人工智能的教育汇总十篇

时间:2024-01-13 10:10:31

序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇人工智能的教育范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。

人工智能的教育

篇(1)

课程设置应与高职教育培养目标和方式相一致

人工智能课程主要讲授当今智能领域的理论方法及其应用,是一门涉及哲学、逻辑学、语言学、控制论、生物神经学等多个学科的课程。以普通高校高年级计算机专业学生为讲授对象,人工智能课程在教学上一般以理论讲授为主,并辅以一些应用实例加以分析。课程本身理论性强,内容较为抽象,因此对学生专业知识基础的要求高,在教学上往往强调对各种智能理论的深入讲解和分析,以此达到提高学生专业理论水平的目的。

当前高职教育中为计算机专业学生所开设的人工智能课程很大程度上沿用了普通高等教育环境下的教学方式和内容,这显然与高职教育本身培养人才的目标和方式不一致。高职教育的最终目标是要培养适应生产需要的技能型、应用型人才,而高职教育在教学方式上应更为注重实践教学,包括各种实验、实训、实习和设计。因此,人工智能课程中单纯的理论讲授并不能有效地适应高职教育的实际教学环境要求,有必要对人工智能课程在教学内容和方式上加以改革。

三个改革途径

(一)引导学生阅读应用研究文献

高职教育强调培养学生的知识应用技能,其中重要的一点是要培养学生把理论知识应用到实际生产中的能力。然而在教学实践过程中,学生普遍反映由于人工智能课程理论性强,难于从课本理论联系到实际的专业应用上,这样对激发学生的学习兴趣,提高技能应用水平是不利的。

实际上,人工智能涉及的应用领域极为广泛,其中在专家系统、模式识别、智能控制、数据挖掘、自然语言理解等方面尤为突出,每一种应用都能够很好地体现出人工智能学科的基本理论方法特点。因此,在课程学习的开始阶段,应让学生按照个人兴趣自行选定某个应用领域,在一定的提示和引导下通过检索有关文献,访问相关的科研院校网站等方式获取资料,了解当前该领域的发展现状和具体产品的开发和使用情况,最后在课程的结束阶段以学习报告的形式在课堂上加以演示和共同讨论,这样可以大大激发学生学习人工智能课程的主观能动性,开阔学生的知识视野。资料的收集阅读与思考是知识应用的首要环节,对于培养应用型人才的知识应用技能很有帮助。

(二)安排学生对经典算法程序进行实验

与普通高等教育相比,高职教育更加强调实践教学的重要性。从实践中学习和理解理论知识,并且把所学知识运用到实践中,这是高职教育的重要特点。人工智能课程内容抽象而概念性强,单纯的理论讲解学生难以从中得到启发,也难以体现出高职教育突出实践教学的特点,为此需要安排学生动手实验,从实践中理解人工智能科学的理论原理和应用途径。

在人工智能科学的发展过程中,先后提出了一些经典的优秀算法程序,如A*算法、遗传算法、神经网络的BP学习算法等,在科研和工程实际中得到了广泛的应用,在实践教学中同样有着重要价值。根据教学要求和实际情况,学生并不需要自行设计关于这些算法的具体程序,在提倡开放和共享源代码的今天,通过网络能够获得大量相关的程序代码资源。同时,一些软件平台也集成了一些工具箱,如遗传算法工具箱、神经网络工具箱等,只需设定相关输入参数和数据,便可通过调用工具箱函数实现算法,极为简便而易于理解。

学生应通过对这些程序作验证性实验来理解所学内容。为安排学生有效地进行实验,教师应结合当前阶段所讲授的内容准备相应的算法程序,当该部分内容结束后在课堂上讲解和演示算法程序的运行方法。学生获得该算法程序以及具体的实验任务后在课后完成实验并提交实验报告。

例如,在讲授启发式搜索时,可向学生提供A*算法求解八数码难题的算法程序,并对某个学生给定某个初始棋盘状态,要求学生动手运行程序并记录由算法扩展所得的每个棋盘状态的估价函数计算结果,以及相应的OPEN表和CLOSED表的变化情况,从中理解A*算法的原理特点。又如,在讲授BP学习算法时,可根据学生的实际情况对内容进行调整,强调BP神经网络的实际工程应用价值,而对BP算法的基本原理只作简单介绍。向学生提供利用BP神经网络学习特定目标函数的MATLAB程序代码后,要求学生动手运行该程序,并且记录和对比神经网络在训练前后对目标函数的逼近效果。

(三)启发学生引入人工智能理论方法对毕业设计加以创新

毕业设计是高职教育的重要环节,学生通过毕业设计对以往所学知识作系统性总结,通过毕业设计能进一步加强学生的技能训练,提高学生的技能应用水平。从实践教学的角度来讲,毕业设计不仅仅要求学生对已学知识和技能的简单重复运用,更重要的是强调学生能够主动独立地分析实际问题,对问题的解决方法提出新的观点并付诸实践。然而从教学的实际来看,在毕业设计中学生创新的主动性不足,往往停留在继承和模仿阶段,毕业设计作品少有突破和创新。究其原因,并非学生所学知识和技能不足,而是学生未懂得如何分析已有问题,在其基础上引入新的解决方法或提出新的应用内容。

