时间:2023-11-24 10:59:40
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇化学工程与工艺前景范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
绿色化学这个词汇已被人们所熟知。绿色化学是通过化学工程与工艺实现的。研究化学工程与工艺不仅能够使人们获得最大的利益,而且减少消耗资源和环境的污染。许多国内外的公司运用化学工程与工艺,研发符合公司要求的绿色产品。化学工程与工艺促进了化学的发展。运用化学工程与化学工艺能够减少催化剂等有害的原料的使用。绿色化学的技术就是在源头上阻止环境污染的产生,从根本上杜绝产生环境污染,并且回收再利用一些废弃物品。
1.2分离工程
物质在一些重力、压力还有温度和电的影响下,通过外力的作用,将物质自发的从无序转变成有序的过程被称为分离工程。化学工程与化学工艺的分离工程是一个消耗能量的过程,分离工程是化学工程与化学工艺研究的重点之一。目前使用最多的分离工程方法就是蒸馏法,虽然我国在蒸馏分离法方面的研究已经有深厚的理论依据和实践经验,但是蒸馏分离方法在蒸馏速度方面需要进一步改善。除了改进蒸馏速度外,还要采用最先进的蒸馏设备,采用新型的材料才会获取更好的经济效益。采用新型的吸收剂不仅能够影响蒸馏时间的长短,而且能够提高蒸馏吸收的效率。膜分离技术因其具有节能、高效、易于清理等特点,成为现如今比较流行的分离技术,备受各个国家的科学家关注。膜分离的吸附分离法在气体干燥、废水等污染物的处理等方面得到了广泛的运用。膜分离重点开发新型吸附剂和实现膜的高效的使用寿命,但是膜分离存在着膜的污染和防治。
1.3SupereriticalFluid,SCF(超临界流体)
超临界流体是一种具有液体和气体的性质的一种流体,在温度和压力临界点之上的无气体液体的相界面。这项技术广泛应用在化工、食品加工、生物医药工程中。对质量和工艺的要求较高。开发超临界流体有着广泛的发展前景,并且会为企业带来丰富的发展利润。近几年来,超临界水氧化法在环境治疗保护方面的研究较多,但是在化学工程与工艺方面的研究较少,现如今处于研究试验期。
随着我国的改革开放和现代化建设的不断深入,各大化工型企业建设也越来越多,各种化工原料的使用直接危害着人类健康,破坏着生态环境,而绿色化学工程与工艺的研究正是为了减少这些污染和损伤,并通过一种化学的方法使之得到改善和提高,达到促进化学工业节能目标的实现和发展。
1对绿色化学工程与工艺的开发与分析
绿色化学一直是我们的一个设想和梦想,它是要求化工企业在进行化学生产当中,不再使用那些对自然环境和人类有害的物质,不再产生“三废”的困扰,达到绿色生产的目的。从当前的现状来看,传统的化学工程与工艺不能从根本上解决和治理这些化学排放物,而且成本高,消耗大。而绿色化学工程与工艺则是通过对化学技术及方式的改变来达到促进化学工业节能目标,实现空气质量及社会环境的彻底治理。
1.1化学原料无毒性
原料是一切污染的源头,只有从源头上进行控制和改变,才能使化学污染现象从根本上得以根除,所以绿色化学工程与工艺要实现的第一个目标就是要禁止使用有毒害性的原料,把这些污染性强的原料换作一种可再生资源来代替,不仅节能环保,还可以为我国资源的节约创造条件。
1.2化学反应的选择性
大家都知道,化学反应中会产生出另外一些物质,比如说烃类选择性氧化不仅产生大量的热量,而且终产物也不稳定,可以说这种反应的选择性是最低的,而且从化学知识中我们还知道,一些产品还具有异构体的形式,要想得到更多的终产物,那么就要对其使用选择性较高的试剂,这样可以有效的降低成本,节省资源,减少污染。
1.3催化剂的高效无害性
在进行化学反应时常常会使用到另一种物质来作为反应中的催化剂,不仅可以提高其反应速度,还可以为企业创造更大的利润,便催化剂的使用也是一个重要的污染源,所以绿色化学工程与工艺中对催化剂的研究也在不断的深入,旨在开发一种既能够提高化学反应效率,更保护自然环境的催化剂。比如说分子筛催化剂、烷基化固相催化剂等等。
2绿色化学工程与工艺在化学工业节能工作中的应用及作用
2.1绿色化工技术的应用
绿色化工技术是一种没有污染性、没有毒害性、没有废物产生的技术,也可以叫做清洁生产技术,这种技术在我国的绿化化学工程研究中已经有了突破,比如说我们所常见的对城市垃圾的处理、农村用生活垃圾所建造的沼气池、风能、太阳能技术的使用等等。从清洁生产技术的范围上来看,有以下几种:生物工程技术、绿色催化技术、辐射加工技术、超临界流体技术等等,这些技术与传统的化学工程与工艺相比具有很明显的优点,对人类健康及环境保护都能起到很大的作用。
2.2生物技术的应用
生物技术也是从生物学的角度进行研究和开发的,它只要包括一些微生物、酶以及基因、细胞等方面的技术研究。从它在化学工业领域中的具体应用来看,主要有化学仿生学和生物化工。因为我们所提倡的绿化化学工程与工艺中的催化剂需要运用大自然中的一些无毒无害物质,比如说工业酶,它与其它化学催化剂相比,具有无污染、反应不强烈、终结物性能稳定、没有不良影响等等优点,所以在化学领域中的应用也得到了人们的认可和肯定。
2.3有利于环境保护的产品开发
在近年来我国的化学工程与工艺研究中,许多环境友好型的产品已经频频开发,不仅节能环保,而且具有良好的发展前景。比如说为了保护大气的臭氧层不被破坏而开发研究另一种产品来代替氟利昂;随着汽车用户的增多,控制汽油给大气带来的污染,而进行研究的无污染燃料二甲醚就是一个很好的例子,其它的诸如太阳能的使用及推广,无磷洗衣粉的上市等,都是绿色化学工程与工艺对化学工业节能的一种促进和提高,更是人类的一种进步。
2.4绿色生态产业链的打造
为了使绿色化学工程与工艺走上可持续发展之路,可以在化学工业生产上采取一些相对应的措施,打造绿色生态产业链,发展循环型经济带,这样可以进一步减少废物的排放量,实现节能环保的目的。
3结语
社会的进步需要经济发展来作为动力,但人类的健康则需要绿色环保来奠定基础,为了实现人类文明的不断升华,人民生活质量的不断提高,必须对环境资源保护问题加以重视和关注,而只有把绿色化学工程与工艺切实有效的实施下去,才能从根本上解决环境污染问题,达到节能减排、绿色生产,实现人类真正意义上的绿色低碳生活理念,推动社会的可持续性发展。
参考文献:
[1]张浩,杨顺博,马振.关于绿色化学工程与工艺对化学工业节能的促进作用探析[J].化工管理,2016,(11):211.
[2]刘冠辰.浅析绿色化学工程与工艺对化学工业节能减排的促进作用[J].科技创新与应用,2015,(34):107-108.
前言
随着我国工业科技的进步,人们对化工材料的要求越来越高,例如节能性、环保性等方面的要求不断提高,近年来,我的能源及环境因为工业的发展带来了严峻的挑战,特别是近几年,我国的环境污染问题及能源消耗问成为备受关注的领域,我国化工研究人员也在重点研究关于不可再生能源的保护问题、生活垃圾的处理问题及工业污染物的合理排放问题。众所周知,在化工工程工艺中,很多有害、有毒的物质会被产生,如果这些物质处理不当,便会排放到大自然中,久而久之会对生产平衡起到严重的影响,绿色化工技术是提高化学工程工艺的先进技术,化工材料对生态环境的污染问题可以有效解决,提高化学工业的能源利用效率。本文将重点对绿色化工技术在化学工程工艺中的应用展开深入研究。
