨植物油生产1t生物柴油计算,仅原料成本也在4 000元~5 000元之间。目前燃料乙醇销售价为5 000元~6 000元/t,生物柴油销售价为6 000元~7 000元/t,企业利润空间不大,农户种植收入较低。就拿炙手可热的小油桐来说,经历了近五年的研究,虽有规模化种植面积1.6万hm2,但大面积产量低而不稳,平均累计产量不足100kg/667 m2 [2~6]。所以,目前主要都采用地沟油、泔水油生产生物柴油,原料供应严重不足。
(3)主攻方向不明确,优势植物突破性小。通过前期研究,在优势物种选择、良种选育方面尽管取得一些成果,但研究领域狭窄,技术积累不够,在解决品种抗逆性、高产优质和规模化经营方面突破性不大,产量低,成本高。目前大多数能源植物的研究尚处于收集、引种、筛选、评价及试种栽培的探索阶段,原料结构单一、应用范围小,规模化和产业化程度还比较低。糖料作物、淀粉作物产量高,但转化利用成本较高,油脂植物转化利用成本低,但种植产量较低,农户种植积极性不高。不管是糖料能源、油料能源、淀粉能源还是其他,究竟发展能源酒精好还是发展生物柴油好目前也还没有准确定论,基地建设、产品加工、市场销售脱节,直接造成生产成本和管理成本过高,企业出现严重亏损,有碍于经济效益目标的实现,极大地限制了贵州生物能源产业的持续稳定发展。
三、贵州生物质发展建议
1.科学制定发展规划
生物质能源研发的范围十分广泛,从用途上来说,有生物质直接燃烧或混合燃烧发电,生产沼气或制成致密型燃料作民用燃料,生产燃料乙醇、生产生物柴油作机械动力燃料,还能作生物制氢等。根据用途的不同,其技术工艺和所需原料差别也很大。我们要根据市场和贵州经济社会发展的实际需求,结合能源结构特点确定一定时期内的生物质能源产业在经济结构中的地位、发展方向和任务目标,要根据生物质能源产业发展的学科取向、价值取向对相关产业进行系统科学的评估和论证,特别要在开发中的工矿区、非粮产区选择重点领域和重点植物进行研发。
根据贵州山区的能源植物分布比较零星分散、收集运输困难等特点,结合加工工艺比较成熟的实际,能够容易形成产业优势的就是车用燃料乙醇和生物柴油。目前应以车用液体燃料为重点,稳定小油桐、甘蔗、芭蕉芋、红薯、马铃薯生产,探索光皮树、黄连木、乌桕、续随子、木薯、蓖麻及其他纤维植物在喀斯特山区的适应性及发展潜力。贵州省粮食自给虽基本平衡,但随着粮食加工转化利用量的逐年增加,粮食供需缺口将继续存在,推行燃料乙醇必须慎重。结合喀斯特石漠化治理和“两江”流域区的生态屏障建设,重点应选择适应性好、抗逆性强的多年生木本能源植物进行研发。
2.加强科技攻关,突破核心技术
鉴于发展贵州生物质能源产业的关键在于保障原料供应、降低生产成本、保护生态环境和增加农户收入,一是针对喀斯特山区的地理气候环境,强化自主创新,重点利用先进育种手段和生物技术手段,选育速生丰产、抗旱耐瘠、抗病虫害的专用能源植物品种。二是研究速生丰产栽培、病虫害防治、矮化密植及配方施肥等适用技术和省力化技术。三是加快科技成果的引进和新技术研发集成、应用与推广,加速科技成果转化,大幅度提高其产量和品质。四是加强小油桐、黄连木、乌桕、续随子、芭蕉芋、甘薯等副产品的综合利用和技术研发,降低生物质能源生产的综合成本,提高综合效益。
3.探索发展模式
发展生物质能源产业是一项产业化程度较高的系统工程,涉及政府、加工企业、科研单位、农户等诸多部门,目前没有现成的模式可循。市场是拉动生物质能源产业发展的前提,科学技术是确保该产业持续稳定发展的关键。特别在发展初期,由于中国能源生产还存在一定的行业垄断,没有稳定的市场,政府要加强领导和监管,切实调动社会各方面发展生物质能源的积极性,尽快建立起一定规模生物能源基地,组织协调好各方面的利益分配关系。建议有关部门应从国家能源发展战略和解决三农问题的高度出发,切实制定相应的扶持政策和措施,要将产品加工、原料种植、基地建设和退耕还林、生态工程、结构调整、石漠化治理、农民增收等结合起来,做好生物质能源作物种植规划和基地建设,以保证原料供给及降低原料成本。推广“公司+科研+基地+农户”的经营模式,明确各方的责、权、利,建设一定规模的产业化示范基地,共同争取国家的政策支持和资金补助,既满足了企业的原料供应,又保证了农民的经济收入,实现农户和企业之间利益共赢,确保此项工作的顺利开展。
参考文献:
[1]田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程,2005,(1):2-4.