在计算机领域中,人工智能属于研究和创新的前沿和热点,许多旧有问题利用人工智能方法都得到了新的解决途径。教师在指导学生毕业设计时,可针对某一问题恰当地启发学生引入人工智能的理论和方法,并尝试性地运用在解决当前问题之中,这样能较容易地获得新的改进和突破,对培养学生创新观念和能力很有意义。

近年来,高职教育得到了迅速发展,其社会认可度也不断提升。但是,在发展的过程中也出现了一些新的问题,其中突出的是如何对以往普通高等教育的教学方式和内容加以改革,以适应高职教育的新要求。人工智能课程作为一门重要的计算机专业课程,仍需要结合高职教育的实际要求以及学生的具体情况,在加强培养应用型、技能型人才,加强实践教学上不断进行探索和改革。

参考文献

[1]赵蔓,何千舟.面向21世纪的《人工智能》课程的教学思考[J].沈阳教育学院学报,2004,6(4):131-132.

篇(2)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

篇(3)

一、前言

当前的人工智能虽然还不够完善但其在人类的发展进程中起到了巨大的作用。因为其具有了超强的学习和分析的能力,在个人以及人工智能较量的过程中人工智能一直都是处在领先的地位,为此可以利用到人工智能来促进到人类社会的快速发展。

二、相关概念阐述

人工智能又称AI,是模拟物种智能应用的技术实现和科学。机器智能的科研市场领域包括各种图像和语言结构的快速识别,以及使用语言直接处理和服务机器人。它不仅相当于人类行为的智能,还可以系统地模拟物种的思维,并将在几年内超越历史上的物种。在未来,机器人不断学习,以使仿人机器人模仿人类的学习方式,在这一过程,获得新的各种知识,智能机器人的学习过程更快,可以实现对海量综合数据的深入分析。此外,人工智能机器人不仅可以获得更准确的结果,而且具有独特且更快的信号传输速率。许多科学家有能力超越人类自身。在深入思考核心问题时,实际上,很多人因为机器人是人类设计的,所以不可能超越人类的历史,但是人工智能机器人可能具有集成的学习功能,因此这种可能性将变得非常大。人工智能机器人具有继续学习技术的能力,没有人能够预测学习数据后的整体智能水平。

三、人工智能视域下机器人学习的适切性

在当前的文化和教育生活环境中,由于智能教育的兴起,大数据情境系统功能可以为学生综合分析和选择各种类型的信息,从而重用具有潜在影响的知识可以促进智能教育的发展。智能机器人继续学习,但借助计算机来分析综合数据,例如,以完全掌握规则并进行非常有效的分析和预测。可以看出,机器人正为人类智能教育而学习更有益。在教育中,信息化的进程在今天的时代,智能教育无疑已经成为吸引学生在学习过程中的重要因素。将学习与先进技术核心技术结合起来的方法有很多。人工智能机器人必然会给文化教育生态系统带来帮助。向人工智能机器人学习的方式很多,学校教师可以提高和教育的整体质量和效率,学生也可以赢得符合自身市场需求的学习服务,这有助于减轻学生和家长的负担。

四、人工智能视域下机器人学习的应用创新研究

从人工智能技术的角度来看,智能机器人学习是目前世界上最先进的技术。大数据在教育相关领域的应用具有很好的业务前景。人工智能机器人持续学习的应用可以帮助一些学生实现相关知识与数据之间的联系。

(一)机器人学习与教育之间的融合仅从当前的现象来看,大多数教师不了解核心技术,而了解该技术的人也不了解教育,这很容易导致无法在教育与核心之间形成良好的关系。因为技术研发人员不了解教育,所以不能从教育的多个角度审视开发过程,优秀的教师也不能从技术角度回应数据的全面发展。在人工智能开发领域,机器人应该深入地整合到学习和教育中。组织技术实施和教育核心领域的相关人员进行直接沟通和交流,使人工智能机器人在学习和应用过程中能够更充分地认识到技术研发和生产人员的过程。

(二)机器人学习在学习场景方面的应用人工智能在学校教育领域的应用,因其未来的发展趋势而呈现出明显的趋势。然而,随着学校教育核心领域的许多专业学科的介入,对学习人工智能机器人的要求将越来越高。当你开始学习同一个主题时,需要在同一个应用程序中逐步建立不同的场景。这对机器人来说更难在未来继续学习,但也是最值得创新的。仿人机器人普遍对大量综合数据进行深入分析,分析每个学习内容主题的特点和各部分学生的特点,并采取相应的更有针对性的基本教学方法,提高同学教育的速度和效率。

篇(4)

