时间:2024-02-29 14:37:33
序论:好文章的创作是一个不断探索和完善的过程,我们为您推荐十篇人工智能教育政策范例,希望它们能助您一臂之力,提升您的阅读品质,带来更深刻的阅读感受。
1 人工智能定义和发展阶段
人工智能的英文是Artificial Intelligence, 简称AI, 人工智能的内容不断丰富和发展, 至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为, 主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器, 短期目标是理解这种智能行为是否存在于机器、人类或其他动物中, 所以它包含了科学和工程双重目标。根据其功能强弱, 人工智能分为三类, 即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段, 第一阶段是20世纪50~60年代, 提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代, 提出了专家系统, 同时基于人工神经网络的算法研究发展迅猛, 伴随着半导体技术计算硬件能力的逐步提高, 人工智能逐渐开始突破;第三阶段是自20世纪末以来, 尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展, 人工智能的应用场景也开始增多, 特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面, 即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的Alpha GO主要应用了机器学习中的深度学习算法。
2 人工智能应用状况与反思
2017年, 阿里的无人超市落地杭州, 进店、挑选商品、付款支付一气呵成, 消费者几乎在完全自主的状态下完成购物。与此类似, 昆山富士康公司裁员6万名工人, 全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代, 因为很多职业岗位或技能将被智能机器人所代替, 职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为, 我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的, 但却持续了三十年的法案让德国和美国的汽车工业完全赶上来, 最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位, 但同时又会创造新的就业岗位, 这是一个伴随着产业智能升级的、长期的艰难过程, 对于职业教育来说, 这既是一个严峻的挑战, 也是一个难得的机遇。
3 人工智能时代职业教育的发展策略
为了更积极地适应人工智能时代, 除了国家层面的统筹规划、科学指导和政策、经费支持之外, 建议还要做好以下几个方面的发展规划。
3.1 解放思想, 更新理念与制度
中国工程院院士潘云鹤提出, 人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间, 向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此, 职业教育在教学和管理过程中应该加入人工智能等相关理念和技术, 同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中, 信息技术类课程课时偏少, 数据处理、编程类或人工智能课程几乎没有, 这样的安排不利于提升学生的信息素养, 必须做出相应的调整, 同时适当减少将来可被人工智能应用替代的技能课程的课时, 比如电算会计、环境监测等。
3.2 善用人工智能, 提升教学与管理
在人工智能背景下, 教师们现有的重复性工作和大量数据积淀的教学任务, 比如批改作业或阅卷或课堂考勤都可能被人工智能取代, 因此, 教师能腾出更多的时间, 更充分地关注学生的个性差异, 从而为学习者提供更精确的个性化学习服务, 教师也能够及时调整教学方法和手段, 优化教学评价方式, 补充教学资源, 减少备课重复性工作, 提升教学效率, 真正地做得因材施教, 同时学生们的学习方法和方式将不同程度地得到重构, 基于大数据的智能在线学习平台大量出现, 不同的学校、学科及专业课程不再封闭, 学习时时处处都可以进行, 碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程, 比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等, 都能够根据监测数据进行智能解析, 有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化, 考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑, 更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。
3.3 深化产教融合、优化实训筑牢就业
在人工智能时代, 职业院校应与相关行业统筹发展, 深化产教融合, 拓宽企业参与的途径, 深化引企入教改革, 支持引导企业深度参与职业院校的教育教学改革, 多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训, 促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制, 推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制, 行业领域的行家里手将通过互联网以VR或者AR技术言传身教的方式, 带领规模庞大的徒弟用碎片时间进行学习与实践。
3.4 完善终身学习的职业教育体系
随着人工智能应用的深入推广, 职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级, 中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位, 守着一门技术吃一辈子老本的时代将一去不复返。因此, 职业教育要继续完善终身教育体系, 为职业教育学生的充电升级铺就一条纵深的通道。
3.5 人文教育为道, 智能教育为用
在人工智能的帮助下, 简单重复性的工作将被机器替代, 人们将从重复繁琐的事务中解脱出来, 转去从事更具有创造性、创新性或者更具有情感类的工作, 这些工作需要人与人之间的合作与沟通, 因此, 职业教育更需要注重学生思想道德水平、人文综合素质的培养, 这是做人之道, 在此基础之上激发学生们的学习主动性和创造力, 促进跨界思维的形成, 更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。Tesla汽车和Space X公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁, 恐怕就是人工智能了[7]。一群没有良好道德水平的, 但掌握了智能技术或设备的人们是危险的, 所以职业教育应该从学生入学起就开始, 不断提升学生的思想道德水平, 热爱社会、热爱生活、乐于助人、与人为善。只有这样, 人工智能应用才能更好地服务人们、造福社会。
4 结论
人工智能正在快速又深刻地改变我们的教学、生活和工作方式, 也对职业教育提出了严峻的挑战, 同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时, 须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对, 切实地把握人文教育之道对智能教育之用的统领原则, 培养能很好地掌控人工智能技术和应用的人才。
参考文献
[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业, 2018 (8) :50-56.
[2]苏令.人工智能来了, 教育当未雨绸缪[EB/OL].[2018-05-15].
[3]Nils J.Nilsson.人工智能[M].郑扣根, 庄越挺, 译.北京:机械工业出版社, 2000.
[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点, 2017 (3) :59-61.
[DOI]10.13939/ki.zgsc.2016.36.197
1 中学教育现状
教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。
目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。
1.1 学生得到的公共教育资源不足
学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。
1.2 学生获取的社会教育资源不公
学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。
本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。
2 智能辅助学习
2.1 人工智能简介
人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。
在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。
2.2 智能辅助学习系统
智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。
该智能辅助学习系统,具备以下几个特征。
2.2.1 虚拟教师跨学科能力
与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。
2.2.2 虚拟教师深度自学习
虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。
2.2.3 接近自然语义的沟通
学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。
2.3 优势分析
智能辅助学习系统,有三大核心优势。
一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。
二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。
三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。
2.4 前景预测
笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。
第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。
第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。
3 结 论
本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。
参考文献:
[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).