一、绿色化学技术的发展
在传统化学生产过程中,很多有害、有毒的物质会被产生,严重的滞后性使得化学工程工艺长期处于被动的生产状态下,因此,这种传统的化学工程工艺无法得到资源优化的目的,对于污染物的处理工程效果较差,污染物处理效率低下,同时提高了对化学污染物处理的成本。而绿色化学技术的出现,可以有效解决传统化学工程工艺中对污染物处理的问题,可以通过先进的技术,对污染物进行脱硫、除尘等方面的处理,具体实施方法如下:
1.采用绿色化学原料
在化学工程生产过程中,其流程及工艺直接由化学生产原料决定。在传统化学工程中,大多数采取的生产原料是不可再生的能源,选择这种化学材料增加了污染物质的排放量,同时增加了我国对不可再生能源的消耗量,因此,化学工程工艺中,选择绿色的化学原料是重点研发的领域,例如使用苞米杆、芦苇等农副产品废弃物,便是典型的绿色化学原料,这些物质无污染,直接投入化学生产中,可以直接转化成醇、 酮、 酸类的化学品,不会产生任何有毒或有害其物质,只会产生氢气等物质。
2.提高化学反应的选择性
化学原料通过化学工程工艺,产生相应的化学反应,产生相应的化学品,因此,在化学工程中物质反应的重要组成部分便是化学反应,在提高化学工程的生产效率及生产质量时,利用合理、有效的化学反应途径意义重大。反应环境、原料、时间、特点等因素都会影响化学反应。在化学工程中,氧化反应是最常用的反应形式之一,在整个反应过程中会产生大量热,很多化学原料会因为热催化产生变质现象,这也是直接导致化学品生产质量低下的主要原因。而新型反应形式―烃类氧化反应可以增加生产物的同分异构反应时间,同时提高催化物反应催化能力。
二、绿色化工技术在化学工业中的应用
1.清洁生产技术
辐射热加工技术、临界流体技术、绿色催化技术等无毒、无害、无污染的绿色化工技术统称为清洁生产技术。该项技术可以广泛应用于冶金、印染、垃圾处理等各个行业。此外还有很多先进的脱硝脱硫技术、煤气化技术及利用风能太阳能灯自然发电技术也都利用清洁生产技术。例如,在海水淡化技术的应用中,有效利用了我国海水资源,将海水中的盐与水的成分分离,在处理过程中不会对环境状态产生任何不利影响,还能有效解决我国淡水资源匮乏的现状。此外,海水淡化处理工艺所产生的氢氧化镁等物质的处理工艺成本低廉,工艺简单,并且 不会产生二次污染,因此此项技术未来发展的前景非常广泛。
2.生物技术
生物技术主要应用于化学仿生学及生物化工两个方面,其中技术范畴主要包括细胞、基因、微生物等。作为一种高效、转移性强的生物体内催化剂――生物酶,可以广泛参与到各个生物化工的合成过程中。另外,膜化学技术也是化学仿生学中被广泛应用的生物技术。通过生物技术可以使再生资源合成化学品,这是绿色化工技术经常沿用的方式。动植物中提取的有机化合物原料或石油、煤炭等作为原料都是绿色化工技术的原料。例如,在绿色化学工程工艺中,制备丙烯酰胺,可以利用自然界中的酶替代丙烯腈催化合成丙烯酰胺后,这样可以将能耗大大降低,并且没有污染环境的物质产生。与化学催化剂中的工业酶相比,自然界中的酶做催化剂更加环保,无污染,其反应条件相对较为温和,产物的性质也优良。
结束语
综上所述,在传统的化学工程工艺为人类创造了丰富的物质基础和能源,但是其生产过程中产生的残留物给环境污染产生了众多问题。绿色化工技术的出现对我国化学工程工艺产生了积极的影响,大大减少了化学产品生产加工过程中产生的有毒、有害物质,对我国整个化工产业及环保事业意义重大,能够真正实现绿色环保、节能减排的目的,是当今化学工业发展中的重要环节。
参考文献
[1]井博勋,莒菲.浅议绿色化工技术在化学工程工艺中的应用[J].天津化工,2015,03:10- 11.
[2]张忠平,薛建跃,王新运,程乐华.地方院校应用化学专业绿色化学人才培养模式探索[J].巢湖学院学报,2011,03:142-145+164.
自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?
在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(process engineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。
二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美g.e.的davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美mit的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美mit成立了第一个严格意义上的化工系,时w.k.lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(unit operation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。
1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。
随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德winkler流化床煤气化炉的应用到德bergim-pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国fcc炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。
就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(univ. wiscosin)的r.b.bird教授出版了《transport phenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。
至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(eco-chemical engineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。
随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(a profession in waiting);化学工程师必须"be steeped in technology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"process engineering"达到"product engineering"再到"formulation engineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:
① nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。
② microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。
③ mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。
④ macroscale(宏观尺度):研究生产装置和生产过程等。
⑤ megascale(兆观尺度):研究环境过程和大气生态过程等。
于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。
新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。
在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(artificial neural networks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:
① 学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。
② 概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。
③ 抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。
④ 模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。
当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(anns)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。
生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。
参考文献
[1] 李立本. 系统的和谐与和谐观[j]. 自然辩证法研究, 1998, 14(5):39.
[2] 韩兆熊. 传递过程原理[m]. 浙江:浙江大学出版社, 1988, 11:3.
[3] 季子林, 陈士俊, 王树恩. 科学技术论与方法论[m]. 天津科技翻译出版公司, 1991, 9:115.
[4] 金涌, 汪展文, 王金福, 等. 化学工程迈入21世纪[j]. 化工进展, 2000,(1):5-10.
[5] 黄仲涛, 李雪辉, 王乐夫. 21世纪化工发展趋势[j]. 化工进展, 2001,(4):1-4.
[6] 张生心, 梁仲清. 从量子混沌再看物理学的统一性[j]. 自然辩证法研究, 1996, 12(10):8.
[7] 苗东升. 系统科学精要[m]. 中国人民大学出版社, 1998, 5:20.
培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。
主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。
主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。
主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。
主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。
专业发展方向:化学工程、化学工艺、精细化工。
1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学
6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学
11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学
16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学
大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。
化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。
化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。
化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。
化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。
问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?
1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;
2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;
3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;
4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;
5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;
6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。
问题2:化学工程与工艺专业的学生就业方向?
本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。
也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。
还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。
问题3:化学工程与工艺专业方向的不同有差异么?
化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。
化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。
问题4:与化学工程与工艺专业相近的专业是什么?
制药工程(主要是化学制药)。
问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?