[2]吴创之,马隆龙,陈放,等.中国生物质能源产业发展报告(2009―2010)[R].
[3]九三学社贵州省委.关于发展我省生物质能源的建议[EB/OL].世界新能源―生物质能源网,2008-02-09.
[4]王亚萍,姚小华,王开良.燃料油植物资源研究现状与发展对策[J].中国油脂,2007,(5):7-10.
[5]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,(5):12-14.
[6]邓伯龙,石杨文,陈波涛.贵州生物质能源树种资源的开发与利用[J].资源开发与市场,2006,(3):265-266.
文章编号:1005-6629(2011)12-0067-03 中图分类号:TK6 文献标识码:E
1 第二代生物燃料的由来
石油是主要的化石能源之_,―直以来都推动着工业和社会的发展。然而,地球上蕴藏的可开发石油资源却只剩下几十年的寿命,而且使用石油资源所带来的环境问题也日益突出:石油燃烧会产生大量的含碳氧化物及少量含硫、含氮化合物,这些化合物要么是温室气体,要么能产生酸雨,不仅造成环境污染更能伤害人体健康。因此,积极寻找一种石油的替代资源就势在必行,于是生物质能就渐渐进入了人们的视Wo所谓生物质能就是储存于生物质资源中的能量,这些生物质能源主要是指可再生的有机物质资源,主要包括农作物、树木等植物及其残体、畜禽粪便、有机废弃物等,可以储存由光合作用产生的能量,因此,生物质能也是太阳能的一种转化形式,也具有可再生、应用潜力大等特点,科学家们需要做的就是,将这些能量进行开发并加以应用。
20世纪30年代,巴西最早使用甘蔗进行发酵,生产出乙醇燃料,用以驱动汽车,像巴西这种以可食用作物(主要包括玉米、大豆、甘蔗等)为原料制造出的生物质能被称为第一代生物燃料,其代表产品是通常所说的生物乙醇和生物柴油,前者由富含单糖、寡糖或淀粉的生物质原料经过发酵、蒸馏、脱水等步骤制成,后者为以动植物油脂为原料,经过酯交换反应(碱、酸、酶催化或超临界条件下)加工而成的脂肪酸甲酯或乙酯燃料。虽然第一代生物燃料已在许多发达国家推广使用,但第一代生物燃料并非长久之计,原因有二。其一,没有足够的耕地以满足发达国家10%的液态燃油原料需求,比如在2008年,由于生产第一代生物燃料而对粮食作物的额外需求使得粮食价格大幅上涨;其二,原料成本太高,特别是生物柴油,原料构成了其成本的70%,这也使得第一代生物燃料的价格高于石油,远离了人们所期望的对替代石油具有积极影响的能源形式。
20世纪90年代,美国可再生能源实验室研究开发利用纤维素废料生产乙醇的技术,这也标志着第二代生物燃料的诞生。所谓第二代生物燃料是指以非粮作物和农业废弃物为原料的可再生替代能源,这些原料包括玉米秸秆、木材废料及草本类能源作物。与第一代生物燃料的原材料(粮食作物)相比,这些原料作物成本低、量大,更关键的是这些作物的种植生产不会干扰和危及粮食生产。第二代生物燃料的诸多优势使其具有更加明朗的发展前景,其代表产品主要有纤维素乙醇和纤维素汽油两种。
2 第二代生物燃料的生产
2.1纤维素乙醇的生产技术
第一代生物燃料的原料(甘蔗、玉米等)本身富含糖类,将其转化为乙醇的生产工艺较为简单,而第二代生物燃料主要以纤维素质材料为原料,其炼制过程比第一代生物乙醇的合成多了两个步骤:生物质原料的预处理和纤维素、半纤维素的降解,这也是目前纤维素乙醇生产的难点之一,而整个炼制过程则涉及多个生物催化反应,它们可以按照多个方式组合形成不同的工艺路线。目前已建有示范装置的纤维素乙醇生产技术主要有4种:硫酸/酶水解一发酵技术、硫酸水解一发酵技术、酸水解―发酵一酯化一加氢技术和酶水解一发酵技术。这4种技术最大的不同点在于纤维素水解方式的差异:前3种均采用酸水解,而第4种采用生物酶水解。实际工业生产中,用酶替代酸水解纤维素,可以在比较缓和的条件下操作,可以减少糖的降解,提高乙醇收率,因此酶水解、发酵技术路线(见图1所示)是纤维素乙醇生产的发展方向,此项技术由美国可再生实验室开发。
首先,将经研磨后的生物质原料(玉米秸秆、玉米芯等)进行预处理(见图2上半部),其目的是将原料“解封”进而得到纤维素、半纤维素和木质素,再将这些成分进行增溶和分离,为水解变为可发酵的糖做好准备。实际上在植物体内,长长的纤维素构筑了植物细胞(见图2,直线型为纤维素,曲线型为半纤维素),纤维素分子被半纤维素和木质素环绕,因此,科学家必须先用酸、碱或加热等方法进行预处理,以解开植物细胞内的“矩阵”。最新研究表明,用氢氧化钠的水一乙醇溶液进行预处理,得到的纤维素是一种纳米级的海绵体,可使4~6nm直径的酶进入纤维素中进行酶解,能把生产纤维素乙醇的预处理成本由50美分/加仑降至4~5美分/加仑,可与用玉米淀粉生产第一代乙醇的预处理成本2美分/加仑竞争。
