外辐射的防护方法汇总十篇

时间:2023-12-14 11:34:49

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇外辐射的防护方法范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

外辐射的防护方法

篇(1)

[中图分类号] R852.7 [文献标识码] B [文章编号] 1674-4721(2013)07(b)-0193-02

随着医学技术地进步,核医学在临床医学治疗中具有重要的地位。而放射性核素治疗正在不断快速发展中,其中131I在临床放射性核素治疗中具有非常重要的地位,其临床治疗的疗效及安全性已经得到国内外学者的认可。而131I在常规治疗剂量下即具有能量高、活度大等特点,所以接受131I放射治疗的患者对医护工作者造成的外照射也应该受到重视[1]。本文通过研究临床核医学治疗中131I所致辐射剂量,为临床放射防护提供依据,现报道如下。

1 资料与方法

1.1 一般资料

选取2010年4月~2011年4月本院收治的34例甲状腺功能亢进患者,随机分为两组。对照组17例,男性10例,女性7例,年龄34~48岁,平均(41.35±3.62)岁;观察组17例,男性9例,女性8例,年龄33~47对,平均(40.72±3.73)岁。所有患者均经过本院专科医生检查,确诊为甲状腺功能亢进患者,经手术治疗后均接受口服131I的治疗。两组患者的性别、年龄、病情组间比较差异无统计学意义(P>0.05)。两组患者分别由两组医师和护士进行治疗和护理,每组由1名医师和1名护士组成。

1.2 方法

将本组34例接受131I治疗的甲状腺功能亢进患者随机分为两组,分别由两组医师和护士进行治疗和护理,每组由1名医师和1名护士组成,对照组采用常规治疗防护措施,观察组采用综合治疗防护措施,比较两组患者治疗后131I的全身有效剂量和甲状腺有效剂量,以及相应两组医师和护士工作1年所受辐射剂量。

辐射剂量测量方法是依据成人内照射辐射吸收剂量估算值测量患者全身有效剂量,通过头颅CT扫描检测患者甲状腺辐射剂量。临床医师和护士的职业照射测量方法为采用热释光个人剂量计(TLD)和FJ-377型热释光剂量读数器进行剂量读取。医师和护士将辐射剂量计放于工作服左胸前口袋,更替医师和护士时,不更换辐射剂量计,计算医师和护士工作一年累积的所受辐射剂量[2]。

1.3 治疗防护措施

1.3.1 常规治疗防护措施 对照组采用常规放射性防护:上班按规章穿戴特制的衣帽手套以及正确佩戴个人剂量计以及携带报警式剂量计;操作结束离开非密封源工作场所时,按要求进行个人体表及防护用品的放射性表面污染监测,发现污染要及时处理,做好记录并存档。发现放射性职业受照人员的个人剂量达到或超过调查水平时,应及时其查明原因,必要时通告卫生监督部门。

1.3.2 综合治疗防护措施 观察组采用综合治疗防护措施。①内照射防护:对于内照射放射防护主要减少放射元素通过皮肤、消化道和呼吸道进入人体。内照射的防护操作前先通风换气30 min后再进行作业,通风进行至操作完毕。②外照射防护:对于外照射的防护主要是根据三防护的原则,即屏蔽防护、时间防护和距离防护。安装专用防护屏、穿上防护装备、延长查房间隔、与患者保持1 m以上的距离等[3]。③加强个人防护:个人防护用品应该穿戴齐备才能允许工作,操作期间严禁进食、饮水、吸烟、会客等,以防放射性核素通过食、吸、渗三途径进入人体。此外,通过加强核辐射知识的培训来加强个人防护。④适当食用公认的防护食品,如可以可以吃一些目前公认的蘑菇、木耳等防护食品。⑤定期体检:每个月给予相关体检,通过剂量检测仪检查身体内放射物质是否超标,如果发现因放射性物质引发的疾病则及时采取措施进行治疗。

1.4 统计学处理

应用 SPSS 15.0软件进行统计分析,计量资料采用均数±标准差(x±s)表示,组间比较采用t 检验,以P

2 结果

两组患者的甲状腺有效剂量组间比较差异无统计学意义(P>0.05),观察组患者的全身有效剂量低于对照组,差异有统计学意义(P

3 讨论

放射性核素治疗方法在临床放射治疗中具有十分重要的地位,其中131I治疗为代表性的治疗方法。患者通过口服131I,进入人体内的131I随着时间发生衰变,发射出γ射线和β射线,其中起主要治疗作用的为β射线[4]。131I具有合适的半衰期和组织穿透力,且具有较大活度和较高能量,对甲状腺细胞具有很好的抑制作用,其临床疗效和安全性已得到国内外专家的认可。

但是随着131I在临床放射治疗中的普及,对其放射防护也成为一个重要问题。包括患者本身以及作为职业接触的临床医师和护士,在保证患者接受131I临床治疗的疗效的同时,也应重视放射治疗给患者和临床医护工作者带来的安全隐患。本文采用一些列综合防护措施,包括对内照射的防护以及通过屏障防护、时间防护和距离防护进行对131I的外照射的防护[5],研究临床核医学治疗中131I所致辐射剂量,为临床放射防护提供依据。本研究结果显示,两组患者的甲状腺有效剂量组间比较差异无统计学意义(P>0.05),观察组患者的全身有效剂量低于对照组,差异有统计学意义(P

综上所述,采用屏障防护、时间防护和距离防护等综合措施可以有效减少131I对医护人员的辐射[6-8],以及降低患者全身受照射的剂量,从而提高临床接受放射治疗的患者以及核医学工作人员的安全性。

[参考文献]

[1] 赵海敏,杨金兰,张桂清.临床核医学治疗中131I所致辐射剂量的研究[J].中国辐射卫生,2010,19(4):487-488.

[2] 冯泽臣,娄云,马永忠,等.2010 年北京市职业外照射个人剂量监测[J].首都公共卫生,2012,6(2):69-71.

[3] 赵尧贤,吴寿明,宣志强,等.放射性核素治疗工作场所设计及放射防护措施评价分析[J].中国辐射卫生,2010,19(4):420-421.

[4] 张晓懿,涂 彧.甲亢患者131I 治疗后人体周围辐射场剂量分布[J].中国辐射卫生,2013,22(1):36-38.

[5] 丁颖,陆汉魁,朱瑞森,等.大剂量131I治疗甲状腺癌的辐射防护安全性探讨[J].现代护理,2011,5(8):125-126.

[6] 郭洪亮.核医学与超声检查对亚急性甲状腺炎的诊断价值[J].中国当代医药,2012,19(9):233-234.