它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。
哈尔滨工业大学电化学工程专业成立于1962年,是国内最早建立的电化学工程专业之一。1999年我国大学本科专业目录调整,原多个化工类专业(含电化学工程)统一合并为“化学工程与工艺”专业,但各大学中的该专业侧重方向与特色不同。我校保留了原来的“电化学工程”方向与特色,并被教育部认定为第三批高等学校特色专业建设点。在特色专业的建设过程中,面对宽口径的“化学工程与工艺”专业,既要开设核心化工课程又要保持电化学工程专业方向的课程。2008年修订培养方案时,我们将化学工程与工艺专业分为“化学工艺”与“电化学工程”两个专业方向进行课程设置。对“化学工艺”专业方向的学生按“化学工程与工艺”专业规范要求构建化工课程体系进行培养;而对于“电化学工程”方向,探索以满足专业规范中核心知识要求为前提,依据专业特色的需要,通过以知识点为标准(不拘泥于课程名称)协调专业规范要求与专业方向的关系,构建彰显专业特色的课程体系。2012年修订培养方案时,我们在系统地分析总结前期实践效果的基础上,形成了新培养方案。本文重点介绍了我们构建与“电化学工程”专业方向对应的课程体系的一些做法,以期达到抛砖引玉之作用。
一、面向国家需求的专业特色定位与培养目标
专业特色是特色专业的灵魂,特色定位准确与否直接决定了特色专业建设的成败。首先,专业特色的定位要以长期形成的办学理念以及在人才培养方面的积累为基础。哈尔滨工业大学化学工程与工艺专业的“电化学工程”方向经过半个多世纪的深厚积累,培养了大批我国电化学工程领域的中坚力量。20世纪80年代,本专业王纪三教授的“发泡镍电极”技术,带动了我国电池行业的技术进步,胡信国教授的“一步法无氰电镀铜”工艺引领了电镀行业降低污染的技术革命,因此获得了国家发明奖。当前,传统石化类资源的日趋紧张及环境污染压力,已成为限制我国经济发展的一大瓶颈,研发新型能源与电镀清洁生产新工艺,是国家能源、环境的重大战略需求,特色专业责无旁贷要担当起此方面人才培养的重任。我们认为,特色定位不能脱离化工领域及化工学科,要根据国家对人才需求现状和发展趋势,充分发挥自己已经积累的特色基础和教学资源优势,有效利用外部环境中的有利因素和发展机遇进行定位。基于此,哈工大“化学工程与工艺”专业特色方向确定为化学电源和电化学表面处理,与电池及电镀行业对应。
本专业毕业的学生应具有以下几方面的知识和能力:(1)具有坚实的自然科学基础,较好的人文、艺术和社会科学基础知识及较高的科学素养;(2)具有较强的计算机和外语应用能力;(3)较系统地掌握本专业领域的理论基础知识,了解学科前沿及最新的发展动态;(4)具有创新意识和独立获取知识的能力;(5)具有较强的分析解决问题的能力及实践技能,具有从事与本专业有关的产品研究、设计、开发以及组织管理的能力;(6)熟悉本专业领域相关的发展方针、政策和法规。
二、基于专业特色的内涵和建设目标,明确课程设置的原则
专业特色是指充分体现学校办学定位,经过长期办学实践逐步积淀形成,优于其他学校相关专业的独特、稳定和具有鲜明个性特点并为社会所承认的专业风格。开展专业特色建设,旨在促进高等学校人才培养工作与社会需求的紧密联系,满足国家经济社会发展对多样化、多类型和紧缺型人才的需求。通过专业特色建设,探索专业建设实践,丰富专业建设理论,形成专业建设、人才培养与经济社会发展紧密结合的专业建设思路与人才培养方案,形成该专业建设内容的相关参考规范,对国内同类型专业建设起到示范和带动作用。
人才培养方案的制订与优化是专业特色建设的核心内容,而课程体系的设计是实现培养目标的基础,是完成特色型人才培养的保证。课程体系构建要根据人才培养目标要求应具备的知识、能力、素质,明确其应具有的知识结构进而设置相应课程,形成结构合理能满足专业特色需要的课程体系。我们认为满足专业特色的课程设置应遵循如下原则:
1.通识教育和专业教育相结合的原则。课程设置上要处理好宽基础与专业特色的关系,注重理学基础教育,既要满足特色的要求,又要为学生未来可持续发展和继续学习打好基础。通识教育和专业教育课程的有机结合,拓宽学生知识和视野,使学生在科学基础、人文素养、专业素质和能力等方面同步提升,促进学生的全面发展。
2.坚持在满足“化学工程与工艺”专业规范要求前提下彰显专业特色的原则。依据专业特色的需要,以知识点为标准,构建融会贯通、有机联系的课程体系。应以学生为本,不但要有与专业特色要求知识结构对应的课程体系,还要通过增加选修课的方式,构建与专业规范完全对应的课程体系,以满足本专业方向学生的自主选修。同时注意设置反映行业与产业形成的新知识、新成果、新技术和学科发展的课程。
3.加强实践教学与创新能力培养的原则。单独设置与实践教学及创新意识培养对应的课程,注重理论课与实验课的衔接与相互补充。增加实验教学比重,及时将教师的相关研究成果转化为实验教学内容,使我校的强势科研力量转化为优质教学资源。并通过设置产学结合与创新类课程等,培养学生运用所学知识解决实际问题的能力及创新意识。
4.促进本科教育国际化的原则。保证学生四年外语不断线。在通识教育阶段基础上,参照国外同类专业课程体系,设置和建设系列化专业教育双语课程,培养学生跨文化交流能力,提高学生的国际竞争力。