产业链格局已现,上游技术成型、下游需求倒逼,计算机视觉产业应用最成熟。产业链初步格局已现,从基础层和底层技术,再到应用技术,最后再到行业应用,除了近年来底层核心技术的突破,下游行业需求倒逼也是人工智能应用技术发展的重要动力,诸如人机互动多元化倒逼自然语义处理、人口老龄化倒逼智能服务机器人、大数据精准营销倒逼推荐引擎及协同过滤,等等。其中计算机视觉应用技术的发展可能是最先发力的,国内不乏世界一流水平公司。
2B应用首先爆发,“人工智能+金融、安防”应用前景广阔。“人工智能+”将代替之前的“互联网+”,在各行业深化应用,安防、金融、大数据安全、无人驾驶等等。生物识别和大数据分析在安防和金融领域的应用则是目前技术最为成熟、产业化进程较快,如智能视频分析、反恐与情报分析、地铁等大流量区域的监控比对;金融领域的远程开户、刷脸支付、金融大数据采集、处理、人工智能自动交易、资产管理等。相关推荐标的:东方网力、佳都科技、川大智胜,建议关注大智慧、远方光电。
推荐组合:
从基础层、技术层、应用层的划分上,短期关注能成功商业化的企业。建议关注新三板企业海鑫科金(430021.OC)、捷尚股份(832325.OC)
在主流的机器学习框架下,从人工智能的数据+算法+计算能力的三要素构成上考虑,建议关注地平线机器人和中科寒武纪。
在细分领域,建议关注图像和视觉识别的旷视科技(face++)、格灵深瞳、商汤科技、云从(佳都科技),语音识别领域的捷通华声(Q169597)、云知声、思必驰,智能客服领域的智臻智能(834869.OC)、中通网络(835426.OC),服务机器人相关的图灵机器人、优必选,智能驾驶相关的Minieye、驭势科技、国科微(新三板待挂牌)等。
行业观点
算法+数据+计算能力三轮驱动人工智能加速到来:人工智能的发展经历两起两落,目前是第三次崛起。算法、数据和计算能力不同程度的造成了人工智能历史上发展的低谷期。深度学习是目前最主流的机器学习方法和基础算法框架,也在不断的发展和完善中,现在使用不同算法的结合在图像和语音处理中取得了更好的效果。机器学习的目标是真正实现无监督学习,在朝这个目标发展的过程中,迁移学习和聚焦模型是最有前景的方向之一。人工智能所需要的计算能力未来将适应“云+端”的模式,在IOT时代,用于“端”的机器学习计算能力,低功耗、低成本、低体积均是重要的发展目标。
政策助力,巨头加码,人工智能发展如火如荼:发达国家已充分认识到人工智能的战略意义,纷纷从国家战略层面对人工智能加紧布局。美国、欧盟和日本均开始大脑研究计划。国内对于人工智能的相关扶植政策已出台。互联网公司和科技巨头也加大力度进行人工智能领域的布局,人才争夺激烈。人工智能相关的创业公司也不断涌现,风险资本竞相进入。
人工智能的技术逐渐成熟,应用逐步落地:语音识别、图像和视频识别是相对成熟的技术,国内公司在相关领域处于世界领先水平。自然语言处理是认知智能的更高层级目标,未来进步空间巨大。随着技术的不断走向成熟,各细分领域的应用已开始逐步落地。
“+人工智能”成为行业和场景未来智能化的趋势:人工智能是未来产业变革的基础力量,对不同行业和场景的智能化改造是未来趋势。安防、金融、医疗、汽车、制造业、教育、广告、传媒、法律、智能家居、农业等均是人工智能落地的方向。
随着我国教育的迅猛发展,作为科学教育重中之重的小学科学教育逐渐开始被大众所关注,所以探索小学科学教育的新思路已成为教育改革的关键之一。多年来,我国不断借鉴发达国家的教育改革理念与经验,并进行本土化研究,促进我国教育发展。
一、研究背景
HPS教育作为西方20世纪80年代盛行的理论,引入中国已有20余年。作为极其受欢迎的教育理念,凭借着自身优势在中国教育课程改革中占据了一席之地,也为中国科学教育提供了新思路。
(一)HPS的概念界定
HPS的提出源自科学内部对科学反思和科学外部人员对科学本质认识的思考。最初,HPS指的是科学史(HistoryofScience)和科学哲学(PhilosophyofScience)两大学科领域,但在20世纪90年代科学建构论流行后,科学社会学与科学知识社会学被引入科学教育,HPS逐渐演化成科学史(HistoryofScience)、科学哲学(PhilosophyofScience)和科学社会学(SociologyofScience)三者的统称[1]:科学史即研究科学(包括自然科学和社会科学)和科学知识的历史;科学哲学则是对科学本性的理性分析,以及对科学概念、科学话语的哲学思辨,比如科学这把“双刃剑”对人类社会的影响;科学社会学则讨论科学处在社会大系统中,社会种种因素在科学发展过程中的地位和作用,这包括了政治、经济、文化、技术、信仰等因素[2]。在国外,德国科学家和史学家马赫最早提倡HPS教育,突出强调哲学与历史应用至科学教学中的作用。我国HPS相关研究开始晚且研究规模较小,首都师范大学的丁邦平教授认为HPS融入科学课程与教学是培养学生理解科学本质的一个重要途径[3]。
(二)HPS教育理念融入小学科学课程的必要性
运用科学史、科学哲学等进行教学是目前国际上小学科学教育改革的一种新趋势。2017年,教育部颁布的《义务教育小学科学课程标准》标志着我国科学教育步入了新阶段,其不仅要求达成科学知识、科学探究的相应目标,也要养成相应的科学态度,思考科学、技术、社会与环境的融洽相处。该标准提出了“初步了解在科学技术的研究与应用中,需要考虑伦理和道德的价值取向,提倡热爱自然、珍爱生命,提高保护环境意识和社会责任感”。HPS教育与小学科学课程的结合是教学内容由知识到能力再到素养的过程,是小学科学教育的新维度,改变了小学科学课程的教学环境。将科学课程中融入HPS教育的内容,可以帮助学生理解科学本质,研究科学知识是如何产生的,科学对社会的多方面影响以及科学和科学方法的优、缺点等。当《小学课程标准》将科学态度和价值观视为科学教育的有机组成部分时,小学科学课程就有望成为HPS教育的天然载体,同时为小学科学课程渗透HPS教育提出了挑战。目前,我国小学科学课程虽已有部分设计融入了HPS教育理念,但该融入过程仍停留在表面,融入程度低,融入方式单一。所以,研究HPS教育理念融入小学科学课程十分有必要。
(三)HPS教育理念融入小学科学课程的可行性
纵观国内外已有的研究,将HPS教育融入小学科学课程可分为基于传统课堂模式的正式教育课程和基于科技馆、研学机构等的非正式教育课程。由皖新传媒、中国科学技术大学先进技术研究院新媒体研究院、中国科学技术大学出版社三方通力合作、联合打造的《人工智能读本》系列丛书自出版以来已发行八万套,在安徽省多个市区的小学得以应用,是青少年人工智能教育上的一次全新探索。该套丛书分三年级至六年级共四套,涵盖了16个人工智能前沿研究领域知识点,每一节课都设有场景引入、读一读、看一看、试一试4个模块。小学《人工智能读本》作为阐述新兴科技的读本,以亲切的场景对话和可爱幽默的插画等形式吸引了众多小学生的兴趣,不仅可作为学校科学课读本,也可以应用于课外场景。本文则以小学《人工智能读本》为例,对HPS教育进行初步摸索与实践,以期对小学科学教育带来教益。
二、HPS教育理念融入小学科学的典型案例
《人工智能读本》作为HPS教育理念融入小学科学实践的典型案例,侧重引导学生多维度、科学辩证地认识人工智能,内容包括机器学习、决策职能和类脑智能,以及人工智能的不同发展阶段,带领学生思考人工智能带来的伦理问题以及其他挑战,培养学生正确的世界观、人生观和价值观。本研究将以《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”为例,分析HPS教育理念融入小学科学的实践。