篇(2)

中图分类号:D631 文献标识码:A 文章编号:1009-2374(2012)26-0146-02

随着核技术的发展,我国核电及其相关产业发展迅速,放射性物质被更广泛地应用于各行各业和人们的日常生活中。截止到2011年,我国已经有6个投入运营的核电站、12个在建的核电站、25个筹建中的核电站;辐射与同位素技术在食品加工、消毒灭菌、无损探伤、物件在线检测、医学诊断及治疗等领域得到广泛应用,已形成较大市场规模;医用加速器及医用影像设备已经形成标准化系列产品;医用微型反应堆技术已经成熟并即将投放市场;等离子体技术已经广泛应用于集成电路生产、环保、化工及加工制造业;核电发展除直接带动核燃料产业链外,还带动了相关的原材料工业、加工制造业、仪器仪表业等。如此大规模的核技术应用,必然导致核辐射事故发生几率逐渐增大,严重威胁人民群众的生命财产安全和生态环境,影响社会稳定。面对如此严峻的核与辐射形势,作为处置各类灾害事故主力军的公安消防队伍如何面对这种挑战,如何提升自身的应急处突能力,已成为刻不容缓、急需解决的课题。

1 核与辐射事故的特点

1.1 危害性大

人体组织吸收辐射后,除了与组织烧伤有关的并发症外,白细胞的破坏会使受到辐射的人失去免疫力;辐射会对遗传密码造成影响,突变的生殖细胞有可能把畸形染色体遗传给后代;如果在怀孕期间受到辐射,胎儿某些细胞的染色体就会受到伤害,有产生畸形胎儿的危险。

1.2 隐蔽性强

核事故的危害主要是由放射性物质对人体细胞、组织、器官和机体的辐射照射引起的,而辐射无色、无嗅、无味,听不见、摸不着,这些放射性物质只有借助专门的仪器才能够检测得到,直接影响到人们采取防护的针对性和时效性,放射性伤害后果可能在受照几小时、几天、几星期,甚至几年后表现出来,所以它的破坏作用具有很强的隐蔽性。

1.3 社会影响大

通过国外发生的几次重大核事故对公众的社会心理影响及其所致后果的综合分析,充分证明核事故对人群的社会心理影响很大,不仅影响身心健康,还可对政治、经济、社会生活等造成严重干扰和破坏。由它造成的公众社会心理影响所引起的健康危害和在政治、经济等方面的损失,远比核辐射所致的危害和造成的损失要大。核与辐射事故严重影响人们的心理和身体健康,破坏正常的生产和生活秩序,造成社会混乱,对政治方面及国家政权造成严重的冲击和破坏,造成重大的直接和间接经济损失。

2 核与辐射事故的类型

2.1 核突发事故

核突发事故是指核电站或其他核设施(如铀富集设施,铀、钚加工厂与燃料制造设施、研究堆,核燃料后处理厂,放射性废物管理设施等)发生的意外事故,造成放射性物质外泄,致使工作人员、公众受到超过或相当于规定限值的照射,亦即为核泄漏事故。

2.2 放射突发事故

放射突发事故包括,由于操作失误或设备故障,使放射源丧失屏障,导致工作人员或公众受到意外照射;放射性物质的意外泄漏、外溢或释放,使人员和环境受到污染及人员受照;放射源或放射性同位素被误放、丢失或被盗,捡拾或盗窃放射源者将装源容器拆卸,使放射源失去屏障,造成其本人和他人受照。

2.3 核恐怖事件

当今国际形势复杂多变、跌宕起伏,我国在谋求社会经济高速发展的情况下,各种矛盾亦纷至沓来,接踵出现。因此,在国际国内环境影响下,我国近年来各种恐怖事件也明显增加,恐怖分子有可能通过制造放射性扩散装置、袭击核设施、制造核武器的方式制造恐怖事件,可以说这些事件一旦发生其危害和影响是非常深远的,因此,我们应当做好防范和处置核与辐射恐怖事件的准备。

3 核与辐射事故处置中的防护

3.1 辐射防护的目的

辐射防护的目的就是要保护救援人员及公众的健康。辐射防护的出发点是,确定性效应是有阈的,应避免发生,而随机性效应是无阈的,要限制到可接受的水平。因此可以说,辐射防护的目的就是要防止有害的确定性效应的发生,限制随机效应的发生率,使之达到可接受的水平。

3.2 辐射防护的原则

3.2.1 辐射实践的正当化原则。在进行涉及辐射的任何实践活动之前,必须先权衡其利弊得失,只有当这一实践活动对人群和环境可能产生的危害远远小于个人和社会从中获得的利益时,才能认为具有值得进行的正当理由;反之,不应该采取这种实践。

3.2.2 辐射防护的最优化原则。最优化原则也称可合理达到尽可能低的原则,即在考虑到经济和社会因素的条件下,所有辐射照射都应该保持在可合理达到尽可能低的水平。但是过于要求低的辐射,必将提高防护费用,而带来好处的只不过把已经很低的随机性效应的发生率再降低一点,这样不能认为是合理的。从最优化原则出发,应该这样选择,首先把辐射降低到一点水平以下,然后在有可能做到的情况下把必须的照射降到尽可能低的水平,一直到为降低单位集体剂量当量所花费的代价抵不上因减少危害所带来的好处为止。

3.3 辐射防护方法

辐射对人体的作用主要是外照射和内照射两种方式。外照射是体外的辐射源对人体的照射,主要是γ射线的照射。内照射是放射性核素进入人体内而造成的照射,主要是食入、吸入或通过皮肤吸收进入人体内的α核素和β核素。照射方式不同,其防护方法也不同。

3.4 辐射防护装备

核辐射的危害巨大,因此在处置此类事故时我们应进行严格的防护。对于处于安全区域的救援人员以及疏散出来的群众,可以佩戴防尘口罩防止吸入放射性粉尘;对于处于轻危区的救援人员可佩戴过滤式防毒面具、口罩、护目镜、轻型防化服、铅服等,防止放射性粉尘从呼吸道、眼睛、皮肤进入人体内;对于处于重危区参与事故处置的人员应着空气呼吸器、铅服、全套防核服、核生化防护服等防护装备。

4 核与辐射的监测

消防部队到场处置核与辐射事故时,首先要进行侦察,通过询问知情人员,了解放射源的性质、用途、事故原因以及现场周围单位情况等,成立侦察小组,做好充分的个人防护,携带相应的仪器,在技术人员的带领下深入现场侦察情况。

5 结语

面对日趋繁重的应急救援任务,作为应急救援专业力量的消防部队,需制订核与辐射事故有效的应对处置程序,加强核与辐射应急救援专业人才的培养,强化核辐射救援装备的配备,完善核与辐射恐怖事件处置预案,开展相应的专业训练及演练,提高处置核生化恐怖事件的组织指挥水平和处置能力。

参考文献

[1] 潘自强,陈竹舟,叶长青.核和辐射恐怖事件后果的防护及其防范[J].核科学与工程,2005,25(1):1-13.

[2] 王善强.核与辐射恐怖事件及其应对策略[J].核电子学与探测技术,2004,24(1):97-103.

篇(3)

1 电子加速器放射治疗机房辐射屏蔽设计参数

1.1 电子加速器参数

X射线能量:6/15MeV,电子线能量:4~22MeV,射线最大出射角28°,最大输出剂量率:1000cGy/min,最大照射野40cm×40cm,SSD=100cm。

1.2 机房构成和规格

主体规格:8.4×7.8×4.0(长×宽×高,m);迷路内宽:2000mm;内入口宽:2200mm;外入口宽:1800 mm。

1.3 屏蔽材料

墙体和顶盖采用混凝土材料,密度不小于2.35g/cm3,防护门采用铅板和含硼聚乙烯材料。

1.4 屏蔽设计方案

北墙:主屏蔽墙3200mm(宽度4400mm),副屏蔽墙2000mm;南墙:主屏蔽墙3200mm(宽度5000 mm),副屏蔽墙2000mm;西墙:侧墙1700mm;东墙:迷路墙1600mm,外墙1600mm;顶棚:主屏蔽墙3000mm(宽度5000mm),副屏蔽墙2000mm;防护门:16mmPb+140mm含硼聚乙烯(5%硼)。