1 人工智能定义和发展阶段

人工智能的英文是Artificial Intelligence, 简称AI, 人工智能的内容不断丰富和发展, 至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为, 主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器, 短期目标是理解这种智能行为是否存在于机器、人类或其他动物中, 所以它包含了科学和工程双重目标。根据其功能强弱, 人工智能分为三类, 即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段, 第一阶段是20世纪50~60年代, 提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代, 提出了专家系统, 同时基于人工神经网络的算法研究发展迅猛, 伴随着半导体技术计算硬件能力的逐步提高, 人工智能逐渐开始突破;第三阶段是自20世纪末以来, 尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展, 人工智能的应用场景也开始增多, 特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面, 即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的Alpha GO主要应用了机器学习中的深度学习算法。

2 人工智能应用状况与反思

2017年, 阿里的无人超市落地杭州, 进店、挑选商品、付款支付一气呵成, 消费者几乎在完全自主的状态下完成购物。与此类似, 昆山富士康公司裁员6万名工人, 全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代, 因为很多职业岗位或技能将被智能机器人所代替, 职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为, 我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的, 但却持续了三十年的法案让德国和美国的汽车工业完全赶上来, 最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位, 但同时又会创造新的就业岗位, 这是一个伴随着产业智能升级的、长期的艰难过程, 对于职业教育来说, 这既是一个严峻的挑战, 也是一个难得的机遇。

3 人工智能时代职业教育的发展策略

为了更积极地适应人工智能时代, 除了国家层面的统筹规划、科学指导和政策、经费支持之外, 建议还要做好以下几个方面的发展规划。

3.1 解放思想, 更新理念与制度

中国工程院院士潘云鹤提出, 人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间, 向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此, 职业教育在教学和管理过程中应该加入人工智能等相关理念和技术, 同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中, 信息技术类课程课时偏少, 数据处理、编程类或人工智能课程几乎没有, 这样的安排不利于提升学生的信息素养, 必须做出相应的调整, 同时适当减少将来可被人工智能应用替代的技能课程的课时, 比如电算会计、环境监测等。

3.2 善用人工智能, 提升教学与管理

在人工智能背景下, 教师们现有的重复性工作和大量数据积淀的教学任务, 比如批改作业或阅卷或课堂考勤都可能被人工智能取代, 因此, 教师能腾出更多的时间, 更充分地关注学生的个性差异, 从而为学习者提供更精确的个性化学习服务, 教师也能够及时调整教学方法和手段, 优化教学评价方式, 补充教学资源, 减少备课重复性工作, 提升教学效率, 真正地做得因材施教, 同时学生们的学习方法和方式将不同程度地得到重构, 基于大数据的智能在线学习平台大量出现, 不同的学校、学科及专业课程不再封闭, 学习时时处处都可以进行, 碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程, 比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等, 都能够根据监测数据进行智能解析, 有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化, 考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑, 更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。

3.3 深化产教融合、优化实训筑牢就业

在人工智能时代, 职业院校应与相关行业统筹发展, 深化产教融合, 拓宽企业参与的途径, 深化引企入教改革, 支持引导企业深度参与职业院校的教育教学改革, 多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训, 促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制, 推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制, 行业领域的行家里手将通过互联网以VR或者AR技术言传身教的方式, 带领规模庞大的徒弟用碎片时间进行学习与实践。

3.4 完善终身学习的职业教育体系

随着人工智能应用的深入推广, 职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级, 中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位, 守着一门技术吃一辈子老本的时代将一去不复返。因此, 职业教育要继续完善终身教育体系, 为职业教育学生的充电升级铺就一条纵深的通道。

3.5 人文教育为道, 智能教育为用

在人工智能的帮助下, 简单重复性的工作将被机器替代, 人们将从重复繁琐的事务中解脱出来, 转去从事更具有创造性、创新性或者更具有情感类的工作, 这些工作需要人与人之间的合作与沟通, 因此, 职业教育更需要注重学生思想道德水平、人文综合素质的培养, 这是做人之道, 在此基础之上激发学生们的学习主动性和创造力, 促进跨界思维的形成, 更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。Tesla汽车和Space X公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁, 恐怕就是人工智能了[7]。一群没有良好道德水平的, 但掌握了智能技术或设备的人们是危险的, 所以职业教育应该从学生入学起就开始, 不断提升学生的思想道德水平, 热爱社会、热爱生活、乐于助人、与人为善。只有这样, 人工智能应用才能更好地服务人们、造福社会。

4 结论

人工智能正在快速又深刻地改变我们的教学、生活和工作方式, 也对职业教育提出了严峻的挑战, 同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时, 须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对, 切实地把握人文教育之道对智能教育之用的统领原则, 培养能很好地掌控人工智能技术和应用的人才。

参考文献

[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业, 2018 (8) :50-56.

[2]苏令.人工智能来了, 教育当未雨绸缪[EB/OL].[2018-05-15].

[3]Nils J.Nilsson.人工智能[M].郑扣根, 庄越挺, 译.北京:机械工业出版社, 2000.

[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点, 2017 (3) :59-61.