(一)科学史:提升课程趣味性
小学科学教育作为培养具有科学素养公众的重要步骤,提升过程的趣味性则十分重要。过去传统的小学科学教育注重知识的传递而忽略了学习过程,填鸭式教学导致学生失去对科学的兴趣与探索欲,不利于公民科学素养的整体提高。而科学史作为研究科学(包括自然科学和社会科学)和科学知识的历史,已经逐渐渗透到科学教育中来。科学史常常介绍科学家的事迹,某一知识诞生所面临的困难和曲折过程,而将科学史融入课程可以带学生重回知识诞生的时刻,切身体会科学。读本作为在小学科学教育中不可或缺的工具,利用科学史内容,以叙事方式可以将科学哲学与科学社会学的思想融入教学过程中,在读本中融入历史,可以提升课程趣味性,帮助学生更加容易探求科学本质,感受科学家不懈努力、敢于质疑的精神,提升科学素养。例如《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”引入部分即以时间顺序展开,介绍人工智能的发展与面临的困境。在“看一看”中机器人索菲亚是否可以结婚的故事不仅为本章节提供了丰富的内容,提升了课程的趣味性,而且还融入了科学与哲学,引发读者对于人工智能的思考。
(二)科学社会学:提升课程社会性
科学社会学是研究一切科学与社会之间的联系与影响,包含科学对社会的影响和社会对科学的影响。科学是一种社会活动,同时也受到政治、经济、文化等多方面影响,比如蒸汽机的诞生表明科学促进社会的发展。在科学教育的课堂中融入科学社会学不仅可以帮助学生理解科学问题,还可以通过介绍科学与社会之间的复杂关系,培养学生灵活、批判看待科学问题的思维能力。如六年级第四单元“人工智能伦理与其他挑战”中,在介绍个人与技术的基础上引入了政府和环境这两个要素,使学生在更宏观的背景下,获得这样一种认知:环境与技术之间有一把“双刃剑”,个人与技术、政府与技术之间是相互促进的主客体关系。《人工智能读本》并不全是说教性质的文字,在“试一试”中的辩论赛环节让同学通过亲身实践,更加了解人工智能对于社会的多方面影响。通过对于科技是一把“双刃剑”这一事实的了解,同学们可以更好地将学习知识与社会的背景联系在一起,深刻体会科学中的人文素养,增强社会责任感。
(三)科学哲学:提升课程思辨性
以往研究发现,国内学科教材中关于科学史和科学社会学内容较多而且呈显性,而对于科学哲学的融入内容不够,且不鲜明。[3]科学哲学融入科学教育无疑可以提升学生的思辨性,帮助学生建立起对于科学正确而全面的认识。例如,《人工智能读本》六年级第四单元“人工智能伦理与其他挑战”中,引入人工智能伦理,通过介绍人工智能面对的挑战、人工智能的具体应对策略,让小学生了解人工智能技术发展的同时也要重视可能引发的法律和伦理道德问题,明白人与人工智能之间的关系以及处理这些关系的准则。通过“读一读”先让学生明白伦理概念,再用一幅画让学生思考在算法的发展下,人类与机器人的关系如何定义,向学生传递树立人类与人工智能和谐共生的技术伦理观。通过这种方式,可以帮助学生逐步建立完整的科学观,全面且思辨地看待科学,提升学生思辨性,进而提升科学素养。
三、HPS教育理念融入小学科学课程的实践建议
《人工智能读本》作为一套理论与实践相结合,具有知识性与趣味性的儿童科普读物,着重引导小学生培养科学创新意识,提升人工智能素养,产生求知探索欲望。但《人工智能读本》作为HPS融入小学科学课程的初始,仍存在教育资源不充分、内容结合较浅等不足,为了将HPS教育更好融入小学科学课程,可从以下三方面加以改进。
(一)开发HPS教育资源
HPS教育需要教育资源的支撑。HPS教育资源来源广泛,无论是学生的现实生活,还是历史资料,都可以提供契机和灵感。《人工智能读本》中收集了大量与人工智能相关的故事和现实案例,都可以作为教育资源,从各个角度达到科普的目的。在新媒体时代,进行HPS教育资源开发时,应当注意借助最新的信息与通信技术增强资源的互动性,如互动多媒体技术、虚拟现实技术、增强现实技术、科学可视化技术等。在传统的科学课堂教学中,主要是通过图片文字讲解,实验演示及互动来开展。这种形式对于现实中能接触到的实验内容,如常见的动植物、可操作的物理化学实验等,比较容易开展。而对于地球与宇宙科学领域的知识,或者一些已经不存在的动植物,则只能通过图片视频进行展示,不容易进行实验展示。通过虚拟现实技术、增强现实技术等,则可以虚拟出世界万物,如不易操作的物理化学实验、已消失的动植物等都可以通过虚拟现实的手段得以呈现。这些技术或能使教学内容变得生动形象,或通过营造沉浸感以使学生有更佳的情境体验,或让学生与教学资源进行交互从而自定义内容,服务于学生科学素养提升的终极目的。
(二)对小学科学教师进行培训
HPS教育的关键是从社会、历史、哲学等角度对自然科学内容进行重新编排,并不是将大量的内容或学科知识简单相加,这对教师能力也提出了更高要求。目前,人工智能教学领域常常出现“学生不会学、老师不会教”的状况,《人工智能读本》作为内容翔实有趣的读本可以弥补一部分缺失。但与此同时,也需要提升教师的教学能力与知识储备。HPS教育理念不仅仅针对历史中的科学人物,所有的学生主体也是历史中的主体,他们也身处于社会中,并且对于生活中的各种科学现象有着自己的思考。所以教师身为引导者,需要注意到学生的思考,深入挖掘,鼓励他们对所思内容进行反思并付诸实践。科学史和科学哲学应当成为科学教师教育项目中的一部分,这能让科学教师更好地理解他们的社会责任。为此,对职业科学教师进行HPS培训便是必要的。
(三)多场景开展小学科学教育
科学素养不是空洞的,它来自学生的认识体验,并从中获得生动、具体的理解和收获。《人工智能读本》作为方便携带的读本,不仅可以在小学科学课堂中作为教材使用,也可以应用在其他场景,如研学旅行、科技馆等场所。课堂学习只是小学科学教育中的一个环节,家庭、科技馆等也可以进行科学教育。例如,科技馆与博物馆可以以科学家和历史科学仪器为主题举办展览,展览中融入HPS教育理念,学生在参观和学习过程中学习有关科学内容。一些历史上大型的科学实验,学校教室或实验室无法满足条件,但在大型的场馆中可以实现。例如,研学旅行作为目前科学教育中最受欢迎的方式之一,已被纳入学校教育教学计划,列为中小学生的“必修课”,正逐渐成为学生获得科学知识的另一个途径。研学旅行作为一种集知识性、教育性、趣味性和娱乐性为一体的旅游形式,通常伴随着知识教育的过程,包括科学知识的普及,所以也是开展小学科学教育的重要场所。在该场景下,运用《人工智能读本》等新兴手段进行科学教育往往取得事半功倍的效果。
结语
目前,HPS教育理念已经积极尝试运用到小学科学教育中,包括学校内的正式学习以及学校外如科技馆、博物馆、研学旅游中的非正式学习之中。其中,科技史以时间维度为线索创造丰富资源的同时也可以提升课程趣味性;科学社会学以科学与社会之间的相互关系帮助学生理解科学本质,提升科学素养;科学哲学则以哲学的视域审视科学的诞生提升学生思辨能力。未来,HPS教育结合小学科学则需要更深入,在资源开发、教师培训以及应用场景等方面加以改进,为提升国民科学素养做出努力。
参考文献:
[1]袁维新.国外科学史融入科学课程的研究综述[J].比较教育研究,2005,26(10):62-67.