1.5 计算依据 GBZ/T201.2-2011。

2 计算过程

2.1 关注点选取

该项目医用电子直线加速器机房设置在放疗中心首层,机房下方为土壤层,设置10个主要关注参考点。A点:南北侧主防护墙外30cm处,大楼外道路;B点:主防护墙外30cm;C点:西侧防护墙外30cm处,大楼外道路、后装机房;D点:南、北侧主防护墙副防护墙连接处外30cm,大楼外道路;E点:主防护墙副防护墙连接处外30cm;F:东侧迷路外墙外30cm处,加速器辅助机房;G点:加速器机房迷路入口处;H点:东侧迷路外墙外30cm处,控制室内;M点:顶盖主防护墙中点上方30cm处,放疗中心天台、风机机组;K点:顶盖主防护墙副防护墙连接处外30cm,放疗中心天台、风机机组。

2.2 主屏蔽区计算(关注点A、B、M)

有用线束所致屏蔽墙外剂量及厚度利用下列公式计算:

关注点达到剂量率参考控制水平Hc时,设计的屏蔽所需要的屏蔽透射因子B按式(4)计算,并按式(3)估算所需要的有效屏蔽厚度Xe,再按式(1)获得屏蔽厚度X(cm)。

计算结果:关注点A,核算厚度270cm,设计厚度320cm,可行;关注点B,核算厚度270cm,设计厚度320cm,可行;关注点M,核算厚度283cm,设计厚度300cm,可行。

2.3 泄漏辐射侧屏蔽墙(关注点C)

对于侧屏蔽墙考虑泄漏辐射屏蔽,预测模式类似主屏蔽区。计算结果:关注点C,核算厚度127cm,设计厚度170cm。

2.4 与主屏蔽区相连的次屏蔽区(关注点D、E、K)

关注点达到剂量率参考控制水平Hc时,设计的屏蔽所需要的屏蔽透射因子B按式(5)计算,然后按式(3)估算所需要的有效屏蔽厚度Xe(cm),再按式(1)转换为屏蔽厚度X(cm)。

计算结果:关注点D,核算厚度148cm,设计厚度200cm,可行;关注点E,核算厚度149cm,设计厚度200cm,可行;关注点K,核算厚度153cm,设计厚度200cm,可行。

2.5 迷路外墙(关注点H、F)

对于迷路外墙考虑泄漏辐射屏蔽,与侧屏蔽墙预测模式相同,其中各关注点按照垂直入射保守计算。核算结果:关注点H,辐射剂量率1.6×10-6μSv/h;关注点F,辐射剂量率0.09μSv/h。

2.6 迷路入口(关注点G)

入口门屏蔽设计时,通常使中子和中子俘获γ射线屏蔽后有相同的辐射剂量率,对于中子俘获γ射线,以铅屏蔽;对于中子,以含硼(5%)聚乙烯屏蔽,所需的屏蔽防护厚度Xγ和Xn如下式:

篇(4)

苏州美康医用防护设备公司的1.0mm铅当量[6]性腺防护衣,面积50cm×125cm,重17.6磅(7.98kg)(17.6磅1.0mmPb铅当量防护衣在为新生儿防护时,不影响新生儿检查状态,能够正常完成检查)。

1.2辐射剂量监测设备

美国兰道尔公司的INLIGHT200型光致发光剂量仪。

1.3CT扫描设备

德国西门子单排螺旋CT,SOMA-TOMBLANCE。采用低剂量新生儿扫描模式[7]。扫描参数见表1。

1.4实验方法

将30例行头颅CT检查的新生儿的性腺部位用1.0mm铅当量铅衣防护,然后将光致光检测芯片分别放置于防护衣内外,其中男性以目测位置为测量位置,女性以两髂前上棘和耻骨联合上缘三点连线的倒三角区域[8]为测量位置,防护衣环状包绕患儿,上至胸廓上口,下至患儿双脚,进行CT扫描,结束后,测量防护衣内外辐射剂量值,对结果进行评价。

1.5统计学方法

应用SPSS18.0进行数据分析,先行正态分布检验,属于正态分布用配对t检验,不属于正态分布,用秩和检验,P<0.05为有显著性差异。

2结果

在头颅CT扫描中,防护衣外的辐射剂量均值约为0.115mGy。防护衣内的性腺部位辐射剂量均值约为0.041mGy,防护后性腺部位辐射剂量降低了约64%经统计学软件分析,防护衣内外辐射剂量值分布符合正态分布,采用配对t检验,防护衣内外辐射剂量值差异有统计学意义。新生儿头颅CT扫描时,正确使用1.0mm铅当量辅助防护器具能有效降低辐射剂量值。在辅助防护之下,新生儿性腺部位所接受的辐射剂量值低于0.1~0.2mGy[9]。

3讨论

辐射防护已经逐渐成为现代影像医学重要的组成部分,从1895年X射线发现至今,影像学飞速的发展,数字摄影(DigitalX-rayphotography)、计算机断层扫描〔Computedtomographyscan(CT)〕、血管减影成像(Vascularsubtractionimaging)、介入治疗(Interven-tionaltherapy),一系列依赖于X射线而服务于病人的检查手段的出现使医学影像成为了疾病诊断和治疗的重要手段。但是,越来越多的研究表明,频繁的接受放射检查以及不合理的使用放射检查会导致随机性致癌危险度的增加。CT检查是一项高辐射剂量检查手段,在世界范围内,1997-2007年统计,CT检查年频率占整个放射诊断年检查频率的8%,但CT检查所贡献的患者年集体有效剂量占整个放射学检查年集体有效剂量的42%[10]光致光辐射探测技术(OSLOpticallyStimulatedLuminescence)是指探测晶片在受到辐射照射以后产生电子空穴对,被探测晶片的晶格缺陷所捕获,当这些被捕获的离子对在受到外界激发后会发射出光,其发射光的强度与所受辐射的强度与激发的强度成正比。光致发光技术是非破坏性的,相比较于热释光技术(ThermoluminescenceTechnique)具有理化环境稳定性好,灵敏度高、量程宽泛、可重复测量、数值精确等优势[11]。本次研究中,我们通过正确使用合适的防护器具、低剂量扫描模式、单排螺旋CT(单排螺旋CT的辐射值低于多排螺旋CT)、严格选择病患(不违背医学伦理)所测出的辐射值中,可以发现,在新生儿性腺未有辅助防护时,表面辐射剂量值最高可达0.25mGy,ICRP(国际辐射防护委员会)26号报告[12]指出:性腺是辐射诱发基因突变和染色体畸变而引起遗传缺陷所涉及的组织,医疗照射防护的基本要求是使患者所受的辐射剂量,特别是性腺,不得大于为获得有关诊断资料或产生所希望的治疗效果所需要的剂量[13]。

篇(5)

中图分类号:R144 文献标识码:A 文章编号:1007-3973(2013)011-014-02

射波刀又称为“立体定位射波手术平台”,是一种新型的放射治疗设备。射波刀的本质是医用直线加速器的一种改进形式,将医用直线加速器X线放射治疗、治疗计划计算机编程技术、病灶体的实时追踪技术进行了结合。由于射波刀照射方向由电脑控制,刀头可在水平方向自由转动,且照射野较小,因此射波刀机房的防护设计与普通直线加速器机房是有所区别的。

1 源项和防护设计

以某医院射波刀为例:设备的最大X射线能量为6MV,最大输出剂量为1000cGy/min(距离靶中心80cm),对应最大直径为6cm的圆形照射野,年工作负荷为80000Gy/a。

该射波刀机房位于地下室,外径东西长约15m,南北宽10m,高约6m,在东侧设置迷路,迷路内宽约2m。墙体和顶棚采用均混凝土防护,西侧、北侧墙厚2.25m,南侧(外为地下土基)墙厚1.2m,东侧迷路内墙厚1.9m,外墙厚1.3m。顶棚厚1.4m。防护门铅当量为6mm。

2 评价标准

《电离辐射防护与辐射源安全基本标准》(GB188712002)对职业人员和公众的年有效剂量限值分别为20mSv和1mSv,在射波刀机房防护设计时,按职业人员剂量限值5mSv、公众年剂量限值0.1mSv进行剂量约束。

3 估算模式和结果

3.1 四周墙外

射波刀刀头在水平方向可自由转动,最大仰角不超过22r此d波刀豢私方向四面墙体诀射墙魃湎甙聪率郊扑悖?