接着,用酶将“降解”得到的纤维素、半纤维素进行水解从而得到葡萄糖和戊糖单体。不同的纤维素原料和不同的预处理工艺应采用不同类型和数量的酶,所以酶的生产成本就成为纤维素乙醇生产的第一项核心。起初,在20世纪90年代末,酶的生产成本很高,约在5美元/加仑以上,目前,酶的生产成本已降至原来的1/30,使生产纤维素乙醇用酶的成本降至10~18美分/加仑,为纤维素乙醇生产技术的产业化奠定了基础。
最后,用酵母菌将葡萄糖、戊糖进行发酵得到发酵液,再将发酵液进行产品分离便得到纤维素乙醇。
2.2纤维素生物汽油生产技术
纤维素乙醇的能量密度较低,单位体积的能量只有常规汽油的66%,不适合大量与汽油调和使用,同时乙醇含氧量高,会腐蚀管道,还会吸收管道中的水分和杂质,难以保证乙醇汽油质量。因此,在开发纤维素乙醇的同时又在开发纤维素生物汽油,目前已进行试验装置实验的技术有快速热解一加氢改质技术(如图3所示)。
首先,采用快速热加工催化裂解技术将生物质原-料转化为用以生产汽油的芳香烃分子。所谓生物质热裂解技术是生物质在惰性气氛下受高温加热后,其分子破裂而产生可燃气体(一般为CO、H2、CH4等的混合气体)、液体(焦油)及固体(木炭)的热加工过程。生物质热裂解液化是在中温(500~650℃)、高加热速率(104~105℃/s)和极短气体停留时间(小于2s)条件下,将生物质直接热裂解,产物经快速冷却,可使中间液态产物分子在进一步断裂生成气体之前冷凝,从而得到高产量的生物质液体油(热解油)。此种技术分两步进行:第一步将纤维素(已预处理)用热砂快速加热,在循环流化床反应器中无氧存在的条件下加热到500℃,不到2秒,纤维素就被分解成富含氧的四到六个碳的有机小分子;第二步用复杂的三维催化剂催化分解含氧小分子,催化剂将氧原子从中移出并生成碳环,然后快速冷却,大约得到65%~75%(质量分数)的芳香烃分子(热解油)和少量不冷凝的气体(CO2、CO、H2O)与焦炭(可用作燃料)。
接着,再将热解油进行两段加氢除去氧和水,转化为运输燃料。其中第一段使氢和氧结合生成水,以蒸汽
形态脱除;第二段使热解油部分转化并改质为纤维素生物汽油。
3 第二代生物燃料的展望
生物燃料正在由第一代向第二展。第一代生物燃料的生产工艺已经较为成熟,美国、欧盟和巴西等一些国家已经形成了较完善的产业链。相反,目前第二代生物燃料的生产技术还未获得关键性的突破,大规模的商业化生产还有待时日。表1简要列举了两代生物燃料发展的特点对比。
目前第二代生物燃料的发展面临着生产技术与生产成本两大难题。就生产技术而言,在生产纤维素乙醇时,原料大多要经过强酸处理,以便从木质素中去除碳水化合物。经过酸处理的原料还要接受碱处理,目的是中止酸化过程。被水浸泡后木质素会被水稀释,不能直接用作燃料,除非人们把木质素与水分离,但这个过程要投入大量能源,势必增加生产成本;就生产成本而言,以秸秆为例,秸秆是向农民收购的,当没有生产纤维素生物燃料时,秸秆是农业废弃物可以轻易获取,但是一旦开始生产,农民就会向你要钱了,原料的价格很可能会随之上涨,势必会增加生产成本。
虽然第二代生物燃料的发展遇到了_一些阻碍,但毕竟只是刚刚起步。从长远来看,随着生物质资源的合理利用、相关技术水平的提高和产品生产规模的扩大,第二代生物燃料的成本将会逐渐降低,而石油等化石燃料价格出现大幅回落的可能性不大,第二代生物燃料有望成为具有成本优势的替代燃料之一。于是各国纷纷将目光转向第二代生物燃料的研究开发,其中,美国政府于2008年2月宣布提供为期4年总额为3380万美元的资助,重点开发将纤维素生物质转化为糖类的酶系统;英国政府于2007年“英国生物质战略”,提出要通过立法鼓励生物燃料领域的技术创新,支持第二代生物燃料的开发;中国政府也于2007年底启动了“纤维素乙醇的高温发酵和生物炼制”重大项目,重点用于突破木质纤维素生产燃料乙醇的技术瓶颈。
实际上,第二代生物燃料的原料多为富含纤维素、生长迅速的草本植物及其废弃物,若将英文汽油单词(gasoline)中前缀“gas”去掉,引入"grass”(草)就组成了一个形象生动的专有名词“草油”(grassoline)。随着各国在“草油”生产工艺中的大量投入,在未来5~15年生物质转换技术将逐步从实验室走向市场,使用第二代生物燃料为动力的汽车数量也将迅速增长,即将到来的“草油”时代必将从根本上改善我们的世界。
参考文献:
[1]魏学锋,张小云,易婕等.生物质燃料的开发利用现状与展望[J].节能,2004,(8):14~17.