[2]张晶.HPS(科学史,科学哲学与科学社会学):一种新的科学教育范式[J].自然辩证法研究,2008,24(9):83-87.
2016年12月29日到2017年1月4日,一个名叫 “Master”的神秘网络围棋手横扫中、韩、日围棋界。它凭借惊人的稳定性一路高唱凯歌,获胜60场,没有败绩。最终神秘的“Master”揭开了庐山真面目,宣布自己就是“阿尔法围棋”。
2017年1月,谷歌Deep Mind公司宣布推出真正2.0版本的“阿尔法围棋”,成为第一个不借助让子,在全尺寸19×19的棋盘上击败职业围棋棋手的电脑围棋程序,其特点是摈弃了人类棋谱,只靠“深度学习”的方式成长起来挑战围棋的极限。
围棋是人类最具智慧的竞技之一,而人工智能(Artificial Intelligence,简称AI)研发是人类最具挑战性的科技探索。人机大战的经典对决将被同时载入围棋史册和科技史册。它的意义已经远远超出围棋本身,人们热衷谈论“阿尔法围棋”更多是出于对AI技术的关切。从诞生到日益成熟,AI理论和技术的应用领域在不断扩大,不知不觉间渗透到人类当代生活的各个方面。AI时代,互联网、金融、医疗、教育、物流、娱乐、传媒等行业都在加速自己智能化的进程。可以想见,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 而与此同时,人类命运和机器智慧的冲突与共存,已经由人机大战开始不断升温。
“人工智能百年研究”项目
2014年秋季,美国斯坦福大学开启了“人工智能百年研究”(AI100)项目。这是一个超大型长期项目,该项目发起人――美国人工智能发展协会会长、前微软研究员埃里克・霍维茨博士表示,“我们的职责是研究人工智能在2030年前对人类社会生活方方面面所产生的影响,尤其是在北美地区”,而“研究的核心是,人类不能丧失对人工智能的控制能力”。 “人机大战”
2016年9月1日,“人工智能百年研究”项目的第一项成果《人工智能与2030年的生活》。这是一份试图定义北美城市在未来10多年间将要面临的可以模拟人类行为的计算机和机器人系统 (即人工智能)问题的报告,涉及交通、家庭/服务、健康医疗、教育、低资源社区、公共安全与防护、就业、娱乐等关注领域,目的是推动相关政策的制定。业内人士认为,工业界和学术界目前正在联手倒逼政府出台人工智能的相关政策,希望可以获得更大力度的资金和法律扶持。
《人工智能与2030年的生活》所列举的关注领域,均面临着人工智能的影响和挑战。例如开发安全可信赖的硬件的困难(交通工具和服务机器人),获得工作信赖的困难(低资源社区和公共安防),对劳动力可能被边缘化的担忧(就业和职业),以及人际交往减少带来的社会副作用(娱乐)等等。
1.交通:自动驾驶的汽车、卡车、无人机投递将改变城市里的工作、购物和休闲娱乐模式,但需要增加可靠性、安全性和用户接受度,并根据新的交通模式改进当前的相关法规和基础设施。
2.家庭/服务机器人:现在进入家庭的扫地机器人或特种机器人能够为家庭和工作场所提供清洁和安保服务,当务之急是技术方面的挑战和机器人成本过高的问题。
3.健康医疗:个人健康监测装备与手术机器具有极大的发展潜力,人工智能软件将最终对某些疾病自动进行诊断和治疗。目前的关键是获取医疗从业者的信任。
4.教育:互动辅导系统在帮助学生进行语言、数学以及其他技能的学习方面已经发挥出作用,自然语言处理的发展将为这一领域的应用带来全新的方式。当务之急是教育资源分配不均的问题,以及教、学双方直接互动的减少会带来哪些消极影响。
5.低资源社区:投资最新技术领域有助于更充分地发挥人工智能的优势,比如避免铅污染和改进食品分配等,重要的是让公众参与进来以增强相互信任。
6.公共安全与防护:利用相机、无人机和软件进行犯罪模式分析,应用人工智能技术来降低人类判断的主观偏见,与此同时在不侵犯个人自由和尊严的情况下增强安全性。目前需注意的是如何保护隐私和避免固有偏见。
7.就业和职业:随着全球经济的快速发展,传统岗位开始被新岗位取而代之,有关人类如何适应这种新变化的相关工作需要立即展开,比如如何妥善处理劳动力下岗以及人工智能对新工作岗位不适应的问题。
8.娱乐:内容创建工具、社交网络和人工智能的结合,将开创全新的媒体内容收集、组织和分发模式。但问题是新的娱乐方式如何在个人价值和社会价值之间取得平衡。
《人工智能与2030年的生活》在回顾发展历程和展望发展趋势时指出,人类正加速在人工智能领域的研究,试图建立一个能与人高效协作的智能系统。其中最重要的是机器学习的成熟,它受到了数字经济崛起的部分影响――数字经济为机器学习提供了大量数据。此外其他影响因素包括云计算资源的崛起,以及消费者对语音识别和导航支持等技术服务的需求。研究人员认为,不管是从基本方法上还是应用领域,包括大规模的机器学习、深度学习、增强学习、机器人、计算机视觉、自然语言处理、协作系统、众包和人类计算、算法游戏理论和计算的社会选择、物联网、神经形态芯片在内的研究趋势,共同促进了人工智能研究的热潮。
这份报告试图严肃地讨论这样一个问题:如何更好地引导人工智能来丰富和服务于人类生活,同时推动和激励这一领域的创新。因为人类目前并不能清晰而完美地预测未来的人工智能技术及其影响,所以一定要对相关政策进行评估。未来几年公众在交通和医疗等领域内应用人工智能的机会日渐增多,因此必须以一种能构建信任和理解的方式将其引入,确保在尊重人权和公民权利,保护隐私和安全,维护广泛而公正的利益分配等方面措施周备。 世界经济论坛说,机器人和人工智能到2020年可以取代510万个工作岗位。
研究人员指出,传统的人工智能范式已被数据驱动型范式成功取代,对于定理证明、基于逻辑的知识表征与推理这些程序的关注度在降低。作为20世纪七八十年代人工智能研究的一根支柱,规划( Planning )强烈依赖于建模假设,难以在实际应用中得到满足;视觉方面基于物理的方法和机器人技术中的传统控制与制图,正让位于通过检测手边任务的动作结果来实现闭环的数据驱动型方法;还有曾颇受欢迎的贝叶斯推理和图形模式,在数据和深度学习的显著成果前也显得相形见绌。在未来15年中,针对人类意识系统开发,按照能够互动的人类特点进行建模和设计人工智能系统成为人们的兴趣点。在考虑社会和经济维度的人工智能时,物联网型的系统变得越来越受欢迎。数据驱动型产品的数量及其市场规模将会扩大。
“为机器人安装‘死亡开关’”
2017年1月,欧洲议会法律事务委员会召开会议,呼吁制定“人类与人工智能/机器人互动的全面规则”。议公布的报告对机器人可能引发的安全风险、道德问题、对人类造成的伤害等情况进行了讨论,探讨是否需要为机器人安装“死亡开关”、研究机器人抢走人类工作的应对措施等等,要求欧盟为民用机器人制订法律框架。专家认为,这或将是首个涉及管制机器人的立法草案,将有利于人类应对机器人革命带来的社会震荡。