其中:

式中:Hpri-主射线X剂量当量,Sv/a;SAD-源与等中心点的距离,取0.8m;d-参考点与等中心点的距离,m;Bpri-主射线透射因子;tbarrier-屏蔽墙厚度,m;TVL1-第一个十值层厚度,取37cm;TVLe-平衡时的十值层厚度,取33cm;W-工作负荷,取80000Gy/a;U-束定向因子,保守均取1;T-居留因子,北侧控制室取1,其它方向取1/16。

机房各侧防护墙外参考点人员年附加剂量为:东侧,1.5-5mSv/a;西侧,0.02mSv/a;北侧,0.45mSv/a。由于散射线和漏射线辐射剂量显小于主射线,在主射线束定向因子保守均取1的条件下,可不考虑四周墙外散射线和漏射线的影响。

3.2 屋顶外

屋顶外主要考虑散射线和漏射线的影响。散射线的计算公式如下:

式中:Hp-散射线X剂量当量贡献,Sv/a;Bp-散射线的透射系数; -散射比,取2.77-3;F-照射野面积(距等中心点1m处),取45cm2;dsca-辐射源至患者的距离,取0.8m;dsec-参考点距患者的距离,取6m;TVLsca-散射线的十值层厚度,取26cm。其余符号含义与公式(1)、(2)相同。

漏射线的计算公式如下:

式中:HL-漏射线X剂量当量,Sv/a;n-调强因子,取15;BL-漏射线的透射系数,计算方法同公式(2);其余符号含义与公式(1)、(2) 相同,对漏射线TVL1取34cm;TVLe取29cm。

散射线对机房顶棚外的参考点人员的年附加剂量为2.8-4mSv/a,漏射线为0.046mSv/a。

3.3 防护门外

根据IAEA Safety Reports Series No.47所述,防护门外的剂量率贡献由以下四部分组成:

(1)主射线经墙散射至门外的剂量 HS;

(2)漏射线经迷路口墙散射到门外的剂量 HLS;

(3)经病人体表散射产生的剂量当量 HPS;

(4)漏射线直接穿过迷路墙至门外的辐射剂量 HLT。

不考虑门材料的屏蔽,其计算公式分别如下:

式中: 0-主射线至墙散射的反射系数,取2.7-3;A0-最大照射野投影在主射墙上的面积,取2.5m2; Z-主射线经迷路第二次散射时的反射系数,取8.0-3;AZ-主射线经散射面散射后至迷路外墙内表面投影的散射面积,取4m2;dh-辐射源至主射墙距离,取5m;dr-主射墙散射面中心至迷路口中心线的距离,取6m;dz-门至迷路口中心的距离,取8m;Lf-漏射率,取0.1%; 1-漏射线的反射系数,取6.4-3;A1-入口可见墙面积,取8m2;dsec-迷路中心至辐射源的距离,取7m;dzz-迷路散射面到门的距离,取8.5m; ( )-病人体表散射的初级散射比,取1.39-3; 2-病人体表散射的反射系数,取2.2-2; dL-辐射源至门外参考点的直线距离,取7m;tbarrier-漏射线在中穿过迷道内墙的厚度,取2m。

篇(6)

doi:10.14033/ki.cfmr.2016.32.087 文献标识码 B 文章编号 1674-6805(2016)32-0152-02

随着医学影像技术的迅速发展,医学直线加速器作为一种治疗肿瘤的设备,亦被广泛应用于手术放射治疗中。但因医学直线加速器能量输出大,而且辐射力强,在提高手术质量的同时也带来了负面的影响,其中最为严重的是手术室X射线辐射污染的问题[1]。研究显示,X射线可通过电离辐射的方式对人体正常组织细胞造成各种不同程度的损伤,可诱导多种严重疾病发生,严重危害人们的生命健康[2-3]。近年来,有关手术室X射线辐射污染和辐射防护的问题受到人们的广泛关注[4]。同时,合理使用医学直线加速器、加强手术室X射线辐射防护和避免或减少辐射伤害也成了手术室护理管理的重点工作[5]。本文通过探讨手术室中的辐射防护和护理管理,旨在提高医务人员的工作效率和增强其辐射防护的意识,避免或减少医务人员的辐射损害,现报道如下。

1 资料与方法

1.1 一般资料

选取2014年6月-2015年8月笔者所在医院行放疗的手术室,占地面积36.8 m2,选用蔡司intrabeam系统的医学直线加速器,射线种类为X射线,管电压:40或50 kV,管电流为5~40 μA,治疗剂量率为10 Gy/min,摆位时间10 min,治疗时间15~30 min,所有资料和数据均完整获得且真实可靠。

1.2 方法

在常规放疗治疗实施手术室中实施辐射防护和护理管理干预,测定手术室周围房间医用电子直线加速器的X线辐射水平,统计分析干预前后的X线辐射水平,具体如下。

1.2.1 辐射防护和护理管理干预 加强辐射防护培训,提高防护意识,医院管理部门应加强对从事手术室放疗工作的医务人员仪器技能和辐射防护的统一培训,手术室护理管理干预定期对护理人员进行辐射防护培训,培训内容主要包括:辐射时间防护原则(熟悉医用电子直线加速器的性能和操作技能,充分掌握曝光的条件,在保证治疗质量的前提下,尽量缩短射线曝光的时间和次数等)、辐射距离防护原则(应尽量远离X射线源,避免或减少X射线辐射对机体不必要的损伤等)、辐射屏蔽防护原则(正确配备铅衣、铅围脖、铅眼镜和铅帽和使用辐射防护用品等防护设备来减轻对医务人员自身的照射等);应用合格的医用电子直线加速器且进行不定时检修,购置低剂量且安全性能强的医用电子直线加速器,不定时对医用电子直线加速器M行维修、保养和调试,并进行实际测试,确保证医用电子直线加速器的安全运行;健全辐射防护配套措施,购置高品质、足够质量的防护用品和设备,手术室四周墙壁、感应门和窗户玻璃等应用铅或有相当铅当量的铁析、硫酸钡混凝土等高原子序数的材料,保证手术室工作环境的安全和避免医务人员的辐射损伤;辐射防护用品均放置在离辐射源近的物品准备间。健全手术室管理制度,科学合理排班,尽量减少每位医务人员的X射线辐射总照射量,建立医务人员个人剂量及健康监测档案,按时对医务人员进行剂量监测和健康体检,凡健康体检不合格或妊娠期、哺乳期的医务人员不准予有参与手术室放射治疗工作的安排,确保医务人员的身体健康,以此降低X射线辐射超量照射的风险。

1.2.2 指标观察和测量 本次测量均利用Radiagem 2000探测、SG-2R辐射检测仪进行X射线辐射测量,监测点分别设为医生所在处(手术间外)、手术间外监护仪处、手术室门外、手术室门内共4个点,仪器参数为: 测量范围:1 nSv/h~100 μSv / h,能量响应:48~6Me V相对响应之差

1.3 统计学处理

采用SPSS 20.0统计软件处理数据,计量资料以(x±s)表示,采用t检验,计数资料以率(%)表示,采用字2检验,P

2 结果

干预后手术室周围房间医用电子直线加速器的X线辐射水平明显低于干预前,差异有统计学意义(P

3 讨论

3.1 医用电子直线加速器X射线的特性

篇(7)

2剂量模拟

在进行模拟前需要得到各项参数,包括实验装置的空间三维参数、源项参数及各设备的材质等.