生物燃料是可再生能源的重要组成部分,对交通运输业(陆运、空运和海运)的可持续发展有举足轻重的作用。例如液体的和气体的生物燃料:生物柴油、生物醇类(生物酒精、生物甲醇和异丙醇),生物二甲醚(bio-DME),生物油、生物气(沼气),生物氢气,以及填埋场气(主要是CH4)等等。不同于石油,生物燃料被视为是CO2中性的,因为再其产生过程中吸收了同样数量的CO2,燃烧释放量不可能增加。此外,许多生物燃料是含氧的(如生物醇),有助于降低燃烧过程中含氮化合物颗粒的排出量。
我国生物质能源的现状与发展趋势
我国非常重视生物质能的发展。“十二五”期间,国家下发多个文件指导生物质能源的发展。国务院的《国家“十二五”科学和技术发展规划》、《国家能源科技“十二五”规划(2011-2015)》、国家发改委2012年7月下发《可再生能源“十二五”规划》都明确了发展生物质能源的产业目标。国家能源局特别《生物质能发展“十二五”规划》,明确了生物质能的发展目标。到2015年我国生物质液体燃料将到达500万吨。低成本纤维乙醇、生物柴油等先进非粮生物液体燃料的技术进步,为生物燃料更大规模发展创造了条件,以替代石油为目标的生物质能梯级综合利用将是将来主要发展方向。
生物质能,是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为固体、液体和气体燃料,是取之不尽、用之不竭的一种可再生能源,因此生物质能是太阳能的一种表现形式。
我国现阶段生物质能源发展的原料主要是油料植物、秸秆及动物粪便等传统生物质资源。据估算,2012年我国废弃的农作物秸秆资源7.4亿吨,折合3.2亿吨标准煤;农产品加工废弃物1.4亿吨,折合标准煤0.17亿吨;禽畜粪便7.8亿吨,折合标准煤5.3亿吨;林木生物质资源10亿吨,折合标准煤5.8亿吨;生活垃圾3.1亿吨,折合0.45亿吨标准煤,但生物质资源的实际利用量在1亿吨标准煤左右,约占可利用总量的15%~20%,因此具有较大的发展潜力。我国生物质能源发展的一个基本原则是“不与人争粮,不与粮争地”,因此,生物质能源主要来自于农林废弃物。
到2015年,生物质能年利用量超过5 000万吨标准煤。其中,生物质发电装机容量1 300万千瓦、年发电量约780亿千瓦时,生物质年供气220亿立方米,生物质成型燃料1 000万吨,生物液体燃料500万吨。建成一批生物质能综合利用新技术产业化示范项目。
全球生物能源技术发展趋势
理想的生物燃料应该是能够用非食品原料廉价生产,常年供应且能方便地使用现有供应设施,其能量密度与汽油或柴油相当。可以使用10%~25%(E10-E25)混合生物乙醇汽油的汽车数量正在增加。新型弹性燃料车辆能够燃烧任意混合比例的生物乙醇,包括百分之百的水合乙醇(E100)。类似的,生物柴油也可以任意比例混合,混合的比例已经从现在的2%~5%(B2-B5)设定到未来的10%~20%(B10-B20)。与生物乙醇比较,生物柴油含有更高的碳含量,能够产生类似于传统柴油相当的热值。生产成本尤其是原材料的价格是目前更高比例混合生物燃料的限制因素。
第一代生物燃料是目前商业化较成功的生物燃料,包括生物乙醇和生物柴油,其原料是甘蔗、玉米、小麦、谷物、菜籽油,蔬菜油和提取的动物脂肪。第一代生物醇(生物乙醇)是通过啤酒酵母发酵来源于作物的植物糖和淀粉产生的,这些作物包括甘蔗、甜菜和玉米。巴西生物乙醇生产以甘蔗为原料,而美国主要是以玉米为原料生产生物乙醇。第一代生物柴油的生产是对植物油的化学修饰完成的,如油菜、棕榈树和大豆等,植物油脂和提炼的动物脂肪通过脂肪酸甲酯化作用生产生物柴油。然而,第一代生物燃料的原材料直接与食品或饲料产品形成竞争,其发展是不可持续的,会导致食物商品价格的飙升,使其进一步推广受限制。因此生物燃料的发展与推广需要第二代、第三代甚至第四代生物燃料的发展。