会议认为,人工智能和机器人发动的新工业革命可能影响到所有的社会阶层。机器人可能创造无限的繁荣,与此同时将影响人类未来的就业情况。机器人取代人类在许多行业是大势所趋。在德国,每1万个雇员中就有301个是工业机器人。报告要求欧盟委员会对各国民众的就业情况进行调查,重点关注极易被机器人取而代之的职位。如果机器人成为职位“杀手”,欧盟各成员国应考虑为国民提供基本的生活保障。埃里克・希尔根多夫是一名德国法律教授,他非常认同欧洲议会讨论的这项议题。“这不仅在政治上是可取的,从法律角度也是必要的,这样我们才能及时应对机器人革命带来的社会震荡。”他指出,“即使是银行顾问、教师和记者等要求严格的职业,未来也无法在这场科技洪流中幸免。”
会议强调,因为人工智能在几十年内可能超越人类的智力,将对人类控制机器人构成挑战。随着机器人自我意识的崛起,甚至可能威胁人类的生存。近年来,机器人“杀人”的事件时有发生:2015年6月,在德国大众汽车公司,一名工人安装机器人时反被它抓起推向金属板压死;2016年6月,美国一家汽车零件生产商的一名女员工正在修理出现故障的机器人时,它突然启动,将修理女工活活压死。
报告参照美国科幻小说作家艾萨克・阿西莫夫提出的“机器人学三大法则”,将其作为立法框架,对机器人自我意识觉醒后的行为规范做出规定。“机器人学三大法则”包括: 1.机器人不得伤害人,也不得见人受到伤害而袖手旁观。2.机器人应服从人的一切命令,但不得违反第一法则。3.机器人应保护自身的安全,但不得违反第一、第二法则。由于规则无法转化为代码,欧洲议会正在着手建立一个针对机器人和人工智能研发的机构,为设计、生产和操作机器人的人员提供技术、伦理和监管方面的专门知识等。
报告还提出:1.在设计新型机器人时,设计师应该尊重人类的基本人权,事先获得道德研究委员会的批准。2.必须为机器人注册,以便在调查事故时查找涉事的机器人。3.确保机器人安装有“死亡开关”,可以随时被关闭。4.机器人不能对使用者造成“身体或心理伤害”。如果酿成事故,机器人不能逃脱责任。机器人所负担的责任应该与其接收的实际指令及其自主程度相对应:它的学习能力和自主性越高,那么人的责任就较低;倘若它“受教育”的时间越长,教它的“老师”负的责任就越大。报告还指出,机器人的生产商或拥有者将来需要购买保险,来承担机器人可能造成的损失。
人类与机器人的关系将会引起一场涉及私隐、尊严和安全的大讨论,在欧洲议会投票赞成立法之前,各成员国政府将对此做进一步的辩论和修正。
“机器人应当纳税”
英国牛津大学近期一项调查结果显示,今后数十年间,自动化改变生产线的速度将超过20世纪。在经济合作与发展组织(OECD)成员国,57%的工作岗位有被自动化取代的风险。英国中央银行英格兰银行预测,在自动化浪潮中,危在旦夕的英国工作岗位多达1500万个。美国白宫2016年预测,机器人取代时薪低于20美元以下岗位、介于20~40美元岗位和时薪40美元以上岗位的概率分别为83%、31%和4%。
在美国微软公司创始人比尔・盖茨看来,为暂时性减缓自动化蔓延速度,很有必要向企业为雇用机器人员工而征税,税单将是阻止机器人取代人类工作岗位的杀伤性武器。如果机器人将大范围取代人类工作岗位,那它们至少应为此买单。“目前一个人类员工在工厂中创造了5万美元的价值,这个价值会被征税。人类员工需要缴纳各种税,如所得税、社会保障税以及其他税款。如果一个机器人在工厂做与某个工人同样的事情,我们也应按同等水平向它征税。”
盖茨同时认为,尽管一些工作岗位可能被机器人取代,但人们可以在那些所需技能是机器人无法复制的领域里继续工作。世界需要抓住机遇解放劳动力,让人们从事更好的工作,例如关爱老人和帮扶特需群体。在这些领域,人类具有独特的同情心和理解力。
法国社会党总统候选人伯努瓦・阿蒙也呼吁法国对机器人征税,部分税收用于补贴全民基本收入保障。越来越多的政界人士和硅谷富翁支持推出全民基本收入保障,以化解自动化引发的大范围失业。而反对机器人税的人士则持这样的观点:自动化即使在短期也可以借助提高生产率创造新的就业岗位。
“人类需要成为‘半机器人’”
一、引言
人工智能的不断发展与拓展促进了我国各个领域的发展,同时对各个行业产生巨大冲击,很多需要人工机械作业的领域将会使用机器人,造成大量人员的失业。面对如此现状,今后我们高中生如何做好职业生涯规划成为当务之急,只有深刻把握社会发展趋势,加强学习方向与时代潮流的匹配性,才能迎接挑战、抓住机遇、趋利避害,做好职业选择和规划,更好地适应今后的社会发展。
二、人工智能的发展现状和趋势
(一)人工智能的发展现状
“人工智能”一词最初是在1956年Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。目前,人工智能技术在美国、欧洲和日本呈现飞速发展趋势。随着人工智能技术的快速发展,人工智能已经在各个行业得到广泛应用,其中比较典型应用主要包括符号计算、模式识别、机器翻译、机器学习、问题求解、逻辑推理和定理证明、自然语言处理、智能信息检索技术以及专家系统等,这些在计算机领域、化学领域、医学领域以及矿物勘测领域等得到广泛应用,并取得较好效果。
(二)人工智能的发展趋势
技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会综合模糊处理、并行化、神经网络和机器情感等进行全方位发展。随着全球化趋势的不断增强,今后人工智能会向着全球国际标准的方向发展。人工智能技术不断地在就业领域应用及发展,因此高中阶段就对自己的职业生涯有着规划是未来发展的必然趋势,并且美国、加拿大等先进国家早早的就把高中生职业规划教育课程安排在了高中阶段,相比之下安排职业规划教育课程的高中毕业生,甚至大学毕业生对自己的规划都有着明确的方向,我国目前某些地区高中阶段已经安排了职业规划类型的课程,相信不久高中生职业规划的课程也会出现在更多地区的校园。
(三)人工智能发展对就业的影响
随着机器眼下正在取代的首当其冲的是那些简单机械操作的劳动者,比如说我国工厂里的初级工人正在面临自动化的威胁。还有美国福特公司,不仅大量裁减蓝领工人,而且还要把工厂搬到别的州或国家去,那里税收更低、政策环境更宽松、工会更友善的,在这些地方使用机器人不仅可以提高作业效率和质量,而且能够极大的降低各种成本,能够为企业创造更多的效益。
随着人工智能的快速发展,人工智能对各个领域的就业产生了重大影响,我国也在往这个方向发展,对于IT行业,今后会大量使用机器人进行工作,制造业也在逐渐增加使用机器人。技术的进步,使得个人的生产效率得到了巨大的提升。虽然就短期而言,机器是不会一下子取代大多数人,但我们必须未雨绸缪、防患于未然。有一些机械的、长时间集中精神的、固定套路的工作,比如流水线工、司机、配药师等,机器比人还擅长,这些领域将会淘汰大量的工人,导致很多人员失业。而很多工作需要人搭配机器做才最高效,这些工作是主流的新工作,但是需要注意的是,在人和机器协作的过程中,机器一定会不断智能优化的,在单一专业的工作内容中,机器逐渐又会替代人,因此也会造成人员失业。对于人际沟通事务,由于需要人与人之间的交流,还是人比较擅长。审美是模糊的、社会性的,这个还是人比较擅长。