三、以满足专业规范基本要求为前提,构建彰显专业特色的课程体系
高等教育大众化的显著特征之一是多样化,但多样化不是随意化,不能没有基本的人才培养质量标准。专业规范就是专业人才培养的总体框架与规定,我们不能背离专业规范中的基本要求去追求所谓的专业特色,遵循专业规范而不拘泥于规范的专业特色才能日益彰显。专业特色总体上呈现多样性特征,而专业规范体现了统一性的特征,专业规范中的人才培养基本规格,核心知识领域等质量要求标准是统一的,这是专业本身具有的特征。要协调好专业规范的统一性与专业特色多样性的关系,以满足专业规范基本要求为前提来彰显专业特色。我们以“化学工程与工艺”专业规范中要求的知识点为标准,围绕“电化学工程”知识结构的需要构建课程体系。基本做法如下:
1.在通识教育方面,强化数理基础,数学类课程278学时、物理课程177学时,人文与社会科学基础课177学时,公共外语课200学时(前两学年完成公共外语课后,大三开设双语课有“化工热力学”、“电化学测量”等,大四开设“表面工程”、“新型化学电源”、“电动车能源系统”双语课,保证四年外语不断线),还设有文化素质讲座、全校任选课等;针对行业、学科发展的需求,在通识教育的基础上,通过知识点不重复介绍来压缩相应课程的学时,设置与电化学工程知识结构对应的学科基础课、专业核心课、专业选修课。为拓宽专业基础,将“工程制图基础”、“化工传递与单元操作”、“化工热力学”、“化工综合实验”、“专业导论课”、“化工安全概论”、“理论力学”、“材料力学”、“电工与电子技术”、“电工与电子技术综合实验”、“高分子材料”、“新能源概论”、“无机材料制备方法”等定为学科基础课。按教学目标重组突出专业特色的主干课程体系,把“无机化学”、“有机化学”、“分析化学”、“物理化学”、“化工传递与单元操作”、“化工热力学”、“电化学原理”、“电化学测量”、“化学电源工艺学”、“电镀工艺学”10门课程作为专业主干课。
2.以知识点为标准,通过必修与限选课来满足专业规范的基本要求。“电镀车间设计”、“化学电源设计”为实践类必修课,同时设有“化工机械与设备”专业选修课,以此涵盖化工设计的知识点;“化学反应工程”与“电化学反应工程”2门课限定为至少二选一,另外在10门专业主干课程中,包含了电极过程动力学、催化、反应器等内容,满足了反应工程知识点的要求。我们增加了选修课门数,并以知识点不重复介绍为原则压缩每门课程的学时,具体分为三类:第一类是设置了“结构化学”、“化工设计”、“化工仪表及自动化”、“化工分离工程”等化学、化工类课程及“材料分析测试方法”课程,使学生具备专业规范要求的化工知识体系,为有志于在化工行业就业及出国、考取外校研究生的学生打好基础;第二类是设置了“新型化学电源”、“固体电化学基础”、“电动车能源系统”、“绿色能源”、“电极材料结构表征”等课程,供希望从事电池行业的学生选修;第三类是设置了“化工设备腐蚀与防护”、“表面工程”、“电化学加工技术”、“涂装技术”等课程,供准备从事电镀行业的学生选修。从知识点看,既满足了“化学工程与工艺”专业规范的要求,又构建了适合专业特色的电化学工程知识结构体系。同时,不但满足了学生的就业要求,还为学生职业发展和继续学习奠定了基础。
四、发挥学科优势,设置加强实践教学与创新能力培养的课程
本专业依托的哈工大化学工程与技术学科,具有一级学科博士学位授予权,并建有化学工程与技术博士后流动工作站,2012年哈工大的化学工程与技术学科排名进入全国评估前八名。多年来面向国家、国防重大需求,形成了本学科的优势特色。在应用电化学方向上,产学研特色突出,多项原创性成果为企业创造了显著的效益。与本专业建立长期稳定的科研、教学合作关系的企业有十几家,为产学结合的学生培养奠定了良好的基础。我校化工学科在“211工程”、“985工程”的支持下,形成了科研、教学硬件大平台,为学生的科研训练、课程设计、毕业论文(设计)等提供良好的实践平台。在软硬件方面,对电化学工程的专业特色方向建设起到了保障和促进作用。另外,本专业正在逐步加大科研设备和科研实验室等资源向学生开放的力度,创造条件让学生能够较早进入实验室,参与教师的科研工作,在具体的科研活动中培养实践、创新能力。在专业实验内容上,鼓励教师将适合于实验教学的科研成果转化、更新为课程教学内容,有利于将最新的学科知识、技能传授给学生。
在实践教学与创新意识培养方面,对于基本技能、方法类实验,与四大化学相关的实验课为132学时、与化工基础相关实验72学时,与专业方向对应的实验课100学时。特色专业是面向行业培养人才,在产学结合上,设置“国内外专家讲学”学科基础课,还要求讲授专业课的教师要理论联系实际,注重启发科研思路。专业定期从合作企业中邀请高级工程技术人员来校为学生进行课堂教学或讲座,聘请具有教学经验的高级工程师参与本科教学活动;在创新能力培养方面,设置了“大一年度项目”、“创新创业训练计划”、“创新实验课”、“创新研修课”,要求学生在校期间至少完成2个学分,可通过选修创新研修课、创新实验课、参加大一年度项目、大学生创新创业训练计划、学科知识竞赛、发表研究论文、申请专利等方式获得。