篇(5)

这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。

教育行业已有的人工智能研究和应用

Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。

过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。

这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。

人工智能在教育行业的新发展

教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。

1.人工智能批改作业

批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。

目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。

2.人工智能实现一对一辅导

自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。

自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。

早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。

3.人工智能关注学生情感

2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。

进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。

4.人工智能改进数字出版

教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。

人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。

另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。

随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。

5.人工智能作为学生

多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。

类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。

篇(6)

【关键词】人工智能 网络教育 具体应用

1 网络教育模式的发展现状

1.1 网络教育的优势

网络教育模式是对传统课堂教育模式的更新与演进,传统课堂教育模式具有交流便捷、课堂管理方便的优势,但是也受到空间和时间的双重限制,需要缴纳昂贵的场地和设施费用,难以追赶新时期人们快捷的工作步伐。网络教育通过互联网远程传递,在继承和发展了传统课堂优势的同时,弥补了缺点和不足,在虚拟的网络环境,摆脱了有关时间、空间、身份等诸多限制,促进了教育手段的创新,为人们提供了更多接受教育的机会,促进了国民教育水平的提高。

1.2 网络教育存在的问题

网络教育的问题主要体现在以下方面:

1.2.1 操作平台的局限性

网络教育登录界面的首页,一般包含着课程选择、成绩查询、习题演练、师资介绍等基本内容,这容易导致众多网络教育平台具有相同的首页模板和计算机程序,不同平台、不同学科、不同专业没能充分体现出其独一无二的课程特色。操作平台具有局限性,无法充分体现人性化特色和该课程的特殊化要求。

1.2.2 教学方式的一致性

网络教学中,一般采用计算机程序设定好的流程,授课、复习、习题演练、期末考试、综合评估为基本程序,流程化操作,无法根据学生的学习特点和成绩要求制定相应的教学方式。教学评价流程过于死板,无法像教师一样考虑其他综合因素进行分析,这就容易导致考试系统的公平性、评分的合理性受到质疑,无法体现教学权威性。

1.2.3 服务系统的落后性

网络教育是以计算机的软件程序为表现载体,将教学课程和学习方式相融合。随着知识体系更新换代的不断加快,学术纠错的发生,课程及时更新也是十分重要的。但是网络教育服务系统具有一定的落后性和延时性,传递的知识和答疑手段相对落后,影响着网络教育的准确性和科学性。

2 人工智能在网络教育中的具体应用

网络教育缺陷的存在,其重要原因是教育流程系统的“刚性”无法符合学习者不同的教学需求,不懂得如何具体因人而异、因材施教;而人工智能“柔性”的工作特点,可以有综合考虑各种影响因素,并及时调节,恰好是对缺陷的补充。事实证明,人工智能在网络教育中的具体应用也取得了较好的效果,主要体现在以下方面:

2.1 专家系统的应用

专家系统是对智能教学系统、决策系统、导学系统以及先进的智能化硬件设备的总称。传统的网络教育是流程化、规范化的,智能化教学系统是对每个流程应用智能化手段,促进教学过程的科学性。

2.1.1 智能决策系统。

在课程开始之前,增设智能决策功能即智能决策系统,类似于学校的入学考试,对学生的学习能力、成绩水平、智力状况进行基本的分析和了解,以学生能力而不是教师要求为教学依据,制定合理的教学计划和学习方案;通过智能化设计,确定学习成绩分阶段测试计划、智力开发方案和考试模拟系统等,通过这些方式,实现对学生能力的充分开发。

2.1.2 智能导学系统

这是通过对学生一定时期学习环境的营造,通过对环境内各影响因素施加措施,为学生的学习提供优质条件。影响因素包括教师、学习资源、外部因素等,一旦学生学习没有达到预定的目标,教师模块就会对学生的动态行为做出科学正确的指导,并向正确的学习轨迹纠正;学生学习所需要的参考资料、试卷分析、时事热点等,会根据学生的学习进展情况及时更新资料库;学生在学习中遭遇困境,系统会根据智能化发挥引导和提醒功能。

2.1.3 智能教学系统和智能化硬件设备

智能教学系统和智能化硬件设备分别是智能学习系统的软件和硬件载体。智能教学系统是智能决策和智能导学子系统的综合,是几种不同模式的组合与搭配,最终出现适合学生自身的学习模式,并且让系统关系更加稳固;硬件系统是网络学习的基础和载体,包括传输设备中的路由器、交换机设备,终端的打印机、摄像头等。

2.2 其他人工智能系统的应用

2.2.1 语言处理系统

语言处理系统在人工智能领域是一种应用较为广泛的技术,系统内部拥有录音模块、语言识别模块、转换模块和输出模块。学生向录音系统发出声音,语言识别和转换模块将语言转化为文字显示在计算机界面上。就目前的技术来说,语言处理系统可以处理简单口语和书面语言,局限在普通话,随着语言库的升级,语言处理系统的功能会越来越强大。这一功能的出现,对学生学习语言口语和减少文字任务有很大的帮助。

2.2.2 知识库系统

知识库系统是对知识和数据的整合、汇总和储存,学生仅依靠记忆中对知识的只言片语和残损记忆,发挥知识库强大搜索功能,自动分辨出关键词,并提供完整的数据。这对学生学习记录的查找和知识的复习有很大帮助,也有助于系统的升级和完善。