对于我们高中生而言,勤动脑,勤动手,不断创新,是未来立足之本。因此不仅要埋头学习知识,还要培养创新能力和实践能力,以应对迎接人工智能的挑战。
(四)高中生应该怎样规划职业生涯
面对人工智能的快速发展,今后我们高中生应当趋利避害,努力做好职业生涯规划,实现自我价值的增值,具体来说应当从以下几个方面入手:
1.增强职业规划的意识
高中生要根据自身的主观因素以及外界的环境因素,分析、归纳、选择自己的职业发展方向,并且制定相应的学习、培养计划,采取必要行动去实现目标。这种确定人生方向的规划问题应该在高中阶段每一个学生都应该对自己有着清醒的认识,并且得到自身的重视,对选考科目的选择及大学志愿的填报就不会盲目、无头绪,在高中阶段有了明确的目标会使自己的学习方向更加准确,学习积极性更加强劲,同时在就业选择上也可以尽量地少走弯路。
2.选择高水平的职业指导教师
高中生实现从学校到社会或者更高层学校的过程中职业规划具有重要的导向作用,因此在高中阶段一个好的职业规划指导教师对学生的影响有着重要的意义。首先我们选择的职业规划指导教师必须具备一定的任职条件,目前国家也一再的强调任职职业资格的严格性;其次就是指导教师要善于启发式指导学生,增强学生的独立思考能力,在教师的帮助下充分认识自己的天赋、特长、兴趣、能力、心理等方,发现和挖掘自己多方面的潜能,学会正确利用各方面条件充分发展。同时,要注意避免指导教师的思想左右了我们的思想,只有准确的认识自己,才能促使我们带着自己的职业规划继续努力进步。
3.自己的高中生涯规划
高中的三年,对一个高中生的人生有着重要的意义,因此高中阶段可以进行分阶段的自我管理培养。高一阶段:刚进入学校,通过学习了解学科特点,利用学校、教师、网络、社会了解就业动向,自我优势结合人才需求,明确选考科目,初步制定职业发展意向。高二阶段:正确处理选考科目学习与学考科目学习的关系,既突出专业知识又兼顾知识广度。高三阶段:更要处理好语文数学英语必考科目学习与选修科目深化拓展的关系,既要提高高考成绩又要深化拓展专业素养;既要强化高考复习又要重视面试培训,为参加高校自主招生考试或“三位一体”考试做好充分准备。因为近年来重点大学通过高考统一招生录取的名额正在减少,而自主招生或“三位一体”的名额大量增加,有志于就读名牌大学的学生要注意这方面的情况。同时高中生要根据自己的理想多去了解高校情况,多去了专业设置的情况,为报考适合自己的学校及专业做好信息准备。
4.积极参加选修课程,为今后的职业生涯做好基础
按照教育部有关规定,高中学校要开设选修课程。我们可以根据自己的兴趣爱好,选取自己喜欢的课程进行学习,这不仅可以及早的发现我们的喜好和特长,为我们的职业生涯做规划有着重要的参考意义,同时对我们的基础知识的培养也很重要,拓宽了我们的见识宽度,为今后的职业生涯奠定坚实的基础。
参考文献:
[1]刘界,黄冠,王冰洁.关于人工智能教育如何弥补当前教育缺陷的思考[J].内蒙古民族大学学报,2006,12(3):50-51.
[2]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003.20(8).
机器学习是一种高级形态的模式识别,能够让机器通过分析大量数据来做出判断。这有望大大辅助人类思维。但这种与日俱增的能力引发了近乎“科学怪人”(Frankenstein)式的担忧:开发人员能否控制他们创造出的机器?
加州大学伯克利分校计算机科学教授、人工智能专家斯图亚特?拉塞尔表示,自动系统的失误(就像去年驾驶一辆特斯拉汽车,部分自动驾驶汽车的美国驾车者死亡那样)促使人们关注安全。他表示:“这种事件可能会严重阻碍行业的发展,因此这里有着非常直接的经济自身利益。”
除了移民和全球化,对人工智能驱动的自动化的担忧,正引发公众对于不平等和就业安全的担忧。唐纳德?特朗普当选美国总统以及英国投票退出欧盟在一定程度上就是受到这类担忧的推动。尽管一些政治人士声称,保护主义政策将有利于劳动者,但很多行业专家表示,多数就业损失是由科技变革(主要是自动化)造成的。
英国《金融时报》与高通联合开展的Essential Future调查发现,全球精英(那些收入和受教育程度高、生活在首都城市的人)τ诖葱乱比普通大众热情得多。除非弥合这种差距,否则它将继续引发政治摩擦。
美国企业家、撰写道德和科技文章的学者维微克?瓦德瓦认为,新的自动化浪潮具有地缘政治上的潜在影响:“科技公司必须对他们所创造出的东西承担责任,并与用户和政策制定者合作,缓解风险和负面影响。他们必须让员工花时间思考哪里可能出错,就像他们花时间宣传产品那样。”
人工智能行业正在准备应对反弹。人工智能和机器人领域的进步,已经把自动化引入白领工作领域,例如法律文书和分析财务数据。麦肯锡的一项研究称,在美国员工的工作时间中,大约有45%用在可以借助现有技术实现自动化的任务上。
为了确保人工智能有利于人类,已经建立了一些行业和学术计划。其中包括由IBM等公司创建的人工智能造福人类和社会合作组织,以及涉及哈佛大学和麻省理工学院的一项2700万美元计划。得到埃隆?马斯克和谷歌支持的OpenAI等组织已取得进展,拉塞尔教授表示:“我们看到了一些论文,它们针对安全性的技术问题。”
这方面有一些过去应对新技术影响努力的回声。微软首席执行官萨蒂亚?纳德拉将其与15年前相比,当时比尔?盖茨动员公司的开发人员抗击电脑恶意程序。他发起的“可信计算”倡议是一个分水岭。纳德拉在接受英国《金融时报》采访时表示,他希望采取类似的举措以确保人工智能造福于人类。
然而,人工智能带来了一些棘手的问题。机器学习系统从大量数据中得出见解。
微软高管埃里克?霍维茨去年底在美国参议院听证会上表示,这些数据集可能本身就存在问题。他表示:“我们的很多数据集是在假设我们可能并不深入理解的情况下收集的,我们不希望让我们的机器学习应用放大文化偏见。”
新闻机构ProPublica去年进行的一项调查发现,美国司法机构用来确定刑事被告人是否有可能再次犯罪的算法存在种族偏见。再次犯罪风险较低的黑人被告比白人被告更容易被标记为高风险。
提高透明度是一条出路,比如明确人工智能系统使用了哪些信息。但深度学习系统的“思维过程”不容易加以审查。霍维茨表示,人类很难理解这种系统。“我们需要理解如何证明(它们的)决策合理,以及这种思考是如何完成的。”
随着人工智能影响更多政府和企业决策,影响将是广泛的。“我们如何确保我们‘培训’的机器不会固化和放大困扰社会的人类偏见?”麻省理工学院媒体实验室主任伊藤穰一问道。
纳德拉等高管认为,答案将是结合政府监督(言外之意,这包括对算法的监管)和行业行动。他计划在微软成立一个道德委员会,以处理人工智能带来的任何棘手问题。
他说:“我希望有一个道德委员会,它会这样说,‘如果我们要在任何作出预测、可能具有实际社会影响的场合使用人工智能,那么它不带有内置的一些偏见’。”