2.1三维参数

经过实验现场的多次复合后,最终确定了构建三维模型所需的基础参数.为便于构建曲面方程,在采集各设备的空间参数后,制作了装置的三维模型,同时也可检验构建模型使用参数的准确性.

2.2源项分析

本次实验过程中使用的模拟废水含235U、137Cs和90Sr三种放射性核素,其中137Cs衰变时会产生较强的外照射,对周围的人员造成外照射影响.因此,在进行剂量模拟时需要明确源项的活度浓度和质量浓度,并且结合装置的工艺参数,估算出实验装置各净化设备放射性物质的残留量.在确定参数时,各吸附净化装置中放射性物质的残留量参照137Cs的总使用量来估算,管路中放射性物质的量参照单次实验最大量来估算,具体情况根据各设备和管路自身的设计进行分析计算确定.

2.3其他参数分析

除对源项进行详细分析外,还要明确周围环境的其他各项可能影响辐射剂量水平的因素,包括实验装置所处三废处理大厅的平面布局、实验装置自身的平面布局、各净化设备和储罐的材质及厚度等.

2.4模拟计算结果与分析

在得到具体的实验装置的三维参数、源项参数及周围环境参数后,便可开始构建三维模型,然后填充源项,对实验装置进行模拟.

3辐射防护设计

对于外照射的影响主要从受照时间、照射距离、屏蔽设施三方面来进行控制.在较易实现的情况下,控制受照时间和照射距离显然是最经济合理的方式.在前两种方式都无法实现或不易实现的情况下,应进行适当的屏蔽,使外照射影响降至辐射剂量管理限值之下.根据模拟结果可知,剂量最高值出现在2号吸附柱表面区域,剂量水平约为3.16×10-3mSv/h~5.0×10-3mSv/h.由于存在实际工况变动及其他未知情况的可能性,应对剂量管理限值增加一个30%的安全系数,因此,可将职业人员和公众的辐射剂量管理限值再降低30%,即职业人员辐射剂量管理限值为1.4mSv/a,公众辐射剂量管理限值为0.7mSv/a.三废处理大厅墙外的剂量率仍参考执行2.5μGy/h.首先应从控制受照时间和受照距离的方面来考虑辐射防护的设计.由于本实验装置的特殊性,让工作人员与装置保持一定的距离是不太现实的,因此只能从控制受照时间的角度来进行分析.根据模拟结果,在保证工作人员操作的前提下来划定几个区域的停留时间,图4中红色虚框以内、实验装置车体以外的部分为①号区域;黑色虚框以内、实验装置车体以外的部分为②号区域;黑色虚框以外至三废处理大厅内的边界处为③号区域.按照受照时间来控制受照剂量的方法是可行的,因此,只要实验装置对三废处理大厅外的外照射影响在标准限值以内的话,则可认为实验装置对周围的外照射影响是可接受的.职业人员及公众的年工作时间按照2000h来估算.由表5可知,工作人员在3号区域内是不限制停留时间的,在1号区域内年工作时间不得超过280h.如果同一名职业人员或公众在不同区域内都有停留时间,则可将停留时间换算为剂量值来进行累计,当累计剂量超过相关要求时则不能继续操作.原则上公众不能进入该区域,但实验过程中可能会有相关专家或技术人员对实验装置进行操作.因此为了保护有关公众,将公众的停留时间也进行了限定,同时还便于管理.

篇(8)

【中图分类号】R472【文献标识码】B【文章编号】1674-7526(2012)06-0343-02

放射防护在日常医疗工作中容易被忽视,育龄妇女、儿童是辐射损伤的高危人群,胸透、X光、CT等放射性检查会造成部分机体细胞受损,有辐射作用。如果育龄妇女、儿童短时间内接受较多次数的X光照射,危害就会慢慢累积,造成身体细胞不可弥补的损害,而且将来诱发癌症、疾病的概率也将大大增加。

1受照方式

1.1分次照射:同一剂量的照射,在分次给予的情况下,其损伤效应低于一次给予的效应,分次越多,每次间隔时间越长,则损伤效应就越小,反之则越大。

1.2照射部位:由于机体不同部位对辐射的敏感性不同,所以即使在照射剂量和剂量率都相同的条件下,照射机体的不同部位引起的损伤效应也是不同的。全身损伤程度以照射腹部最严重,其次是盆腔、头部、胸部和四肢,因妇女腹部盆腔、为重要的生殖器官所在,儿童处在生长发育期,做好妇女儿童的放射防护更值得重视。

1.3照射面积:辐射损伤效应很大程度上取决于照射面积的大小。当其他条件相同时,受照射的面积越大,损伤越显著。

1.4照射方式:照射方式分为内照射、外照射和混合照射。在其他因素相同的情况下,多向照射引起的损伤效应比单向照射严重。

以前体检中让中小学生做胸透是有历史原因的:过去我国还没普及婴儿出生时接种卡介苗,做胸透主要目的是检查孩子有无先天性心脏病和肺结核,而随着我国新生儿普及接种预防结核杆菌感染的卡介苗后,结核病发病率大大降低,而且它也不再是过去说的“不治之症”,所以孩子常规体检取消胸透是完全可以的。

同时,孕妇也是重点保护的对象。《放射诊疗管理规定》明确要求:受孕后8至15周的育龄妇女,不得进行下腹部放射影像检查,尽量以胸部X射线摄影代替胸部荧光透视检查。对育龄妇女腹部或骨盆进行核素显像检查或X射线检查前,首先要问明是否已怀孕。

2受检者的防护

重视受检者的防护,减少一切不必要的照射,可以预防或减少X射线检查给公众及其后代带来的潜在性危害,提高X射线诊断的效应有着重要意义。我们要贯彻X射线应用正当化的原则,合理应用X射线。

2.1掌握适应症:有关临床医师必须掌握各种医学影像技术的特点及适应症,不得盲目申请X射线检查。同时必须注意防止提出价值不大的重复性X线检查申请。

2.2有关临床医师必须在X射线检查申请单中写明受检者的主要病史和已有的检查结果,指出X射线检查的目的和检查部位等,以便X射线工作者复核并正确实施检查。

2.3X射线工作者对所有X射线检查申请,均应认真复核,对不符合正当化判断的申请有权退回。

2.4对育龄妇女、孕妇和婴幼儿申请X射线检查,必须符合《放射卫生防护标准》的要求。

2.5用于科学研究的X射线检查,必须坚持受检查自愿的原则。 

3放射防护三原则

放射防护三原则是指:辐射实践的正当化,放射防护的最优化,个人剂量限值。

3.1辐射实践的正当化:为防止不必要的照射,在引入任何伴有辐射照射的实践之前,都必须权衡利弊,只有当带来的利益大于所付出的代价(包括对健康损害的代价)时才能认为是正当的,那么该实践为正当化实践。若引进的某种实践不能带来超过代价的净利益,则不应采取此种实践。