3 促进人工智能在网络教育中应用的具体措施

3.1 加大资金支持

资金支持是发展新科技的坚实保证,政府和相关机构应该重视人工智能在网络教育发展中的巨大作用,提供政策的优惠和资金拨款,给予场地和设备的支持。有了资金的支持,可以吸引优秀人才开展系统研发和技术升级工作,可以为人工智能的应用提供高性能、高水平、先进的硬件设施保障。

3.2 开展教学实施

应该积极促进人工智能在网络教育中的教学实施活动,通过一线学习的监测和实验,推动新技术的普及与应用。在相关专业院校安装人工智能软件,也是促进教学实施的有效途径。

4 结束语

综上所述,人工智能是一项应用广泛,可研究性强的计算机前沿技术。通过人工智能相关技术的研究,能够解决网络教育中存在的诸多问题,提高学生的学习质量和效率,方便老师的教学管理,以及对教育教学模式将产生深刻影响。

参考文献

[1]冯佳.虚拟机技术在计算机网络课程教学中的应用[J].计算机光盘软件与应用,2011(17).

[2]王世刚,王纪凤,尚玉莲,赵学军.计算机网络课程教学中的虚拟机技术应用[J].中国现代教育装备,2011(01).

[3]刘健.人工智能在网络教育中的应用探索[J]. 计算机光盘软件与应用,2014(06).

[4]陈建锋.人工智能及其在计算机网络技术中的应用[J].城市建设理论研究.2015(03).

作者简介

篇(7)

1引言

作为计算机科学技术的全新领域即人工智能,其正在迅速成长与成熟、新方法、新理念、新技术并且不断壮大,同样也包含着计算机网络、数学、信息论各类学科的交叉和边缘学科。人工智能包含的主要内容有知识表示和推理机制、问题求解和搜索算法,自然语言理解、专家系统和机器学习等;也作为计算机科学各专业重要的基础课程,国内外各高校都非常重视,都将人工智能作为计算机专业的必修课程。人工智能包含的学科多,知识点杂、理论性强、内容抽象,算法难度高复杂,在此情况下各高校采用传统的“教师讲、学生听”单一教学模式,学生处于被动学习地位;课堂教学与实际操作、理论与现实应用相脱节;加上理论知识强,案例缺乏,容易使学生感觉空洞;学生易产生厌学情绪,也达不到锻炼其分析问题、解决问题的思维能力和实践动手能力。如何让学生高效的学习一直是教师研究的课题,在大数据和网络信息时代的大背景下,“互联网+”已经广泛应用和存在于生活、工作各个方面,其在教育教学中表现出的创新性、互动性尤为突出,并极具优势。

2基于案例的教学研究

此方法开始于上世纪20年代左右,最早是由美国哈佛商学院所提倡的,基于当时特殊的商业管理真是背景和特殊事件,能够有效的发展和培养学生主动性、积极性和应用能力,开展案例教学后,学生实际解决问题能力有了很大的提高。但此教学研究方法知道到上世纪80年代后期,才引起教师的重视。1986年由美国研究小组提出《准备就绪的国家:二十一世纪的教师》书中,强烈推荐此方法在实际教学的重要性,并说明今后在教学过程中将其作为一种重要的教学方法应用于各类课程中去。

3基于人工智能的案例教学研究及应用

3.1案例精选

此方法第一步是案例选取,案例的好坏是决定案例教学效果关键因素。案例的选取需要满足以下要求:(1)符合现在的教学目标,明确学生需要掌握的知识点、重难点等,能够运用所学的理论知识应用到实际中,以此提高学生分析、解决问题的能力;(2)案例要有代表性、趣味性,由于人工智能课程内容多、抽象,需要将枯燥乏味的知识点转化为趣味生动的案例,有利于吸引学生注意力,激发学习兴趣和主动性;例如,讲到“知识表示”这部分内容中引入“机器人搬积木”、“野人修道士渡河”案例;(3)采用互动的形式,此为人工智能的案例教学研究重要特征,同时也是教学目标得以充分展现的必要条件。能够调动大家的积极性,学生和学生之间、学生与教师之间的互动,调动学生的主观能动性。

3.2案例的执行

(1)讲授法。基于教学内容具体知识点设计案例;通过教师讲解,帮助学生理解抽象的理论知识。案例的呈现有两种基本形式:一是“案例—理论”,即先给出教学案例,后讲解理论知识;二是“理论—案例”,即教师先讲解知识,再给出教学案例;案例的呈现方式不同,会直接影响案例的功能,也会影响到学生的学习情绪、学习效果。为了使案例能更好地为教学服务,教师讲解案例之前应从创设案例情境开始,通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。(2)互相讨论法。大学生课余时间充沛,鉴于此,将班级学生分为若干小组,教师将事先准备好的案例分配给各组,学生采用组内互动讨论的形式,设计出此案例的各种解决方法。课堂上,将本小组的解决方法用课件展现给其他小组。讲解完成后,学生开始互相讨论,对比各自的方法,然后由老师进行分析、对比和总结。以此来增强学生对学科知识点、应用能力的掌握。(3)相互辩证法。课后,采用相互辩证的方法,组织大家相互辩论。选择一些综合应用比较强的案例。与简单的案例相比,综合应用案例能更加高效地启发学生全方位地思考和探索问题的解决方法。相互辩证法是一种探索新型的教学形式,学生的自主性强,能够在辩论中充分表达自己的观点,充分运用所学的理论知识来维护自己的观点,还可以促使学生查阅大量资料,拓展知识面。