确保人工智能在不会带来一些意想不到的后果的情况下造福人类,是很困难的。拉塞尔教授说,人类社会无法界定自身想要什么,因此通过编程让机器为最多数量的人谋求最大幸福是存在问题的。
这就是人工智能所谓的“控制问题”:智能机器将一心追逐武断的目标,甚至当这些目标并不可取的时候也是如此。“机器必须考虑到人类真正想要的东西具有不确定性,”拉塞尔教授说。
那么目前,人工智能在中国的发展条件如何,中国距离成为真正的人工智能强国还有多远?7月13日,《中国人工智能发展报告2018》在清华大学主楼接待厅。
报 告中称,目前中国人工智能的发展已经具备非常优越的条件,然而要成为真正的人工智能强国,中国还任重道远。中国在论文总量和高被引论文数量上都排在世界第 一,但中国在人才总量,以及杰出人才占比偏低。在产业上,中国的人工智能企业数量排在全球第二,不过,中国人工智能领域的投融资占到了全球的60%,成为全球最“吸金”的国家。
报 告指出,中国必须加强基础研究,优化科研环境,培养和吸引顶尖的人才,在人工智能的新基础领域实现突破,保证人工智能发展的根基稳固。同时,要大力鼓励产 学研合作,让企业成为人工智能创新的主导力量。积极参与到人工智能全球治理机制的构建中,在人工智能未来的技术发展、风险防范、道理伦理规范制定等领域发 挥中国独特的作用。
这份报告由清华大学中国科技政策研究中心、清华公共管理学院政府文献中心、北京赛时科技有限公司、科睿唯安、中国信息通信研究院和北京字节跳动科技有限公司联合。
论文总量世界第一,杰出人才占比偏低
报告中称,在论文产出上,中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从1997年4.26%增长至2017年的27.68%,遥遥领先其他国家。
高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现十分出众。
不仅如此,中国的高被引论文呈现出快速增长的趋势,并在2013年超过美国成为世界第一。
但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球20。
从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文中国通过国际合作而发表的占比高达42.64%。
专利申请上中国专利数量略微领先美国和日本。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,三国占全球总体专利公开数量的74%。
全球专利申请主要集中在语音识别、图像识别、机器人、以及机器学习等细分方向。中国人工智能专利持有数量前30名的机构中,科研院所与大学和企业的表现相当,技术发明数量分别占比52%和48%。
企业中的主要专利权人表现差异巨大,但中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。
中国的专利技术领域集中在数据处理系统和数字信息传输等,其中图像处理分析的相关专利占总发明件数的16%。电力工程也已成为中国人工智能专利布局的重要领域。
虽然在论文总量和高被引用论文数量上中国排名领先,但在人才投入上,中国表现并不突出。
根据该报告,截至2017年,中国的人工智能人才拥有量达到18232人,占世界总量8.9%,仅次于美国(13.9%)。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球国际人工智能人才投入量最大的机构。
然而,按高H因子衡量的中国杰出人才只有977人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为">华为一家企业进入全球前20。
中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域比较分散。
中国人工智能企业数量全球第二,但投融资规模最大
报告称,中国人工智能企业数量从2012年开始迅速增长,截至2018年6月,中国人工智能企业数量已达到1011家,位列世界第二,但与美国的差距还非常明显(2028家)。
中国人工智能企业高度集中在北京、上海和广东。在全球人工智能企业最多的20个城市中,北京以395家企业位列第一,上海、深圳和杭州也名列其中。中国人工智能企业应用技术分布主要集中在语音、视觉和自然语言处理这三个技术,而基础硬件的占比很小。
风险投资上,从2013到2018年第一季,中国人工智能领域的投融资占到全球的60%,成为全球最“吸金”的国家。但从投融资笔数来看,美国仍是人工智能领域创投最为活跃的国家。
在国内,北京的融资金额和融资笔数都遥遥领先其他地区,上海和广东的人工智能投资也很活跃。从2014年开始,国内人工智能投融资活动的早期投资的占比逐渐下降,投资活动日趋理性,但A轮融资还是占主导地位。
纵观今年新增的本科专业,有几大门类吸引目光:新文科、新农科建设风生水起,人文与科技更多的“融合”,意味着传统意义上基础学科和应用学科的界线开始变得模糊。数据科学与大数据技术专业继续成为热门,加上今年新开设相关专业的196所高校,目前,全国已有近500所学校开设此专业;35所高校首次设立人工智能专业,这意味着,高校开始体系化培养人工智能行业后备军。与幼儿养育相关的专业继续增设,这不仅是因为全面二孩政策的实施,更是由于人们越来越重视对下一代的培养。
“新增专业弥补了我省有关专业的布点空白,进一步优化了专业结构。”省教育厅高教处副处长王国银介绍,此次省属高校新增专业主要围绕数字经济“一号工程”、战略性新兴产业、高新技术产业和万亿产业开设,这些专业瞄准国家战略需要和社会经济发展急需,进行创新型、复合型、应用型人才储备。
夯实基础
新文科、新农科未来可期
作为近年来高等教育中最时髦的词汇之一,新工科对于考生和家长来说已经不陌生了,但如果说起新文科、新农科,很多人可能就要打个问号。
去年10月,教育部等部门决定实施“六卓越一拔尖”计划2.0,在基础学科拔尖学生培养计划中,首次增加了心理学、哲学、中国语言文学、历史学等人文学科,“新文科”概念浮出水面。今年4月,教育部、科技部等13个部门正式联合启动“六卓越一拔尖”计划2.0,全面推进新工科、新医科、新农科、新文科建设。
新文科“新”在何处?打破旧壁垒,跨界寻方法,归纳真规律,新文科意味着对传统基础学科的一次重新整合。
“相对于传统文科,新文科有两个特色。”南开大学传播学系主任陈鹏说。其一,新文科是问题导向的,新文科面对的是社会发展变化中的新现象、新问题、新变化,有些现象和问题是人类历从未遇到过的,如大数据、区块链、5G、人工智能等,需要突破传统文科的框架,采用新方法、新视野去探索新理论、新规律。其二,新文科为了寻求对社会和人类自身的研究,需要通过“跨界”方式进行革新,这种“跨界”不仅仅发生在文科的各学科之间,甚至出现在文科和理科、工科、医科等学科之间,需要多学科之间的交叉和深度融合。