第二代生物燃料已经有了初步发展,其原料包括木质纤维素,生物废弃物,固体废弃物。木质纤维素难以降解,从木质素纤维形成可发酵糖要经过多步骤处理,例如原材料前期处理、采用物理的、化学的或生物的进行预处理、可溶性半纤维素糖从固体纤维物中分离出来的固、液分离、酶水解纤维素产生可发酵的葡萄糖等木质纤维素利用中,相当大的精力集中到真菌纤维素降解酶酶解途径的研究。酶解过程涉及一个联合过程,是末端葡萄糖水解酶和纤维素外切酶共同作用,两种酶都隶属于典型的糖苷水解,是通过攻击寡糖-多聚糖底物的异构中心中的水分子来实现的。木质纤维素酶的酶活性低、酶解成本高是木质纤维素利用的一个瓶颈。
生物柴油是指由动植物油脂(脂肪酸甘油三酯)与醇(甲醇或乙醇)经酯交换反应得到的脂肪酸单烷基酯,最典型的是脂肪酸甲酯。与传统的石化能源相比,其硫及芳烃含量低、闪点高、十六烷值高、具有良好的性,可部分添加到石化柴油中。但是使用动植物油脂生产生物柴油造成与人和动物争资源的现象。一种新型的油脂生产正在形成――微生物油脂,微生物油脂可以利用农作物秸秆通过发酵方式工厂化生产,不仅可以废物利用,而且节省土地,用其生产的生物柴油接近石化柴油的性能,有较好的发展潜力。
第三代生物燃料是基于藻类物质的新一代燃料,利用它们产生的碳水化合物、蛋白质、蔬菜油生产生物柴油和氢气。据估计,藻类产量可达61 000升/公顷,相比之下,作物如大豆、菜子的产量分别是200升/公顷、45升/公顷。微藻类特别是小球藻细胞内脂类的积累能够达到其生物质50%。产生的生物油通常酸值较低,有利于生物柴油的合成。微藻类具有第一代、第二代生物燃料原材料不能比拟的优势。微藻类能够使用海水和污水养殖,不会与食品生产形成竞争。
第四代生物燃料主要利用代谢工程技术改造藻类的代谢途径,使其直接利用光合作用吸收CO2合成乙醇、柴油或其他高碳醇等,这是当前最新技术。虽然该技术尚处于实验室研究阶段,但在环保、成本等方面的优势已经可以预期。
生物能源产业展望
据统计2010年大约1 200亿升生物燃料产量用于运输业,几乎是2005年的2倍。全球现有生物燃料市场生物乙醇占近80%,其余的主要是生物柴油。市场主要是第一代生物燃料,美国是最大的生物乙醇生产国,产量为490亿升,第二位是巴西,产量为280亿升,分别占全球输出的57%和33%。欧盟领导着生物柴油生产,占2010年世界生物柴油市场的53%。预期到2020年,全球生物燃料的总产量为2 000亿升,其中生物乙醇1 550亿升,生物柴油450亿升。
将来生物燃料将在能源技术的应变上占有重要的地位,白色生物技术在生产生物燃料和化学原料领域具有较大的潜力。第一代生物燃料技术已经成熟,但与食品生产原料竞争。未来生物燃料的发展与推广需要第二代(木质素纤维、生物废弃物、固体废物)和第三代(藻类和蓝细菌)技术应用到新兴生物燃料的生产。
1 生物质能源的应用现状
目前,国内外对生物质能发展主要集中在寻找生物质资源、研发生物质转化技术、探讨生物质能的生态环境效益3个方面,生物能技术主要应用于生物乙醇燃料、生物质气体燃料、生物制氢、生物柴油四方面。
1.1 生物乙醇燃料
生物乙醇研究的重点主要集中于能源转化效率和温室气体排放两个方面。 以秸秆为原料生产燃料酒精的工艺中存在若干亟待解决的技术难题, 纤维素酶的生产是其中难点之一。目前提倡固体发醇, 但固体发酵不可能像液体发酵那样随着规模的扩大而大幅度下降成本。故从长远发展角度来看, 应选用液体发酵技术[1]。
1.2 生物质气体燃料
生物质气化技术是一种热化学处理技术,通过气化炉将固态生物质转换为使用方便而且清洁的可燃气体,用作燃料或生产动力。
德国沼气工程普遍采用产气率高专用的青贮玉米作为主要发酵原料,产气率是鸡粪的2.5倍,猪粪的3.4倍,牛粪4.5倍。[2]
我国生物燃料可持续发展的外部机遇较好,内部因素中环保指标及可再生性优势明显,所以要依靠内部优势抓住外部发展机遇在最优SWOT战略组合选择上,应侧重SO战略( 即增长型战略),同时兼顾ST战略( 即特色经营战略),突出生物燃料的特色,努力打造我国生物燃料种植生产和销售的产业集群。
1.3 生物制氢
生物制氢过程可以在常温常压下进行, 且不需要消耗很多能量。生物制氢过程不仅对环境友好, 而且开辟了一条利用可再生资源的新道路。此外, 生物制氢过程可以和废物回收利用过程耦合。
生物制氢过程可以分为 5 类:
1)利用藻类或者青蓝菌的生物光解水法;