4结语

通过以上论述,人工智能技术开始应用于教学,与教学现代化有着密切的联系。其发展必将对现代教育起巨大推动作用。在教学,可以基于人工智能技术建立人类推理模型学习工具等诸多的运用,展示出越来越好的实用性。

参考文献:

[1]邹蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(02).

[2]陈柯蒙,张宁.人工智能的发展探析[J].新西部(理论版),2012(05).

篇(8)

改革传统教学模式

田纳西州立大学是一所由政府资助的大学,地理位置优越,其所在地――纳什维尔,是医疗卫生、音乐、出版和交通运输的重要中心,也是美国乡村音乐的发源地,素有“Music City USA”之称,曾在2006年被提名为美国最佳居住地第一名。学校共提供45个学士学位和24个硕士、博士学位,主要集中在人文科学、行政管理、心理学、特殊教育和教学、生物科学以及计算机科学等七个领域。学校商学院在1994年获得高级大学商学院国际协会认证,并同时在本科生和研究生课程两方面得到了国际认可。

在早期发展阶段,由于师资力量严重不足,学校采取了以人工智能辅助的方式开展教学活动。如今,田纳西州立大学的人工智能教学法在美国可谓独树一帜。他们在教学过程中注重从学生的心理特征出发,营造了科学高效的学习环境,大大激发了学生的学习兴趣。

在田纳西州立大学,教师在教学过程中侧重于营造良好的学习环境,设法将文本、图形、色彩、声音、影像等信息融为一体,打造形式多样、内容丰富的教学内容,而不是机械地灌输书本知识。这对于激活学生的感知能力,吸引学生的注意力,以及调动他们的学习兴趣等具有十分显著的作用。在这样的环境下,学生获取的信息量远比传统教学环境下要多,学生学习的态度也更加积极主动,有效地培养了他们的自主学习能力,极大地提高了学校的教育教学质量。

与此同时,学校在教学过程中十分注重新技术的应用。当微软公司刚推出MS Power Point(PPT)时,学校便尝试将这种技术应用到教学中。从教学实践来看,基于PPT的教学课件,具有吸引学生注意力、刺激学生产生学习兴趣的特殊功能。教师们借助该课件强大而生动的演示功能和链接功能,将自己多年总结的教学内容制作成多层次和交互性较强的演示文稿,利用超级链接功能将词汇、语法、语音和图像等与教学内容有机结合,形成了线性和非线性课程教学体系,极大地丰富和强化了课堂教学。

随着PPT形式、颜色、动画效果等不同的变化,学生们对课件内容产生了越来越大的兴趣,对所学知识的掌握也更牢固。同时,老师还让学生将所学知识自己动手做成幻灯片,拿到班上演示给大家看。学生在准备课堂发言时,会上网查询相关文化背景知识,正确使用相关专业知识点,既复习了所学知识,也提高了学生的学习兴趣,增强了学生实际运用专业知识的能力。

近年来,学校还自主开发了人工智能化的语言教学软件,学生可以在校内的任何一个计算机终端上链接到服务器上的教学软件,从而实现真正意义上的自主学习,从根本上改变了传统教学环境。

创设“人工智能”课堂

田纳西州立大学的教学人员认为,语言学习的核心目的是为了形成语言能力,而语言能力的形成是建立在真实语言材料基础之上的,整个教学活动必须有一个自然、真实的语言环境。而在传统英语教学中,教师所采用的单词、句型往往都是教科书上或是词典上的,与现实生活存在一定的差异,不利于教育教学水平的提高。

为此,他们在英语教学活动中大胆引入人工智能技术,与时俱进地吸收当前流行的英语词汇,并且及时更新一些旧词汇的新用法。通过人工智能教学系统,教师可以通过多媒体课件,向学生全方位地展示英语文化、英语语言思维以及英语语言习惯,帮助学生理解和掌握英语,从而有效地克服传统英语教学存在的缺陷。该系统不仅有助于学生在有限的课堂时间内获得更多的信息,而且拓展了教学空间,让教学活动从课堂延伸到课外,使学生们可以自由地调取多媒体课件,实现自主学习英语,从而达到事半功倍的教学效果。