3.2放射防护的最优化:放射防护的最优化原则就是在考虑到经济和社会因素之后,使任何辐射照射应当保持在可以合理做到的最低水平。但并不是说剂量越低越好,而是在考虑到社会和经济因素的条件下使照射低到合理的可以做到的程度(合适的曝光条件)。

3.3医院影像医师有义务控制受检者的剂量限值。

4放射防护基本方法

4.1外照射防护基本方法:外照射防护的基本方法是:时间防护、距离防护和屏蔽防护。

4.1.1时间防护:受照射剂量与受照时间成正比,受照时间愈长,所受累积剂量愈大。所以,在一切接触电离辐射的操作中,应以尽量缩短受照时间为原则。尽量缩短接触射线的时间。影像医师提高自己的诊断技术和操作技能,采用小照射野,缩短曝光时间,避免不必要的长时间照射。

4.1.2距离防护:增加人体到辐射源的距离,可减少其受照剂量,即为距离防护。尽量延长病人与X射线管间的距离。人体受到的照射剂量与距离的平方成反比,即距离增加一倍,剂量率减少到原来的1/4。

4.1.3屏蔽防护:屏蔽防护就是在辐射源与人体之间设置能够吸收辐射的屏障物,以减少辐射对人体的照射剂量。运用各种防护设施与个人防护用品,妇女拍摄腹部X光片时应用铅橡遮皮遮挡子宫及卵巢,儿童拍片时应用铅橡皮遮挡下腹部。骨科手术术中摄片应做好不在检查范围部位防护。

由于目前卫生体制、机制的不到位,致使部分医疗单位趋利行为导致重复检查,增加X线的检查率和量。这是引起我们重视的主要问题,各级卫生行政部门和管理单位应制定相应的法律法规,杜绝重复检查和过检的现象发生,提倡影像资源共享。

在实际工作中,应根据具体情况综合利用时间防护、距离防护和屏蔽防护这三种基本方法。目前影像数字化的应用给予放射防护带来美好前景。

4.2妇女和儿童X射线检查的防护

4.2.1妇女妊娠早期,特别是在妊娠8-15周时,非急需不得实施腹部尤其是骨盆部位的X射线检查。

4.2.2严格限制对带环妇女进行X射线透环检查的频率,带环后第一年不得超过2次,以后每1-2年不得超过一次。

4.2.3严格掌握乳腺X射线检查的适应症,对20岁以下妇女更应慎重。乳腺X线诊断必须有受过专门训练的医师承担。应使用钼靶X射线机,并配合先进技术和稀土增感屏进行检查,使一次检查最大剂量当量不高于10m4、除临床必须的X射线透视检查外,应对儿童采用X射线摄影检查,特别是新生儿。

4.2.4对儿童进行X射线摄影时,应严格控制照射野,必须注意非检查部位的防护。有好多基层医院影像医师对调整束光器掌握得不够好,往往将大的照射野对准病人,这是我们不能轻视的问题。

4.2.5对儿童进行X射线摄影时,应采用短时间曝光的摄影技术。对婴幼儿摄影时,一般不应使用滤线器。

4.2.6学校体检不一定X线检查。

5对影像医师的要求

5.1X射线工作者必须熟练掌握业务技术和射线防护知识,配合有关临床医师做好X射线检查的临床判断,注意掌握其范围,正确、合理地使用X射线诊断。

5.2除了临床必须的透视检查外,应尽量采用摄影检查,以减少受检者和工作人员的受照剂量。

5.3在透视前必须做好充分的暗适应。在不影响诊断的原则下,应尽可能采用高电压、低电流、厚过滤和小照射野进行工作。

5.4用X射线进行各类特殊检查时,要特别注意控制照射条件和重复照射,对受检者和工作人员都应采取有效防护措施。

5.5摄影时,工作人员必须根据使用的不同管电压更换附加过滤板。

5.6摄影时,工作人员应严格按所需的投照部位调节照射野,使有用线束限制在临床实际需要的范围内,并对受检者的非投照部位采取适当的防护措施。对携扶者也应采取相应的防护措施。

5.7摄影时,工作人员必须在屏蔽室等防护设施内进行曝光,除正在接受检查的受检者外,其他人员不应留在机房内。

5.8移动式和携带式X射线机摄影时,X射线工作人员必须离管头和受检者2米以上,并对周围人员采取防护措施。

5.9进行X射线摄影检查时,X射线工作人员应注意合理选择胶片,并重视暗室操作技术,以保证摄影质量,避免重复照射,目前数字化X线检查可大大减少X线量。

5.10进行X射线检查时,对受检者性腺部位要特别注意防护。孕妇一般不宜做X射线检查,以减少对胎儿的照射。

5.11在X射线检查中,当受检者需要携扶时,在固定好投照部位后离开检查机房。

5.12在放射科临床教学中,对学员必须进行射线防护知识的教育,并注意他们的防护;对示教病例严禁随意增加曝光时间。

6加大全社会辐射防护知识的普及

使广大群众认识到正确使用X线检查的重要性。 总之,我们应从上述措施中,掌握可查可不查的不查,应查的要注意防护,切实做好放射防护工作,功在当代,利在千秋,为了我们的后代,合理用好X线。

篇(9)

放射诊疗技术的应用是医疗机构重要诊断和治疗措施之一,但因其对人类健康造成潜在性危害,是放射工作人员、受照者和公众主要放射危害来源。为保障公众健康安全,了解放射诊疗机构的放射防护现状,做好放射卫生管理和放射诊疗许可证发放工作,对本市放射诊疗机构的放射卫生防护现状进行了调查分析。结果报告如下。

1对象与方法

1.1对象:共监测和调查放射诊疗机构32家,设备41台,分市直组(共7家,其中综合医院2家、荣军医院、中医院、妇保院、计生站、疾控中心各1家;共19台设备,其中医用加速器2台、PET-CT 1台,CT 4台、DR 2台、500mA X光机7台、乳腺机3台)与乡镇组(共25家,其中镇街道卫生院及其分院19家、企业医院1家、个体医院2家,牙科3家;共25台设备,其中CR 2台、500mA X光机15台,牙片机3台,200mA X光机5台)。

1.2方法:依据GBZ130―2002《医用χ射线诊断卫生防护标准》和GBZ138―2002《医用X射线诊断卫生防护监测规范》,以放射工作人员的操作位、观察窗、电缆孔、外环境机房门口等操作位置和活动场所为检测点,在设备正常运行的最高条件下采用BH3103B便携式χ-γ剂量率测量仪测量;现场调查安全操作和机房防护设施等放射卫生防护情况。

2结果与分析

2.1本次共监测分析放射工作人员操作位、观察窗、电缆孔、外环境机房门等外照射566点,合格551点,合格率97.3%;其中市直组监测外照射239点,合格239点,合格率100%;乡镇组监测外照射327点,合格312点,不合格15点(均为朝向候诊区机房门),合格率95.4%;放射工作人员操作位、观察窗全部符合放射卫生防护标准。

2.2依据GBZ130―2002医用χ射线诊断卫生防护标准,共调查评价32家放射诊疗机构安全操作与机房防护设施。安全操作:陪检者防护措施、受检者非照射部位防护措施、质量控制监测、放射工作人员个人剂量监测和放射工作人员放射防护培训合格率依次为62.5%、71.9%、93.8%、96.9%、96.9%。机房防护设施:通风排气设施、机房外窗合格率仅为62.5%、78.1%。机房设置位置、机房面积、机房防护厚度、机房内布置合理无杂物、“当心电离辐射”警示标志、工作状态指示灯、受检者候诊位置选择恰当等各项基本合格。市直组各项合格率明显高于乡镇组。