自1999年本科专业目录调整后,我们围绕协调专业规范的统一性与专业特色多样性的关系上,进行了各方面的努力与探索,构建了面向国家需求的化学工程与工艺特色专业课程体系。作为特色专业建设,我们今后要为实现培养具有前瞻性、综合素质高、创新能力强和具有国际竞争力的行业人才的目标而继续努力。
参考文献:
[1] 赵祖平. 以专业特色建设促专业发展——以中国劳动关系学院行政管理专业为例[J]. 中国高教研究,2012(3):104-106.
[2] 周嘉,蒋玉龙,任俊彦等. 复旦大学微电子学专业特色的挖掘与拓展[J]. 中国大学教学,2012(4):35-36,60.
[3] 张灵,禹奇才,张俊平. 专业特色建设的几个基本问题[J]. 中国大学教学,2012(9):28-30.
[4] 徐定华,关勤,楼盛华. 论高校专业规范与专业特色的内涵及关系[J]. 中国高等教育,2010(8):57-58.
1 新型反应技术的研究
1.1 超临界化学反应技术
超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。
1.2 绿色化学反应技术
绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采取化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包含原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。
1.3 新的分离技术
从广义上看,分离强化首先是对设备的强化,随后对生产工艺进行强化,整体来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,这样不仅有利于实现可持续发展,同时也是化工分离技术的重要技术与主要趋势之一。然而,古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术和科学的不断进步和发展,分离技术也随之得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进对于分离过程的深入产生了重要的作用,而且还能提高工作效率。
2 传热过程中一些新的研究进展和方向
2.1 微细尺度传热学研究进展
微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在传热学中已经自成一个分支,发展前景广阔。当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着变化。目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的。其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果。
2.2 强化传热过程的研究进展
这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包含发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法。
2.3 传热理论研究进展
近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长。改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一。沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着。长期以来,人们都在对液体发生核态沸腾的主要原因和具有高换热强度的机理进行着深入的探究。由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量。到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采取机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重。
3 化学工程学科未来的发展动态
2构建完整的工程设计实践环节
工程设计是面向对象的综合性实践活动,只有突出实践环节才能让学生锻炼能力、积累经验、有所感悟。整个工程实践环节包括化工AutoCAD制图、化工原理课程设计、化工设计Aspen仿真模拟、生物工程(制药工程)创新综合性大实验、湖北省化工设计大赛、全国“三井杯”化工设计大赛、全国大学生制药工程设计竞赛、生产实习、工厂设计项目、毕业设计。工程设计以校企组合的校内生产性实训基地(如尿素仿真实训平台、啤酒发酵实训基地、药物制剂实训平台)和校外企业实习基地(如安琪酵母生物工程专业国家级工程实践教育中心)为依托,注重选题的针对性(面向地方企业)、设计的规范性(符合行业标准)、操作的可行性(绿色、经济与安全),并将化工设计竞赛、制药工程设计竞赛融入人才培养的教学体系中,大力提高实践教学环节的实效性。
3构建合适的工程设计评价体系和管理模式