与此同时,阅读及写作能力培养也是田纳西州立大学的一大特色。传统的阅读及写作课主要采用的手段是教师讲解,教学内容也大多源自教材,形式单一,内容陈旧,很容易让学生产生疲劳感。针对这种情况,学校通过采用人工智能教学系统,使教育教学效率明显提升。教师在教学中通过引导学生掌握不同体裁的语篇所具有的不同交际目的及篇章结构,帮助学生提升阅读、写作能力。教学中,教师将教学内容所属体裁类型的特点用多媒体一一展示,使学生有效地掌握不同题材的语篇结构,使他们在阅读理解相关体裁的内容时,能准确理解内涵,并能够模仿其特点写出相同体裁的文章。

借助人工智能系统,田纳西州立大学为学生们提供了全方位、自主式的学习环境,同时,他们的学习进度会被计算机完整地记录。计算机会根据他们各自的学习情况,提供适合的学习内容,使他们在没有教师指导的情况下,也能够顺利地完成学习任务。

定制“个性化”学习模式

多年来,田纳西州立大学的教育教学活动一直倡导“自主化、个性化”,力求打造以学生个体为中心的学习模式。在传统教学中,由于课时短、教学内容多,教师往往无暇顾及每个学生的需求和差异,只能够设定一个统一的标准开展教学活动,对于学生的个性发展是非常不利的。

针对这种情况,学校进行了多元化教学模式改革,为每个学生定制“个性化”学习模式,使他们拥有更多自主选择的空间,从而能够同时满足不同层次学生的需求。同时,学校还从根本上打破了传统教学活动受到时间和空间限制的局面,使学生在课堂上没有解决的问题,可以通过智能教学系统加以解决,也可以通过网络向教师求助。这样,他们就有了更为宽广的思维空间。这对于专业能力的形成而言,无疑具有十分重要的影响。

篇(9)

人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。

一、高中开设人工智能课程的意义

(1)人工智能定义

人工智能(AI,Artificial Intelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。

(2)开设人工智能课程的意义

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。

将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。

二、高中人工智能教育现状及存在问题

目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,Internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:

(一)教学条件参差不齐

开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。

(1)对硬件性能的要求

人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的上课时间,而且大大降低了学生的学习兴趣。

(2)对软件性能的要求

为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。

(二)对人工智能科学的认识不足

(1)学生的认识误区

提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。

(2)教师对人工智能学科开设存在偏见

一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。

(三)一线教师经验不足

在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。

三、解决上述问题的几点建议

(一)加强软、硬件建设

在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合AI教学的网站,教师应整理出和AI相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。

(二)端正认识,增强支持

作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。

作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。

校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。

总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。

参考文献:

[1]张剑平.人工智能技术与“问题解决”[J].中小学信息技术教育,2003(10).

篇(10)

中图分类号:TP393-4

所谓人工智能,就是利用人工方法在计算机上实现智能,也可以说是人工智能在计算机上的一种模拟。人工智能广泛融合了神经学、语言学、信息论和通讯科学等众多学科和领域。目前主要存在三条人工智能研究途径:一是以生物学理论为支撑,掌握人类智能的本质规律;二是以计算机科学为支撑,通过人工神经网络进行智能模拟,实现人机互动;三是以生物学理论为支撑。

1 人工智能技术的特征

智能技术主要分为两类,人类和计算机智能,两者存在相辅相成的关系。利用人工智能技术能够实现人类智能向机器智能的转化,相反,机器智能也能够利用智能教学转化为人类智能。

1.1 人工智能的技术特征。首先,人工智能具备非常强的搜索功能。该功能是利用相关搜索搜索技术实现对海量信息的快速检索,满足个性化信息需求;其次,人工智能具备很强的知识表示能力。具体来讲,就是人工智能对信息的行为,能够像人类智能一样,对模糊的信息加以表示;最后,人工智能具有较强的语音识别和抽象功能。前者主要是为了对模糊信息加以处理。而后者主要是为了对信息重要度加以区分,以便提高信息处理效率。用户只需要智能机器提出具体要求便可,至于复杂的解决方案就交给智能程序了。

1.2 智能多媒体技术。首先,人机对话更加灵活。传统多媒体在人机对话方面极为欠缺,导致教学单调乏味,不能取得预期良好效果,但智能多媒体却不然,他能够实现人机自由对话和互动,同时还能结合学生实际对学生的问题给出不同层次的答案。其次,教学可行性更强。由于学生在认知能力和个人素养方面都存在差异,而且学习主动性也不尽相同,人工智能必须要结合学生实际学习状况,为每一位学生设计制定个性化的学习计划和学习目标,对学生进行针对性较强的教学,真正实现因材施教。再次,具有强大的创造性和纠错性。前者属于人工智能的显著特征,而后者属于人工智能的重要表现方面。最后,智能多媒体具有老师特征。在实际教学过程中,智能多媒体可以对教学双方的行为进行智能评价,以便能够及时发现教学中的薄弱点,有助于实现教学相长,全面提高教学质量和教学效果。

2 计算机网络教育的现状

随着现代科学的进步,网络信息的发达,人们的教学观念和学习观念都发生了前所未有的改变,网络时代正全面到来。为了满足现代社会对人才的实际需求,培养大量现代化优秀人才,计算机网络教学模式业已成型并不断完善。目前,高校正规教学模式依然是现代教学主流,尽管在系统传授知识和规范培养人才方面具有无可比拟的优势,但在资金投入、效益创收和时空限制等方面具有很大的弊端,灵活性不足,无法有效满足现代教育的发展要求。