当前,清华大学、中国人民大学等高校开设的人文科学实验班,西安交通大学、华东师范大学等高校开展的学院式教学模式,都被视为我国新文科建设的重要经验。一位资深文科研究专家表示,当前,文科与其他学科有一些结合,比如考古学和技术结合,就形成了科技考古;信息技术和艺术结合,就形成了艺术设计的网络化等,但还远远无法满足现在社会的需求。新文科就是一种有效路径。
2018年4月,浙江大学召开文科大会,提出面向2035年发展目标和“文科十条”,进一步推进文科发展强主流、上一流。省内其他高校也纷纷积极为新文科创建搭建平台。浙江工商大学整合资源打造文科综合实验教学中心,打造跨学科综合性实验教学平台;浙江农林大学推出新文科求真实验班,帮助学生打牢知识储备金字塔的稳固塔基,再渐次进入专业学习,形成坚实塔身和更高耸的塔尖……
在浙江大学传播研究所教授、博士生导师邵培仁看来,建设新文科,其实也是对传统文科的反思。他指出,新文科有利于构建立足中国文化土壤、具有中国特色,具备整体性、包容性、互动性、共享性特质的面向全球、面向全人类的大文科。
不难看出,未来新文科相关专业或将成为热门。不仅如此,使用文文互鉴、文理交叉、文工融合的思维方法解决问题,还将为高校人才培养和评价体系带来新变革。
除了新文科,新技术的出现也让一些专业被赋予了新的内涵,比如新农科。
当前,随着生态文明建设的持续推进,生态学、环境科学等专业毕业生越来越受欢迎。今年,杭州师范大学就新增了生态学专业。该专业相关老师介绍,随着国家对生态学专业人才的需求增多,生态学专业人才培养规模逐渐加大,未来掌握生态学及植物学、动物学、微生物学、地理学等基础知识、分析方法和应用技能的人才会很抢手。
“浙江是‘两山’理论诞生地,‘农’字头的专业发展空间很大。”浙江农林大学主要负责人表示,“新农科”建设是乡村振兴实践、高等教育改革、人才需求变化和社会经济进步的必然选择,原先注重高度专业化、技术化的教育教学方式和人才培养模式已无法适应新时代农林高等教育的新需求,亟需探索实现农科学生全面发展的“新农科”建设之路。
顺应趋势
大数据、人工智能纷纷开班
顺应当下人工智能行业的热潮,今年新增的热门本科专业,均与大数据、人工智能、机器人等信息技术关键词相关。
梳理发现,数据科学与大数据技术专业在短短三四年间,从无到有,并一跃成为热门专业。2015年度的审批结果中,北京大学、对外经济贸易大学、中南大学3所高校成为首批获批设立该专业的高校;2016年度又有32所高校设立该专业;到了2017年度,获批设立这一专业的高校数量达到250所;加上2018年度新增的196所,目前,共有481所高校开设这个专业。
今年,我省有湖州师范学院、宁波工程学院、宁波财经学院、浙江大学城市学院等9所高校新增备案数据科学与大数据技术专业。一位专业课老师表示,社会在不断发展进步,现在的一些“新专业”也许尚无足够的办学经验,但可能恰恰是未来社会发展的需求所在。
在新增专业中,人工智能专业的热度也在逐年递增。继去年杭州电子科技大学、浙江理工大学成为我省首批开设智能科学与技术专业的高校后,今年,我省又有一批高校在人工智能人才培养上“摩拳擦掌”,积极增设相关“硬核”专业,改进人才培养思路。
浙江大学今年新增机器人工程和人工智能两个专业,还将在竺可桢学院新设图灵班。入选图灵班的学生可以在计算机科学与技术、人工智能、信息安全三个专业中确认专业。从入学开始,每位学生可从学院的优选导师库中选择一名学业导师,还将有国外顶尖大学的教学大师和科研领军人物到浙大给图灵班学生单独授课。
除了浙大以外,省内其他高校也在结合各自特色专业,构建人工智能专业的课程体系。比如,浙理工把专业发展方向和学校的优势结合起来,重点在智能穿戴等领域取得突破,还专门成立纺织工业人工智能研究院;浙工大结合了安防产业、智慧交通、“城市大脑”等浙江省的优势领域,与企业合作,开拓专业方向。
“打造新专业特色成了各高校的当务之急和立足之道。”杭州电子科技大学人工智能学院副院长吕强说,针对人工智能人才培养带来的新挑战,杭电人工智能学院提出了多方协同育人的理念,并将其作为教学改革项目进行探索,“人工智能对数理基础要求较高,我们在数学课程中增加了矩阵论、离散数学等原来研究生学习阶段才会有的课程内容,努力帮学生打好基础,在暑假,我们还计划举办夏令营,邀请企业名师进校园培训,共同开发专业课程等。”吕强说。
值得关注的是,人工智能已经从独立的专业教育,扩展到更广的层面。今年,浙江财经大学向非计算机类专业学生推出了人工智能“微专业”,其中包括了Python程序设计、高级数据库、机器人编程与实践等课程。“人工智能在信息金融、金融科技等领域有非常多的应用场景。财经类专业学生的数理基础比较好,这些知识将为他们的未来打下更好的基础。”浙财大教务处副处长石向荣说,可以预见的是,未来社会需要大量具有具体专业背景,同时又掌握人工智能相关知识的复合型人才。
紧盯儿童
医教类专业持续扩招
当下,伴随着“全面二孩”政策施行,各大医院产科分娩量走高,目前助产人才无论从数量上还是质量上都难以满足社会需求,临床急需本科层次助产人才。助产学专业于2016年首次开设,当时仅有4所高校获批开办此专业,2017年有20多所高校新增此专业。
近两年,我省先后有浙江中医药大学、温州医科大学、杭州医学院等3所高校新增了助产学专业。温州医科大学的助产学专业设在护理学院,目标是培养掌握护理学和助产学的基础理论和护理技能,具有基本的临床护理和临床助产能力,在各类医疗卫生保健机构中能够从事临床助产、围产期护理,以及母婴保健工作的高级助产人才。今年,台州学院、温州医科大学仁济学院也开设了助产学专业。
一位从事医学教育多年的教授表示,当前社会大众对医疗的需求,不仅体现在量上,更体现在质上。虽然现在医疗行业整体水平保持着上升态势,但人们对优质医疗的需求增长更快,所以仍然感觉医疗资源紧缺。
不久前,由中国工程院院士郑树森担任院长的浙江树人大学树兰国际医学院揭牌成立。作为树兰国际医学院首个设置的重点专业,临床医学专业面向全国招生100人。学院拥有国际医学专家、博士生导师等组成的高水平师资队伍,以及一批高水平的基础医学与临床医学实验平台。
同样,面对强烈的社会需求,温州医科大学今年增加了普通本科计划数。临床医学(定向培养)从30人增加到60人,面向萧山区等30个县(市、区)招生;麻醉学专业从61人增加到93人,其中省内普招增加16人。
值得一提的是,今年,浙江中医药大学新增食品卫生与营养学专业,这也是我省开办该专业的高校(不含独立学院)。该校招生办相关负责人介绍,食品卫生与营养学作为一门综合性的交叉学科,涉及预防医学、食品科学、营养学等多个学科,在提升健康素养,保障食品安全,促进疾病的营养学防治完善健康保障方面大有作为。
纵观今年我省的新增专业,从抚养、就医,再到教育,与幼儿养育相关的专业成为热门,除了新增儿科学、中医儿科学、助产学等专业外,学前教育、小学教育等师范类专业的报考也很火爆。