2)有 机 化 合 物 的 光 合 细 菌 ( P SB ) 光 分解法;
3)有机化合物的发酵制氢;
4)光合细菌和发酵细菌的耦合法;
5)酶法制氢。[3]
1.4 生物柴油
所谓生物柴油,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。生物柴油来自于植物油 ( 玉米、棉籽、海甘蓝、花生、油菜籽、大豆、向日葵) 或动物脂肪。
生物柴油的主要优点在于其环境友好性, 大气污染小, 尤其是硫含量低, 是一种优良的清洁可再生燃料。
生物柴油的制造方法有以下 4 种:
(1)直接使用和混合;(2)微乳法;(3)热解;(4)酯交换。[4]
生物柴油的生产在技术上已经基本成熟, 主要生产工艺分为化学法、生物酶法和超临界法化。生物柴油生产的主要问题是成本高, 制备成本的 75 % 是原料成本。降低成本是生物柴油能否实用化的关键, 目前仍处于试验研究及小规模生产与应用阶段。
1.5 其他典型技术的例子
奶牛-沼气-牧草0循环型农业生产模式, 即: 奶牛场排出的粪水经沼气池发酵, 产生的沼气用于牧场锅炉燃烧, 沼液、 沼渣用于浇灌狼尾草草地, 收获的牧草为奶牛提供青饲料。以期通过该循环利用模式, 增强系统的自净化能力, 实现资源的高效、 持续利用[5]。
DPSIR模型是由欧洲环境局( EEA) 提出的,内容涵盖资源 环境与经济社会等多个领域,可以较为准确地描述系统的复杂性和相互之间的因果关系,广泛用于资源可持续利用评价 城市化与资源环境相互关系分析水资源承载力评价等研究中,其科学性、应用性已得到学术界普遍认可[6]。
在能值理论的这一特点,Brown和Ulgiati 提出了能值可持续指标ESI,将其定义为系统能值产出率与环境负载率之比[7]。
生物质直燃发电作为 CDM 项目, 引入发达国家资金和关键技术,不仅可有效增大系统的能值产出率,降低环境负荷,使生物质直燃发电系统更具有竞争力,还能使系统能值可持续指标提高,使之富有活力和发展潜力,可维持较长时间内的可持续发展[8]。
2 面向未来的生物能源开发战略
2.1 可持续发展
实行清洁生产, 实现综合利用、循环利用、尽量减少排放和能耗; 将能源开发与废物处理结合起来, 在整体、协调、再生、循环的前提下合理建设以生物能源为纽带的生态产业园, 如沼气工程。
2.2 因地制宜
开发生物能源一定要因地制宜, 不可盲目上马。除了上述的 3 种有前景的生物能源产品, 沼气、生物质气化技 术等都值得好好推广应用。
2.3 前瞻性
开发中国的生物能源需要做到以下的政策和软件支持:(1)加大宣传。有必要通过舆论宣传加强人们对生物能源的认识。(2)加大政府投资和扶持。在新的生物能源初始商业化阶段要进行减免税等优惠政策。(3)借鉴国外经验, 充分调动地方和工业界的积极性。(4)加强高校对于生物能源的教育及研究。[9]
2.4 以生物质能高效利用为核心构建农村循环经济系统
(1)对农林生物质能开发利用应充分考虑资源的有限性和利用方式的平衡。
(2)坚持以沼气为主以太阳能和风能等新能源综合利用系统构建能满足农村基本用能需求的供应体系。
(3)高度关注农村能源加大政策扶持力度。
(4)创新机制推动农村新能源市场发展。
(5)创建示范工程为生物质资源有效利用不断探索新的途径。[10]
3 结语
开发利用生物质能, 既是我国缓解能源供需矛盾的战略措施, 保证社会经济持续发展的重要任务。随着国际原油价格的持续攀升和资源的日渐趋紧, 石油供给压力增大, 生物能源产业、生物质材料产业的经济性和环保意义日渐显现, 生物质能源在不远的将来一定会得到大力推广。
【参考文献】
[1]王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1.
[2]刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008,4,28(4).
[3-4].王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1(1).