3讨论

3.1调查结果显示放射诊疗机构外照射基本合格,操作位、观察窗照射量率全部合格,放射工作人员操作场所放射防护水平明显高于及机房外环境(包括机房门外、窗外)防护水平,说明放射诊疗机构和放射工作人员对放射防护重视,有自我防护意识,防护设施逐渐完善,放射防护水平明显提高。

3.2安全操作是杜绝放射事故的重要手段,所调查单位均制定安全操作规程并上墙公示,但日常工作中是否严格遵守执行,有待卫生监督部门监督和医疗机构内部管理。受检者和陪检者防护措施、通风排气设施、机房外窗合格率较低,说明放射诊疗机构对受检者、陪检者及公众照射不够重视,建议卫生监督部门加大执法力度,减小非正当照射,控制放射危害,预防放射随机性效应发生。同时不容忽视医疗照射正当化问题,本地区90万人口拥有40多台放射诊疗设备,并有逐年增长趋势,医疗照射明显增多,放射诊疗机构虽然多数已配备受检者防护用品,但大部分机构在放射诊疗过程中未按要求使用防护用品。公众照射和医疗照射正当化也是今后放射卫生监管重点。

3.3监测调查不合格单位主要为镇卫生院分院,这些单位使用200mA X光机,机房老旧,放射科工作量较小(曝光时间日平均不足10次),对于不合格项和调查问题医院领导高度重视,2家撤并放射科,3家计划购置500mAX光机和机房改造,3个镇卫生院计划购置CR、DR,均表示严格按照要求整改达标后申请验收发放放射诊疗许可证,为更好地做好放射诊疗工作有了质量保证。

通过监测调查,卫生行政部门和各医疗机构均高度重视放射防护工作,为做好放射诊疗和放射防护工作提供了科学依据。

参考文献

[1]张丹枫,赵兰才编著,《辐射防护技术与管理》;广西民族出版社,2003.8

[2]GBZ130―2002医用χ射线诊断卫生防护标准

[3]GBZ179-2006医疗照射防护基本要求

[4]GB18871―2002电离辐射防护与辐射源安全基本标准

篇(10)

中图分类号:TS195.6 文献标志码:A

近年来,随着生活品质的提高,人们越来越关注生活环境中无处不在的辐射,而且對“辐射”存在着过度恐慌。本文在對辐射分类进行分析的基础上指出,在日常生活中,虽然电离辐射的危害性大干电磁辐射,而且电磁辐射也会對人体造成一定的损伤,但在一般情况下,民众生活环境的电磁辐射水平都不会超标,因此通常情况下不需要對辐射具有畏惧心理,也无需對辐射进行特别防护。因此,本文主要针對能够接触到有害辐射的职业人群,研究辐射的防护技术,以及防护纤维与相关纺织品的开发。

1

辐射的概念与类型

“辐射”是指从中心向各个方向沿着直线伸展出去的形式。在物理学上,“辐射”是指热、光、声、电磁波、高能粒子等物质或能量向四周传播的一种状态。与其他能量或物质的传播条件不同,电磁波和高能粒子的辐射不需要起传递作用的介质,就可以在真空中传播。

辐射是一类有效的加工、探测手段,广泛应用于工业、农业、矿产探测、医学诊断及科学研究领域。但过量的辐射会對生物体和材料造成损伤,当辐射传递的能量足够大时,可引起受到辐照的物质产生电离。因此,从物理学的角度,辐射据其對物质分子结构的改变程度,分为电离辐射和非电离辐射。能引起物质分子电离的辐射称为电离辐射,包括高速带电粒子(α粒子、β粒子、质子)、不带电粒子(中子)及电磁波x射线、γ射线等;而较低能量的辐射,如紫外线、可见光、红外线、微波、激光以及热辐射、声辐射等,都属于非电离辐射。显然,电离辐射更容易對人体和材料造成损伤,而非电离辐射,特别是其中能量较低的微波或工频电磁波對人体和材料的损伤较小。

因为电离辐射對人体有明显的损伤,从而导致一般民众對“辐射”一词产生畏惧感。因此,从应用的角度来看,有的电磁专家、医学专家和国际组织反對将微波等电磁波照射于人体的现象称之为受到电磁波的“辐射”,建议改称为“暴露”于这些电磁波。这一提议已经得到广泛的认可,在相关的国际标准和国家标准中已有体现。

2 辐射的危害与防护原则

辐射的危害包括對材料的危害和對人体的危害。与此相對应,防辐射技术也包括材料的防辐射和人体的防辐射两种类型。

2.1辐射的危害

电离辐射對材料和人体的危害是直接导致材料(包括生物机体)的电离,破坏了材料和生物体的分子结构,从而造成對材料和生物体损伤。电离辐射可對受照本人造成损伤(躯体效应),并對其子代造成损伤(遗传效应)。

人体暴露于微波等属于非电离辐射的电磁波中,虽然不会造成生物大分子的电离,但会因热效应、非热效应和积累效应而导致對人体的损伤。热效应是指生物器官受电磁波辐照导致升温而引起生理和病理变化的作用,这种损伤得到各国学者公认,并已将對热效应的防护体现到了各国的相关标准之中;非热效应是指生物器官虽未因电磁场导致升温,但人体器官如同一个精密的电磁器件,会在外界电磁场作用下因不能实现良好的电磁兼容而导致功能失调甚至器质性病变。这种损伤被一部分研究人员(如欧洲研究者)所认可,而有的学者(如美国研究者)则认为非热效应不至于對人体造成损伤;积累效应是指虽然人体所处环境的电磁场强度低于暴露限值,但长时间受到辐射也会因辐射效果的日积月累而导致损伤。也有学者将“积累效应”归并到“非热效应”之中,而认为只存在“热效应”和“非热效应”两类。

我国民众,特别是媒体對核辐射和电磁辐射的危害普遍存在过度恐慌、过度渲染的现象。实际上,即便是全球核泄露最严重的切尔诺贝利核电站事故,其危害程度也不像网络流传得那样严重。中国核学会辐射防护分会理事长潘自强院士曾撰文介绍,切尔诺贝利事故因辐射死亡28人。联合国原子辐射效应科学委员会(UNSCEAR)對涉及事故及清理工作的60万人跟踪14年后得出的研究报告指出:除儿童时期受到照射之后出现甲状腺癌症增加外,没有观察到可归因于电离辐射的各种癌症发生率或死亡率的上升,白血病(白血病是辐射照射后癌症发生潜伏期最短的病症,潜伏期一般为2~10年)的危险没有表现出增加,甚至在清理事故现场的工作人员也是如此。同时,也没有发现一些其他的非恶性疾病与电离辐射有关的证据,但事故對人们的心理影响是广泛存在的,主要表现为惧怕辐射,然而人们并不了解当时实际受到的辐射剂量,只有当人体受照超出了辐射量限值才会對人体造成危害。

2.2防护原则

虽然微波等非电离辐射對人体的危害没有电离辐射那样严重,但其防护原则可以沿用国际放射防护委员会(ICRP)提出的辐射防护三大原则——实践正当化原则、防护最优化原则和剂量限值原则,即:對于有强电磁场等危害的场所,只是在有必要时才进入这样的场合;进入这种危险场合时应采用尽可能完善的防护措施;应按照人体受照的剂量限值来限制职业人员的受照(或暴露)时间。