工程设计的系统性、协作性较强,因此在工厂设计和毕业设计中采用小组制、导师制、课题制进行管理、操作和评价,以培养学生的团队合作精神,即每小组5~7名学生和1~2名指导老师,每个学生完成每组设计项目下的一项子课题,最后采用学生答辩与互评、教师评价、企业专家点评等构成综合评价体系。另外,建立健全激励约束机制,考虑给予竞赛获奖和设计达优秀等级的学生相应的创新实践学分,代替相关选修课的学分,以此激发更多的学生参与工程设计的学习。
关键词:化学工程;绿色科技;环境保护;绿色化学
1 通过合理运用绿色科技可以减少温室气体的排放量
一般来说,温室气体指的主要是二氧化碳。无论是在工业革命以及科技革命时期,还是在科技含量比较多的现代社会,发展日趋国际化和现代化,这些化工工厂所排放的二氧化碳量有的达到数万吨,有的每年甚至会向大气排放数十万吨。大量的二氧化碳的排放,是导致全球温室效应日益严峻的罪魁祸首。由于相关的法律规定还不算很健全,没有明确的法律处罚规定,所以在此之前,那些造成这一现象化工企业却没有为温室效应负担任何一点费用。
如今我们越来越重视环境气候,这种状况也有了明显的改进,越来越多的化工企业都在积极的应用以及开发新的技术,从而降低二氧化碳的排放量。还有一些新兴的企业,变废为宝,将二氧化碳利用到部分化工产品中,成为一种材料,只是这一项化工工艺,就可以使整个企业每年排放的二氧化碳量降低数十万吨。
2 在海水淡化工程的预处理过程中充分运用绿色科技
水是我们赖以生存不可缺少的,也是生活中的必需品,是社会发展稳步前进的重要资源。同时,占据如此重要位置的水资源,却有着不可再生以及有限性的特点。当今社会的经济发展飞速,淡水的日益减少,这种危机成为了全球性的一个环境难题。中国,是目前世界上淡水资源比较匮乏的国家之一。而新兴的海水淡化技术,随着它的广泛应用,成功而且有效的缓解了我们目前淡水资源相对比较缺乏的现状。早期此项技术的研发的不全面,成本也比较高,随着科技的不断更新,海水淡化的成本也在逐渐减低,成本的价格也能被大众接受,不再是那些经济发达国家才能使用的奢侈技术,在一部分发展中的国家也可以引进了。
海水淡化技术指的就是一种利用物理上或者化学上的方法将海水里面的盐和水进行分离的技术。在进行海水淡化技术的预处理进程中,任何影响环境状况的不良影响都没有产生。并且在获取海水资源的过程中,并没有继续对生态环境构成伤害。我们的党所提倡的可持续发展战略的思想,就是指要在满足自身生存发展的需要的同时,为子孙后代留下了可以继续发展的环境状况。因此,将绿色的化学工艺运用于海水淡化的过程中的这一举措至关重要。因此,将绿色的科学理念与化工产品的生产过程联系在一起,便成为了现代世界化的化工生产中的主要方向之一。在海水淡化构成的预处理过程中产生了一些氢氧化镁,成为了环保领域新的宠儿,这种物质具有成本低廉,工艺简单、不产生二次污染,处理效果良好的特点,具有非常广阔的发展前景。
3 将绿色化学技术广泛应用在我国传统香精香料制造中
在日常化学产品的生产中,香精香料是不可缺少的添加剂之一。我国的香精香料产品在国际市场上的出口,是我国进出口贸易的一项重要组成部分。但是由于经济危机的影响逐渐加深,及全球性经济萧条的状况逐渐加剧,我国的香精香料出口产业收到了很大的打击,产品订单大幅度减少。
在深入地调查我国香精香料产品出口订单锐减现象的原因之后,不难发现,产品中有害杂质含量超标,是其最主要的原因。造成有害杂质含量超标的原因则在于生产工艺方面的缺陷。例如提取原料的时候在产品中有残留以及包装材料的使用不当等原因。其中,提取原料在产品中的残留的问题,可以通过研究和开发新的提取技术来改变。包装材料使用不当的问题,则应通过加强企业和工厂的监管力度,督促生产商家和企业反复试验,选取符合有害杂质含量标准的外包装物等方法来改善。还要牢牢掌握我国香精香料产品的优势方面,不断加强新技术的研究和其在实际生产中的应用,才能够满足生产出高质量、低能耗的香精香料产品的要求。
4 绿色化学使可持续发展战略任务逐步向前推进
化工生产的改革,为人们的日常生活提供了必要的能源以及物质方面的基础。化学化工生产对于社会的进步发展方面的贡献显而易见。与此同时,大量的化工生产所产生的工业废渣中,具有很多有毒物质,未经处理合格而随意的排放,导致生态环境平衡失调,还会造成严重的污染问题。这些都会导致社会发展缓慢。新世纪,面对严峻的环境污染所提出的挑战,可持续发展战略这种道路的选择,成为了历史的必然。
实现社会经济的可持续发展,已经成为了我国的一项基本的国策。作为社会经济的重要组成部分的化学工业,在这一基本国策的指导之下,最行之有效的实现可持续发展战略的方法便是绿色化学的开发和利用。绿色化学,不单单是指那些对环境产生的有害影响小甚至没有有害影响的化学生产过程,更重要的是包括那些行之有效的且作用明显的价格平民化的化学化工技术的研究以及应用。绿色化学的生产过程只产生非常少量的废物处理,或者不产生废物处理。其最主要的特点便是在生产的过程中,最大程度地充分利用资源,使原材料转化为产品,尽量不产生污染。有利于化学化工产业的发展以及可持续发展战略这一道路的切实执行。
参考文献:
[1]臧树良、关伟、李川等,清洁生产及绿色化学原理与实践[M].北京:化学工业出版社,2006(3):228-232.