[5]奶牛-沼气-牧草,循环型农业系统的能值分析[J].生态与农村环境学报,2 010,26(2):120-125.
[6]孙剑萍,汤兆平.基于DPSIR模型的生物燃料-可持续发展量化评价研究:以江西省为例[J].科技管理研究,2013(4).
[7]杨谨,陈彬,刘耕源.基于能值的沼气农业生态系统-可持续发展水平综合评价(以恭城县为例)[J].生态学报,2012,7,32(13).
我国是农业生产大国,农村发展随着新格局的改变,做出了政策性的调整,农村农作物废弃物回收利用,依靠生物质能得到一定经济效益,且缓解环境污染,减少浪费。国家重视新能源的开发和利用,在这样的情况之下,生物质能必然会成为重要的研发对象。
1 生物质固体成型燃料研究现状
1.1 国内外生物质固体成型燃料研究的现状
国内现状:生物质燃料具有它固有的特性,比如说它属于一种可再生资源,重复利用度高,完全符合国家可再生资源的条件,在掌握好其优势的情况下,运用到实际中,使得资源合理利用,这是发展的趋势所在。那么,在国内,随处可见农民利用生物质能实现农村收割后留下的秸秆,将其成型的批量生产,达到实现农村经济利益化的结果。我国在技术上存在着一些缺陷,这些缺陷导致在生产量上不能达到一定规模,还有运输不便的问题等,这些是需要解决的,而且高新的技术是国内需要学习和借鉴的。
国外现状:在国外,生物质能的研究和开发项目已经趋向成熟,比如说美国、英国、澳大利亚等发达国家,在技术上的钻研已经有了很大的突破,而且技术基本已经成型。在面对全世界的关注和重视,国家已经大范围的提高对生物质能的高度认识,对于生物质能的开发已经成为重中之重。对于能源的转化,这是资源再利用后的创新结果。国外很多生产者,已经大量的对这块领域投入精力,在资金和技术上都得到了相应的投资。目前,很多国内生产企业者,引用国外先进的技术,学以致用,将生物质固体成型燃料得到有效的利用和加工,在得到技术上的指引之下,正在积极提高自身能力和作为。
1.2 了解生物质能的应用情况,客观理解研发的意义
十二五规划建设中不断的提出要规划农村城镇建设,缩进农村与城市的距离。这一大的发展方向,是需要农村和城镇共同努力创造的。生物质能源为农村城市建设提供了良好的契机,也为生产者提供了回报社会的机会。
那么,对于可再生资源的合理配置优化问题上,不能理解,目前农村在农作物上的废弃物的利用,是推动农村发展的动力和指向。生物质能的利用在农村已经很普遍。结合工厂的加工利用,解决了农村不少供热供暖的问题。生物质固体成型燃料的研究,在新的领域中发挥其作用,比如城镇的修建中,我们可以看到解决了不少城市采暖问题。
不论在农村还是城市,生物质能的应用,遍布在工业园、社区等地方。在化工和农业发展上,得到良好的资源配置,将其转化为新能源新动力,这是国家在农业规划中取得的一大进步。在长远的发展目标下,我国会不断将生物质能的研发作为首要任务,不断突破技术和大规模生产的目标,变废为宝转为实在生产力。
1.3 分析生物质能的优势与劣势,进一步规避风险
第一,在优势上,优胜略汰,创新发展是根本。我国是农业大国,资源十分的丰富,在许多废弃利用的例子上显而易见,不仅能达到经济上的效益,而且有效的解决了一些就业难的问题。企业想要立足社会,需要不断的竞争中获得地位,那么在生物能源研究发展这块领域,有很大潜力和竞争力。很多企业学习国外先进的技术,将生物质固体燃烧能源技术应用纯熟。优胜略汰,适者生存的法则,使生物质能的研发与利用成为烫手山芋。
第二,国家的重视,企业的技术发展,带来可观收益。在规划农村建设问题,以及农业发展问题上,国家的政策支持,给予很大的鼓励。这使得大批的生产企业者,大胆创新,不断突破新的技术,研发出可行性技术,及时与农村农业废弃利用相互接应。这样推动了企业与农村建设。给农民和企业者以及国家带来了良好效益。
第三,在现代社会中,生产线上存在着不能大规模生产的缺点,如能将这缺点得以解决,在生产效益方面会得到很大的提高。这是在技术上应不断突破的重要一点,日本、美国等国家,应用生物质能研究的技术比较先进,这需要生产中不断学习和丰富经验,也是一个重要的发展目标和方向。
2 发展前景可观,生物质能源仍旧是未来趋势导向
2.1 媒体杂志报道,新观点推波助澜