所有防护措施都是需要付出代价的,包括费用的代价及人员因使用防护装备导致工作效率和舒适感的下降。因此,對各种辐射的防护是“宽严皆误”。

3 辐射的防护技术和防护材料

3.1电离辐射的防护

电离辐射對人体和材料的危害很大,但不同的电离辐射在穿透能力、电离能力和對人体及材料造成损伤的程度方面有不同的表现,有的电离辐射不需要专门的防护材料即可有效阻隔,有的电离辐射则还没有有效的材料能加以阻挡和拦截。

α粒子是带2个正电荷的氦原子核,有很强的电离能力,但由于其质量较大,穿透能力差,在空气中的射程只有几厘米,只要一张纸或健康的皮肤就能挡住,故不需使用专门的材料进行阻隔防护。

β粒子是放射性物质发生β衰变时放射出的高能电子,电离能力比α粒子小得多,但穿透能力强。β粒子和由电子加速器的高压电场加速的电子束均需用铝箔等金属薄片进行阻挡,因此金属箔片是防止高能电子入射的防护材料。

质子是带正电荷的亚原子粒子,高速质子流在人体中有极强的穿透能力,但单纯穿透對人体造成的损伤不大,通常作为医疗手段定位杀灭肿瘤细胞,公众和普通职业人员不易遭遇高速质子的辐照,故不存在防护问题。

中子是电中性的粒子,不直接导致电离,但易在衰变后引发电离。中子穿透能力极强,可穿透钢铁装甲和建筑物而杀伤人员,并可产生感生放射性物质,在一定的时间和空间上造成放射性污染。高能中子(>10 MeV)可在空气中行进极长距离,其有效拦截物质是水等富含氢核的物质。在合成纤维中添加锂、硼、氢、氮、碳等中子吸收剂,并利用纤维集合体可起到使中子慢化的作用,對中子有一定的拦截屏蔽作用,但通常只對低速热中子有一定的阻隔效果。例如厚度5mm的含硼中子防护服,對热中子(0.025eV)的防护屏蔽率为80%;含硼石蜡、含碳化硼的聚丙烯等均對热中子有一定的屏蔽效果。

X射线是由高速电子撞击物质的原子所产生的电磁波,波长在0.01~10nm之间,极具穿透性和杀伤力,通常用铅板、钡水泥墙等作为阻隔防御材料。接触x射线较多的医务人员大多穿着局部(多为正面)插入铅橡皮的防护服装,来阻隔x射线;铅纤维与普通纤维混纺制成的服装比铅橡皮柔软;在化学纤维中添加氧化铅、硫酸钡制成的防x射线纤维,制成纺织品后對低能x射线有一定的遮蔽效果,比铅衣柔软轻便。

γ射线是原子核能级跃迁蜕变时释放出的射线,是波长短于0.02nm的电磁波。谢线有比X射线更强的穿透力和杀伤力,医疗上用来治疗肿瘤。γ射线的防护材料与X射线类似,也采用铅板、铅纤维与普通纤维混纺、以及含铅、硼、钡等元素的纤维及其他材料,均對γ射线有一定的屏蔽作用,但防护效果不如X射线。

综上所述,电离辐射除Ⅱ粒子外,制成纤维状或织物状的防辐射材料尚难有效遮断高能射线和粒子流的入侵,仍然以铅橡皮为最常用且相對有效的防护材料。

3.2电磁辐射的防护

电磁辐射的防护主要针對高频电磁波,根据现有的电磁辐射防护标准,對频率为30~300MHz的电磁波有最严格的防护标准,即暴露限值最低。该频率范围以及更高的频率范围内的电磁波對人体的损伤主要是由电场造成的,對此进行防护主要采用反射电磁波的机理,而吸收电磁波的防护方式相對困难,除非允许采用很厚重的防护层,而这對于纺织品而言并不合适。

不锈钢、铜、铝、镍等电导率高的金属纤维是传统的屏蔽材料,但由此制得的防护服装过于沉重,手感偏硬。基于反射机理的防电磁辐射纤维常用的制取方法包括:(1)以普通合成纤维为基材,在外层包覆(化学镀、涂覆)金属层,制成镀铜、镀镍、镀银纤维;(2)原位聚合聚苯胺、聚吡咯制成导电纤维;(3)通过涂层加工,将导电的各种粉体附着在纤维表面制成高电导率的纤维。對这些纤维可制成合适的细度和长度,以使防电磁辐射纤维适合于后续纺织品或非织造布加工。

對于低频电磁波,虽然對人体的损伤很小,但在特殊场合(例如扫雷艇产生的强大磁场)下,需将磁场集中在磁性纤维内,从而保证由磁性纤维护卫的人体内部只有很低的磁场强度。与金属纤维类似,传统的磁性纤维由铁镍合金等高导磁材料制成,目前发展成为以铁、铁氧体粉体添加到合成纤维中制得磁性纤维。

由上述高电导率纤维和高磁导率纤维制成的织物或非织造布,可获得电磁辐射防护效果。但能够直接制成具有电磁屏蔽效果纺织品更为简捷的方法包括:(1)采用金属纤维或将金属化纤维与其他纤维混纺制备电磁屏蔽织物;(2)對合成纤维织物直接进行金属化处理(例如镀铜、镀镍、镀银等);(3)原位聚合聚苯胺、聚吡咯等导电高分子;(4)施加导电涂层(涂覆导电高分子材料,含铜粉、银粉等导电粉体的涂料)等。

通常采用15%~20%的不锈钢纤维混纺制成的电磁屏蔽织物,可使织物的电磁屏蔽效能达到20dB左右,而经过金属化处理的织物,屏蔽效能可达65dB左右。

但是,對于电磁辐射防护服装而言,因服装结构上存在一系列破坏整体密闭效果的缝隙孔洞和开口,故会使服装的电磁屏蔽效能大幅低于面料的电磁屏蔽效能。整体金属化处理的织物,即使在各开口设计上已经尽可能封闭,并配置带披风的帽子,但服装的屏蔽效能也只能达到30dB左右,如进一步提高屏蔽效能,则必须采用全封闭结构,但防化服类的全封闭结构,会导致使用者热负荷增大,影响舒适性和功效性。

4 辐射防护的发展趋势

4.1辐射防护理念的科学化

近几年来,我国在辐射防护方面出现了防护理念泛化的现象。有的媒体过分夸大了电离辐射和电磁辐射的危害,甚至混淆电离辐射与非电离辐射的差异;也有人出于商业利益有意制造电磁污染的恐慌而兜售所谓的防辐射制品;有较高比例的公众對工作环境和生活环境的电磁辐射源有种种过分的担心。

事实上,我国公众生活环境的电磁辐射水平,除了偶然发生的特殊情况(例如高压线下、雷雨交加时),电磁环境均不超标。民众所担心的家用电器的电磁泄漏强度往往只有国际标准的百分之几甚至千分之几;小区楼顶的通信基站发射的电磁场也呈现为往远处发射的分布,使基站下方的场强最低。这些情况将逐渐被民众所了解,而关于辐射防护纺织品的使用對象,终究会向职业人群集中,一般民众并不需要进行电离辐射和非电离辐射的防护。

4.2辐射防护技术的升级

上一篇: 生物医学基础研究 下一篇: 智慧城市和轨道交通
相关精选
友情链接