[2]刘森,罗泽鹏,都颖,刘思乐. 绿色化学工程工艺对化学工程节能的促进作用分析[J]. 黑龙江科技信息. 2016(02)
[3]李兴华,王增,王志营. 枣庄市煤矿绿色生态文明矿区建设综合技术研究与应用[J]. 山东煤炭科技. 2015(03)
[4]龙泽波,张大群,张万钦,张寿生,赵文喜,Fernando Javier,赵斌,张英峰. 渤海海水淡化反渗透法的预处理工艺[J]. 城市环境与城市生态. 2003(06)
[5]谢萍华,陆伟. 绿色化学与我国化工行业的可持续发展[J]. 杭州化工. 2008(02)
2全国同类高校的化学工程与工艺专业认识实习的现状
目前,全国高校的认识实习时间几乎都安排在学习专业课之前,安排为期一周的认识实习,旨在使学生初步了解专业内容,增强学生对各种化工企业的感性认识,激发学生学习后续专业课程动力和兴趣,以增强学生对后续要学习的化工原理、分离工程、化工工艺学和化工设计等专业课程有初步的认识。但普遍存在认识实习的时间短,经费有限等问题,认识实习仅体现于单纯的现场参观实习。我校在大一结束的夏季学期安排了为期1周的认识实习,由指导老师带队参观西南地区的大中型化工企业和研发机构,同样由于实习经费和时间有限,学生只能看、问、听不能动手操作。对于尚未接触专业课的大学生来说,这种走马观花的认识实习显得生疏且抽象,学生只能看到表面的企业生产情况、工艺流程与设备,无法深入理解化工是我市的支柱产业之一,更不能激发他们对化工行业的热情和兴趣,进而导致我校化工专业大部分调剂学生对专业的积极性降低等实际问题。对2006、2007和2008届化工专业的学生在认识实习后进行座谈会交流,50%以上的学生认为这种认识实习效果一般,甚至有近5%的学生认为实习效果甚微。因此,面临招生就业的新形势,如何提高认识实习效果与实习效率是急需解决的课题。
3我校化学工程与工艺专业认识实习的改革与探索
3.1强化校企产学研合作实习基地
基于重庆长寿天然气化工产业园区,涪陵化肥化工产业园区和万州盐化工产业园区三大化工基地的地域特色优势和发展,地方高校培养的化工应用型人才大部分会服务于重庆的地方支柱产业,因此,我们选择了具有地方特色的产学研合作基地,既让学生深入了解重庆化工产业的发展,同时也解决了实习经费有限和工厂不愿接收大规模学生实习等问题。选择的特色产学研合作基地如下:一是与我校开展合作共建工程技术研究中心的江津德感工业园区的“重庆三峡油漆股份有限公司”和万州盐化工园区“重庆大全新能源有限公司”等,二是我校科技特派员下乡入园进企的涪陵李渡工业园区的“中化重庆涪陵化工有限公司”和“巫山天地农业开发有限责任公司”等,三是与我校专家开展科技攻关合作的北碚产业科技园区的“重庆仪表材料研究所”、长寿化工园区的“重庆紫光化工股份有限公司”和“重庆博赛矿业(集团)股份有限公司”等,四是与我校开展广泛科研合作的科研院所“重庆化工研究院”和“重庆化工设计研究院”等。这不但使我们与各单位确定了稳定的合作关系,实习过程不会敷衍应付。企业指导老师也会因为校企合作认识到自己是实习工作的负责人员,会更加积极主动地参与实习,并愿意与学生交流,热心回答学生所提出的问题,取得较好的实习效果。
3.2打造专业的认识实习的师资队伍
学校选派教师深入实习基地或相关企业和从企业中选聘具有较高理论水平和素质的技术人员作为实习指导教师,提高教师的实践能力,为实习教学提供重要的保证条件。如为了让学生更好地了解无机化工工艺学“合成氨”的生产工艺流程,我们邀请了建峰化工有限公司的技术总工为我们讲解空分、气化、净化、合成等四个工序,充分理解原料气如何制备和净化,合成氨反应塔的结构及能量综合运用与节能减排。在学习有机化工工艺学时,我们派送了教师去紫光化工有限公司挂职学习蛋氨酸等有机产品的生产工艺,再进行认识实习的指导。通过打造专业的师资队伍,认识实习的效果明显增强。
3.3开展三大化工园区的专家大讲堂
围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。
3.4引入现代CAE技术
在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。
3.5强化认识实习教学管理与指导