在各种杂志和媒体报道上,已经足够引起社会关注度。重视程度的轻重也决定其走向,我国是农业生产大国,最近由《农经》杂志社主办的一期研讨会上,与会专家也发表了观点。在未来发展趋势上,作为秸秆生产大国,面对生物质固体成型燃料研究上,需要不断的学习新的技能和经验,补充自身不足,达到优质的标准。这些可以通过与国外进行学习和交流,一来可以促进中外合作,二来可以推进秸秆新技术,给整体行业链接做扎实的基础。促进行业产业的全面发展。
2.2 规模化应用是发展关键
顺应国家文明建设和城镇规划的要求,我国电力供应不足、农村生活改善方面,都需要实现生物质能源规模化应用的策略。目前,高温的天气,导致地方提起进入电力供应不足的高峰。我国目前应用较多的是农作物秸秆以及农产品余物上,加上废弃物以及家禽废物等,这些残余物每年达到十多亿吨。因此,为实现生物质能规模化应用势在必行。
2.3 政策利好助推产业发展
生物质能在政府推行的政策下,使产业得到迅猛发展。生物质能源是世界四大能源之一,在农业资源领域、城市中、林业资源、工厂废水还有畜禽粪便上应用广泛。在实现生物质能的合理利用中,面临着很多考验,面对系列的问题,在政策上得到应允,是项目开展的首要条件。企业给国家带来良好效益的同时,国家也为中小企业发展难提供良好的平台。
2.4 解决环保问题,缓解能源短缺
生物质能源转化为优质资源,在以往,农村经常可见的现象,如在收割完农作物后,将其剩下的部分燃烧,这使得空气污染加重,在其合理资源利用下,减少了废弃物对空气的污染。在工厂、学校、城市、医院方面,在采暖以及电力、燃料方面解决了能源短缺的问题。
3 生物质固体成型燃料研究的发展目标
对于生物质能的研究,我国树立了长远的目标。在国家的重视之下,生物质能发展越来越快,经过不断的创新和学习新的技术,给国家和社会做出了贡献。十二五规划一直都非常重视农村发展建设问题,也对生物质资源的发展给予大幅度支持。尤其针对生物质成型燃料,在其发现具可再生利用资源之初,就注定其发展会随着经济腾飞,实现其价值。国家政策支持,对生物基础质成型燃料在今后的应用广泛奠定了基础,并且树立了长远的发展目标。
4 结语
目前,国家能源局和农业部正在进行生物质固体成型燃料行业标准出台工作,包括固体成型燃料的分级标准、燃烧器技术和成型设备关键部件等规范。根据前文所述,在国内外新的发展格局下,拥有国家政策对生物质固体成型燃料研究的大力支持,通国不断努力学习,突破技术上和大规模生产的问题,我国有充足的资本和信心将生物质能推向更高更远的发展。
1 应用现状
凤城农村能源办公室为加快实现《辽宁省农村能源建设“十二五”规划》,“促进农村节能减排、改善农村居住环境”的目标,根据《辽宁省农村能源建设三年规划目标项目实施方案的通知》要求,结合凤城市实际情况和资源优势,凤城市农村经济局以“促进农村节能减排、改善农村居住环境”为目标,采取政府引导、农户自愿申报、村镇审核后公示以及县能源办和财政部门层层把关的原则,自2011年以来,凤城市先后在18个村推广生物质成型燃料炊事采暖炉2760台,该炉通过燃烧秸秆颗粒(生物质煤)取代传统的煤,即控制了二氧化硫、硫化氢等有害气体的排放,同时减少了有害气体的排放,降低了粉尘的污染及炉渣的排放,净化了环境。生物质成型燃料炊事采暖项目的实施将进一步改善农村生活炊事取暖用能问题,推进农村能源建设事业健康持续发展。
2 存在问题
2011~2014年,凤城市农村经济局能源办公室组织施工人员对生物质炉具进行推广安装,在推广和安装过程中,发现了一些问题。
2.1 试点农户对生物质炉具的认知度不高
部分地区存在农户使用生物质炉具烧煤的现象,没有充分发挥生物质炉具节能环保的作用。
2.2 部分项目村缺少生物质资源
凤城地区北部山多林地多,南部多平原林地少,加上生物质成型燃料生产企业离项目村有一定的距离,企业生产规模很难供应项目村农户用能,导致部分农户因没有秸秆、薪柴等资源,而选择燃烧型煤。
2.3 生物质成型燃料生产企业补贴资金不足
凤城市现有生物质成型燃料生产企业6家,有4家企业享受生物质燃料配套补贴,同时要求以奖代补与项目村签订合同,以低于市场价格将秸秆颗粒供应给生物质成型燃料试点项目村,由于近年来生物质颗粒的大力推广,以及大中城市对环保指标的要求,使得生物质颗粒生产企业的产品供不应求,致使生物质生产企业的产品,很难跟得上项目村农户的需求。
2.4 生物质炉具安装人员水平参差不齐
虽然农村经济局能源办公室对炉具安装人员要求持证上岗,但是仍有个别施工人员在安装上存在问题,导致部分农户家里部分散热器不热的现象。
2.5 生物质炉具使用和维护不当