计算机网络教学对传统教学形成了巨大挑战,并产生了深远影响。它不仅有效弥补了传统教学的时空限制缺陷,而且赋予了教学极大的乐趣性,吸引了越来越多的人积极投身到网络教学建设中去,任何人无论何时何地都能够通过网络课堂去学习和提高。但目前计算机网络教学发展仍处于探索期,在实际运用方面还存在许多问题:第一,计算机网络教学中的学习支持服务体系尚不健全,导学手段和答疑方法还非常落后,由于各种原因,在服务方式上缺乏针对性、策略性和积极性;第二,计算机网络实验教学中存在着空间分散、时间流动和自主性差等问题和弊端;第三,计算机网络的系统承载能力和信息查询能力还十分有限;第四,如何实现计算机网络考试的开放性,确保考试的客观性、公正性、权威性,已经成为网络教学发展的瓶颈;第五,计算机网络教学中的核心支撑系统――CAI,还无法有效满足和适应网络教学的实际需求和发展要求。

主流CAI课件主要有两种,一种是单机版的初级课件,包括简单的Authorware课件、PPT幻灯片和图文网页等。一种是高级的网络版课件。该类课件主要以静态图文和动态演示组成的网页为主,以聊天室、电子邮件和QQ群等形式为辅,实现师生互动、网络答疑的一种改进型课件。初级课件在实际教学中以操作容易、更新及时和维护方便著称,但实际上就是传统教学手段的变相挪用。还有些课件,尽管在互动性方面有着不错的效果,但是制作繁琐、更新较慢和维护复杂。因此,高级网络课件是目前网络教学中的主流课件,已经成为了计算机网络课件的固定模板。改进型的网络课件有效地解决了传统多媒体在师生互动不足的问题。上述两类课件是现在最为常见的两种CAI课件,尽管两者都有各自的优势,但作为网络教学的重要手段,仍存在许多问题和弊端:无法实现因材施教,无法开展层次教学;作为教学的一大主体,学生在个性化交互操作方面仍有很大不足;对学习过程中出现的普遍问题无法进行智能统计、分析和评价等。

3 人工智能技术在计算机网络教学中的运用

3.1 人工智能多媒体系统。(1)知识库。智能多媒体已经不再是用来进行纸质媒体数字转化的工具了,它应该具备相应完善的知识库,而知识库里的教学内容要结合教学实际和学生现状进行针对性、个性化设计。同时,要实现知识库资源的高度共享,并及时加以更新和补充,如此才能充分发挥知识库的教学服务作用。(2)教学板块。教学板块的设计主要是出于教学综合性考虑的,教学方法的创新是其关注的重点内容。该模块的实现要以掌握专业知识、教学策略和人机对话等领域的知识为前提,结合学生实际学习现状和特点,利用智能系统的现代化技术手段对知识和相关教育措施加以高效搜索。(3)学生板块。及时掌握学生心理动态和学习状况是智能网络教学的一大特征,结合学生实际状况加以智能评判,进而加以针对性指导和个性化辅导,实现因人施教和因材施教,全面提高学习效率和学习质量。(4)用户模块。用户模块是智能系统无法忽视和省略的关键模块,整个智能系统的正常运行离不开人工程序操作,用户需要通过用户终端将教学内容上传到网络教学平台,才能顺利完成教学。

3.2 人工智能多媒体教学的发展。(1)加强与网络的结合。随着网络技术的成熟,智能网络教学与网络之间的关系日益紧密,多元化、多维度网络空间日益成为一种趋势。互联网具有信息量大、更新速度快、超时空性等优势,加强与网络的结合是人工智能计算机网络教学未来发展的重要方向。(2)加强智能的应用。人机对话、机器指导的教学模式将成为未来网络教学的核心模式,传统教师的角色将逐渐被计算机取代。最为典型的就是现代智能导航系统。(3)加强系统软件的研发。系统软件的更新日新月异,旧的系统软件已经无法有效满足网络发展的时代要求,加强系统软件的研发以便充分满足网络要求,更好地帮助学生解决实际问题,进而提高学习效率和教学质量。

4 结束语

人工智能技术在计算机网络教学中的运用将为现代化教育提供新的发展思路,将全面改善网络教学环境,拓展学习服务渠道,提高计算机网络教学质量,并有可能彻底打破计算机网络教育的时空限制,全面加强网络教学的开放性,实现网络学习的个性化、人性化和智能化,充分落实以学生为本的教学理念。未来CAI技术的进一步成熟将全面提高网络教学的整体格局,我们有理由相信,智能网络教学将迎来全新的发展春天。

参考文献:

[1]刘广钟,高军,刘,李吉彬.报文分析技术在计算机网络教学中的应用[J].计算机教育,2014(01).

上一篇: 古希腊的主要文化成就 下一篇: 工程项目财务管理
相关精选
相关期刊